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ABSTRACT

The class of Quasi-Cyclic Error Correcting Codes is investigated. It

is shown that they contain many of the best known binary and nonbinary

codes. Tables of rate 1/p and (p − 1)/p Quasi-Cyclic (QC) codes are con-

structed, which are a compilation of previously best known codes as well as

many new codes constructed using exhaustive, and other more sophisticated

search techniques. Many of these binary codes attain the known bounds on

the maximum possible minimum distance, and 13 improve the bounds. The

minimum distances and generator polynomials of all known best codes are

given. The search methods are outlined and the weight divisibility of the

codes is noted.

The weight distributions of some s-th Power Residue (PR) codes and

related rate 1/s QC codes are found using the link established between PR

codes and QC codes. Subcodes of the PR codes are found by deleting certain

circulant matrices in the corresponding QC code. They are used as a start-

ing set of circulants for other techniques. Nonbinary Power Residue codes

and related QC codes are constructed over GF(3), GF(4), GF(5), GF(7) and

GF(8). Their subcodes are also used to find good nonbinary QC codes.

A simple and efficient algorithm for constructing primitive polynomi-

als with linearly independent roots over the Galois Field of q elements, GF(q),

is developed. Tables of these polynomials are presented. These Tables are

unknown for polynomials with nonbinary coefficients, and the known binary

Tables are incomplete. The polynomials are employed in such diverse areas

as construction of error correcting codes, efficient VLSI implementation of

multiplication and inverse operations over Galois Fields, and digital testing

of integrated circuits.

Using the link established between generalized tail biting convolu-

tional codes and binary QC codes, good QC codes are constructed based on



iii

Optimum Distance Profile (ODP) convolutional codes. Several best rate 2/3

systematic codes up to circulant size 20 are constructed in this manner.

A bound is established for the maximum minimum distance which can

be decoded using Weighted Majority Logic. Majority Logic (ML) decodable

QC codes are found with the aid of cyclic difference sets and block designs.

Others are found using a search of the codewords of the parity check matrix.
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Notation

In this dissertation, the following notation is used:

iff if and only if

x | y x divides y without remainder

x\| y x does not divides y without remainder

∀ for all

∑

sum

∏

product

⌊x⌋ floor, largest integer less than or equal to x

⌈x⌉ ceiling, smallest integer greater than or equal to x

(

n
i

)

n!

i!(n − i)!

(x, y) Greatest Common Divisor of x and y

lcm Least Common Multiple
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Chapter 1

Introduction

Error Correcting Codes were first investigated by R. W. Hamming at

Bell Laboratories in 1947. An increasing frustration with relay computers

initially motivated this work. Although these machines were capable of error

detection, there was no automatic means of rectifying the error. Thus the

jobs he submitted were abandoned once an error occurred, and had to be

restarted from the beginning. Hamming surmised that if a code could be

devised to detect an error, one could also be found to correct it. He set out

to find such a code, and in so doing originated the field of Coding Theory.

In 1950 Hamming finally published the results of his work [1], introducing

many of the fundamental coding concepts used today, such as the Hamming

metric and Hamming bound.

In 1948 C.E. Shannon’s paper [2], entitled “A Mathematical Theory

of Information”, established the fundamental concepts of Information The-

ory. He proved the existence of a coding scheme to ensure an arbitrarily low

probability of error, provided that the information rate is less than the chan-

nel capacity. Unfortunately, as is the case with most bounds, his proof uses

probabilistic methods and provides no insight into how to construct such a

scheme. Shannon used as an example in his paper a (7,4) single error cor-

recting code devised by Hamming.

Soon after Shannon’s work appeared, Golay [3] published the first pa-

per devoted solely to error correcting codes, an inconspicuous half page in
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the Proceedings of the I.R.E. He generalized the code mentioned by Shannon

and presented some other codes as well. What makes this paper remarkable

is that it introduces all but one of the possible classes of perfect linear codes.

In fact, it has been called “the best single published page in coding theory”

[4].

These early pioneers established error correcting codes and coding

theory as an important field of research, and began the difficult and chal-

lenging task of finding suitable codes. This difficulty is illustrated with the

Gilbert-Varshamov bound, a weaker version of Shannon’s Theorem, which

proves the existence of good linear codes. Few coding schemes presently

known attain this bound, (and none approach Shannon’s bound). In fact

many years passed before a class of error correcting codes was found which

reached the Gilbert-Varshamov bound. Since then, the study of Algebraic

Curves has led to codes which exceed it.

The main problem of Coding Theory is to find codes with a small

redundancy, (or number of parity symbols), and a large minimum distance

between codewords. These are conflicting requirements, so it remains to find

the largest minimum distance for a given code dimension, and to find the

highest code rate, (i.e., the number of information symbols in a codeword),

for a given minimum distance.

The best known error correcting codes, those of Hamming, Golay,

Bose-Chaudhuri-Hocquenghem[5] and Reed-Solomon[6], are all subclasses of

Cyclic codes. Their popularity stems from the existence of an algebraic de-

coding algorithm, which is made possible by their rich mathematical struc-

ture. The Reed-Muller codes [7] are also important because they are Majority

Logic Decodable, a scheme which is fast and simple.

Long Goppa codes were the first to meet the Gilbert-Varshamov

bound. Goppa [8] and BCH codes are part of the larger class of Alternant

codes, thus long Alternant codes also meet the bound. Justesen codes [9] are

an infinite class of asymptotically good concatenated codes obtained from
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Reed-Solomon codes. The asymptotic lower bound on dmin

n
for these codes is

greater than 0, i.e.,

lim
n → ∞

dmin

n
> 0.

dmin is the minimum distance of the code, a measure of its error correct-

ing capability. An excellent introduction to these classes of Error-Correcting

Codes can be found in [10].

The class of Quasi-Cyclic (QC) codes considered in this dissertation

is related to many of these codes. They remain relatively unknown, how-

ever, despite the fact that they are good codes, as demonstrated in “Long

Quasi-Cyclic Codes are Good” [11]. In fact, it is conjectured that arbitrarily

long Quasi-Cyclic codes meet the Gilbert-Varshamov bound[12], (if arbitrar-

ily large primes exist with 2 as a primitive root). On the other hand, it has

been shown that the popular BCH codes are not so good, in “Long BCH

Codes are Bad” [13]. This in itself is justification for an investigation of

Quasi-Cyclic codes.

Quasi-Cyclic codes were introduced by Townsend and Weldon[14].

This was followed shortly thereafter by the works of Karlin[15, 16] and Chen,

et al.[17]. Since then extensive research has been done by Bhargava, et.

al.[18], [19].

Quasi-Cyclic codes have been shown to be promising codes [17], and

their decoding complexity is manageable[16]. As well, many QC codes are

majority logic decodable, and subclasses can be found which are so. It

has also been shown that many Cyclic codes are equivalent to Quasi-Cyclic

codes[20, 21], the most important of these being RS codes. A connection

between QC codes and convolutional codes has been discovered by Solomon

and van Tilborg [22]. This allows for the convolutional encoding and de-

coding of many QC codes. Recent attention [23] has centered on this fact

because it provides a means of constructing convolutional codes. As well,
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Quasi-Cyclic codes are equivalent to Rotational Codes, which are used for

error correction in computer memories [24].

In this dissertation, the results of a search for good Quasi-Cyclic codes

is presented. New construction techniques are developed, some based on the

results in [25, 26, 27]. These will be presented in subsequent Chapters. A

method of upper bounding the minimum distance of QC codes is developed,

and some Majority Logic (ML) decodable QC codes are found.

The next Section introduces the field of error correcting codes. Some

fundamental concepts are given, followed by an introduction to the specific

class of Quasi-Cyclic codes.

1.1 Error Correcting Code Fundamentals

Error Correcting Codes are divided into two major classes, block codes

and convolutional codes. Quasi-Cyclic codes are block codes, but are closely

related to convolutional codes, as shown in [22]. This Section provides an

introduction to the fundamentals of block codes.

Hamming first conceptualized an error correcting code as containing

codewords of length n, partitioned into k symbols of information and n − k

symbols of parity. Over GF(2) these symbols are from the set {0,1}. A set

of symbols can be any field, GF(q). The rate of a code is defined as the ratio

r =
k

n
,

the number of information symbols per codeword.

A code of length n is linear iff it is a subspace of the vector space of

dimension n, and so is an additive group. An important consequence of this is

that the sum of two codewords in a linear code must also be a codeword. The

Hamming weight of a codeword, wt[x], is the number of nonzero elements

contained in it. The Hamming distance between two codewords, d(x, y), is
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defined as the number of places in which they differ,

d(x, y) = wt[x − y].

The smallest Hamming distance between all codewords in a code is called

the minimum distance,

dmin = min d(x, y) ∀x, y; x 6= y.

The minimum distance of a linear code is the weight of the smallest nonzero

codeword, since the linear combination of any two codewords is also a code-

word,

dmin = min wt[x] ∀x; x 6= 0.

The number of errors a code can correct is

t = ⌊
dmin − 1

2
⌋,

where ⌊x⌋ is the largest integer less than or equal to x. As well, a code can

detect l errors where

t + l + 1 ≤ dmin

and l > t.

The Generator matrix, G, of an (n, k) linear block code [28] is a k×n

matrix of linearly independent codewords. All codewords can be formed from

a combination of the rows of this matrix, thus there are qk codewords. The

parity check matrix of this code is an n − k × n matrix H such that

GHT = 0,

where 0 is a k × n − k matrix of zeros. A code is called self-dual if the code

generated by G is equivalent to the code generated by H . Every matrix G is

equivalent to one whose first k columns are a k × k identity matrix. In this

case

G′ = [Ik P ],
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where P is a k × n − k Parity matrix. A generator matrix in this form is

called Systematic. The parity check matrix is then

H ′ = [−P T In−k]

The inner product of two codewords, x and y, is defined as

x ∗ y =
n
∑

i=1

xiyi mod q.

If the inner product of two codewords is zero, they are said to be orthogonal.

Thus they are orthogonal if x ∗ y = 0. For a binary code, the weight of the

sum of two codewords, x and y is

wt[x + y] = wt[x] + wt[y] − 2wt[xy],

where xy is the product of x and y, which has 1’s only where x and y both

do. E.g. if x = 11101 and y = 10011, then xy = 10001.

A linear code is Cyclic if a cyclic shift of any codeword is also a

codeword. Elementary row operations (permutations and combinations) on

G preserve the cyclic properties, while column operations do not. Thus every

Cyclic code can be put in systematic form and still be Cyclic.

The weight enumerator of a code is defined as a polynomial in z [29],

A(z) =
n
∑

i=0

Aiz
i

where Ai is the number of codewords of weight i. From this definition it is

evident that
n
∑

i=0

Ai = qk,

the total number of codewords, with q equal to the symbol size.

MacWilliam’s Identities [29] relate the weight distributions of G and

H , and thus their error correcting capability. If Aj denotes the number of
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codewords of weight j in G, and Bi the number of codewords of weight i in

H , than we have

Bi = q−k
n
∑

j=0

Aj

n
∑

s=0

(

j
s

)(

n − j
i − s

)

(−1)s(q − 1)i−s, (1.1)

where q is the code symbol size.

Two codes G1 and G2 are called equivalent if they differ only in the or-

der of the symbols in the codewords. Thus changing the order of the columns

of the Generator matrix does not result in a different code.

In this dissertation a best code is considered to be one which has the

largest possible minimum distance for the given code dimensions, n and k,

and class of error correcting codes. The term good code defines a code which

has the maximum known minimum distance for the class of codes. An opti-

mal code is one which achieves the maximum possible minimum distance for

a linear code with the same dimensions.

Note that in general the dual of a best rate k/n code is not a best rate

(n−k)/n code. One important exception to this is the class of Maximum Dis-

tance Separable (MDS) codes, which includes the well known Reed-Solomon

(RS) codes. In this case dmin = n − k + 1, and both G and H must be MDS

codes. More will be said about these codes in Chapter 6.

An excellent treatment of the theory of Error Correcting Codes is

given in references [10, 29, 30].

1.2 Quasi-Cyclic Codes

This Section introduces the class of Quasi-Cyclic codes and provides

some preliminary results required in subsequent Chapters. It is based on [10]

and [14].

Definition 1.1[14] An (n,k) linear block code of dimensions n = mno and k

= mko, is called Quasi-Cyclic if every cyclic shift of a codeword by no symbols
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yields another codeword.

As an example, consider the following generator matrix of an (8,4) binary

linear code over GF(2)

G =











1 0 0 1 0 1 0 1
0 1 1 0 0 1 0 1
0 1 0 1 1 0 0 1
0 1 0 1 0 1 1 0











. (1.2)

This code is Quasi-Cyclic with no = 2, since every row of G is the same as the

previous with a cyclic shift of two positions. If the columns of G are ordered

according to the sequence 1, k+1, 2, k+2, · · ·, the resulting generator matrix

is composed of two 4 × 4 circulant matrices,

G =











1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0











. (1.3)

An m × m circulant matrix is defined as

C =



















c0 c1 c2 · · · cm−1

cm−1 c0 c1 · · · cm−2

cm−2 cm−1 c0 · · · cm−3
...

...
...

...
c1 c2 c3 · · · c0



















, (1.4)

where ci is an element of GF(q). This example shows that any (n, k) Quasi-

Cyclic code over GF(q) is equivalent to an (mno, mko) code with an mko×mno

generator matrix composed of m × m circulant matrices,

G =













C1,1 C1,2 C1,3 · · · C1,no

C2,1 C2,2 C2,3 · · · C2,no

...
...

...
...

Cko,1 Cko,2 Cko,3 · · · Cko,no













. (1.5)

A circulant matrix C is uniquely specified by a polynomial formed

of the entries of the first row, c(x) = c0 + c1x + c2x
2 + · · · + cm−1x

m−1,
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i.e., there is a one-to-one mapping between the circulant matrices Ci and the

polynomials ci(x). This is formally stated in the following Theorem.

Theorem 1.2[10] The algebra of m × m circulant matrices over a Field F

is isomorphic to the algebra of polynomials in the ring F[x]/(xm − 1).

The following results for circulant matrices can now be stated.

Theorem 1.3[10] The sum and product of two circulants is a circulant. In

particular, AB = C where c(x) = a(x)b(x) mod xm − 1.

Thus we can use the more convenient polynomial representation of the cir-

culants.

Theorem 1.4[10] A circulant matrix C has an inverse C−1 iff c(x) is rela-

tively prime to xm−1. The inverse is then c−1(x) where c(x)c−1(x) = xm−1.

Definition 1.5[10] The transpose of a circulant matrix, CT , is defined by the

polynomial c0 + cm−1x + · · · c2x
m−2 + c1x

m−1.

Definition 1.6[10] The reciprocal of c(x) is defined as c∗(x) = cm−1+cm−2x+

· · · c1x
m−2 + c0x

m−1.

Definition 1.7 The complement of c(x) is defined as c(x) = 1− c(x), where

1 is the polynomial with all one coefficients.

Therefore c(x) + c(x) = 1.

From [10] we have the following results on binary double circulant, or

rate 1/2 QC codes. Let A and B be defined as,

A = [ICa], B = [ICb]

where Ca and Cb are m×m circulant matrices. A and B are equivalent codes

if

a) Cb = CT
a ,

b) cb(x) = c∗a(x),

c) Cb = C−1
a ,
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d) cb(x) = ca(x)2 and m is odd,

e) cb(x) = ca(x
u) and (u, m) = 1, i.e., u and m are relatively prime.

These properties are useful for identifying equivalent codes. This allows a

reduction in the number of codes which must be examined to determine the

best possible.

For a systematic QC code, G has the form,

G =

















Ikm

C ′
1,1 C ′

1,2 C ′
1,3 · · · C ′

1,n−k

C ′
2,1 C ′

2,2 C ′
2,3 · · · C ′

2,n−k

. . . .

. . . .
C ′

k,1 C ′
k,2 C ′

k,3 · · · C ′
k,n−k

















(1.6)

where Ikm is a kom×kom identity matrix, and the C ′
i are circulant matrices.

Only systematic codes are considered in this dissertation. This is justified by

the fact that all linear codes are equivalent to a systematic code, and circulant

matrices which are not invertible generally produce poor error correcting

codes. This is further explained in the next Section. The dual rate n − k/n

QC code is defined by an (mno, m(no − ko)) generator matrix H ,

H =





















Im(n−k)

CT
1,1 CT

2,1 · · · CT
k,1

C ′
1,2 CT

2,2 · · · CT
k,2

CT
1,3 CT

2,3 · · · C ′
k,3

. . .

