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The Recognition of Human Movement
Using Temporal Templates
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Abstract—A new view-based approach to the representation and recognition of human movement is presented. The basis of the
representation is a temporal template—a static vector-image where the vector value at each point is a function of the motion properties
at the corresponding spatial location in an image sequence. Using aerobics exercises as a test domain, we explore the
representational power of a simple, two component version of the templates: The first value is a binary value indicating the presence of
motion and the second value is a function of the recency of motion in a sequence. We then develop a recognition method matching
temporal templates against stored instances of views of known actions. The method automatically performs temporal segmentation, is
invariant to linear changes in speed, and runs in real-time on standard platforms.

Index Terms—Motion recognition, computer vision.

1 INTRODUCTION

THERE is a rich tradition in computer vision of studying
image sequences, an early survey can be found in [1].
But recently, the focus of research is less on the measure-
ment of image or camera motion and more on the labeling of
the action taking place in the scene. This shift has been
triggered not only by the availability of the computational
resources, but also the interest in applications, such as
wireless interfaces (e.g., [13]) and interactive environments
[21], [5]. The fundamental question is no longer “How are
things (pixels or cameras) moving?” but, rather “What is
happening?”

Unfortunately, this new labeling problem is not as well-
defined as the previously addressed questions of geometry.
Bobick [6] considers the range of motion interpretation
problems and proposes a taxonomy of approaches. At the
top and intermediate levels—action and activity, respecti-
vely—are situations in which knowledge other than the
immediate motion is required to generate the appropriate
label. The most primitive level, however, is movement—a
motion whose execution is consistent and easily character-
ized by a definite space-time trajectory in some feature
space. Such consistency of execution implies that for a given
viewing condition there is consistency of appearance. Put
simply, movements can be described by their appearance.

This paper presents a novel, appearance-based approach
to the recognition of human movement. Our work stands in
contrast to many recent efforts to recover the full three-
dimensional reconstruction of the human form from image
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sequences, with the presumption that such information
would be useful and perhaps even necessary to interpret
the motion (e.g., [23]). Instead, we develop a view-based
approach to the representation and recognition of move-
ment that is designed to support the direct recognition of
the motion itself.

1.1 A Motivating Example

Fig. 1 illustrates the motivation for the work described here
and for earlier work, which attempted to exploit similar
motion information through a different computational
mechanism [7]. Presented are frames of an extremely low
resolution sequence in which a subject is performing a
normally trivially recognizable movement. Despite the
almost total lack of of recognizable features in the static
imagery, the movement is easily recognized when the
sequence is put in motion on a screen.

This capability of the human vision system argues for
recognition of movement directly from the motion itself, as
opposed to first reconstructing a three-dimensional model
of a person and then recognizing the motion of the model as
advocated in [16], [23], [24]. In [7], we first proposed a
representation and recognition theory that decomposed
motion-based recognition into first describing where there is
motion (the spatial pattern) and then describing how the
motion is moving.

In this paper, we continue to develop this approach. We
first present the construction of a binary motion-energy
image (MEI) which represents where motion has occurred in
an image sequence. Next, we generate a motion-history image
(MHI) which is a scalar-valued image where intensity is a
function of recency of motion. Taken together, the MEI and
MHI can be considered as a two component version of a
temporal template, a vector-valued image where each
component of each pixel is some function of the motion at
that pixel location. These view-specific templates are
matched against the stored models of views of known
movements. To evaluate the power of the representation,
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Fig. 1. Selected frames from video of someone performing some
movement. Even with almost no structure present in each frame people,
can trivially recognize the motion as someone sitting.

we examine the discrimination power on a set of 18 aerobic
exercises. Finally, we present a recognition method that
automatically performs temporal segmentation, is invariant
to linear changes in speed, and runs in real-time on a
standard platform.

2 PRIOR WORK

The number of approaches to recognizing motion, particu-
larly human movement, has recently grown at a tremen-
dous rate. Aggarwal and Cai recently provided an extensive
survey on the machine analysis of human motion [2]. That
paper covers not only issues of recognition, but also of
general model recovery (i.e., the three-dimensional struc-
ture of the body at each point in time). Because the focus
here is on recognition, we will only summarize the model
construction techniques, concentrating on recognition stra-
tegies that would exploit such information. We divide the
prior work into generic model recovery, appearance-based
models, and direct motion-based recognition.

2.1 Generic Human Model Recovery

The most common technique for attaining the three-
dimensional information of movement is to recover the
pose of the person or object at each time instant using a
three-dimensional model. The model fitting is driven by
attempting to minimize a residual measure between the
projected model and object contours (e.g., edges of body in
the image). This generally requires a strong segmentation of
foreground /background and also of the individual body
parts to aid the model alignment process. It is difficult to
imagine such techniques could be extended to the blurred
sequence of Fig. 1.

