
ECE 405/511
Error Control Coding

Cyclic Codes



Definition
• A code C is cyclic if

1) C is a linear block code
2) a cyclic shift of any codeword

is another codeword

• Examples:
C1 = {000, 111}
C2 = {000, 101, 011, 110}

0 1 1( , , , )i nc c c −=c 

1 0 1 2( , , , , )j n nc c c c− −=c 
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Another Example

• C3 = {0000,1001,0110,1111} is not cyclic

• Interchange positions 3 and 4 
(equivalent code)

• C3' = {0000,1010,0101,1111} is cyclic
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• Code polynomials 

• GF(q)[x] is the set of polynomials with 
coefficients from GF(q)

• GF(q)[x] is a commutative ring with identity 
(not a field)

−
−= + + + ∈

1
0 1 1( ) ,     GF( )n

n ic x c c x c x c q
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• Define the ring of polynomials modulo f(x) of degree 
n as GF(q)[x]/f(x)

• This is a finite ring
• Example: choose f(x)=x2-1 which in GF(2) is x2+1

– then the ring is GF(2)[x]/(x2+1)
– x2+1 is not irreducible
– elements are {0, 1, x, x+1}
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• Over any field GF(q)

so  xn-1 is never irreducible for n>1
• Let Rn denote GF(2)[x]/(xn-1)
• Any polynomial of degree ≥ n can be reduced 

modulo xn-1 to a polynomial of degree less than n

1 21 ( 1)( 1)n n nx x x x x− −− = − + + + +
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ECE 405/511 Test

• Friday, February 17, 2023 10:30 AM
– constitutes 20% of the final grade 

• Test will cover material up to bounds on codes
• Shortening and extending are included but not the 

Hamming, Gilbert, and Gilbert-Varshamov bounds.
– Moreira and Farrell Chapter 2 (not Section 2.11)
– Assignments 1 and 2 (Problems 1-4)

• Aids allowed: 1 sheet of paper 8.5 × 11 in2

calculator
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Ideals

• Let R be a ring. A nonempty subset           is called an 
Ideal if it satisfies the following
– I forms a group under addition
– for all           and  

• superclosed under multiplication

• Examples
– {0} and R are trivial Ideals in R
– {0, x4+x3+x2+x+1} is an Ideal in R5 = GF(2)[x]/(x5-1)
– even numbers in Z (even integers)

I R⊆

a r I∈ a I∈ r R∈
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Ideal Example

• R3 = GF(2)[x]/(x3-1)

2 2

2 2

0 000 1 100
010       1 110

001       1 101

011    1 111

x x

x x

x x x x

→ →
→ + →

→ + →

+ → + + →

2 2{0,1 ,1 , }I x x x x= + + + is an Ideal in R3

{000, 110, 101, 011}  is a cyclic code
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Theorem

A code which is a vector subspace over a field 
GF(q) is a cyclic code iff it corresponds to an 
ideal in GF(q)[x]/(xn-1) (the ring of polynomials 
modulo xn-1)

10
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Cyclic Code Generation
• Let f(x) be any polynomial in Rn and let < f(x) > 

denote the subset of Rn consisting of all multiples of 
f(x) modulo xn-1

• < f (x) > is the cyclic code generated by f(x)
• Example: C = < 1+x2 > in R3 = GF(2)[x]/(x3-1) 

– Multiplying by all 8 elements in R3 produces only 
4 distinct codewords 

C={0,1+x,1+x2,x+x2}

( ) { ( ) ( )| ( ) }nf x r x f x r x R< >= ∈
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Generator Polynomial
• Any cyclic code can be generated by a polynomial 

from Rn

• Let C be a cyclic code in Rn. Then we have the 
following facts:
1. There exists a unique monic polynomial g(x) of 

smallest degree in C
2. C=< g(x) >
3. g(x)|xn-1
g(x) is called the generator polynomial of the cyclic 

code
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Cyclic Codes

• Any polynomial c(x) of degree less than n is in C iff 
g(x)|c(x)

• If g(x) has degree n-k, |C|=qk

• Every codeword has the form
c(x) = m(x)g(x)

codeword 
polynomial of 
degree n-1 or 
less

message 
polynomial of 
degree k-1 or 
less

generator 
polynomial of 
degree n-k



14

• To determine the possible g(x), factor xn-1
• Example: 

x3-1 = (x+1)(x2+x+1) over GF(2) 