. . .
CT

1,n−k CT
2,n−k · · · CT

k,n−k





















(1.7)

1.3 Previous Results

Since the appearance of the first paper on QC codes, several authors

have presented construction results. Chen, et. al.[17] provide a Table of best

rate 1/2 codes for m up to 21. As well they show that Power Residue codes

with one symbol deleted are equivalent to Quasi-Cyclic codes. This method
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is used to advantage in Chapters 3 and 6. In [18] the equivalence of rate 1/2

codes for m up to 16, and the minimum distance of rate 2/3 codes up to

m = 18, is given. In [25] the weight distributions of these rate 2/3 codes is

presented. The weight distribution of the rate 1/2 QC codes with maximum

minimum distance, up to m = 21, (from [17]), is given in [31]. In [21, 27]

some (mk, k) Cyclic codes are transformed into Quasi-Cyclic codes. In [26]

rate 1/p QC codes for m = 7 and 8 are presented. Several of these codes

appear in [32]. Good QC codes are also given in [15, 33]. Other fragmented

results exist, but there is no unified collection of all known QC codes. In this

dissertation, these codes are compiled along with those found as a result of

this work (excluding inferior codes).

By good it is meant the largest known minimum distance, dmin, for a

QC code of the given dimensions. If the code attains the maximum possible

minimum distance for a QC code of the given dimensions, it is a best code.

Rate 1/p and (p − 1)/p binary codes are given for m up to 16, and p up to

18, which is the present practical limit of the construction algorithms. As

well, the binary rate 1/2 codes are extended to m = 31 and rate 2/3 codes

to m = 25.

An exhaustive search of all codes is tractable only for the simplest

codes. Thus we rely on techniques to reduce the set of candidate polyno-

mials which must be examined to find a good or best code. Only rate 1/p

and (p− 1)/p systematic codes are considered in this dissertation since they

are of most interest and practicality, and non-systematic codes are not easily

decoded since some circulants have no inverse [16]. As well, a rate 1/p code

can be put in systematic form if one of the circulant matrices in the generator

matrix is invertible. This is not possible only when all of the matrices are

singular. Fortunately, codes composed entirely of singular circulant matrices

are a small subset of the possible QC codes, and rarely are they contained

in the set of best codes.
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A simple and obvious method of constructing good codes is to extend

(add circulants) or puncture (delete circulants) existing good codes. A punc-

tured QC code is termed a subcode of an existing QC code. Thus codes with

a good subset of possible circulants must be found. It is well known that

many Cyclic codes have QC equivalents. The Power Residue (PR) codes are

Cyclic codes which can be transformed into QC codes using the Normal Basis

Theorem[17]. Subcodes can be created from a subset of the generator poly-

nomials of these QC codes. Justification for using PR codes comes from the

fact that they are known to be good codes[34]. This set of polynomials re-

duces considerably the search time. As well, MacWilliams [27] and Solomon

and van Tilborg [22] give methods to construct QC codes from other Cyclic

codes. Subcodes and extensions of these codes can also be formed.

The area of Spread Spectrum communications has received much at-

tention and found wide applications in solving many important communica-

tion problems. In [35] it is shown that an M-ary code, with M = 4 or 8, is

the best coding scheme to combat worst case interference. Unfortunately, few

codes are known with nonbinary symbols beyond the Reed-Solomon codes,

and RS codes have a restricted block length. M-ary block codes have not re-

ceived much attention except for RS codes. This is primarily due to the fact

that there are few non-RS M-ary block codes known. As well, the majority

of known convolutional codes are binary.

Most types of binary codes can be generalized to Q-ary codes. For

instance, nonbinary Hamming codes exist for many lengths, as do nonbi-

nary BCH and Cyclic codes. In this dissertation nonbinary QC codes are

constructed.

1.4 Thesis Outline

Subsequent Chapters are organized as follows. In Chapter 2, general

construction algorithms are devised for rate 1/p and rate (p − 1)/p Quasi-
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Cyclic codes. The concept for rate 1/p codes is based on [26], where integer

linear programming is used to find best QC codes for m = 7 and 8. The

technique for rate (p − 1)/p codes is an extension of the method in [18] for

rate 2/3 binary codes.

The binary Power Residue (PR) codes are investigated in Chapter 3.

These codes were first introduced by Chen, et. al.[17] and later investigated

by Bhargava[36]. In this Chapter, PR codes are constructed up to block

length 10,000 and circulant size 32. Subcodes of these codes are also given.

They are constructed by deleting circulants from the original PR code in QC

form.

Chapter 4 presents a construction algorithm for primitive polynomials

with linearly independent roots. These are required to form a normal basis

over GF(qm), which is then used to transform a PR code to a QC code.

In Chapter 5 rate 2/3 binary QC codes are constructed from optimum

distance profile convolutional codes.

Chapter 6 is an extension of Chapters 2 and 3. The techniques devel-

oped for binary codes are extended to nonbinary codes over GF(3), GF(4),

GF(5), GF(7) and GF(8), and Maximum Distance Seperable codes are also

found over GF(11), GF(13) and GF(16).

A summary of results and suggestions for future research is given in

Chapter 7.

Appendix A provides a means of obtaining a quick estimate of the

minimum distance. Appendix B presents some Majority Logic (ML) decod-

able QC codes.
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Chapter 2

Some Best Rate 1/p and Rate

(p - 1)/p Binary Systematic

Quasi-Cyclic Codes

2.1 Introduction

In this Chapter, a computationally efficient search technique is devel-

oped for finding good rate 1/p QC codes. The results of [18] are extended

for rate (p − 1)/p QC codes, and of [26] for rate 1/p codes. The motivation

comes from a recent paper by Verhoeff[32], which presents a Table of bounds

on the maximum possible minimum distance of binary linear codes. Many

of the codes found using these methods meet or improve the bounds. The

best known binary Quasi-Cyclic codes are tabulated, including those found

previously by others.

An exhaustive search is intractable for all but the simplest codes.

Thus one must rely on techniques to reduce the set of candidate polynomials

which must be examined to find a good or best code. Only rate 1/p and

(p − 1)/p systematic codes are considered for reasons given in the previous

Chapter. A rate 1/p systematic Quasi-Cyclic (QC) code has an m × mp

generator matrix of the form

G = [Im, C1, C2, C3, · · · , Cp−1] (2.1)
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where Im is an m×m identity matrix and the Ci are m×m binary circulant

matrices. The dual rate (p − 1)/p QC code is defined by the (p− 1)m× pm

generator matrix

H ′ =



















CT
1

CT
2

CT
3
...

CT
p−1

I(p−1)m



















. (2.2)

This is equivalent to the more common representation [18]

H =



















I(p−1)m

C1

C2

C3
...

Cp−1



















. (2.3)

Since in general the dual of a best rate 1/p code is not a best rate (p − 1)/p

code, these two types of codes are considered separately. The following The-

orems present some preliminary results.

Theorem 2.1 A QC code has only even weight codewords iff every row of G

has even weight.

Proof Every row of G is a codeword, so if any row has odd weight, there

exists an odd weight codeword. If one row has even weight, all rows have

even weight due to the QC structure of G. Suppose all rows have even weight

d. Then the sum of l rows will also have even weight, since the total number

of ones is dl, and each mod 2 sum eliminates two out of this total. Thus the

codeword weight must be even.2

Corollary 2.2 A rate 1/p systematic QC code has only even weight code-

words iff

p−1
∑

i=1

wt[ci(x)]

is odd.

Corollary 2.3 A rate (p− 1)/p QC code has only even weight codewords iff
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all cj(x), j = 1, 2, · · · , p − 1 have odd weight.

Proof Suppose ck(x) has even weight and consider the codeword formed

when i(x) = xm(k−1). This codeword i(x)G will have odd weight since

wt[i(x)] is odd and wt[i(x)ck(x)] is even. Conversely, if wt[ck(x)] is odd,

wt[i(x)] is odd and wt[i(x)ck(x)] is also odd. Thus this codeword has even

weight. All codewords can be created by combining rows of G, so they all

must have even weight.2

Theorem 2.4 A QC code has the weights of all codewords divisible by 4 if

all rows of G are orthogonal.

Proof Clearly each row must have weight a multiple of 4 since every row of

G is a codeword. If any two rows are orthogonal, their inner product is zero,

which means that they have a multiple of two locations in common. The

weight of two rows is

wt[gi + gj ] = wt[gi] + wt[gj ] − 2wt[gigj].

Since gi and gj are orthogonal, the weight of their product is even. Thus

wt[gi + gj] is a multiple of 4.2

The proof of orthogonality is simplified because the code is QC. Only those

codewords corresponding to i(x) equal to the distinct cyclic cosets of weight

2 need be checked.

Extending this result to n rows, we have

wt[
∑

i gi] = 20(
∑

i wt[gi]) − 21(
∑

i

∑

i<j wt[gigj])

+22(
∑

i

∑

i<j

∑

j<k wt[gigjgk]) − 23(
∑

i

∑

i<j

∑

j<k

∑

k<l wt[gigjgkgl]

+ · · ·+ (−1)n+12n(
∑

i · · ·
∑

q<r wt[gigj · · · gr]).

(2.4)

Since G is a QC code, the computation of (2.4) is simpler because every row

of G has the same weight. For example, consider the (8,4) QC code shown

in Chapter 1. The weight of the codeword composed of all rows of G is from
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(2.4),

wt[
∑

i

gi] = 20(4 × 4) − 21(4 × 2 + 2 × 2) + 22(4 × 1) − 23(1 × 0) = 8.

The first term is the weight of the rows of G, which is 4 times the weight of

one row. The second term is the weight of all row pairs. There are two types

of pairings possible, corresponding to the unique cyclic cosets of length 4 and

weight 2.

This code is equivalent to the first order Reed-Muller code of dimen-

sion 8, and the (8,4) extended Hamming code. In Appendix B, it is shown

that this code is one-step weighted majority logic decodable.

A more interesting example of weight divisibility is the (128,8) dmin =

64 rate 1/16 QC code. It is composed of the 16 8×8 distinct circulants with

odd weight and has weights divisible by 64. Since

p−1
∑

i=1

wt[ci(x)] = 63

the rows of G have even weight. As well the rows of G are orthogonal, so

the weights are divisible by 4. If cj(x) is contained in this code, so is cj(x),

since m is even. The all 1’s codeword, 1, is also contained in this code.

The 8 rate 1/2 subcodes formed of the pairs cj(x) and cj(x) have the

following weight distribution:

Weight Count

0 1
4 28
8 198

12 28
16 1

Thus the minimum distance of the (128,8) code is at least 32. The following

proves it is 64.
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Consider the codewords corresponding to wt[i(x)] odd. i(x) essen-

tially selects rows of G to be summed to form the codeword, in this case an

odd number of rows. Now if the weight of the codeword bit corresponding to

the kth position of cj(x) is 1, the weight of the bit corresponding to the kth

position of cj(x) will be 0. This is due to the fact that if the weight of the

codeword bit in position k of cj(x) is 1, it is the sum of an odd number of

ones and an even number of zeros. Then the weight of the codeword bit in

position k of cj(x) is the sum of an even number of ones and an odd number

of zeros. Since the sum of an even number of ones is zero, for every codeword

bit which is one, there is a corresponding bit which is 0. Thus the codeword

has weight n/2 = 64, and this is true for every odd weight i(x).

For wt[i(x)] even, proceed as follows. Consider the all ones codeword,

1. In this case wt[i(x)] = 8, which is even. i(x) is the sum of a weight 2

polynomial and a weight 6 polynomial, i.e.,

i(x) = i1(x) + i2(x),

where i1(x) has weight 2 and i2(x) has weight 6. They divide the Generator

matrix into two sections, one with 2 rows and the other with 6. If a column

sum of one section is one, the other will have sum 0 since all columns of

G have odd weight. Thus one codeword will have weight w, and the other

128 − w.

A column section of G corresponding to i1(x) can assume only one of

the four possible 2-tuples:

0 0 1 1
0 1 0 1

If the 2-tuple has odd weight, the section of the column of G corresponding

to i2(x) will have even weight, and vice versa. This is because G contains

only odd weight columns. Thus these six rows of G will contain two of all

possible 6-tuples. Since half of these have odd weight, the codeword i2(x)G



19

has weight 64, and then so does i1(x)G. This result can be extended to the

case where wt[i1(x)] = 4 and wt[i2(x)] = 4. Thus all but two codewords

have weight 64, and that is the minimum distance.

The weight structure of this code is then,

Weight Count

0 1
64 254

128 1

The extention of this result to m = 2l is given in the following Theo-

rem.

Theorem 2.5 The QC code composed of all circulant matrices, Ci, for which

wt[ci(x)]has odd weight, and m = 2l, is a (2m−1,m) code with weight distri-

bution

Weight Count

0 1
2m−2 2m − 2
2m−1 1

Proof This follows directly from the above example. When wt[i(x)] is odd,

the weight of the codeword is n/2. When wt[i(x)] is even, the circulants are

divided into two sections, as in the above example, which leads to codewords

of weight n/2.2

For m = 16, the corresponding code has weight distribution

Weight Count

0 1
16384 65534
32768 1

When m = p, p an odd prime, the rate 1/p QC code composed of all

odd weight circulants has the following weight structure,
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Weight Count

0 1
2m−2 − 1 2m−1 − 1

2m−2 2m−1 − 1
2m−1 − 1 1

As in the previous example, these codes contain all possible odd weight

columns except for the all 1 column. Thus the blocklength is (2m−2)/2. For

example, the (15,5) code has weight distribution,

Weight Count

0 1
7 15
8 15

15 1

Adding an overall parity bit yields the distribution,

Weight Count

0 1
8 30

16 1

which is the same form as the (128,8) code. The corresponding (63,7) code

has weight distribution

Weight Count

0 1
31 63
32 63
63 1

Thus for all m prime or a power of 2, a QC code exists with all odd weight

circulant matrices, length n = 2m−1 and but two codewords with weight n/2.

This is so because only for these values of m do all odd weight circulants
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have cycle m.

Theorem 2.6 The dual of these codes, rate (p−1)/p QC codes, has dmin = 4.

Proof For the dual code, G represents the parity check matrix. In order for

the code to have a weight 3 codeword, three columns of this matrix must

be linearly dependent [10]. This requires that the sum of two columns equal

a third. However, the sum of two columns will have an even weight, since

the total number of ones in them is the sum of two odd numbers. Since all

columns of G have odd weight, this sum cannot equal any column of G. Thus

dmin > 3. 4 columns of G are dependent, since a weight 3 column exists, as

does the columns of the identity matrix. Therefore dmin = 4.2

2.2 Rate 1/p Codes

The easiest but most time consuming method of finding good codes

is an exhaustive search. It involves examining all possible combinations of

generator polynomials, and thus quickly becomes an impractical solution.

Consider the following illustration. From [37], the number of circular permu-

tations of length and cycle period m is

Nm =
1

m

∑

d,
d | m

µ(
m

d
)qd, (2.5)

which is also the number of circulant matrices of dimension m which have

unique columns, and eliminating all those ch(x) which satisfy ch(x) = xnc(x) mod xm−

1, 1 < n < m, for some h. µ(m) is the Möbius function [37, 38], defined by

µ(m) =











1 if m = 1;
0 if m is divisible by a square;

(−1)k if m is the product of k distinct primes.
(2.6)
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The total number of circulant matrices of dimension m is then

Tm =
∑

j,
j | m

Nj, (2.7)

including the all zero and all one matrices. (Note that in this Chapter we

only consider binary matrices.) If m = 11, there are Tm = 188 possible

generator polynomials. For a rate 1/p code, one would have to examine

(
185

p − 1
) systematic codes to find the best possible, (excluding the all zero,

identity and all ones matrices). Even if equivalent codes are identified, this

number increases rapidly with increasing p, so the computational limit is

attained quite quickly and very few best codes can be found by this means.

A more attractive method [26], uses integer linear programming to search

out the best codes, however the computational effort also increases quickly

with increasing m and p.

The method presented here uses a simple approach based on an

‘ascent algorithm’, so called because it attempts to create a new code from

the previous one which has a higher minimum distance.