For example, Rehg and Kanade [23] used a 27 degree-of-
freedom (DOF) model of a human hand in their system
called “Digiteyes.” Local image-based trackers are em-
ployed to align the projected model lines to the finger edges
against a solid background. The work of Goncalves et al.
[15] promoted three-dimensional tracking of the human
arm against a uniform background using a two cone arm
model and a single camera. Though it may be possible to
extend their approach to the whole body as claimed, it
seems unlikely that it is appropriate for nonconstrained
human motion with self-occlusion. Hogg [16] and Rohr [24]
used a full-body cylindrical model for tracking walking

humans in natural scenes. Rohr incorporates a 1 DOF pose
parameter to aid in the model fitting. All the poses in a
walking action are indexed by a single number. Here, there
is only a small subset of poses which can exist. Gavrila and
Davis [14] also used a full-body model (22 DOF, tapered
superquadrics) for tracking human motion against a
complex background. For simplifying the edge detection
in cases of self-occlusion, the user is required to wear a
tight-fitting body suit with contrasting limb colors.

One advantage of having the recovered model is the
ability to estimate and predict the feature locations, for
instance, edges, in the following frames. Given the past
history of the model configurations, prediction is commonly
attained using Kalman filtering [24], [23], [15] and velocity
constraints [14].

Because of the self-occlusions that frequently occur in
articulated objects, some systems employ multiple cameras
and restrict the motion to small regions [23], [14] to help
with projective model occlusion constraints. A single
camera is used in [16], [15], [24], but the actions tracked in
these works had little deviation in the depth of motion.
Acquiring the three-dimensional information from image
sequences is currently a complicated process, many times
necessitating human intervention or contrived imaging
environments.

2.1.1 Three-Dimensional Movement Recognition

As for action recognition, Campbell and Bobick [8] used a
commercially available system to obtain three-dimensional
data of human body limb positions. Their system exploits
redundancies that exist for particular actions and performs
recognition using only the information that varies between
actions. This method examines the relevant parts of the
body, as opposed to the entire body data. Siskind [26]
similarly used known object configurations. The input to his
system consisted of line-drawings of a person, table, and
ball. The positions, orientations, shapes, and sizes of the
objects are known at all times. The approach uses support,
contact, and attachment primitives and event logic to
determine the actions of dropping, throwing, picking up,
and putting down. These two approaches address the
problem of recognizing actions when the precise configura-
tion of the person and environment is known while the
methods from the previous section concentrate on the
recovery of the object pose.

2.2 Appearance-Based Models

In contrast to the three-dimensional reconstruction and
recognition approaches, others attempt to use only the two-
dimensional appearance of the action (e.g., [3], [10], [9],
[29]). View-based representations of two-dimensional sta-
tics are used in a multitude of frameworks, where an action
is described by a sequence of two-dimensional instances/
poses of the object. Many methods require a normalized
image of the object (usually with no background) for
representation.

For example, Cui et al. [9], Darrell and Pentland [10] and,
also, Wilson and Bobick [27] present results using actions
(mostly hand gestures), where the actual grayscale images
(with no background) are used in the representation for the
action. Though hand appearances remain fairly similar over
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a wide range of people, with the obvious exception of skin
color, actions that include the appearance of the total body
are not as visually consistent across different people due to
obvious natural variations and different clothing. As
opposed to using the actual raw gray-scale image,
Yamato et al. [29] examines body silhouettes, and Akita
[3] employs body contours/edges. Yamato utilizes low-
level silhouettes of human actions in a Hidden Markov
Model (HMM) framework, where binary silhouettes of
background-subtracted images are vector quantized and
used as input to the HMMs. In Akita’s work [3], the use of
edges and some simple two-dimensional body configura-
tion knowledge (e.g., the arm is a protrusion out from the
torso) are used to determine the body parts in a hierarchical
manner (first, find legs, then head, arms, trunk) based on
stability. Individual parts are found by chaining local
contour information. These two approaches help alleviate
some of the variability between people but introduce other
problems, such as the disappearance of movement that
happens to be within the silhouetted region and also the
varying amount of contour/edge information that arises
when the background or clothing is high versus low
frequency (as in most natural scenes). Also, the problem
of examining the entire body, as opposed to only the
desired regions, still exists, as it does in much of the three-
dimensional work.