Generator 
polynomial

Code in R3 Code in 3-tuples

1 R3 V3

x+1 {0,1+x,1+x2,x+x2} {000,110,101,011}

x2+x+1 {0,1+x+x2} {000,111}

x3-1 {0} {000}
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Generator Matrix
• Since 1
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Generator Matrix Example
• R7 = GF(2)[x]/(x7-1)
• x7-1 = (1+x+x3)(1+x2+x3)(1+x)
• g(x) = 1+x+x3

• C is a (7,4,3) code – a binary cyclic code
• All binary cyclic codes with g(x) a primitive polynomial are 

equivalent to Hamming codes

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 
 
 =
 
 
 

G
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Example
• g(x) = (1+x+x3)(1+x) = 1+x2+x3+x4

• C is a (7,3,4) binary cyclic code

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 
 =  
  

G
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Parity Check Matrix

• The generator matrix is not in systematic form.   
How to find the parity check matrix? 

• g(x) is a factor of xn-1, i.e. g(x)h(x) = xn-1
• h(x) is a monic polynomial with degree k, and is the 

generator polynomial of a cyclic code C', but not 
necessarily of the dual code of C.

• For the (7,4,3) code example
h(x) = (1+x2+x3)(1+x) = 1+x+x2+x4
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• x7-1 = (1+x+x3)(1+x2+x3)(1+x)
• g(x) = 1+x+x3

• h(x) = (1+x2+x3)(1+x) = 1+x+x2+x4

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 
 
 =
 
 
 

G

1 1 1 0 1 0 0
' 0 1 1 1 0 1 0

0 0 1 1 1 0 1

 
 =  
  

H



20

• g(x)h(x)=0 mod xn-1 (in Rn) is not the same as 
vectors in Vn being orthogonal.

• Let H be the matrix generated from 
h*(x)=xkh(x-1)=hk+xhk-1+…+xkh0    reciprocal poly. of h(x)

1 1 0
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1 1 0

1 1 0
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 
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Parity Check Matrix H

• c(x)h(x) = m(x)g(x)h(x) = m(x)(xn-1) = -m(x)+ xnm(x)
• m(x) has degree < k, thus the coefficients of xk to xn-1

in c(x)h(x) must be zero

0 1 1 0

1 2 1 1 0

1 1 1 0

0
0

0

k k k

k k k

n k k n k k n

c h c h c h
c h c h c h
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+ + + =

+ + + =









⇒ =T   cH 0



Hamming Code Example (Cont.)
• h*(x) =1+x2+x3+x4 generates the parity check matrix 

and the dual cyclic code of the code generated by g(x)

• H is the parity check matrix for the (7,4,3) Hamming 
code

• h*(x)=1+x2+x3+x4 is the generator polynomial for a 
(7,3,4) cyclic code since h*(x)| xn-1
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1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 
 =  
  

H



Hamming Code Example (Cont.)
• h*(x)=1+x2+x3+x4 is the generator polynomial for a 

(7,3,4) cyclic code since h*(x)| xn-1
• g(x)=1+x2+x3+x4

23

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

G
 
 =  
  



Hamming Code Example (Cont.)
• To construct the parity check matrix for the (7,3,4) 

code, use h(x) = 1+x2+x3

• h*(x) = 1+x+x3 is the generator polynomial for a 
(7,4,3) cyclic code since h*(x)|xn-1

• h*(x) generates the parity check matrix H as well as 
the dual cyclic code
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1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 
 
 =
 
 
 

H
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Binary Cyclic Codes of Length 7
• x7-1=(1+x+x3)(1+x2+x3)(1+x)

• g(x) = 1+x        (7,6,2)  
dual code h*(x) = 1+x+x2+x3+x4+x5+x6   (7,1,7) 

• g(x) = 1+x+x3 (7,4,3)
dual code h*(x) = 1+x2+x3+x4 (7,3,4) 

• g(x) = 1+x2+x3 (7,4,3)
dual code h*(x) = 1+x+x2+x4 (7,3,4) 
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Systematic Cyclic Codes
• R7 = GF(2)[x]/(x7-1)
• x7-1 = (1+x+x3)(1+x2+x3)(1+x)
• g(x) = 1+x+x3

• C is a (7,4,3) code – not in systematic form
• To transform into systematic form:

– permute columns 1 and 4, then add rows 2 and 4 to get a 
new row 4

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 
 
 =
 
 
 

G
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Systematic Generator Matrix
• Permute columns 1 and 4, then add rows 2 and 4 to get a new 

row 4.
• The resulting generator matrix has a systematic form [P Ik], 

but is not cyclic

• Check: divide the last row of G' by g(x)
– 1+x+x2+x6 is not divisible by g(x) = 1+x+x3

1 1 0 1 0 0 0
0 1 1 0 1 0 0

'
1 0 1 0 0 1 0
1 1 1 0 0 0 1

 
 
 =
 
 
 

G
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• We require an algebraic means of generating a 
systematic code while preserving divisibility by g(x). 

• Approach: divide xi by g(x), i = n-k to n-1
xi = g(x)qi(x)+di(x)     di(x) has degree less than n-k

rearranging xi - di(x) = g(x)qi(x)      divisible by g(x)

• xi - di(x) has only one non-zero coefficient for 
degrees n-k to n-1

• Use xi - di(x) to form G
G = [P Ik]      H = [In-k -PT]

Systematic Generator Matrix
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Example
• g(x) = 1+x+x3

xi g(x)qi(x) di(x) xi +di(x) 
x3 (1+x+x3)·1 1+x 1+x+x3

x4 (1+x+x3)·x x+x2 x+x2+x4

x5 (1+x+x3)·(1+x2) 1+x+x2 1+x+x2+x5

x6 (1+x+x3)·(1+x+x3) 1+x2 1+x2+x6

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

 
 
 =
 
 
 

G
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Systematic Encoding

• Systematic encoding is achieved by multiplying m(x) 
by xn-k and dividing this product by g(x) to obtain d(x) 

• c(x) = m(x)xn-k + m(x)xn-k/g(x)  

• Example (7,4,3) code
m(x) = x2+x+1
m(x)xn-k = x5+x4+x3     divide by g(x) = x3+x+1 → d(x) = x
c(x) = x5+x4+x3+x
c = 0101110

use the remainder d(x)



Another Example

• R23 = GF(2)[x]/(x23-1)
• x23-1 = 

(x+1)(x11+x10+x6+x5+x4+x2+1)(x11+x9+x7+x6+x5+x+1)
= (x+1)g1(x)g2(x)

• g1(x) = g2*(x)
• g1(x) and g2(x) both generate (23,12,7) codes
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Ternary Example

• x11-1 = (x-1)(x5+x4-x3+x2-1)(x5-x3+x2-x-1) over GF(3)
= (x-1)g1(x)g2(x)

• g1(x) and g2(x) both generate (11,6,5) codes

32
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Implementation of Cyclic Codes

• Encoding 
– in non-systematic form: c(x) = m(x)g(x)
– in systematic form: c(x) = m(x)xn-k+d(x)

d(x) is the remainder of m(x)xn-k/g(x)

• Thus we require circuits for multiplying and dividing 
polynomials

• Solution: use shift registers



Nonsystematic Binary Cyclic Code Encoder
• Encoding can be done by multiplying two polynomials 

– a message polynomial m(x) and the generator polynomial g(x)
• The generator polynomial is

g(x) = g0 + g1x + … + gr xr of degree r = n-k

• If a message vector m is represented by a polynomial m(x) of 
degree k-1, m(x) is encoded as c(x) = m(x)g(x) using the following 
shift register circuit

»
XOR gate delay 

element

34

c(x)

m(x)

gr=1g0=1



Nonsystematic Shift Register Encoder
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Encoder for the (7,3) Binary Cyclic 
Code with g(x) = 1+x2+x3+x4
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Shift Register Cell Contents

• Encoding m(x) = x2 + 1

37



Shift Register Multiplication

• Multiplication of m(x) by xn-k

38



Polynomial Division

• Polynomial division is performed using a
Linear Feedback Shift Register (LFSR)

• This circuit divides a polynomial a(x) by the 
polynomial g(x)

• The result in the register is the remainder d(x)
• Consider the long division

• The first term in the quotient is
39



• The remainder after subtracting
from a(x) is 

• Since gr=1 this is

• After n shifts, a(x) has been input and the remainder 
d(x) is located in the shift register

• For a binary generator polynomial
– g0=1

40



• Division of a(x) by g(x)