First, the n×n array of the weights of distinct partial codewords, i.e.,

of the Tm possible distinct circulants, is formed as in [26],

D =

C1 C2 · · · Cn

i1 w11 w12 · · · w1n

i2 w21 w22 · · · w2n

...
...

...
...

in wn1 wn2 · · · wnn

(2.8)

where ij is the jth distinct information vector, Ck is the kth distinct circulant

matrix, and wjk is the weight of ij(x)ck(x) mod xm − 1. By distinct infor-

mation vector and circulant matrix it is meant to exclude those polynomials
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equal to cn(x) = xnc(x), 1 < n < m, i.e., cyclic shifts of c(x) which would

have the same weight structure. Note that ij(x) = ck(x) when j = k, thus

D is a symmetric matrix.

To begin the search, an arbitrary code of the desired rate, 1/p, is

formed of the first, say, p circulants, and the row sums of the corresponding

columns of D found. Since only systematic codes are considered, c(x) = 1

is always contained in the code. Clearly the minimum distance of this code

is the minimum of these row sums, since the weights of all distinct code-

words are contained in them. To improve the code, a new circulant is found

to replace one presently in the code, so that the minimum distance, or row

sum, is increased. If one is not found, the new circulant is chosen as the one

which minimizes the number of minimum distance codewords. This process

is repeated until the required minimum distance is achieved. In every itera-

tion, a new circulant is added, and to avoid cycling, the previously deleted

circulant cannot immediately return. As well, there is a limit placed on the

number of times a circulant can enter the code. To avoid complete exclu-

sion, the counters are reset to zero after a specified number of iterations to

allow all circulants to enter the code again. With this simple algorithm, all

presently known best rate 1/p QC codes, up to m = 16, have been found.

This includes several codes which improve the bounds in [32]. A flowchart

of the algorithm is given in Table 2.1. Subsets of polynomials found using

the methods in [39, 27] (and in the following Chapter), were used as initial

conditions to speed up the search.

Another method used to accelerate the search is described in Ap-

pendix A. It was employed to obtain an initial estimate of the minimum

distance of QC codes. By providing an upperbound on the minimum dis-

tance, this technique eliminated most codes which did not attain the target

minimum distance.

Note that the complete weight distribution of a QC code can be found
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Table 2.1: Flowchart of the Search Algorithm
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from the D matrix, since
∑

d|m

dN(d) = 2m, (2.9)

The following results were used to accelerate the search.

Theorem 2.7 The number of odd weight generator polynomials in a rate 1/p

code must be a minimum of

⌈
dt

m
⌉

where dt is the target minimum distance and ⌈x⌉ is the smallest integer

greater than or equal to x.

Proof Consider the information polynomial i(x) and generator polynomial

c(x). From [25] we have Table 2.2. If i(x) is the all ones vector, i(x)c(x) =

i(x) = 1 if wt[c(x)] is odd, and i(x)c(x) = 0, the all zero vector, if wt[c(x)]

is even. Thus there exists a codeword of weight rm, where r is the number

of odd weight generator polynomials, and this must be greater than or equal

to the target minimum distance, dt. 2

It is obvious that the minimum distance of a rate 1/p systematic QC code

is no greater than the sum of the weights of the generator polynomials, ck,

which corresponds to i(x) = 1.

The minimum distances and generator polynomials of the best rate

1/2 codes are given in Tables 2.3 and 2.4. Table 2.3 extends the results in

[18] by dividing the best codes into equivalence classes for m up to 24. This

Table 2.2: Weights in Quasi-Cyclic Codewords

wt[i(x)] wt[c(x)] wt[i(x)c(x) mod xm − 1]
even even even
even odd even
odd even even
odd odd odd
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information is useful in reducing the search time for rate 1/p codes because

higher rate equivalent codes can be identified, as noted in [18]. Table 2.4

gives the generator polynomials for m = 25 to 31. These results are used to

identify polynomials which have insufficient distance properties so they can

be eliminated from the search for rate (p − 1)/p codes.

The best rate 1/p QC codes for m = 3 to 16 are given in Tables 2.5

to 2.27. Generator polynomials are given in octal, with the highest power

coefficient on the right, i.e., 7138 = 1+x+x2 +x5 +x7 +x8. For conciseness,

all generator polynomials for a given m are numbered and listed separately,

as in Tables 2.6, 2.13, 2.15, etc. The Tables of codes list the corresponding

generator polynomial numbers, instead of the polynomials themselves. For

example, Table 2.19 lists 84 polynomials for m = 12. Table 2.20 gives the

best rate 1/p, m = 12 QC codes for p = 3 to 18. For each p is given the code

dimensions, the minimum distance, and a list of the generator polynomial

numbers for the particular QC code from the previous Table. The minimum

distances of these codes are compiled in Table 2.28. A superscript o denotes

a best possible Quasi-Cyclic code. This was determined either by exhaustive

search, or meeting a known upper bound.

2.3 Rate (p-1)/p Codes

The construction of these codes follows the method in [25], in that

the weight distributions of the dual rate 1/p codes are found first, then

transformed using MacWilliam’s identities. This is more computationally

efficient than computing the minimum distance directly, since the original

code has 2(p−1)m codewords while the dual code has only 2m codewords. The

following can be used to refine the search for good rate (p − 1)/p QC codes.

The set of generator polynomials, cj(x), is the same as in the previous

section, all distinct m-tuples (excluding cyclic shifts). Let i(x) denote an

information vector, and p(x) a parity vector, i.e., p(x) = i(x)cj(x) mod xm −
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1.

Theorem 2.8 For p < q, the minimum distance, dp, of a rate (p− 1)/p QC

code formed from a subset of the m×m circulants from a rate (q − 1)/q QC

code with minimum distance dq, is lowerbounded by

dp ≥ dq.

Proof Consider the above two QC codes, one having p m × m circulants

and the other q m × m circulants, p < q. Let i(x) be 0 for those circulants

of the larger code that are not in the smaller one. Clearly this denotes a

codeword of the smaller code if the corresponding all zero sections of the

original codeword are deleted. Thus this code is contained in the larger one

and so its minimum distance cannot be smaller than the larger code. 2

Corollary 2.9 The minimum distance of a rate (p − 1)/p systematic QC

code is no greater than the lowest minimum distance of all subcodes formed

by deleting circulants.

Thus to construct a high rate code with the same minimum distance as a

lower rate code requires that all subcodes have at least the desired minimum

distance. This is a necessary condition.

Theorem 2.10 There exists, for all m and p, a rate (p − 1)/p systematic

QC code formed from m × m circulants with dmin ≥ 2.

Proof Consider the structure of the code given by (2.3). In order for dmin

to be 1, a circulant cj(x) must have weight 0, which is impossible by the

definition. 2

Furthermore, if the code is composed of distinct circulants with cycle m, the

minimum distance must be at least three.

Theorem 2.11 A rate (p − 1)/p systematic QC code has dmin ≥ 3 iff none

of the circulants cj(x) satisfies (xn − 1)cj(x) = 0 (mod xm − 1), ∀1 < n < m,

and cj(x) 6= 1.

Proof In order for the code to have dmin = 2, either i(x) = 1 and p(x) = 1,

or wt[i(x)] = 2 and p(x) = 0. The first case is impossible since p(x) will
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equal 1 iff cj(x) = 1. In the second case, p(x) = 0 indicates either that

(xn − 1)cj(x) = 0, which is also a violation, or xacj(x) + xbch(x) = 0, but

then the circulants are not distinct, since cj(x) is a cyclic shift of ch(x). Since

only distinct circulants are considered, the weight of the code must be at least

three.2

From the above Theorems, the construction of QC codes with dmin ≤

3 is trivial. Therefore we enumerate only those codes which have dmin ≥ 4.

In order for a rate (p − 1)/p QC code to have dmin ≥ 4 the following must

be satisfied:

1. All rate 1/2 subcodes have dmin ≥ 4.

2. xacj(x) + xbck(x) > 1, 0 ≤ a, b < m and 0 < j, k < p.

3. (xa + xb)cj(x) + xdck(x) > 0, 0 ≤ a, b, d < m, a 6= b, and 0 < j, k < p.

4. xacj(x) + xbck(x) + xdcl(x) > 0, 0 ≤ a, b, c < m and 0 < j, k, l < p.

Conditions 1, 2 and 3 result in the requirement that all rate 2/3 subcodes

have dmin ≥ 4. In turn, all four conditions are equivalent to requiring that

all rate 3/4 subcodes have dmin ≥ 4. Theorem 2.12 generalizes this result.

Theorem 2.12 A rate (p−1)/p systematic QC code has dmin ≥ d iff all rate

(k − 1)/k subcodes have dmin ≥ d, for 2 ≤ k ≤ d.

Proof Since only systematic codes are considered, it is necessary to examine

i(x) only up to weight d, because if the weight of i(x) is ≥ d, the codeword

will have weight ≥ d. Thus only those subcodes containing up to d circulants

need be considered. If all these subcodes have dmin ≥ d, then the larger code

will have dmin ≥ d by Corollary 2.9.2

From this Theorem it is clear that there must exist at least

(

p − 1
k − 1

)

rate

(k− 1)/k QC codes, 2 ≤ k ≤ d, with dmin ≥ d in order for the rate (p− 1)/p

code to exist. However this is only a necessary condition. Investigation has
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shown that in many cases this condition is met but no code exists.

Table 2.29 presents the best rate (p − 1)/p QC codes for m up to

16, and Table 2.30 the best rate 2/3 codes for m = 16 to 26, extending the

results of [25]. Table 2.31 gives the maximum minimum distances for these

codes up to m = 16. Only the highest rate code for a given m and dmin

is given since all subcodes will have at least the same dmin. All generator

polynomials are given in octal, with the coefficient of lowest degree on the left,

i.e., 7138 = 1+x+x2+x5+x7+x8. For conciseness, all generator polynomials

for a given m are numbered and listed separately, as in Figures 2.6, 2.13,

2.15, etc. The Tables of codes list the corresponding generator polynomial

numbers, instead of the polynomials themselves. For example, Table 2.19

lists 84 polynomials for m = 12. Table 2.20 gives the best rate 1/p, m = 12

QC codes for p = 3 to 18. For each p is given the code dimensions, the

minimum distance, and a list of the generator polynomial numbers for the

particular QC code.

2.4 Concluding Remarks

Search methods are presented to construct good binary Quasi-Cyclic

codes. Many new QC codes have been constructed, including many that

are optimal or best possible QC codes. As well, Table 2.32 lists those which

improve the bounds on the maximum possible minimum distance for a binary

linear code given in [32].
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Table 2.3: Equivalent Best Rate 1/2 Systematic QC Codes

Number of
(2m, m) Generator Number Distinct

QC Polynomial dmin dv of Codes Weight
Code c(x) Distributions
(6, 3) 3 3 3 1 1
(8, 4) 7 4d4 4 1 1
(10, 5) 7 4 4 3 2
(12, 6) 7 4 4 5 2
(14, 7) 7 4 4 12 3
(16, 8) 27 5 5 4 1
(18, 9) 117 6 6 3 1
(20, 10) 57 6 6 17 2
(22, 11) 267 7 7 2 1
(24, 12) 573 8d4 8 2 1
(26, 13) 653 7 7 2 1
(28, 14) 727 8 8 6 1
(30, 15) 2167 8 8 36 1
(32, 16) 1137 8d4 8 396 9
(34, 17) 557 8 8 − 9 1344 12
(36, 18) 573 8 8 − 10 3276 79
(38, 19) 557 8 8 − 10 11684 98
(40, 20) 5723 9 9 − 10 120 13
(42, 21) 14573 10 10 − 11 138 3
(44, 22) 11753 10 10 − 12 1420 9
(46, 23) 667657 11 11 − 12 22 1
(48, 24) 1666577 12d4 12 8 1

Notes: dv the bounds given in [32]
ndz the given code has weights divisible by z
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Table 2.4: Best Rate 1/2 QC Codes for m = 25 to 31

(2m, m) Generator
QC Polynomial dmin dv

Code c(x)
(50, 25) 11667 10 10 − 12
(52, 26) 11667 10 10 − 13
(54, 27) 62573 11 11 − 14
(56, 28) 546173 12 12 − 14
(58, 29) 275067 12 12 − 14
(60, 30) 255707 12 12 − 15
(62, 31) 131675 12 12 − 16
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Table 2.5: Generator Polynomials for m = 3 to 8

Polynomial m
Number 3 4 5 6 7 8

1 1 1 1 1 1 1
2 3 3 3 3 3 7
3 7 5 5 5 5 11
4 7 7 7 7 13
5 17 13 11 11 15
6 17 13 13 17
7 37 15 15 21
8 17 17 23
9 25 23 25
10 27 25 27
11 33 27 31
12 37 33 33
13 77 35 35
14 37 37
15 53 45
16 57 47
17 67 53
18 77 57
19 65
20 67
21 73
22 75
23 77
24 127
25 133
26 137
27 157
28 177
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Table 2.6: Rate 1/p, m = 3 Quasi-Cyclic Codes

Code dmin Generators
(9,3) 4 1,2,3
(12,3) 6 1,2,2,3
(15,3) 8 1,1,2,2,3
(18,3) 10 1,1,1,2,2,3
(21,3) 12 1,1,1,2,2,2,3
(24,3) 13 1,1,1,1,2,2,2,3
(27,3) 15 1,1,1,1,2,2,2,2,3
(30,3) 16 1,1,1,1,2,2,2,2,3,3
(33,3) 18 1,1,1,1,2,2,2,2,2,3,3
(36,3) 20 1,1,1,1,1,2,2,2,2,2,3,3
(39,3) 22 1,1,1,1,1,1,2,2,2,2,2,3,3
(42,3) 24 1,1,1,1,1,1,2,2,2,2,2,2,3,3
(45,3) 25 1,1,1,1,1,1,1,2,2,2,2,2,2,3,3
(48,3) 27 1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3
(51,3) 28 1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3
(54,3) 30 1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3

Table 2.7: Rate 1/p, m = 4 Quasi-Cyclic Codes

Code dmin Generators
(12,4) 6 1,2,4
(16,4) 8 1,2,3,4
(20,4) 10 1,1,2,4,4
(24,4) 12 1,1,2,2,4,4
(28,4) 14 1,1,2,2,3,4,4
(32,4) 16 1,1,2,2,3,3,4,4
(36,4) 18 1,1,1,2,2,3,4,4,4
(40,4) 20 1,1,1,2,2,2,3,4,4,4
(44,4) 22 1,1,1,2,2,2,3,3,4,4,4
(48,4) 24 1,1,1,2,2,2,2,3,3,4,4,4
(52,4) 26 1,1,1,1,2,2,2,3,3,4,4,4,4
(56,4) 28 1,1,1,1,2,2,2,2,3,3,4,4,4,4
(60,4) 32 1,1,1,1,2,2,2,2,3,3,4,4,4,4,5
(64,4) 33 1,1,1,1,1,2,2,2,2,3,3,4,4,4,4,5
(68,4) 36 1,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5
(72,4) 38 1,1,1,1,1,2,2,2,2,2,3,3,4,4,4,4,4,5
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Table 2.8: Rate 1/p, m = 5 Quasi-Cyclic Codes

Code dmin Generators
(15,5) 7 1,4,5
(20,5) 9 1,3,4,5
(25,5) 12 1,3,4,5,5
(30,5) 15 1,2,3,4,5,6
(35,5) 16 1,2,3,4,4,5,6
(40,5) 20 1,2,2,3,4,4,5,6
(45,5) 22 1,1,1,2,2,3,4,4,4
(50,5) 24 1,1,1,2,2,2,3,4,4,4
(55,5) 27 1,1,1,2,2,2,3,3,4,4,4
(60,5) 30 1,1,1,2,2,2,2,3,3,4,4,4
(65,5) 32 1,1,1,1,2,2,2,3,3,4,4,4,4
(70,5) 35 1,1,1,1,2,2,2,2,3,3,4,4,4,4
(75,5) 37 1,1,1,1,2,2,2,2,3,3,4,4,4,4,5
(80,5) 40 1,1,1,1,1,2,2,2,2,3,3,4,4,4,4,5
(85,5) 42 1,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5
(90,5) 45 1,1,1,1,1,2,2,2,2,2,3,3,4,4,4,4,4,5