Whether using two- or three-dimensional structural
information, many of the approaches discussed so far
consider an action to be comprised of a sequence of static
poses of an object. Underlying all of these techniques is the
requirement that there be individual features or properties
that can be extracted and tracked from each frame of the
image sequence. Hence, motion understanding is really
accomplished by recognizing a sequence of static config-
urations. This understanding generally requires previous
recognition and segmentation of the person [22]. We now
consider recognition of action within a motion-based
framework.

2.3 Motion-Based Recognition

Direct motion recognition [22], [25], [20], [4], [28], [26], [12],
[7] approaches attempt to characterize the motion itself
without reference to the underlying static poses of the body.
Two main approaches include the analysis of the body
region as a single “blob-like” entity and the tracking of
predefined regions (e.g., legs, head, mouth) using motion
instead of structural features.

Of the “blob-analysis” approaches, the work of Polana
and Nelson [22], Shavit and Jepson [25] and, also, Little and
Boyd [20] are most applicable. Polana and Nelson use
repetitive motion as a strong cue to recognize cyclic walking
motions. They track and recognize people walking in
outdoor scenes by gathering a feature vector, over the
entire body, of low-level motion characteristics (optical-
flow magnitudes) and periodicity measurements. After
gathering training samples, recognition is performed using
a nearest centroid algorithm. By assuming a fixed height
and velocity of each person, they show how their approach
may be extended to tracking multiple people in simple
cases. Shavit and Jepson also take an approach using the
gross overall motion of the person. The body, an animated

silhouette figure, is coarsely modeled as an ellipsoid.
Optical flow measurements are used to help create a phase
portrait for the system, which is then analyzed for the force,
rotation, and strain dynamics. Similarly, Little and Boyd
recognize people walking by analyzing the motion asso-
ciated with two ellipsoids fit to the body. One ellipsoid is fit
using the motion region silhouette of the person and the
other ellipsoid is fit using motion magnitudes as weighting
factors. The relative phase of various measures (e.g.,
centroid movement, weighted centroid movement, torque)
for each of the ellipses over time characterizes the gait of
several people.

There is a group of work which focuses on motions
associated with facial expressions (e.g., characteristic mo-
tion of the mouth, eyes, and eyebrows) using region-based
motion properties [28], [4], [12]. The goal of this research is
to recognize human facial expressions as a dynamic system,
where the motion of interest regions (locations known
a priori) is relevant. These approaches characterize the
expressions using the underlying motion properties rather
than represent the action as a sequence of poses or
configurations. For Black and Yacoob [4] and, also, Yacoob
and Davis [28], optical flow measurements are used to help
track predefined polygonal patches placed on interest
regions (e.g., mouth). The parameterization and location
relative to the face of each patch was given a priori. The
temporal trajectories of the motion parameters were
qualitatively described according to positive or negative
intervals. Then these qualitative labels were used in a rule-
based, temporal model for recognition to determine expres-
sions, such as anger or happiness.

Ju et al. [19] have extended this work with faces to
include tracking the legs of a person walking. As opposed
to the simple, independent patches used for faces, an
articulated three-patch model was needed for tracking the
legs. Many problems, such as large motions, occlusions, and
shadows, make motion estimation in that situation more
challenging than for the facial case.

The approach we took in [7] for recognizing whole body
movements was an attempt to generalize the face patch
tracking technique. The basic strategy was to use the overall
shape of the motion to hypothesize movements, which, in
turn, proposed patch models to be verified. Our experience
was that the inability to recover robustly canonical patch
motion parameters made the technique brittle.

Optical flow, rather than patches, was used by Essa and
Pentland [12] to estimate muscle activation on a detailed,
physically-based model of the face. One recognition
approach classifies expressions by a similarity measure to
the typical patterns of muscle activation. Another recogni-
tion method matches motion energy templates derived
from the muscle activations. These templates compress the
activity sequence into a single entity. In this paper, we
develop similar templates, but our templates incorporate
the temporal motion characteristics.

3 TEMPORAL TEMPLATES

Our goal is to construct a view-specific representation of
movement, where movement is defined as motion over
time. For now, we assume that either the background is
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Fig. 2. Example of someone sitting. Top row contains key frames. The bottom row is cumulative motion images starting from Frame 0.
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Fig. 3. MEls of sitting movement over 90° viewing angle. The smooth change implies only a coarse sampling of viewing direction is necessary to

recognize the movement from all angles.

static, or that the motion of the object can be separated from
either camera-induced or distractor motion. At the conclu-
sion of this paper, we discuss methods for eliminating

incidental motion from the processing.
In this section, we define a multicomponent image

representation of movement based upon the observed
motion. The basic idea is to construct a vector-image that
can be matched against stored representations of known
movements; this image is used as a temporal template.