Polynomial Division

41



Shift Register Division

• Division of x6 + x4 by x4 + x3 + x2 + 1

42



Shift Register Cell Contents

• Division of x6 + x4 by x4 + x3 + x2 + 1
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Encoder for an (n,k) Cyclic Code

44



Encoder for a Binary (n,k) Cyclic Code
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Encoder for the (7,4) Cyclic Code 
Generated by g(x) = 1+x+x3
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Encoding m(x) = 1+x2+x3

input r0 r1 r2 output
1 1 1 0 1
1 1 0 1 1
0 1 0 0 0
1 1 0 0 1
- 1 0 0
- 1 0
- 1
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Encoding 1+x2 with g(x) = 1+x2+x3+x4

input r0 r1 r2 r3 output
1 1 0 1 1 1
0 1 1 1 0 0
1 1 1 0 0 1
- 1 1 0 0
- 1 1 0
- 1 1
- 1

48



Binary Syndrome Computation Circuit

49



Syndrome Circuit for the (7,4) Cyclic 
Code Generated by g(x) = 1+x+x3

50

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 
 =  
  

H



Syndrome for x2+x4+x5

input s0 s1 s2

0 0 0 0
1 1 0 0
1 1 1 0
0 0 1 1
1 0 1 1
0 1 1 1
0 1 0 1

51
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Shortened Cyclic Codes
• Systematic cyclic codes can be shortened by setting 

the j most significant bits of the codeword (message 
bits) to zero

• The resulting length is only limited by the length of 
the original cyclic code n and the redundancy r=n-k

• An (n,k) code is shortened to an (n-j, k-j) code
• Since we are using a subset of the original 

codewords, the error correction and detection 
capability is at least as good as the original cyclic 
code
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• Shortened cyclic codes are usually not cyclic, but we 
can still use the same shift registers for encoding and 
decoding as the original cyclic codes.

• Shortened cyclic codes are often called polynomial 
codes

• Widely used shortened cyclic codes:
– Cyclic Redundancy Check (CRC) codes

• CRC codes are used for error detection and as hash 
functions
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Cyclic Redundancy Check Codes

• A common choice for the generator polynomial is
g(x) = (x+1)b(x)    (to detect all odd error patterns) 

where b(x) is a primitive polynomial
• Example: CRC-12

g(x) = (x11+x2+1)(x+1)
This is a cyclic code of length n = 211-1 = 2047 and 
dimension k = 2047-12= 2035

• Only 12 bits of redundancy (parity bits)
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CRC g(x)

CRC-32B (IEEE 
802)

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 

+ x5 + x4 + x2 + x+1
CRC-32 x32+x30+x29+x28+x26+x20+x19+x17+x16+x15+x11

+x10+x7+x6+x4+x2+x+1 = 
(x28+x22+x20+x19+x16+x14+x12+x9+x8+x6+1)(x+1)
(x3+x2+1)

CRC-40 (GSM) x40+x26 +x23+x17+x3+1

CRC-64 (SWISS-
PROT)

x64+x4+x3+x+1

CRC-64 
(improved)

x64+x63+x61+x59+x58+x56+x55+x52+x49+x48+x47

+x46+x44+x41+x37+x36+x34+x32+x31+x28+x26+x23

+x22+x19+x16+x13+x12+x10+x8+x7+x5+x3+1 

Long CRC Polynomials
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• Coverage is the fraction of words that will be 
detected in error should the input be completely 
corrupted (worst case: a random sequence of 
symbols)

• For example, CRC-12

• The larger r=n-k, the greater the coverage

( )1 1
n k

n k r
n

q q q q
q

λ − − −−
= = − = −

121 2 0.999756λ −= − =
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Burst Errors

• Hardware faults and multipath fading environments 
cause burst errors
– Error patterns of the form

e = …0000NXXX…XXXN0000…
N≠0, X any symbol
– A binary burst error of length 6 is

e = …0001XXXX100…
• CRC codes are particularly well suited for detecting 

burst errors
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• It can be shown that a q-ary CRC code constructed 
from a cyclic code can detect
– All burst error patterns of length n-k = r or less 

where r is the degree of g(x)
– A fraction 1-q1-r/(q-1) of all burst error patterns of 

length r+1
– A fraction 1-q-r of all burst error patterns of length 

b > r+1
• Example: CRC-12 (q=2, r=12)

– detects 99.95% of all length 13 burst errors
– detects 99.976% of all length > 13 burst errors
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