Table 2.9: Rate 1/p, m = 6 Quasi-Cyclic Codes

Code dmin Generators
(18,6) 8 1,4,10
(24,6) 10 1,3,4,10
(30,6) 14 1,4,5,6,12
(36,6) 16 1,3,4,5,6,12
(42,6) 20 1,2,4,6,6,7,12
(48,6) 24 1,2,3,6,7,8,10,12
(54,6) 26 1,2,3,4,6,7,8,9,12
(60,6) 29 1,2,3,4,5,6,7,8,10,12
(66,6) 32 1,2,3,4,5,6,7,8,9,10,12
(72,6) 34 1,1,2,3,4,4,2,6,7,8,9,10
(78,6) 38 1,2,3,4,5,6,6,7,7,9,10,10,12
(84,6) 40 1,2,2,3,4,5,6,6,7,8,9,10,11,12
(90,6) 44 1,1,2,2,3,4,5,6,7,8,9,10,11,12,12
(96,6) 48 1,1,2,2,3,4,5,6,7,8,8,9,10,11,12,12
(102,6) 50 1,1,2,2,3,4,5,6,6,7,7,8,9,10,10,12,12
(108,6) 53 1,1,2,2,3,3,4,4,5,6,6,7,8,10,10,11,12,12
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Table 2.10: Rate 1/p, m = 7 Quasi-Cyclic Codes

Code dmin Generators
(21,7) 8 1,4,17
(28,7) 12 1,4,9,17
(35,7) 16 1,4,9,10,18
(42,7) 19 1,4,6,9,10,18
(49,7) 22 1,4,6,7,9,10,18
(56,7) 26 1,4,6,7,9,10,14,17
(63,7) 31 1,4,6,7,9,10,14,16,17
(70,7) 33 1,4,5,6,7,9,10,14,16,17
(77,7) 36 1,4,5,6,7,8,9,10,11,12,18
(84,7) 40 1,4,5,6,7,8,9,10,11,12,13,18
(91,7) 44 1,3,4,5,6,7,9,10,11,13,16,17,18
(98,7) 48 1,2,4,5,6,7,8,10,11,12,13,14,16,17
(105,7) 52 1,2,3,4,5,6,8,9,10,12,14,15,16,17,18
(112,7) 56 1,2,3,4,5,7,8,9,10,11,12,14,15,16,17,18
(119,7) 59 1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18
(126,7) 63 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18

Table 2.11: Rate 1/p, m = 8 Quasi-Cyclic Codes

Code dmin Generators
(24,8) 8 1,4,10
(32,8) 12 1,2,3,26
(40,8) 16 1,2,4,15,22
(48,8) 20 1,2,3,4,17,28
(56,8) 24 1,3,4,5,6,17,28
(64,8) 28 1,4,5,6,8,10,15,28
(72,8) 32 1,2,3,4,5,8,18,24,28
(80,8) 37 1,2,5,10,12,15,17,20,21,22
(88,8) 40 1,2,4,5,7,8,9,18,19,23,28
(96,8) 46 1,2,5,8,9,11,15,16,18,23,26,27
(104,8) 48 1,4,5,6,7,8,9,10,11,13,18,26,28
(112,8) 54 1,4,5,8,9,11,14,15,20,21,22,24,25,28
(120,8) 57 1,4,5,8,9,11,14,15,18,20,21,22,24,25,28
(128,8) 64 1,2,4,5,8,9,11,14,15,18,20,21,22,24,25,28
(136,8) 66 1,2,4,5,8,9,11,14,15,18,20,21,22,24,25,27,28
(144,8) 70 1,2,4,5,8,9,11,14,15,18,20,21,22,24,25,26,27,28
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Table 2.12: Generator Polynomials for m = 9

1 1 11 25 21 53 31 115 41 155 51 273
2 3 12 27 22 57 32 117 42 157 52 277
3 5 13 31 23 63 33 123 43 165 53 337
4 7 14 33 24 65 34 125 44 167 54 357
5 11 15 35 25 67 35 127 45 173 55 377
6 13 16 37 26 71 36 133 46 175
7 15 17 43 27 73 37 135 47 177
8 17 18 45 28 75 38 137 48 253
9 21 19 47 29 77 39 147 49 257
10 23 20 51 30 113 40 153 50 267

Table 2.13: Rate 1/p, m = 9 Quasi-Cyclic Codes

Code dmin Generators
(27,9) 10 1,18,38
(36,9) 14 1,4,18,54
(45,9) 18 1,5,15,21,54
(54,9) 23 1,4,22,24,33,46
(63,9) 28 1,2,11,22,39,46,51
(72,9) 32 1,2,8,14,30,37,43,52
(81,9) 36 1,6,7,11,25,26,27,36,47
(90,9) 40 1,6,8,10,13,18,40,45,49,55
(99,9) 46 1,7,15,17,22,32,34,35,39,48,51
(108,9) 50 1,4,6,11,12,13,29,30,41,43,47,51
(117,9) 55 1,8,11,24,27,28,30,39,41,47,50,51,55
(126,9) 59 1,2,4,7,10,11,14,15,20,21,22,24,25,28
(135,9) 64 1,8,11,12,19,27,28,32,39,40,47,48,50,51,55
(144,9) 68 1,3,4,8,13,16,22,24,30,32,36,37,41,43,48,53
(153,9) 72 1,2,3,8,9,11,17,19,22,30,37,40,45,46,51,53,55
(162,9) 76 1,4,6,8,11,19,23,24,27,28,30,32,39,40,41,47,51,54



37

Table 2.14: Generator Polynomials for m = 10

1 1 14 45 27 105 40 155 53 235 66 333 79 567
2 7 15 47 28 107 41 157 54 247 67 335 80 573
3 11 16 51 29 111 42 163 55 253 68 337 81 577
4 13 17 53 30 113 43 165 56 255 69 355 82 667
5 15 18 55 31 115 44 167 57 263 70 357 83 677
6 17 19 57 32 123 45 171 58 265 71 365 84 737
7 23 20 61 33 125 46 173 59 267 72 367
8 25 21 63 34 127 47 175 60 273 73 373
9 27 22 65 35 131 48 177 61 275 74 375
10 33 23 67 36 133 49 223 62 277 75 377
11 35 24 71 37 135 50 225 63 317 76 527
12 37 25 75 38 145 51 227 64 325 77 537
13 43 26 77 39 147 52 233 65 327 78 557

Table 2.15: Rate 1/p, m = 10 Quasi-Cyclic Codes

Code dmin Generators
(30,10) 10 1,4,41
(40,10) 16 1,2,58,68
(50,10) 20 1,2,31,32,83
(60,10) 24 1,2,4,31,34,83
(70,10) 30 1,9,17,18,23,70,74
(80,10) 34 1,2,4,23,54,58,68,74
(90,10) 40 1,6,7,17,18,23,64,70,74
(100,10) 44 1,36,39,55,61,71,72,74,72,84
(110,10) 49 1,4,14,17,22,24,26,53,54,73,82
(120,10) 54 1,2,19,29,47,48,57,59,67,77,80,84
(130,10) 60 1,15,21,31,38,44,51,52,56,63,65,78,82
(140,10) 64 1,7,8,10,12,16,24,37,38,58,59,69,74,84
(150,10) 68 1,2,4,5,36,39,40,49,59,61,62,71,74,72,84
(160,10) 74 1,3,9,17,20,22,26,35,38,42,52,53,74,75,77,79
(170,10) 80 1,3,4,9,13,19,31,32,39,41,46,50,54,66,75,79,82
(180,10) 84 1,3,9,12,13,19,20,32,33,35,39,44,48,50,71,74,79,82
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Table 2.16: Generator Polynomials for m = 11

1 1 11 55 21 153 31 257 41 363 51 535 61 765
2 3 12 65 22 165 32 265 42 365 52 555 62 777
3 7 13 67 23 167 33 267 43 447 53 557 63 1253
4 13 14 71 24 171 34 313 44 457 54 563 64 1277
5 15 15 77 25 177 35 315 45 467 55 575 65 1327
6 23 16 105 26 213 36 325 46 473 56 647 66 1367
7 25 17 117 27 231 37 331 47 477 57 657 67 1557
8 31 18 133 28 235 38 333 48 513 58 675 68 1577
9 47 19 135 29 247 39 347 49 517 59 753 69 1727
10 51 20 145 30 251 40 357 50 533 60 757 70 1737

Table 2.17: Rate 1/p, m = 11 Quasi-Cyclic Codes

Code dmin Generators
(33,11) 11 1,37,40
(44,11) 16 1,3,22,53
(55,11) 21 1,3,18,34,61
(66,11) 28 1,4,15,35,51,58
(77,11) 32 1,5,9,10,31,56,68
(88,11) 39 1,11,13,14,20,53,59,61
(99,11) 43 1,11,13,14,20,36,44,59,61
(110,11) 48 1,11,13,14,20,36,44,53,59,61
(121,11) 53 1,8,12,17,29,38,39,42,45,64,70
(132,11) 58 1,11,13,14,20,36,40,44,53,50,59,61
(143,11) 64 1,11,13,14,20,23,36,44,50,53,59,53,63
(154,11) 68 1,2,11,13,14,20,23,36,37,43,44,53,59,61
(165,11) 74 1,7,19,20,27,28,30,32,46,48,54,55,60,65,67
(176,11) 80 1,2,7,11,13,14,20,23,26,36,41,44,53,59,61,69
(187,11) 84 1,2,7,11,13,14,20,23,26,27,36,41,44,53,59,61,69
(198,11) 90 1,6,7,9,16,17,21,24,25,32,33,34,47,49,50,52,62,66
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Table 2.18: Generator Polynomials for m = 12

1 1 14 135 27 311 40 477 53 775 66 1373 79 2553
2 15 15 137 28 313 41 511 54 1115 67 1465 80 2667
3 17 16 145 29 331 42 517 55 1117 68 1477 81 2737
4 23 17 157 30 337 43 531 56 1145 69 1537 82 2773
5 25 18 165 31 345 44 535 57 1167 70 1553 83 3357
6 37 19 171 32 347 45 575 58 1175 71 1557 84 3677
7 41 20 223 33 361 46 577 59 1177 72 1565
8 47 21 225 34 375 47 663 60 1225 73 1573
9 73 22 235 35 427 48 717 61 1237 74 1637
10 75 23 245 36 435 49 727 62 1247 75 1675
11 105 24 251 37 445 50 737 63 1317 76 1753
12 107 25 263 38 453 51 753 64 1323 77 2533
13 123 26 275 39 471 52 767 65 1347 78 2537

Table 2.19: Rate 1/p, m = 12 Quasi-Cyclic Codes

Code dmin Generators
(36,12) 12 1,52,82
(48,12) 17 1,43,74,82
(60,12) 24 1,10,15,29,72
(72,12) 28 1,14,21,43,74,82
(84,12) 34 1,21,35,43,55,55,82
(96,12) 40 1,21,26,35,43,55,66,82
(108,12) 46 1,6,11,17,25,44,69,75,76
(120,12) 52 1,25,29,32,33,34,37,42,54,68
(132,12) 56 1,7,16,19,46,49,57,58,61,67,84
(144,12) 62 1,3,4,5,18,22,28,45,47,65,67,84
(156,12) 68 1,7,11,16,19,41,46,49,57,58,61,67,84
(168,12) 74 1,6,8,9,14,21,22,35,51,52,53,56,70,71
(180,12) 80 1,6,8,9,14,21,22,35,38,52,53,56,64,70,71
(192,12) 86 1,2,8,22,23,24,30,35,36,39,41,48,53,59,63,81
(204,12) 92 1,13,21,26,27,31,40,43,50,55,60,66,73,74,77,82,83
(216,12) 96 1,3,13,16,21,26,27,31,40,43,55,60,66,73,74,77,82,83
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Table 2.20: Generator Polynomials for m = 13

1 1 14 231 27 663 40 1433 53 2347 66 3577
2 7 15 253 28 725 41 1451 54 2355 67 3675
3 23 16 255 29 763 42 1535 55 2453 68 3727
4 31 17 273 30 771 43 1573 56 2657 69 3733
5 37 18 313 31 1055 44 1575 57 2757 70 3753
6 43 19 315 32 1057 45 1631 58 2767 71 3757
7 65 20 321 33 1063 46 1667 59 3165 72 5257
8 67 21 335 34 1071 47 1731 60 3265 73 5277
9 73 22 447 35 1077 48 1755 61 3277 74 5327
10 115 23 465 36 1177 49 2227 62 3357 75 5673
11 125 24 517 37 1223 50 2315 63 3477 76 6677
12 153 25 525 38 1271 51 2333 64 3567
13 207 26 537 39 1431 52 2337 65 3575

Table 2.21: Rate 1/p, m = 13 Quasi-Cyclic Codes

Code dmin Generators
(39,13) 12 1,3,70
(52,13) 19 1,3,24,75
(65,13) 25 1,58,61,65,70
(78,13) 30 1,12,58,61,65,70
(91,13) 36 1,6,7,58,61,65,70
(104,13) 43 1,31,46,58,61,63,65,70
(117,13) 48 1,6,7,9,42,58,61,65,70
(130,13) 54 1,30,31,46,58,61,63,65,70,74
(143,13) 60 1,17,30,31,46,58,61,63,65,70,74
(156,13) 66 1,15,30,31,46,53,58,61,63,65,70,74
(169,13) 72 1,15,30,31,46,52,53,58,61,63,65,70,74
(182,13) 78 1,10,15,30,31,46,52,53,58,61,63,65,70,74
(195,13) 84 1,15,30,31,36,46,52,53,58,61,63,65,70,74,76
(208,13) 92 1,14,18,19,20,21,25,29,40,44,49,54,57,68,57,72
(221,13) 98 1,11,13,22,23,28,37,39,47,49,50,55,56,59,64,67,73
(234,13) 104 1,8,15,30,31,36,45,46,52,53,58,61,63,65,69,70,72,76
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Table 2.22: Generator Polynomials for m = 14

1 1 14 241 27 753 40 1717 53 3135 66 5517 79 16777
2 17 15 257 28 1071 41 1747 54 3171 67 5657
3 21 16 273 29 1105 42 1753 55 3323 68 5753
4 23 17 323 30 1107 43 1777 56 3345 69 6747
5 27 18 355 31 1161 44 2123 57 3725 70 6767
6 33 19 443 32 1237 45 2317 58 4553 71 7165
7 75 20 455 33 1243 46 2367 59 4557 72 7365
8 137 21 513 34 1327 47 2373 60 4733 73 7527
9 143 22 523 35 1373 48 2507 61 4755 74 10231
10 153 23 615 36 1375 49 2615 62 4777 75 12105
11 217 24 717 37 1465 50 2663 63 5173 76 12667
12 227 25 725 38 1545 51 2667 64 5355 77 12733
13 237 26 727 39 1667 52 3123 65 5457 78 13573

Table 2.23: Rate 1/p, m = 14 Quasi-Cyclic Codes

Code dmin Generators
(42,14) 13 1,26,58
(56,14) 20 1,23,26,58
(70,14) 26 1,4,39,47,64
(84,14) 32 1,4,28,39,46,64
(98,14) 38 1,4,21,28,39,46,64
(112,14) 44 1,2,13,23,26,27,56,58
(126,14) 50 1,2,13,17,23,27,56,57,58
(140,14) 57 1,3,20,22,42,49,50,62,69,78
(154,14) 64 1,14,18,29,43,53,55,63,67,73,79
(168,14) 70 1,5,10,24,32,37,44,60,65,66,70,76
(182,14) 76 1,2,13,15,16,17,23,25,27,56,57,58,71
(196,14) 84 1,5,6,19,34,36,40,48,51,54,61,68,72,77
(210,14) 88 1,2,7,13,15,16,17,23,25,27,38,56,57,58,71
(224,14) 96 1,7,11,13,15,16,17,23,25,27,35,38,56,57,58,71
(238,14) 102 1,7,11,13,15,16,17,23,25,27,35,38,52,56,57,58,71
(252,14) 108 1,7,8,11,13,15,16,17,23,25,27,35,38,52,56,57,58,71
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Table 2.24: Generator Polynomials for m = 15

1 1 14 537 27 2167 40 4317 53 7275 66 15347
2 25 15 635 28 2243 41 4531 54 7373 67 15773
3 35 16 663 29 2431 42 4571 55 7573 68 16753
4 53 17 677 30 2443 43 4643 56 7757 69 17177
5 121 18 731 31 2475 44 5257 57 11353 70 17573
6 125 19 1027 32 2723 45 5727 58 12265 71 17767
7 247 20 1123 33 2765 46 6233 59 12357 72 33577
8 255 21 1137 34 3045 47 6273 60 12373
9 273 22 1173 35 3157 48 6507 61 12455
10 353 23 1343 36 3463 49 6623 62 13637
11 377 24 1435 37 3513 50 6631 63 14653
12 433 25 1733 38 3625 51 6755 64 14737
13 477 26 2135 39 3665 52 7137 65 14767