3.1 Motion-Energy Images

Consider the example of someone sitting, as shown in Fig. 2.
The top row contains key frames in a sitting sequence. The
bottom row displays cumulative binary motion images—to
be described momentarily—computed from the start frame
to the corresponding frame above. As expected, the
sequence sweeps out a particular region of the image; our
claim is that the shape of that region (where there is motion)
can be used to suggest both the movement occurring and
the viewing condition (angle).

We refer to these binary cumulative motion images as
motion-enerqy images (MEI). Let I(z,y,t) be an image
sequence and let D(z,y,t) be a binary image sequence
indicating regions of motion; for many applications image-
differencing is adequate to generate D. Then, the binary
MEI E.(z,y,t) is defined

71

ET('r:yvt) = U D(Iayvt - Z)
i=0

We note that the duration 7 is critical in defining the
temporal extent of a movement. Fortunately, in the
recognition section we derive a backward-looking (in time)
algorithm that dynamically searches over a range of 7.

In Fig. 3, we display the MEIs of viewing a sitting motion
across 90°. In [7], we exploited the smooth variation of
motion over angle to compress the entire view circle into a
low-order representation. Here, we simply note that
because of the slow variation across angle, we only need
to sample the view sphere coarsely to recognize all
directions. In the evaluation section of this paper, we use
30° samplings to recognize a large variety of motions
(Section 4).

3.2 Motion-History Images

To represent how (as opposed to where) motion the image is
moving, we form a motion-history image (MHI). In an MHI
H,, pixel intensity is a function of the temporal history of
motion at that point. For the results presented here, we use
a simple replacement and decay operator:

NE: if D(z,y,t) =1
H:(z,y,t) = {max(O, H,(z,y,t —1) —1) otherwise.

The result is a scalar-valued image where more recently
moving pixels are brighter. Examples of MHIs are pre-
sented in Fig. 4.
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sit-down MHI

arms-wave MHI

crouch-down MHI

crouch-down

Fig. 4. Simple movements along with their MHIs used in a real-time
system.

Note that the MEI can be generated by thresholding the
MHI above zero. Given this situation one might consider
why not use the MHI alone for recognition? To answer this
question, we must wait until we describe how the MEI and
MHI are used for recognizing human motion. We will show
examples of how the two images together provide better
discrimination than either alone.

One possible objection to the approach described here is
that there is no consideration of optic flow, the direction of
image motion. In response, it is important to note the
relation between the construction of the MHI and direction
of motion. Consider the waving example in Fig. 4 where the
arms fan upwards. Because the arms are isolated compo-
nents—they do not occlude other moving components—the
motion-history image implicitly represents the direction of
movement: The motion in the arm down position is “older”
than the motion when the arms are up. For these types of
articulated objects and for simple movements where there is
not significant motion self-occlusion, the direction of
motion is well-represented using the MHIL As motions
become more complicated, the optic flow is more difficult to
discern, but is typically not lost completely.

3.3 Extending Temporal Templates

The MEI and MHI are two components of a vector image
designed to encode a variety of motion properties in a
spatially indexed manner. Other possible components of the

temporal templates include power in directional motion
integrated over time (e.g., “in this pixel there has been a
large amount of motion in the down direction during the
integrating time window”) or the spatially localized
periodicity of motion (a pixel by pixel version of Polana
and Nelson [22]). The vector-image template is similar in
spirit to the vector-image based on orientation and edges
used by Jones and Malik [18] for robust stereo matching.

For the results in this paper, we use only the two
components derived above (MEI and MHI) for representa-
tion and recognition. This particular choice of temporal
projection operator has the advantage that the computation
is recursive: The MHI at time ¢ is computed from the MHI at
time ¢t — 1 and the current motion image D,(z,y), and the
current MEI is computed by thresholding the MHI. The
recursive definition implies that no history of the previous
images or their motion fields need be stored nor manipu-
lated, making the computation both fast and space efficient.
Other projection operators such as pixel-wise summations
over time require maintaining all the D;(z, y) for t) <t <.

Of course, any projection operator loses information.
One potential difficulty is that any interesting motion
history at a given location is obliterated by recent move-
ment. For all of our experiments, we have used the recency
operator described here. We also note that such an operator
has biological implications: A recency projection can be
trivially performed by motion-sensitive, spatially-local
filters with fixed decay rates.

4 DISCRIMINATION

4.1 Matching Temporal Templates

To construct a recognition system, we need to define a
matching algorithm for the temporal template. Because we
are using an appearance-based approach, we must first
define the desired invariants for the matching technique. As
we are using a view sensitive approach, it is desirable to
have a matching technique that is as invariant as possible to
the imaging situation. Therefore, we have selected a
technique which is scale and translation invariant.