Table 2.25: Rate 1/p, m = 15 Quasi-Cyclic Codes

Code dmin Generators
(45,15) 14 1,10,27
(60,15) 20 1,10,15,27
(75,15) 26 1,10,15,18,27
(90,15) 34 1,41,44,56,60,61
(105,15) 40 1,17,19,30,46,53,69
(120,15) 48 1,11,23,26,27,29,32,33
(135,15) 54 1,23,26,27,29,32,33,40,67
(150,15) 60 1,8,10,14,15,18,27,37,42,65
(165,15) 68 1,2,7,12,21,28,51,52,57,63,71
(180,15) 74 1,3,8,14,15,18,27,37,38,42,65,70
(195,15) 80 1,3,6,8,14,15,18,27,37,38,42,65,70
(210,15) 88 1,3,6,8,14,15,18,27,37,38,42,54,65,70
(225,15) 94 1,3,6,8,14,15,16,18,27,37,38,42,54,65,70
(240,15) 102 1,11,22,23,24,26,27,29,32,33,36,40,48,59,67,68
(255,15) 108 1,3,5,6,8,14,15,16,18,27,31,37,38,42,54,65,70
(270,15) 116 1,11,22,23,24,25,26,27,29,32,33,36,40,47,48,59,67,68
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Table 2.26: Generator Polynomials for m = 16

1 1 11 14447
2 13 12 25315
3 357 13 31667
4 513 14 32375
5 1705 15 32555
6 2747 16 33755
7 5271 17 37773
8 6531 18 55773
9 7167
10 13557

Table 2.27: Rate 1/p, m = 16 Quasi-Cyclic Codes

Code dmin Generators
(48,16) 14 1,8,14
(64,16) 21 1,6,13,16
(80,16) 28 1,3,8,11,14
(96,16) 34 1,6,7,13,14,15
(112,16) 42 1,3,5,6,7,14,16
(128,16) 50 1,3,4,8,9,11,16,17
(144,16) 57 1,3,4,7,8,9,11,16,17
(160,16) 64 1,6,7,8,10,11,13,14,16,17
(176,16) 72 1,3,5,6,7,8,9,11,12,16,17
(192,16) 80 1,3,4,5,7,8,10,11,12,13,16,17
(208,16) 86 1,3,4,6,7,9,10,11,12,13,14,16,17
(224,16) 94 1,3,4,6,7,8,9,10,11,12,13,14,17,18
(240,16) 103 1,3,4,5,6,7,8,9,10,11,13,14,16,17,18
(256,16) 113 1,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18
(272,16) 118 1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18
(288,16) 125 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18
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Table 2.28: Maximum Minimum Distances for (pm, m) Systematic QC Codes

p

m 3 4 5 6 7 8 9 10 11 12 13 14 15

3 +4o +6o +8o +10o +12od12 +13o +15o +16o +18o +20o +22o +24od24 +25o

4 +6o +8o +10o +12od4 +14o +16od4 +18o +20o 22 +24od4 26 28d4 +32od32

5 +7o +9o +12d4 +15o +16o +20o +22o +24od4 27 +30o +32o +35o 37
6 +8od4 +10o +14o +16o +20od4 +24od8 +26o 29 +32od4 34 +38o 40 +44o

7 +8o +12od4 +16o +19o 22o +26o +31o +33o +36o +40o +44o +48o +52o

8 −8o −12o −16o 20o −24o 28o −32od4 −37o −40o −46o −48o +54o −57o

9 +10o −14o −18o −23o +28o +32od4 −36o −40 e46 e50 e55 e59 64
10 10o +16o −20o 24o 30 −34 −40d4 e44 e49 −54 60 64 68
11 11o −16o1 −21o +28od4 −321 −391 e43 e48 −53 58 64 68 74
12 +12o −17o +24o 28d4 e34 −40 e46 −52d4 56 62 68 74 80d4

13 −12o −19o −252 30 −362 e43 −48 54 60 66 72 78 84
14 −13o1 −20o −26 −32 −38 −44 50 57 64d4 70 76 84 89
15 −14o 20 26 e34 −40 −48 54 60 68 74 80 88 94
16 −14o1 211 −281 341 421 501 571 641 721 801d4 861 941 1031

Notes: n1 a power residue subcode.
(Since 25 − 1 and 27 − 1 are prime, all possible codes are included in the PR subcodes.)

n2 a cyclic code decomposition subcode [21].
no is a best Quasi-Cyclic code.
+ meets the upper bound in [32].
− meets the lower bound in [32].
e exceeds the lower bound in [32].
ndz the given code has weights divisible by z.
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Table 2.29: Rate (p − 1)/p Quasi-Cyclic Codes

Code m p dmin Generators
(15,10) 5 3 4 4,5
(30,24) 6 5 4 4,6,7,12
(63,54) 7 9 4 4,6,7,9,10,14,16,17

(128,120) 8 16 4 2,4,5,8,9,11,14,15,18,20,21,22,24,25,28
(162,153) 9 18 4 4,6,7,10,11,13,16,17,18,22,25,27,28,32,35,36,37
(30,20) 10 3 5 9,64

(180,170) 10 18 4 2,4,5,7,8,12,13,14,16,19,20,23,25,27,29,34,36
(33,22) 11 3 6 19,47
(44,33) 11 4 5 19,47,66

(198,187) 11 18 4 3,4,5,6,7,10,13,16,17,18,19,21,22,24,25,28,32
(36,24) 12 3 6 10,35
(60,48) 12 5 5 46,74,80,82

(216,204) 12 18 4 3,4,5,14,16,22,25,38,50,51,53,55,62,68,71,78,79
(65,52) 13 5 6 58,61,65,70

(234,221) 13 18 4 2,3,4,5,6,8,9,12,15,16,26,30,31,33,34,35,41
(70,56) 14 5 6 7,12,33,45
(98,84) 14 7 5 7,9,12,33,45,59

(252,238) 14 18 4 2,4,13,15,18,26,28,29,33,36,37,38,41,51,53,57,64
(90,75) 15 6 6 19,30,46,53,69

(150,135) 15 10 5 9,34,35,45,49,62,64,69,72
(270,255) 15 18 4 3,5,8,9,10,11,13,14,16,18,19,20,22,23,25,31,33

Table 2.30: Rate 2/3 Quasi-Cyclic Codes

(3m, 2m) Generator
QC Polynomials dmin dv

Code c1(x) c2(x)
(48, 32) 57 3733 6 6 − 8
(51, 34) 1537 6365 6 7 − 8
(54, 36) 355 147527 7 8
(57, 38) 2655 317537 8 8 − 9
(60, 40) 6323 2757 8 8 − 10
(63, 42) 50367 52635 8 8 − 10
(66, 44) 6144232 4412177 8 8 − 10
(69, 46) 6323 2757 8 8 − 10
(72, 48) 57361424 63235074 8 9 − 11
(75, 50) 142422547 131657623 8 8 − 12
(78, 52) 54557347 240517035 8 8 − 12
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Table 2.31: Maximum Minimum Distances for (pm, (p−1)m) Systematic QC
Codes

p

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
3 +3o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o

4 +4o +3o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o

5 +4o +4o +3o +3o +3o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o +2o

6 +4o +4o +4o +4o +3o +3o +3o +3o 2o +2o +2o +2o +2o +2o +2o +2o +2o

7 +4o +4o +4o +4o +4o +4o +4o +4o +3o +3o +3o +3o +3o +3o +3o +3o +3o

8 +5o +4o +4o +4o +4o +4o +4o +4o +4o +4o +4o +4o +4o +4o 4o 3 3o

9 +6o −4o1 +4o +4o +4o +4o +4o +4o +4o +4o +4o +4o +4o 4o 4o 4o 4o

10 +6o +5o −4o +4o +4o +4o +4o +4o +4o +4o 4o 4o 4o 4o 4o 4o 4o

11 +7o1 +6o e + 5o −4o1 +4o1 +4o1 +4o1 +4o +4o +4o 4o 4o 4o 4o 4o 4o 4o

12 +8o +6o −5o −5o −4o −4o +4o +4o +4o 4o 4o 4o 4o 4o 4o 4o 4o

13 +7o +6o +6o +6o2 −4 −4 −4 −4 4o 4o 4o 4o 4o 4o 4o 4o 4o

14 +8o −6o1 +6o +6o −5 −5 4 4 4 4 4 4o 4o 4o 4o 4o 4o

15 +8o −6o1 +6o1 +6o1 +6o 51 51 51 51 4 4 4 4 4 4 4 4
16 +8o1 −6o1 −6o1 +6o1 +6o1 +6o1 6o1 6o1 51 51 51 51 51 51 51 4 4

Notes: n1 equals best power residue subcode.
Since 25 − 1 and 27 − 1 are prime, all possible codes are included in the PR subcodes.

n2 a cyclic code decomposition subcode [21].
no is a best Quasi-Cyclic code.
+ meets the upper bound in [32].
− meets the lower bound in [32].
e exceeds the lower bound in [32].
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Table 2.32: Quasi-Cyclic Codes Which Improve the Bounds on the Maximum
Possible Minimum Distance for a Binary Linear Code

QC code dmin dv

(44,33) 5 4-5
(99,9) 46 45-47
(108,9) 50 48-51
(117,9) 55 53-56
(126,9) 59 58-60
(100,10) 44 43-47
(110,10) 49 48-52
(99,11) 43 41-46
(110,11) 49 47-50
(84,12) 34 33-37
(108,12) 46 45-48
(104,13) 43 41-47
(90,15) 34 33-38
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Chapter 3

The Binary Power Residue

Codes and Related
Quasi-Cyclic Codes

3.1 Introduction

It is known that the s-th power residue codes are good codes [34].

Chen et. al. [17] have shown that the cyclic s-th power residue (PR) codes

with the first digit deleted are equivalent to rate 1/s quasi-cyclic (QC) codes.

Using this connection, the weight distribution of PR codes can be found by

computing the weight distribution of the equivalent QC code. It turns out

that subcodes constructed from a subset of the generator polynomials of these

QC codes are also good codes. These polynomials can be used to reduce the

search time for good QC codes.

The next Section presents the construction method, and this is fol-

lowed by an example using the (31, 5) sixth PR code. A second example, the

(257, 16) 16th PR code, gives the subcode construction method, and shows

that these codes are good.
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3.2 Code Construction

Let m be the order of 2 mod n, n a prime. Then if m divides (n−1)/s,

i.e., n = ems + 1, a cyclic (n, em), s-th power residue code exists, as does

a rate 1/s, (n − 1, em) QC code formed of m × m circulant matrices. The

details of constructing these codes can be found in [17], where the Normal

Basis Theorem is used to convert a PR code, with one digit deleted, into

a QC code. The roots of a primitive polynomial with linearly independent

roots are used to construct this basis. Once the normal basis is found, the

generator matrices can be constructed and the weight distributions found.

The generator matrix of the related rate 1/s QC code, for e = 1, is given by

G = [Im, C1, C2, C3, ..., Cs−1] , (3.1)

where Im is an m × m identity matrix and the Ci are m × m circulant

matrices, over GF (2). The representation for G given here is in systematic

form. Although in general these rate 1/s QC codes are not in this form, in

all codes examined at least one circulant matrix was invertible, allowing a

transformation to a systematic code. Using MacWilliam’s identities we can

find the weight distribution of the rate (s− 1)/s dual codes. Table 3.1 gives

the minimum distances of the binary power residue codes, their duals and

related QC codes up to m = 32 and n = 10000. From this Table it can be

seen that all listed PR codes have an even minimum distance, dmin = d. The

related QC codes have an odd dmin = d− 1. However, both dual codes have

the same minimum distance.

3.3 The Maximum Length Sequence Codes

The special case (2) in [17] states that when n = 2m−1 is prime, the s-

th power residue code is a binary maximum length sequence code. With one

digit deleted, it is equivalent to a rate m
2m−2

= 1/s QC code. It is well known
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Table 3.1: A Table of Binary Power Residue Codes, their Duals and Related
Quasi-Cyclic Codes

PR code dmin dual code dmin m rate QC code dmin dual code dmin

(7,3)QMo 4 (7,4)o 3 3 1/2 (6,3)o 3
(17,8)Qo 6 (17,9)o 5 8 1/2 (16,8)o 5
(23,11)Qo 8 (23,12)o 7 11 1/2 (22,11)o 7
(31,5)Mo 16 (31,26)o 3 5 1/6 (30,5)o 15 (30,25)o 3
(31,10) 10 (31,21)o 5 5 1/3 (30,10) 9 (30,20)o 5
(31,15)o 8 (31,16) 7 5 1/2 (30,15) 7
(41,20)Qo 10 (41,21)o 9 20 1/2 (40,20)o 9
(43,14)o 14 (43,29)o 6 14 1/3 (42,14)o 13 (42,28)o 6
(47,23)Qo 12 (47,24)o 11 23 1/2 (46,23)o 11

(73,9) 28 (73,64) 3 9 1/8 (72,9) 27 (72,63) 3
(73,18)o 24 (73,55)o 6 9 1/4 (72,18) 23 (72,54)o 6
(89,11)o 40 (89,78)o 4 11 1/8 (88,11)o 39 (88,77)o 4
(89,22)o 28 (89,67) 7 11 1/4 (88,22) 27 (88,66) 7
(113,28) 28 (113,85) 8 28 1/4 (112,28) 27 (112,84) 8
(127,7)M 64 (127,120)o 3 7 1/18 (126,7)o 63 (126,119)o 3
(127,14) 54 (127,113)o 5 7 1/9 (126,14) 53 (126,112)o 5
(127,21) 44 (127,106) 6 7 1/6 (126,21) 43 (126,105) 6

(151,15)B 60 (151,136)B 5 15 1/10 (150,15) 59 (150,135) 5
(151,30) 30 (151,121) 8 15 1/5 (150,30) 29 (150,120) 8
(233,29) 88 (233,204) 7 29 1/8 (232,29) 87 (232,203) 7
(241,24) 94 (241,217) 6 24 1/10 (240,24) 93 (240,216) 6
(257,16) 114 (257,241) 5 16 1/16 (256,16) 113 (256,240) 5
(257,32) 90 (257,225) 8 16 1/8 (256,32) 89 (256,224) 8
(331,30) 124 (331,301) 6 30 1/11 (330,30) 123 (330,300) 6
(337,21) 140 (337,316) 6 21 1/16 (336,21) 139 (336,315) 6
(601,25) 256 (601,576) 5 25 1/24 (600,25) 255 (600,575) 5
(683,22) 306 (683,661) 5 22 1/31 (682,22) 305 (682,660) 5
(1103,29) 488 (1103,1074) 5 29 1/32 (1102,29) 487 (1102,1073) 5
(1801,25) 848 (1801,1776) 5 25 1/72 (1800,25) 847 (1801,1775) 5
(2089,29) 952 (2089,2060) 5 29 1/72 (2088,29) 951 (2088,2059) 5
(2731,26) 1294 (2731,2705) 5 26 1/105 (2730,26) 1293 (2730,2704) 5

(8191,13)M 4096 (8191,8178) 3 13 1/630 (8190,13) 4095 (8190,8177) 3

Notes: n
M is a Maximum length sequence code

n
Q is a Quadratic Residue code

n
B given in [36]

n
o the code meets the bound in [32], (applicable only to codelengths up to 127)

m is the circulant size.



51

that when m is prime, there are exactly 2m−2
m

distinct generator polynomials

for QC codes, excluding cyclic shifts and the all-zero and all-one polynomials,

i.e., Tm − 2. Thus the QC code derived from a maximum length sequence

code contains all possible generator polynomials, and so the subcodes form

the complete set of distinct codes created from the polynomials of length m.

In this case the construction of PR codes is of little use in finding good QC

codes. For the case m = 7, the best subcodes are exactly those given in [26].

The dual of the maximum length sequence codes is a Hamming code.

It is well known that these codes have minimum distance 3. The dual of

the QC code formed with the first digit deleted also has minimum distance

3. That dmin ≥ 3 is a result of Theorem 2.11, since this code contains all

distinct circulants. The complete set of distinct circulants contains at least

one circulant of weight 2. Thus the systematic rate 1/2 subcode formed

of this circulant will have minimum distance 3. Since a code must have a

minimum distance less than or equal to that of its subcodes, the weight of

the QC dual code can be no more than 3. Therefore the minimum distance

is exactly 3.

The following Section presents the (31,5) Maximum Length Sequence

code as an example.

3.4 The (31,5) Power Residue Code

Since the order of 2 mod 31 is 5,there exists a (31, 5) Sextic PR code with

G =
[

1 β β2 β3 ... β30
]

where β is a primitive 31-st root of unity.

Rearranging the columns, we have

G =
[

1 β20

β21

β22

β23

β24

; (β3)20

... (β3)24

; ... (β15)24
]
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Converting the βk to Normal Basis form, G becomes

G′ = [1 C1 C3 C5 C7 C11 C15]

with

c1(x) = 208, c3(x) = 228,
c5(x) = 38, c7(x) = 278,
c11(x) = 158, c15(x) = 238.

In binary form,

G =

















1 10000 10010 00011 10111 01101 10011
1 01000 01001 10001 11011 10110 11001
1 00100 10100 11000 11101 01011 11100
1 00010 01010 01100 11110 10101 01110
1 00001 00101 00110 01111 11010 00111

















3.5 The (257,16) 16-th Power Residue Code

A (257,16) PR code exists since the multiplicative order of 2 mod 257

is 16, and 16 divides (257-1)/16, thus e = 1, s = 16 and m = 16. This code

is an interesting example because k is a multiple of 8, which is useful when

encoding digital data, and 257 = 223
+ 1 is a Fermat prime, which allows

simple computation of Fourier Transforms. It is defined as a cyclic code with

a parity check polynomial of the form

h(x) =
∏

rǫR

(x − αr) (3.2)

where α is a primitive 257-th root of unity, and R is the set of 16-th residues

mod 257. The elements of R are solutions of the congruence

x16 ≡ r mod 257. (3.3)

Thus

R = {1, 2, 4, 8, 16, 32, 64, 128, 129, 193, 225, 241, 249, 253, 255, 256}.
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The related rate 1/16, (256,16) QC code has a generator matrix of the form

G = [I16, C1, C2, C3, · · · , C15] (3.4)

where Ci is a 16×16 circulant matrix. There are only 15 Ci’s since the 16-th

circulant has been inverted and multiplied through to create a systematic

code. The dual code has the generator matrix

H =



















I240

CT
1

CT
2

CT
3
...

CT
15



















(3.5)

The minimum distance of this dual code, found from the weight distribution

of the (256,16) code, is 5. The minimum distance of this code is upper

bounded by the minimum distance of the embedded rate 1/2 codes,

dmin [H ] ≤
15

min
i = 1

{dmin [I16, Ci]} (3.6)

where dmin [.] denotes the minimum distance of the given QC code. Exami-

nation of the 15 possible rate 1/2 codes reveals

1 with dmin = 8,
3 with dmin = 7,
10 with dmin = 6,
1 with dmin = 5,

and so the bound holds with equality.

This method can be extended to all rate (k−1)/k subcodes, of which

there are (
15

k − 1
) rate (k − 1)/k systematic QC codes, 2 ≤ k ≤ 16. From

the previous result all these subcodes must have dmin ≥ 5, but from [25], the

best possible minimum distance of a rate 2/3 (48,32) systematic QC code is
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6. Thus the minimum distance of the subcodes of rates higher than 1/2 is

bounded by 5 ≤ dmin ≤ 6, so the subcodes must be good. An exhaustive

examination of all subcodes revealed 266 best or optimal QC codes. The

numbers are as follows:

count code rate dmin

1 (32,16) 1/2 8
42 (48,32) 2/3 6
4 (48,16) 1/3 14
56 (64,48) 3/4 6
70 (80,64) 4/5 6
56 (96,80) 5/6 6
28 (112,96) 6/7 6
8 (128,112) 7/8 6
1 (144,128) 8/9 6

This search used only 15 generator polynomials. An exhaustive search would

require examining ≈ 212 polynomials.

3.6 The Quasi-Cyclic Subcodes

In this section, subcodes of the previous QC codes are enumerated.

They were found using the method illustrated in Section 3.5. Only the min-

imum distances and code dimensions are given for those codes which are the

best possible QC codes and/or attain the bounds given in [32]. Tables 3.2

and 3.5 list the generator polynomials, c(x), in octal form, with the least

significant digit to the left. Tables 3.3, 3.4, 3.6 and 3.7 give the subcodes;

n, k is the code dimension, m is the circulant size, and dmin is the minimum

distance. Further details on the format can be found in [26]. For the case

m = 7, the best rate 1/p subcodes are exactly those given in [26], and so are

not given here.

For the rate 1/p codes, the c(x) refer to the Ci in G as in (2.1). For

rate (k − 1)/k codes, the c(x) refer to the Ci in the dual code of G, which is

H as given by (2.3).
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Table 3.2: c(x) for m = 3 to 20

m 3 5 7 8 9 11a 11b 14 15 16 20
i c(x) (in octal)
1 4 20 100 200 400 2000 2000 20000 40000 100000 2000000
2 5 22 44 246 114 3342 3406 16236 41542 136340 1447243
3 3 63 676 1031 10637 12620 155631
4 27 176 737 1317 55010 2454
5 15 106 137 3440 71654 151764
6 23 36 123 2517 66365 63225
7 16 60 1501 10263 134412
8 140 431 1336 30167 31116
9 41 76431 35607
10 166 72432 135570
11 37 16740
12 61 126206
13 144 157664
14 27 120170
15 124 154777
16 127 133766
17 125
18 143

Notes: n
a derived from the (23,11) PR code

n
b derived from the (89,11) PR code.
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Table 3.3: The Subcodes for m = 5 to 15

n k m dmin c(x) from Table 3.2
10 5 5 +4o 1,5
15 10 5 +4o 1,5,6
20 15 5 +3o 1,4,5,6
25 15 5 +3o 1,3,4,5,6
15 5 5 +7o 1,5,6
20 5 5 +9o 1,2,5,6
25 5 5 11 1,2,3,5,6
27 18 9 -4o 1,2,3
55 44 11 -4o 1,2,3,4,5
66 55 11 +4o 1,2,3,4,5,6
77 66 11 +4o 1,2,3,4,5,6,7
44 11 11 -16o 1,2,4,5
66 11 11 26 1,2,3,4,5,8
77 11 11 -32 1,2,3,4,5,6,7
45 30 15 -6o 1,3,4
60 45 15 +6o 1,3,4,5
75 60 15 +6o 1,3,4,5,9

Notes: no denotes a best Quasi-Cyclic code
+ meets the upper bound in [32]
- meets the lower bound in [32].
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Table 3.4: The Subcodes for m = 16

n k m dmin c(x) from Table 3.2
32 16 16 +8o 1,8
48 32 16 -6o 1,4,8
64 48 16 -6o 1,4,7,8
80 64 16 +6o 1,4,7,8,9
96 80 16 +6o 1,4,7,8,9,11
112 96 16 +6o 1,4,7,8,9,11,12
128 112 16 +6o 1,4,7,8,9,11,12,13
142 112 16 +6o 1,4,7,8,9,11,12,13,15
48 16 16 -14o 1,5,8
80 16 16 -28 1,5,8,11,12
96 16 16 34 1,2,3,5,7,13
128 16 16 50 1,4,8,9,11,12,13,15
144 16 16 57 1,4,7,8,9,11,12,13,15
160 16 16 64 1,2,3,5,7,8,10,12,13,15
176 16 16 72 1,2,6,7,8,9,11,12,13,14,15
192 16 16 80 1,3,4,6,7,8,10,11,12,13,14,15
208 16 16 86 1,2,3,4,5,7,8,9,12,13,14,15,16
224 16 16 94 1,2,3,4,5,7,8,9,10,11,12,13,14,15
240 16 16 103 1,2,3,4,5,7,8,9,10,11,12,13,14,15,16

Notes: no denotes a best Quasi-Cyclic code
+ meets the upper bound in [32]
- meets the lower bound in [32].
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Table 3.5: c(x) for m = 21 to 26

m 21 22d 23 24 25cd 26d

i c(x) (in octal)
1 4000000 10000000 20000000 40000000 100000000 200000000
2 5322626 14565622 7355313 30600255 143107551 255164547
3 5457416 6767355 72301211 72722107 54557347
4 2352036 17641013 51075256 107135603 226477305
5 2026706 15210737 77530342 111266031 123012062
6 2130401 10463320 54344633 175022707 255253206
7 4702724 1025711 32105215 101605134 16310203
8 3133226 2436745 65130346 146453234 111456127
9 4126762 3075155 43356773 73656237 157041127
10 4320445 4135373 43621613 7210245
11 2573101 3100111
12 7424663 10025375
13 4533556 4551230
14 5117300 10663447
15 2050277
16 6215365

Notes: n
c derived from the (1801,25) PR code

n
d only a partial listing of the c(x) is given.
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Table 3.6: The Subcodes for m = 21 to 22

n k m dmin c(x) from Table 3.5
105 21 21 33 1,2,10,14,15
126 21 21 42 1,2,3,4,5,14
147 21 21 52 1,5,6,9,12,13,14
168 21 21 60 1,2,3,4,5,6,10,14
189 21 21 70 1,2,5,6,7,11,12,13,15
210 21 21 80 1,2,3,5,6,10,11,12,13,15
231 21 21 88 1,2,3,4,5,6,7,9,12,13,14
252 21 21 98 1,2,3,4,5,6,7,9,11,12,13,14
273 21 21 108 1,2,3,4,5,6,7,9,10,12,13,14,15
294 21 21 118 1,2,3,4,5,6,7,8,11,12,13,14,15,16
315 21 21 127 1,2,3,4,5,6,8,9,10,11,12,13,14,15,16
66 44 22 -8 1,4,6
66 22 22 -18 1,4,8
88 22 22 26 1,4,6,7
110 22 22 34 1,2,3,4,5
132 22 22 44 1,2,3,4,5,7
154 22 22 54 1,2,3,4,6,9,10
176 22 22 64 1,2,3,7,11,12,13,14

Notes: + meets the upper bound in [32]
- meets the lower bound in [32].
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Table 3.7: The Subcodes for m = 24 to 26

n k m dmin c(x) from Table 3.5
72 48 24 8 1,2,4
96 72 24 7 1,2,3,4
72 24 24 18 1,2,3
96 24 24 27 1,2,9,10
120 24 24 36 1,2,4,6,10
144 24 24 47 1,2,4,7,8,10
168 24 24 57 1,2,3,5,6,7,10
192 24 24 68 1,2,3,5,6,7,9,10
216 24 24 78 1,2,3,4,5,6,7,8,10
50 25 25 -10o 1,2
75 50 25 -8 1,3,4
100 75 25 -8 1,3,4,5
75 25 25 19 1,6,7
100 25 25 -28 1,2,7,9
125 25 25 38 1,2,8,9,10
52 26 26 -10o 1,2
78 52 26 8 1,2,3
104 78 26 -8 1,7,8,9
78 26 26 -20 1,2,3
104 26 26 e30 1,4,5,6

Notes: no denotes a best Quasi-Cyclic code
+ meets the upper bound in [32]
- meets the lower bound in [32]
e exceeds the lower bound in [32].

3.7 Concluding Remarks

This Chapter presents the construction of binary Quasi-Cyclic codes

from Power Residue codes. Several new QC codes with large block lengths

have been found, some of which are the best possible QC codes. The exten-

sion of this method to nonbinary codes will be addressed in Chapter 6.
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Chapter 4

Primitive Polynomials with

Linearly Independent Roots

4.1 Introduction

Primitive polynomials with linearly independent roots were first ap-

plied to the field of error correcting codes, where they were used via the Nor-

mal Basis Theorem[40] to construct Quasi-Cyclic codes from Power Residue

codes[17], as in the previous Chapter. A normal basis can also be used to

construct QC codes from Cyclic codes with (n, k) = lm. In this case the

generator matrix can be transformed into one formed of k/m rows and n/m

columns of m×m circulant matrices [20]. Subsequently a normal basis rep-

resentation has been employed to facilitate multiplication and inversion over

GF(2m)[41]. This representation can easily be used to accelerate the de-

coding of BCH codes. In practice the roots of a primitive polynomial with

linearly independent roots is used to form a normal basis. Another applica-

tion of these polynomials is found in the area of digital testing of integrated

circuits, which uses a Linear Feedback Shift Register (LFSR) implementation

as a means of data compaction [42].

Peterson and Weldon [29] provide Tables of primitive polynomials

over GF(2), including ones with independent roots for most degrees up to 34.

Unfortunately, there exists no similar Tables over fields larger than GF(2),
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i.e., GF(3), GF(4), GF(5), etc. These are required to construct error correct-

ing codes and LFSRs over nonbinary alphabets. Completion of the Tables in

[29] over GF(2) was presented in [39], along with the binary power residue

codes constructed with them. Tables of primitive and irreducible polynomi-

als over GF(3) are given in [43]. This Chapter provides Tables of primitive

polynomials with independent roots over nonbinary fields, and the completed

Table over GF(2) from [39]. The algorithm developed to compile these Tables

exploits the properties of Galois Fields, and the polynomial coefficients, to

improve the computational complexity by several orders of magnitude over

exhaustive methods.

4.2 Polynomial Construction

This section presents the algorithm used to construct polynomials

over GF(q), and assumes a rudimentary knowledge of Galois fields. An ex-

cellent treatment of the theory of Galois fields can be found in [29] or [44].

The background for the algorithm development follows.

Let p(x) be a monic polynomial over GF(q).

Definition 4.1 A polynomial p(x) over GF(q) is irreducible iff it cannot

be expressed as the product of two polynomials, g(x)h(x) of degree less than

the degree of p(x).

Definition 4.2 An element α of GF(qn) is primitive iff αm = 1 for no

m less than qn − 1. The order of any element of GF(qn) divides qn − 1.

Definition 4.3 A polynomial p(x) of degree n over GF(q) is primitive iff

it is irreducible and contains a primitive element of GF(qn) as a root.

Theorem 4.4 [29] Every polynomial p(x) of degree n irreducible over GF(q)

is a factor of xqn−1 − 1.
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From Definition 1, it is evident that an easy test for identifying irreducible

polynomials is to divide by all polynomials of degree ⌊n
2
⌋ or less, where n is

the degree of p(x). However, this becomes an impractical solution for large

m and q. Thus we use Theorem 4.4 as the starting point in the search for

primitive polynomials. However, there are other polynomials of degree less

than n which are also factors, and when multiplied together, can create a

polynomial of degree n which is not irreducible. Thus this condition is only

necessary. For sufficiency we require the following.

Theorem 4.5 [44] An irreducible polynomial p(x) which is a factor of xqn−1−

1 will have degree n iff it does not contain a factor of xqm−1 − 1 for any m a

proper divisor of n.

Thus the product of all irreducible polynomials of degree n over GF(q) is

given by

xqn−1 − 1

lcm(xqm−1 − 1)∀m|n

where lcm means least common multiple. A more useful form for implemen-

tation is given by the following corollary.

Corollary 4.6 A polynomial p(x) of degree n which is a factor of xqn−1 − 1

is irreducible iff it is not a factor of

∏

i

(xqmi−1 − 1),

where mi is a proper divisor of n.

Another algorithm for finding irreducible polynomials over GF(q) [45]

exploits the relationship between the cyclic classes of sequences of length n

and the irreducible polynomials of degree n. This algorithm is more tedious

and less obvious than the one given here. Since the computational complex-

ity differences are comparable, the developed algorithm is preferred.
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The test for primitivity requires the following,

Theorem 4.7 [29] An irreducible polynomial of degree n is primitive iff it

divides xm − 1 for no m less than qn − 1, m a proper divisor of qn − 1.

The search is refined with the following Theorems.

Let f(x) = xn + a1x
n−1 + a2x

n−2 + . . . + an be an irreducible poly-

nomial of degree n over GF(q), (ai is an element of GF(q)). q is called the

characteristic of the field. Define the reciprocal of f(x) as f ∗(x) = xnf(x−1).

Theorem 4.8 [29] The reciprocal of f(x) is irreducible.

Theorem 4.9 [29] If f(x) is primitive, f ∗(x) is primitive.