We first collect training examples of each movement from
a variety of viewing angles. Given a set of MEIs and MHIs for
each view/movement combination, we compute statistical
descriptions of the these images using moment-based
features. Our current choice is 7 Hu moments [17] which
are known to yield reasonable shape discrimination in a
translation- and scale-invariant manner (See Appendix).' For
each view of each movement, a statistical model of the
moments (mean and covariance matrix) is generated for both
the MEI and MHI. To recognize an input movement, a
Mahalanobis distance is calculated between the moment
description of the input and each of the known movements. In
this section, we show results using this distance metric in
terms of its separation of different movements.

Note that we have no fundamental reason for selecting
this method of scale- and translation-invariant template
matching. The approach outlined has the advantage of not
being computationally taxing making real-time implemen-
tation feasible. One disadvantage is that the Hu moments

1. If required, rotation invariance (in the image plane) can be obtained as
well, see the Appendix.
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13 14 15

16 17 18

Fig. 5. A single key frame and MEI from the frontal view of each of the 18 aerobic exercises used to test the representation.

are difficult to reason about intuitively. Also, we note that
the matching methods for the MEI and MHI need not be the
same, in fact, given the distinction we make between where
there is motion and how the motion is moving, one might
expect different matching criteria.

4.2 Testing on Aerobics Data: One Camera

To evaluate the power of the temporal template representa-
tion, we recorded video sequences of 18 aerobic exercises
performed several times by an experienced aerobics
instructor. Seven views of the movement—+90° to —90°

in 30° increments in the horizontal plane—were recorded.
Fig. 5 shows the frontal view of one key frame for each of
the moves along with the frontal MEIL. We take the fact that
the MEI makes clear to a human observer the nature of the
motion as anecdotal evidence of the strength of this
component of the representation. We also mention that
the feather-like patterns seen during rapid body motion,
such as the arm swing in move 14 and 17 of Fig. 5, vary in
their exact phase from one instance to the next depending
upon the phase relation to the image sampling. However,
because the Hu moments create a coarse global shape
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Key Frame MEI MHI

&

Move 2

Move 4

Move 17

Fig. 6. Comparison of MEI and MHI. Under an MEI description moves 4
and 17 are easily confused; under the MHI, moves 2 and 4 are similar.
Because the global shape descriptions are weighted by the pixel values,
having both images yields more discrimination power.

description, the precise phase has little effect on the shape
description.

The aerobics imagery provides examples of why having
both the MEI and MHI is valuable even though the MEI can
be constructed by thresholding the MHI. Fig. 6 shows the
MEI and MHI for moves 2, 4, and 17. Note that move 4 and
17 have quite similar MEIs yet distinct MHIs; moves 2 and 4
have similar MHIs in terms of where the majority of image
energy is located yet display quite distinct MEIs. Because
the MEI and MHI projection functions capture two distinct
characteristics of the motion—"where” and “how,” respec-
tively—the shape descriptors of these two images discrimi-
nate differently.

For this experiment, the temporal segmentation and
selection of the time window over which to integrate were
performed manually. Later, we will detail a self-segmenting,
time-scaling recognition system (Section 5). The only pre-
processing done on the data was to reduce the image
resolution to 320 x 240 from the captured 640 x 480. This step
had the effect of not only reducing the data set size but also of
providing some limited blurring which enhances the stability
of the global statistics.

We constructed the temporal template for each view of
each move and then computed the Hu moments on each
component. To do a useful Mahalanobis procedure would
require watching several different people performing the
same movements, this multisubject approach is taken in the
next section where we develop a recognition procedure
using a full covariance (Section 5). Instead, here we design
the experiment to be a measurement of confusion. A new
test subject performed each move and the input data was
recorded by two cameras viewing the movement at
approximately 30° to left and 60° to the right of the subject.
The temporal template for each of the two views of the test

TABLE 1
Test Results Using One Camera at 30° Off Frontal
Closest Closest Correct Median | Rank
Dist Move  Dist Dist

Test 1 143 4 1.44 2.55 2
2 | 3.14 2 3.14 12.00 1

3 | 3.08 3 3.08 8.39 1

4 | 047 4 047 2.11 1

5| 6.84 5 684 19.24 1

6 | 032 10 0.61 0.64 7

Test 7 | 0.97 7 0.97 2.03 1
8 | 2047 8 2047 35.89 1

9 1.05 8 1.77 2.37 4

10| 0.14 10 0.14 0.72 1

11| 0.24 11 0.24 1.01 1

12| 0.79 12 0.79 442 1

Test 13| 0.13 6 0.25 0.51 3
14| 4.01 14 4.01 7.98 1

15| 0.34 15 0.34 1.84 1

16| 1.03 15 1.04 1.59 2

17| 0.65 17 0.65 2.18 1

18| 048 10 0.51 0.94 4

Each row corresponds to one test move and gives the distance to the
nearest move (and its index), the distance to the correct matching move,
the median distance, and the ranking of the correct move.

input movements was constructed and the associated
moments computed.