From these two Theorems it is clear that only one of f(x) and f ∗(x) need

be checked for irreducibility and primitivity. Thus the search time is halved.

The polynomial to be tested is arbitrarily chosen to be the one with the

largest magnitude when evaluated at x = q.

Denote ρ(a) as the companion matrix of f(x) = xn+a1x
n−1+a2x

n−2+

. . . + an,

ρ(a) =



















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1

−an −an−1 −an−2 . . . −a1



















(4.1)

with characteristic polynomial

f(x) = det(xI − ρ(a)) (4.2)

If the trace of ρ(a) is defined as

T (a) =
n
∑

i=1

ρii(a) = −a1 (4.3)

and the norm of ρ(a) as

N(a) = det(ρ(a)) = (−1)nan (4.4)
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then

f(x) = xn − T (a)xn−1 + . . . + (−1)nN(a). (4.5)

Theorem 4.10 [29] In a field of characteristic q, (a + b)q = aq + bq

Proof In a field of characteristic q, q = 0. Then

(a+b)q = aq+

(

q
1

)

aq−1b+

(

q
2

)

aq−2b2+

(

q
3

)

aq−3b3+· · ·+

(

q
q − 1

)

abq−1+bq

and all the binomial coefficients have q as a factor and therefore are 0, leaving

only aq + bq.2

Theorem 4.11 [29] If α denotes a root of f(x) then

f(x) = (x − α)(x − αq)(x − αq2

) . . . (x − αqn−1

)

Proof From Theorem 4.10,

[f(x)]q = (xn)q + (a1x
n−1)q + (a2x

n−2)q + · · · + (an)q

= (xn)q + aq
1(x

n−1)q + aq
2(x

n−2)q + · · · + aq
n.

From Definition 4.3, aq−1 = 1, so that aq = a. Therefore,

[f(x)]q = (xn)q + a1(x
n−1)q + a2(x

n−2)q + · · · + an

= f(xq).

Thus if f(α) = 0, then [f(α)]q = f(αq) = 0, and α, αq, αq2
, · · · , αqn−1

must

be roots of f(x), and are all the n roots.2

From this we can now define

N(a) =
n−1
∏

i=0

αqi

= α
(qn

−1)
(q−1) (4.6)

and

T (a) =
n−1
∑

i=0

αqi

(4.7)
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These representations of N(a) and T (a) are used to accelerate the search

algorithm via the following Theorems.

Theorem 4.12 If an
d = (−1)dn, d|(q − 1), d 6= q − 1, then f(x) is not

primitive.

Proof If an
d = (−1)dn , Nd(a) = (−1)dn(−1)dn = (−1)2dn = 1 , thus

α
d

(qn
−1)

(q−1) = 1 and α has order d(qn − 1)/(q − 1). However, for f(x) to be

primitive, α must have order qn − 1, thus f(x) is not primitive.2

Example 1

Let q = 3, then d = 1 and an = (−1)n denotes a nonprimitive polynomial.

This condition was shown empirically in the Tables of [43, 46].

Example 2

Let q = 7, then d = 1, 2, 3 and the an for nonprimitive polynomials are as

follows:

d = 1, an = (−1)n

{

n even, an = 1 ⇒ an = 1
n odd, an = −1 ⇒ an = 6

d = 2, a2
n = 1 ⇒ an = 1, 6

d = 3, a3
n = (−1)3n

{

n even, a3
n = 1 ⇒ an = 1, 2, 4

n odd, a3
n = −1 ⇒ an = 3, 5, 6

Example 3

Let q = 13, then d = 1, 2, 3, 4, 6 and the an for nonprimitive polynomials are

as follows:

d = 1, an = (−1)n

{

n even, an = 1 ⇒ an = 1
n odd, an = −1 ⇒ an = 12

d = 2, a2
n = 1 ⇒ an = 1, 12

d = 3, a3
n = (−1)3n

{

n even, a3
n = 1 ⇒ an = 1, 3, 9

n odd, a3
n = −1 ⇒ an = 4, 10, 12

d = 4, a4
n = 1 ⇒ an = 1, 5, 8, 12

d = 6, a6
n = 1 ⇒ an = 1, 3, 4, 9, 10, 12.

Thus only an = 2, 6, 7, 11 produce primitive polynomials.

Corollary 4.13 If q is a prime of the form 4m+1, then an irreducible poly-
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nomial f(x) is not primitive if an is a quadratic residue of q. If q is a prime

of the form 4m − 1, f(x) is not primitive if an is a quadratic residue and n

is even, or an is a nonresidue and n is odd.

Proof f(x) is not primitive if ad
n = (−1)nd, d|(q − 1). If d = (q − 1)/2, then

a
q−1
2

n = (−1)
n(q−1)

2 , which equals 1 if 4|(q − 1), and (−1)n if 2|(q − 1).2

Example 4

Let q = 22 = 4, then d = 1 and an = (−1)n denotes a nonprimitive poly-

nomial, as with q = 3. However, in this case −1 = 1 so that an = 1 always

produces a nonprimitive polynomial.

Corollary 4.14 Except for x+1, any polynomial f(x) with coefficients over

GF (2m), m > 1, and an = 1, is not primitive.

Corollary 4.15 The case d = 1 is relevant only for q = 3 and 2m, since

otherwise 2|(q − 1), and d = 2 results in a2
n = 1 signifying a nonprimitive

polynomial. Thus an = (−1)n is redundant.

Theorem 4.16 If a1 = 0, f(x) does not have linearly independent roots.

Proof If a1 = 0, T (a) = 0, so that
∑n−1

i=0 αqi

= 0. However, the αqi

are the

roots of f(x), so the roots are linearly dependent.2

4.2.1 The Algorithm

Using the results of the previous section, a computer algorithm was

developed to find the polynomials. It was designed to be simple yet effi-

cient. The algorithm outlined below searches through all monic polynomials

of degree n and ends when all have been checked. First irreducibility is

established, then primitivity, and finally the roots are checked for linear in-

dependence.

For all monic polynomials of degree n do:

1. Check if an = 0, if so reject the polynomial, as f(x) has a factor x.
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2. Find the reciprocal of f(x), f ∗(x). If the value of f ∗(x), evaluated

at x = q, is larger than f(x) evaluated at x = q, i.e., the magnitude

representation of f ∗(x) is greater than f(x), reject the polynomial. This

is done so that only one of f(x) and f ∗(x) is tested.

3. Form the residue of xqn−1 mod f(x). If it is not 1, reject the polynomial.

4. Form the residue of
∏

i
(xqmi−1−1) mod f(x), where mi a proper divisor

of n. If it is 0 at any step in the iterative product, reject the polynomial.

Note: If the polynomial has passed all the above steps, it is irreducible.

5. The first primitivity check is to examine an according to Theorem 4.12.

If it fails, reject the polynomial.

6. Form the residue of xm mod f(x) for all m a proper divisor of qn − 1.

If any result is 1, reject the polynomial.

Note: If the polynomial has passed all the above steps, it is primitive.

The final two checks are for linearly independent roots, and must be

performed on both f(x) and f ∗(x).

7. Check if a1 = 0, if so, the roots are dependent so reject the polynomial.

8. Form the n × n matrix of the roots of the polynomial. If the matrix is

singular, the roots are dependent so reject the polynomial.

Note: If the polynomial has passed all the steps, it is primitive with

linearly independent roots.

A flowchart of the algorithm implementation is given in Table 4.1.

The above ordering is intended only for clarity, not efficiency. The steps

were reordered for implementation.

Implementation was done on a Sun Microsystems 3-280 computer and

the Tables compiled. Program initialization includes forming the residues of

x2k

mod f(x) for k = 1, 2, · · · , ⌊log2(q
n−1)⌋. This allows for the computation
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Table 4.1: Flowchart of the Polynomial Construction Algorithm
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of any residue with a minimum of ⌊log2(q
n−1)⌋+1 multiplications. Products

in the base field q were computed using log and antilog tables.

4.3 The Number of Primitive and Irreducible

Polynomials over GF(q)

Explicit formulas exist for the number of primitive and irreducible

polynomials over GF(q). The construction program was tested by enumer-

ating the polynomials to ensure a correct total count, as the number of

polynomials grows large quickly with increasing q and degree, thus making

manual checks impractical.

4.3.1 Enumeration of Primitive Polynomials

Euler’s φ (totient) function is required to develop the formula. φ(m) is defined

as the number of positive integers r, smaller than m that are coprime to m,

i.e., for which 1 ≤ r < m and (r, m) = 1 holds. For example, if m = 10,

r = 1, 3, 7, 9 are coprime to m. Thus φ(10) = 4.

Note that

φ(1) = 1. (4.8)

For m a prime p, each of the numbers r = 1, 2, . . . , p−1 is coprime to m and

therefore,

φ(p) = p − 1 (4.9)

For prime powers pα, one obtains

φ(pα) = (p − 1)pα−1 = pα

(

1 −
1

p

)

. (4.10)

From (4.8), (4.9) and (4.10), we have

φ(m) =











1 for m = 1;
p − 1 for m prime;

(p − 1)p(α−1) for m a prime with multiplicity α.
(4.11)
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Using φ, the number of primitive polynomials of degree m over GF(q) [38] is

given by

Pm =
φ(qm − 1)

m
. (4.12)

4.3.2 Enumeration of Irreducible Polynomials

The enumeration of irreducible polynomials requires the Möbius function, µ,

from Chapter 2 (2.6). Recall that µ(m) is defined as

µ(m) =











1 if m = 1;
0 if m is divisible by a square;

(−1)k if m is the product of k distinct primes.
(4.13)

Thus µ(m) 6= 0 only for 1 and squarefree integers.

Using this function, the number of irreducible polynomials of degree

m over GF(q) [34], is given by

Im =
1

m

∑

d,
d|m

µ
(

m

d

)

qd (4.14)

Note that the number of irreducible polynomials of degree m over GF(q)

is equal to the number of distinct circulant matrices of dimension m. This

relationship is exploited in [45] to find the irreducible polynomials.

Theorem 4.17 Over GF(2), the number of irreducible polynomials, Im,

equals the number of primitive polynomials, Pm, when 2m − 1 is a Mersenne

Prime.

Proof For m prime, 2m − 1 is called a Mersenne number, and if 2m − 1

is prime, it is called a Mersenne prime [38]. Since 2m − 1 is prime, Pm =

(2m − 2)/m. Since m is prime, Im = (1/m)(µ(1)2m + µ(m)2). But this is

exactly (2m − 2)/m. Thus the number of primitive polynomials equals the

number of irreducible polynomials when qm − 1 is a Mersenne prime.2
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Note that the only value of q for which qm−1 can be prime is 2, since qm −1

is even for q an odd prime.

4.4 BCH Error Correcting Code Decoding

Decoding of binary BCH codes requires three steps, syndrome com-

putation, construction of the error locator polynomial, and finding the roots

of this polynomial [30]. Construction of the error locator polynomial is often

done in software, and direct computation requires a large number of mathe-

matical operations. These operations are over a Galois Field, GF(2n). They

can thus be greatly simplified using a normal basis representation for the

field elements.

As an example, to find the coefficients of the error locator polynomial

for the four error correcting (127,99) BCH code, the following equations must

be solved,

σ1 = S1

σ2 =
S1(S7+S7

1)+S3(S5
1+S5)

S3S3
1+S1(S5

1+S5)

σ3 = S3
1 + S3 + S1σ2

σ4 =
S5+S2

1S3+(S3
1+S3)σ2

S1

This requires 14 multiplications and 2 divisions. Using a normal basis repre-

sentation, we can reformulate the equations to take advantage of the simple

squaring operation,
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σ1 = S1

σ2 =
S1(S7+S4

1S3)+S8
1+S3S5

S1S5+S2
1(S4

1+S3S1)

σ3 = S3
1 + S3 + S1σ2

σ4 =
S5+S2

1S3+(S3
1+S3)σ2

S1

Now only 10 multiplications and 2 divisions are needed, along with 3 shift

operations. In this case 30% of the multiplications have been eliminated. For

a larger number of equations, similar savings can be achieved.

4.5 Tables of Primitive Polynomials with In-

dependent Roots

This Section contains tables of primitive polynomials with inde-

pendent roots over GF(2), GF(3), GF(4), GF(5), GF(7), GF(8), GF(11),

GF(13), GF(16), GF(17) and GF(19). One monic polynomial is given for

each degree, with the coefficient of the highest power on the left. The given

polynomial was chosen as one with the lowest number of nonzero coefficients

of those found. For example, for degree 22 over GF(2), the given polynomial,

in octal, is 300000018, which has only 3 nonzero coefficients. In contrast, the

polynomial 377710018 has 13 nonzero coefficients, but is still primitive with

independent roots. A low number of nonzero coefficients results in a simpler

implementation.

For polynomials over GF(4), the polynomial used to construct the

base field is x2 +x+1, over GF(8), x3 +x2 +1 and over GF(16), x4 +x3 +1.

Thus over GF(4), 0 = 0, 1 = 1, 2 = ω and 3 = ω2, where ω is a primitive root

of the given polynomial.
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Table 4.2: Primitive Polynomials with Linearly Independent Roots over
GF(2)

degree polynomial(in octal)
2 7
3 15
4 31
5 67
6 141
7 301
8 615
9 1461
10 3441
11 6501
12 16401
13 33001
14 65001
15 140001
16 324001
17 740001
18 1620001
19 3440001
20 7400001
21 16200001
22 30000001
23 65000001
24 173000001
25 360000001
26 704000001
27 1406000001
28 3000000001
29 7200000001
30 14000000001
31 32100000001
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Table 4.3: Primitive Polynomials with Independent Roots over GF(3)

degree polynomial
2 112
3 1201
4 11002
5 120001
6 1101002
7 12100001
8 110002202
9 1122000001
10 11000001022
11 121000000001
12 1100000001112
13 12000000000001
14 110000000010122
15 1100000000000221
16 11000000000100212
17 110000000000001011
18 1100000000000100002
19 11000000000000000221

Table 4.4: Primitive Polynomials with Independent Roots over GF(4)

degree polynomial
2 112
3 1123
4 11012
5 110002
6 1100012
7 11000102
8 110000112
9 1100000102
10 11000012002
11 110000000002
12 1100000002312
13 11000000000012
14 110000000000203
15 1100000000000212
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Table 4.5: Primitive Polynomials with Independent Roots over GF(5)

degree polynomial
2 112
3 1102
4 11042
5 110123
6 1100002
7 11000002
8 110000113
9 1100000043
10 11000000023
11 110000000002
12 1100000000112

Table 4.6: Primitive Polynomials with Independent Roots over GF(7)

degree polynomial
2 113
3 1112
4 11013
5 110004
6 1100125
7 11000064
8 110000003
9 1100000012
10 11000000013
11 110000000004

Table 4.7: Primitive Polynomials with Independent Roots over GF(8)

degree polynomial
2 115
3 1104
4 11004
5 110002
6 1100002
7 11000042
8 110000206
9 1100000002
10 11000000025
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Table 4.8: Primitive Polynomials with Independent Roots over GF(11)

degree polynomial
2 117
3 1103
4 11008
5 110014
6 1100017
7 11000004

Table 4.9: Primitive Polynomials with Independent Roots over GF(13)

degree polynomial
2 112
3 1102
4 11012
5 110016
6 1100026
7 1100004(11)

Table 4.10: Primitive Polynomials with Independent Roots over GF(16)

degree polynomial
2 112
3 1102
4 11018
5 110025
6 110006(12)
7 11000002

Table 4.11: Primitive Polynomials with Independent Roots over GF(17)

degree polynomial
2 113
3 1107
4 11017
5 110005
6 1100003
7 11000002
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Table 4.12: Primitive Polynomials with Independent Roots over GF(19)

degree polynomial
2 112
3 1106
4 11002
5 110005
6 110000(15)
7 11000005

4.6 Concluding Remarks

In this Chapter, an algorithm to construct primitive polynomials

with independent roots is outlined. They are used to construct QC codes

from Power Residue codes via the Normal Basis Theorem. As well, primi-

tive polynomials with independent roots are better for signature analysis in

digital testing of VLSI circuits [42], and can be used to simplify Galois Field

arithmetic.
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Chapter 5

Construction of Best Rate 2/3

Quasi-Cyclic Codes Based on

Optimum Distance Profile

Convolutional Codes

5.1 Introduction

Tail biting codes were first proposed by Solomon[22] and generalized

by Ma and Wolf[47]. One subset of these codes are full tail biting (FTB)

codes, which can be encoded in the following way. Suppose we have an

(n, k, m) convolutional encoder to encode L+m blocks of k information bits,

where L is a positive integer. The last m information blocks are used to

initialize the encoder, instead of m all-zero blocks as in conventional convo-

lutional encoding. Then L + m information blocks of k bits are sent into the

encoder to get L +m coded blocks of n bits. This FTB code is equivalent to

an ((L+m)n, (L+m)k) quasi-cyclic (QC) code that has the same code rate,

k/n, as the corresponding convolutional code [47]. In fact, the codewords of

this QC code can be viewed as paths through the underlying convolutional

code trellis which start and end in the same state. Using this relationship, Ma

and Wolf[47] constructed some rate 1/3 systematic QC codes and rate 1/2

QC codes from known optimum systematic convolutional codes. Based on
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the assumption that when L equals (3 to 4)m, the corresponding maximum

free distance should usually be reached, good QC codes can be constructed.