Our first test uses only the left (30°) camera as input and
matches against all seven views of all 18 moves (126 total).
In this experiment, we used only one instance of each view/
move pair. We select as a metric a pooled independent
Mahalanobis distance—using the same diagonal covariance
matrix for all the classes as generated by pooling all the
data—to accommodate variations in magnitude of the
moments. Table 1 displays the results. Indicated are the
distance to the move closest to the input (as well as its
index), the distance to the correct matching move, the
median distance (to give a sense of scale), and the ranking
of the correct move in terms of least distance.

The first result to note is that 12 of 18 moves are correctly
identified using the single view. This performance is quite
good considering the compactness of the representation (a
total of 14 moments from two correlated motion images) and
the size and similarity of the target set. Second, in the typical
situation in which the best match is not the correct move, the
difference in distances from the input to the closest move
versus the correct move is small compared to the median
distance. Examples of this include test moves 1,9, 13, 16, and
18. In fact, for moves 1, 16, and 18 the difference is negligible.

To analyze the confusion difficulties further, consider the
example shown in Fig. 7. Displayed here, left to right, are the
input MHI (known to be move 13 at view angle 30°), the
closestmatch MHI (move 6 at view angle 0°), and the “correct”
matching MHI of move 13. The problem is that an alternative
view of a different movement projects into a temporal



264 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 3, MARCH 2001

(@) (b) (©)

Fig. 7. An example of MHIs with similar statistics. (a) Test input of
move 13 at 30°. (b) Closest match which is move 6 at 0°. (c) Correct
match.

template with similar statistics. For example, consider sitting
and crouching motions when viewed from the front. The
observed motions are almost identical and the coarse
temporal template statistics do not distinguish them well.

4.3 Combining Multiple Views

A simple mechanism to increase the power of the method is
to use more than one camera. Several approaches are
possible. For this experiment, we use two cameras placed
such that they have orthogonal views of the subject. The
recognition system now finds the minimum sum of
Mahalanobis distances between the two input templates
and two stored views of a movement that have the correct
angular difference between them, in this case 90°. The
assumption embodied in this approach is that we know the
approximate angular relationship between the cameras.

TABLE 2
Results Using Two Cameras Where the Angular
Interval Is Known and Any Matching Views
Must Have the Same Angular Distance

Closest Closest Correct Median | Rank
Dist Move  Dist Dist
Test 1 | 2.13 1 2.13 6.51 1
2 11292 2 1292  19.58 1
3 717 3 717 18.92 1
4 | 1.07 4 1.07 7.91 1
511642 5 1642 3273 1
6 | 0.88 6 0.88 3.25 1
Test 7 | 3.02 7 3.02 7.81 1
8 | 36.76 8 36.76  49.89 1
9 | 5.10 8 6.74 8.93 3
10| 0.68 10 0.68 3.19 1
11 1.20 11 1.20 3.68 1
12 2.77 12 277 1512 1
Test 13| 0.57 13 0.57 2.17 1
14| 6.07 14 6.07 16.86 1
15| 2.28 15 2.28 8.69 1
16| 1.86 15 2.35 6.72 2
17| 2.67 8 3.24 7.10 3
18] 1.18 18 1.18 4.39 1

(@) (b) (©)

Fig. 8. Example of error where failure is caused, by both the inadequacy
of using image differencing to estimate image motion and the lack of the
variance data in the recognition procedure. (a) Test input of move 16.
(b) Closest match which is move 15. (c) Correct match.

Table 2 provides the same statistics as the first table, but
now using two cameras. Notice that the classification now
contains only three errors. The improvement of the result
reflects the fact that for most pairs of this suite of
movements, there is some view in which they look distinct.
Because we have 90° between the two input views, the
system can usually correctly identify most movements.

We mention that if the approximate calibration between
cameras is not known (and is not to be estimated) one can
still logically combine the information by requiring con-
sistency in labeling. That is, we remove the interangle
constraint, but do require that both views select the same
movement. The algorithm would be to select the move
whose Mahalanobis sum is least, regardless of the angle
between the target views. If available, angular order
information—e.g., camera 1 is to the left of camera 2—can
be included. When this approach is applied to the aerobics
data shown here, we still get similar discrimination. This is
not surprising because the input views are so distinct.

To analyze the remaining errors, consider Fig. 8, which
shows the input for move 16. Left to right are the 30° MHIs
for the input, the best match (move 15), and the correct
match. The test subject performed the move much less
precisely than the original aerobics instructor. Because we
were not using a Mahalanobis variance across subjects, the
current experiment could not accommodate such variation.
In addition, the test subject moved her body slowly while
wearing low frequency clothing resulting in an MHI that
has large gaps in the body region. We attribute this type of
failure to our simple (i.e., naive) motion analysis; a more
robust motion detection mechanism would reduce the
number of such situations.

5 SEGMENTATION AND RECOGNITION

The final element of performing recognition is the temporal
segmentation and matching. During the training phase, we
measure the minimum and maximum duration that a
movement may take, 7., and T,,,. If the test motions are
performed at varying speeds, we need to choose the right 7
for the computation of the MEI and the MHI. Our current
system uses a backward looking variable time window.
Because of the simple nature of the replacement operator,
we can construct a highly efficient algorithm for approx-
imating a search over a wide range of 7.
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The algorithm is as follows: At each time step, a new
MHI H,(z,y,t) is computed setting 7 = 7,4, Where 7., is
the longest time window we want the system to consider.
We choose A7 to be (Tmar — Tmin)/(n — 1), where n is the
number of temporal integration windows to be considered.?
A simple thresholding of MHI values less than (7 — A7)
generates H(,_a. from H:

(H‘r(xv Y t) - AT)

HT—AT(JS»Z/, t) = {0 if HT(x’y7 t) > AT

otherwise.

To compute the shape moments, we scale H. by 1/7. This
scale factor causes all the MHIs to range from 0 to 1 and
provides invariance with respect to the speed of the
movement. Iterating, we compute all n MHIs; thresholding
of the MHIs yields the corresponding MEIs.

After computing the various scaled MHIs and MEIs, we
compute the Hu moments for each image. We then check
the Mahalanobis distance of the MEI parameters against the
known view/movement pairs. The mean and the covar-
iance matrix for each view/movement pair is derived from
multiple subjects performing the same move. Any move-
ment found to be within a threshold distance of the input is
tested for agreement of the MHI. If more than one
movement is matched, we select the movement with the
smallest distance.

The aerobics data were generated from only two
individuals who performed the movements precisely, with-
out adequate variation to generate a statistical distribution.
To test the real-time recognition system, we created a new,
smaller movement set using multiple people to provide
training examples. Our experimental system recognizes
180° views of the movements sitting, arm waving, and
crouching (See Fig. 4). The training required four people and
sampling the view circle every 45°. The system performs
well, rarely misclassifying the movements. The errors
which do arise are mainly caused by problems with image
differencing and also due to our approximation of the
temporal search window n < (Ty4z — Tinin + 1).

The system runs at approximately 9 Hz using
2 CCD cameras connected to a Silicon Graphics 200MHz
Indy; the images are digitized at a size of 160 x 120. For
these three moves 7,4,-19 (approximately 2 seconds),
Tmin = 11 (approximately 1 second), and we chose n = 6.
The comparison operation is virtually no cost in terms of
computational load, so adding more movements does not
affect the speed of the algorithm, only the accuracy of the
recognition.

6 EXTENSIONS, PROBLEMS, AND APPLICATIONS

We have presented a novel representation and recognition
technique for identifying movements. The approach is based
upon temporal templates and their dynamic matching in
time. Initial experiments in both measuring the sensitivity of
the representation and in constructing real-time recognition
systems have shown the effectiveness of the method.

2. Ideally, n = Tz — Tinin + 1 resulting in a complete search of the time
window between 7,,,,, and 7,,;,. Only computational limitations argue for a
smaller n.

There are, of course, some difficulties in the current
approach. Several of these are easily rectified. As mentioned,
a more sophisticated motion detection algorithm would
increase robustness. Also, as developed, the method assumes
all motion present in the image should be incorporated into
the temporal templates. Clearly, this approach would fail
when two people are in the field of view. To implement our
real-time system, we use a tracking bounding box which
attempts to isolate the relevant motions.

A worse condition is when one person partially occludes
another, making separation difficult, if not impossible.
Here, multiple cameras is an obvious solution. Since
occlusion is view angle specific, multiple cameras reduce
the chance the occlusion is present in all views. For
monitoring situations, one can use an overhead camera to
select which ground based cameras have a clear view of a
subject and to specify (assuming loose calibration) where
the subject would appear in each image.

6.1 Handling Incidental Motion

A more serious difficulty arises when the motion of part of
the body is not specified during a movement. Consider, for
example, throwing a ball. Whether the legs move is not
determined by the movement itself, inducing huge varia-
bility in the statistical description of the temporal templates.
To extend this paradigm to such movements requires some
mechanism to automatically either mask away regions of
this type of motion or to always include them.

For some real-time applications, such as the one
discussed in the next section, we have a modified
MHI generation algorithm: Instead of using the motion
image to create the MHI or MEI, we simply use the
background subtracted images. This way a small motion of
a body part versus no motion does not change how it
contributes to the temporal template. This most likely
reduces the discrimination power of the system (we have
not investigated this), but it does tremendously increase the
robustness.

Two other examples of motion that must be removed are
camera motion and locomotion (if we assume the person is
performing some movement while locomoting and what we
want to see is the underlying motion). In both instances, the
problem can be overcome by using a body centered motion
field. The basic idea would be to subtract out any image
motion induced by camera movement or locomotion. Of
these two phenomena, camera motion elimination is sig-
nificantly easier because of the over constrained nature of
estimating egomotion. Our only insight at this point is that
because the temporal template technique does not require
accurate flow fields it may be necessary only to approxi-
mately compensate for these effects and then to threshold the
image motion more severely than we have done to date.

6.2 The KipsRoom: An Application

We conclude by mentioning an application we developed in
which we employed a version of the temporal template
technique described. The application was titled The Kids-
Room, an interactive play-space for children [5]. The basic
idea is that the room is aware of the children (maximum of 4)
and takes them through a story where the responses of the
room are affected by what the children do. Computers control
the lighting, sound effects, performance of the score, and
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Fig. 9. The KIDSROOM interactive play-space. Using a modified version
of temporal templates, the room responds to the movements of the
children. All sensing is performed using vision from three cameras: one
overhead for tracking and two wall mounted cameras for movement
recognition.

illustrations projected on the two walls of the room that are
actually video screens. The current scenario is an adventur-
ous trip to Monsterland. A snapshot is shown in Fig. 9.

In the last scene the monsters appear and teach the
children to dance—basically to perform certain movements.
Using the background-subtracted modified version of the
MEIs and MHIs, the room can compliment the children on
well-performed moves (e.g., spinning) and then turn
control of the situation over to them: the monsters follow
the children if the children perform the moves they were
taught. The interactive narration coerces the children to
room locations where occlusion is not a problem. Of all the
vision processes required, the modified temporal template
is one of the more robust. We take the ease of use of the
method to be an indication of its potential.

APPENDIX
IMAGE MOMENTS

The two-dimensional (p + ¢)th order moments of a density
distribution function p(z,y) (e.g., image intensity) are
defined in terms of Riemann integrals as:

My = / / 2y p(z,y)dzdy, (1)

for p,g=0,1,2,---.
The central moments i, are defined as:

o= [ [ o= 0P 9ot - Dty - 5. @
where

T = myo/ Moo,
¥ = mo1/moo-

It is well-known that under the translation of coordi-
nates, the central moments do not change, and are therefore
invariants under translation. It is quite easy to express the
central moments f,,, in terms of the ordinary moments m,,.
For the first four orders, we have

Hoo = Moo = K

p10 =10

to1 =0

[ao = Mag — UT

p11 = mi — pITy

fo2 = Moz — pif’

[i30 = M30 — 3MayT + 2uz”

fi21 = Moy — Mol — 2m1 T + 2uT’Y
fi12 = Mz — M@ — 2ma1y + 2uTy’
fos = Moz — 3meal + 203"

To achieve invariance with respect to orientation and
scale, we first normalize for scale defining 7,,:

_ _Hwe
Tlpq (t00)””
where y=(p+q)/2+1 and p+¢q>2. The first seven

orientation invariant Hu moments are defined as:

Vi = 120 + Moz

vy = (120 — m02)” + 47,

vs = (1130 — 3m2)” + (3121 — 7003)°
vi = (30 + mi2)” + (21 + 1)’

vs = (1130 — 3mz2)(ms0 + m2)[(m30 + m2)” — 3(n21 + nos)’]
+ (3m21 — n03) (21 + M03)

“[3(m30 + 7712)2 — (N1 + 7703)2]

vs = (120 — Mo2) (1130 + 7712)2 — (n21 + 7703)2]
+ 4mi1 (30 + Mi2) (21 + Mo3)

v = (3ma1 — no3) (N30 + m2)[(ms0 + Ma)” — 3(mo1 + 7703)2}
— (130 — 3m2) (m21 + 103) [3(m30 + m2)” — (m21 + mo3)”)-

These moments can be used for pattern identification
independent of position, size, and orientation.
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