It is observed that QC codes with a good minimum distance can likely be

constructed with L less than (3 to 4)m. This is believed due to the property

of optimum distance profile (ODP), which some convolutional codes possess.

This motivates the use of ODP convolutional codes to construct good QC

codes.

Another possible choice of convolutional codes from which to con-

struct good QC codes are those with large average distance growth rate, do,

as defined by Huth and Weber[48]. Unfortunately, do is known for very few

codes. In contrast, many ODP codes are known. A thorough description of

ODP codes can be found in [30].

5.2 Construction of QC Codes From ODP

Codes and Some Results

ODP convolutional codes were originally designed for efficient sequen-

tial decoding. Due to their property of rapid initial column distance growth,

ODP convolutional codes are a good choice for constructing QC codes. By

best, it is meant the largest possible minimum distance, dmin, for a QC code

with the given dimensions. Unfortunately, not all ODP codes will generate

best QC codes. The reason being that ODP codes have an optimum distance

profile only over the first constraint length m, but in FTB encoding the first

m blocks of encoded bits from a conventional convolutional encoder are dis-

carded (truncated). It is difficult to predict what will happen to the column

distance profile after such truncation, but the minimum distance of the QC

codes constructed can easily be computed, thus identifying the best codes.

To construct the code, increase L of the ODP code by 1 and find

the generator matrix of the corresponding QC code, as shown in the proof of

Theorem 1 in [47]. The minimum distance is then computed. L may be in-
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creased until the free distance of the corresponding ODP convolutional code

is reached by the minimum distance of the QC code. Using this method, rate

2/3 systematic codes are constructed from the ODP codes in [49].

Rate 2/3 systematic QC codes (nl, kl) have a generator matrix of the

form

G =

[

I2l

C1

C2

]

(5.1)

where I2l is a 2l × 2l identity matrix and C1 and C2 are l × l circulant ma-

trices over GF (2). The first rows of C1 and C2 correspond to the generator

polynomials c1(x) and c2(x). The weight distributions of these codes were

found by first computing the weight distribution of the dual code [17],

H =
[

IlC
T
1 CT

2

]

(5.2)

then using MacWilliam’s identities to find the distribution of the original

code. This represents a substantial reduction in the number of computations

required (from 22l to 2l). In computing the weight distributions, all 2l code-

words were formed and the weights tabulated.

Twenty seven best rate 2/3 QC codes of lengths 18 to 60 were found.

Some of these are equivalent to the best codes in [18] and [25]. Generator

polynomials of the new best codes are given in Table 5.1 along with the FTB

encoder memory length. The memory length m is important if decoding in-

volves the trellis of the code. The complexity of these decoding algorithms is

normally at least proportional to 2m. In this case, codes with shorter mem-

ory length are preferred.

Included in Table 5.1 are two best (60,40) dmin = 8 codes. The proof

that no better QC code exists proceeds as follows. It is well known that

the best rate 1/2 (40,20) systematic QC code has minimum distance 9 [17].

Through an exhaustive search of all polynomials of length 20, it was found
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that only 120 distinct generator polynomials, (excluding cyclic shifts), pro-

duce this distance. In using all possible combinations of these polynomials in

a rate 2/3 systematic QC code, a minimum distance of 9 was not achieved.

From Corollary 2.9, the minimum distance of a rate 2/3 systematic QC code

cannot be greater than the minimum distance of the two embedded rate 1/2

codes [25], and so the maximum minimum distance of a systematic (60,40)

QC code can be at most 8. Thus the minimum distance of the given codes

cannot be exceeded, and they are then the best possible.

5.3 Concluding Remarks

A method is described to construct good QC codes from ODP con-

volutional codes. Several new best codes have been presented, including two

with dmin = 8. These results again demonstrate that good QC codes can be

constructed without an exhaustive search of all possible generator polynomi-

als.

The drawback of this method, (which may be applied to any con-

volutional code), is the lack of suitable convolutional codes to transform to

QC codes. Most present methods for constructing convolutional codes rely

on search techniques, rather than some definite algorithm. However, good

convolutional codes do provide a means of constructing QC codes. In fact if

the definition of ODP codes is modified to require a rapid column distance

growth after the first constraint length, the resulting codes may be more

suitable for the construction of good QC codes.



83

Table 5.1: A Table of Best Rate 2/3 Systematic QC Codes

Code Memory Length c1(x) c2(x) dmin dminB
(24,16) 6 266 342 4 4
(24,16) 4 * 270 310 4 4
(27,18) 6 554 704 4 4
(27,18) 5 * 570 630 4 4
(39,26) 7 * 15500 17040 6 6
(42,28) 12 * 33206 36156 6 6
(45,30) 13 57372 63226 6 6
(45,30) 12 66414 74334 6 6
(45,30) 11 * 57360 63230 6 6
(48,32) 13 136764 146454 6 6
(48,32) 10 136740 146440 6 6
(48,32) 8 * 155200 170600 6 6
(51,34) 13 275750 315130 6 6
(51,34) 12 332060 361560 6 6
(51,34) 11 275700 315140 6 6
(51,34) 10 275700 315100 6 6
(51,34) 9 * 275600 317400 6 6
(60,40) 18 3320162 3614412 8 -
(60,40) 11 * 2757000 3151400 8 -

Notes:
c1(x) and c2(x) are generator polynomials in octal representation, with
the highest order term on the right.
dmin is the minimum distance of the code (and is the maximum possible
minimum distance).
dminB is the minimum distance of the code in [18] and [25].
* means the shortest memory length of all given codes of the same length
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Chapter 6

Nonbinary Quasi-Cyclic Codes

As mentioned in Chapter 1, very few nonbinary block codes are known

beyond RS codes. An obvious starting point is with Quasi-Cyclic codes,

as the construction methods outlined in Chapters 2 and 3 can easily be

extended. In particular, Power Residue codes are constructed over GF(q),

and the search technique of Chapter 2 is extended to find good nonbinary

codes. The method outlined in [22] is used to convert RS codes over GF(q)

to Maximum Distance Separable (MDS) QC codes. The compiled Tables

provide a measure of the error correcting capability of nonbinary codes. This

is important because very few nonbinary codes are known.

To maintain continuity, the Tables for this Chapter have all placed at

the end after the text.

6.1 Power Residue Codes

As in Chapter 3, let m be the order of q mod n, (qm ≡ 1 mod n), n

a prime. Then if m divides (n − 1), i.e., n = ems + 1, a cyclic (n, em),

es-th power residue (PR) code exists, as does a rate 1/s, (n−1, em) QC code

formed of m × m circulant matrices. A normal basis can be formed from

the roots of a primitive polynomial of degree m with linearly independent

roots, as found in Chapter 4.

To illustrate the construction of nonbinary PR codes, consider the
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following example. Let n = 11 and q = 3, then 53 = 243 ≡ 1 mod 11.

Thus we have an (11,5) PR code over GF(3) composed of two 5×5 circulant

matrices and an all 1’s column, (in this case e = 1, s = 2 and m = 5). By

definition [17], this is a cyclic code over GF(3) with generator matrix,

G =
[

1, α, α1, α2, ... , α10
]

(6.1)

where α is a primitive 11th root of unity over GF(3). To form the circulants,

the columns of G must be rearranged according to the cyclic classes mod 11

over GF(3), i.e.,

1, 3, 9, 5, 4
2, 6, 7, 10, 8

Thus G becomes

G =
[

1, α, α3, α9, α5, α4, α2, α6, α7, α10, α8
]

(6.2)

Now, if these columns are represented in terms of a Normal Basis, α3 becomes

a cyclic shift of α, α9 becomes a cyclic shift of α3, and so on. This resulting

Generator matrix is of the form

G = [1, C1, C2] . (6.3)

This code has minimum distance 6, and is the dual of the (11,6) Golay Code

over GF(3), which is a perfect 2 error correcting code.

As mentioned previously, the search for good Quasi-Cyclic codes is

restricted by the large number of generator polynomials which can be used

for construction. This problem is very acute for codes over nonbinary fields,

where an exhaustive search of all codes is tractable for only the most simple

codes. Thus we must rely on techniques to reduce the set of candidates

polynomials which must be examined to find good codes, such as using the

circulants from PR codes in QC form. Codes from this Section are later used

to initialize the search for good nonbinary QC codes.
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The complete weight distributions of the (11,5) Code (Golay) over

GF(3) illustrated above is given in Table 6.1. Two other nonbinary PR

codes, the (13,3) code over GF(3) and the (5,2) code over GF(4), are given

in Tables 6.2 to 6.3, along with their equivalent QC codes. These three short

codes are all optimal QC codes, (the (4,2) code is MDS). They illustrate that

nonbinary PR codes also produce good QC codes.

Tables 6.4 to 6.8 present nonbinary PR codes and related QC codes

over GF(3), GF(4), GF(5), GF(7) and GF(8).

6.2 Constructing Good Nonbinary QC Codes

In this Section, a search is conducted for small block size good or best

QC codes over GF(q). Of particular importance are those codes which are

Maximum Distance Separable (MDS), i.e., have dmin = n − k + 1. In the

previous Section, nonbinary QC codes were constructed for PR codes. Here

these codes are used to initialize the search routine formulated in Chapter 2,

but modified to construct nonbinary codes. In this case, only monic polyno-

mials need be considered, since a polynomial can be divided by the coefficient

of highest degree without changing the weight structure of the resulting cir-

culant matrix.

For codes over GF(4), the notation is 2 = ω and 3 = ω2, where ω is

a primitive root of the polynomial x2 + x + 1. For codes over GF(8), the

same format is used, but 2 is now a root of the polynomial x3 + x + 1. Over

GF(16), the polynomial is x4 + x3 + 1.

The nonbinary QC codes are listed in the following Tables. Tables

6.9 to 6.22 give the codes over GF(3) for m = 2 to 9 and rate 1/2 to 1/12.

Tables 6.23 to 6.33 give the codes over GF(4) for m = 2 to 8 and rate 1/2

to 1/12. Tables 6.34 to 6.40 give the codes over GF(5) for m = 2 to 5 and

rate 1/2 to 1/12. Tables 6.41 to 6.46 give the codes over GF(7) for m = 2

to 4 and rate 1/2 to 1/12. Tables 6.47 to 6.53 give the codes over GF(8) for
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m = 2 to 4 and rate 1/2 to 1/12. Tables 6.54 to 6.58 provide a compilation

of the minimum distances of these codes.

(n, k) codes over GF(q) which have dmin = n − k + 1 are called Max-

imum Distance Separable (MDS) codes. If this code is composed of m × m

circulant matrices, it is also a QC code. The following well known facts about

C, an (n,k) MDS code over GF(q), are useful.

Theorem 6.1[10] If C is MDS so is the dual code CT .

Theorem 6.2[10] The number of codewords of weight w in C is

Aw =

(

n
w

)

(q − 1)
w−d
∑

j=0

(−1)j

(

w − 1
j

)

qw−d−j. (6.4)

Thus the weight structure is known a priori.

Corollary 6.3[10] If k ≥ 2, q ≥ n − k + 1, and if k ≤ n − 2, q ≥ k + 1.

Corollary 6.4 In a systematic MDS QC code, the ci(x) cannot have any zero

coefficients. Further, for m ≥ 2, no ci(x) can have 3 consecutive identical

coefficients.

These results make the task of finding MDS QC codes simpler.

The simplest method of constructing MDS QC codes is from Reed-

Solomon (RS) codes, as shown in [22]. The QC codes which are equivalent to

RS codes correspond to those RS codes which have parameters n = mn′ and

k = mk′. However, the class of MDS QC codes contains codes which do not

have this form. For instance, the RS codes over GF(25) have a blocklength

which is prime, thus none of these codes can be converted to QC codes. How-

ever, MDS QC codes do exist over GF(32).

As an example, consider the (12,6) RS code over GF(13). The gener-

ator polynomial for this code is

(x − 2)(x − 4)(x − 8)(x − 3)(x − 6)(x − 12)

= x6 + 4x5 + 8x4 + 4x3 + 10x2 + 3x + 5



88

This can be partitioned into

x(x5 + 8x3 + 10x) + (4x5 + 4x3 + 3x)

These two polynomials are the generator polynomials of the two circulant

matrices for the equivalent rate 1/2 QC code. Multiplying by the inverse

of one matrix, and making the remaining polynomial monic, results in a

systematic QC code in the required format. The generator polynomials from

the above example are given in Table 6.59 along with those for QC MDS

codes over GF(11), GF(13) and GF(16). Those over smaller fields are listed

with the codes of the same field.
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Table 6.1: The (11,5) Power Residue Code over GF(3) and the Related
Quasi-Cyclic Code

(11,5) PR Code Generator Matrix

















1 1 0 0 0 0 1 2 2 1 0
1 0 1 0 0 0 0 1 2 2 1
1 0 0 1 0 0 1 0 1 2 2
1 0 0 0 1 0 2 1 0 1 2
1 0 0 0 0 1 2 2 1 0 1

















Weight Distribution

Weight Count

0 1
6 132
9 110

(10,5) QC Code Generator Matrix

















1 0 0 0 0 1 2 2 1 0
0 1 0 0 0 0 1 2 2 1
0 0 1 0 0 1 0 1 2 2
0 0 0 1 0 2 1 0 1 2
0 0 0 0 1 2 2 1 0 1

















Weight Distribution

Weight Count

0 1
5 72
6 60
8 90
9 20
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Table 6.2: The (13,3) Power Residue Code Over GF(3) and the Related
Quasi-Cyclic Code

(13,3) PR Code Generator Matrix







1 1 0 0 2 1 2 1 2 0 2 2 0
1 0 1 0 2 2 1 0 1 2 0 2 2
1 0 0 1 1 2 2 2 0 1 2 0 2







Weight Distribution

Weight Count

0 1
9 26

(12,3) QC Code Generator Matrix







1 0 0 2 1 2 1 2 0 2 2 0
0 1 0 2 2 1 0 1 2 0 2 2
0 0 1 1 2 2 2 0 1 2 0 2







Weight Distribution

Weight Count

0 1
8 18
9 8
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Table 6.3: The (5,2) Power Residue Code Over GF(4) and the Related
Quasi-Cyclic Code

(5,2) PR Code Generator Matrix

[

1 1 0 1 2
1 0 1 2 1

]

Weight Distribution

Weight Count

0 1
4 15

(4,2) QC Code Generator Matrix

[

1 0 1 2
0 1 2 1

]

Weight Distribution

Weight Count

0 1
3 12
4 3
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Table 6.4: Power Residue Codes, their Duals and Related Quasi-Cyclic Codes
Over GF(3)

PR code dmin dual code dmin m rate QC code dmin dual code dmin

(11,5)Qo 6d3 (11,6)o 5 5 1/2 (10,5)o 5
(13,3)Mo 9 (13,10)o 3 3 1/4 (12,3)o 8 (12,9) 3
(13,6)Qo 6 (13,7)o 5 3 1/2 (12,6)o 5
(23,11)Qo 9d3 (23,12)o 8 11 1/2 (22,11)o 8
(37,18)Q 10 (37,19) 9 18 1/2 (36,18) 9
(41,8) 22 (41,33) 5 8 1/5 (40,8) 21 (40,32) 5
(61,10) 31 (61,41) 5 10 1/6 (60,10) 30 (60,50) 5
(73,12) 34 (73,61) 5 12 1/6 (72,12) 33 (72,60) 5
(193,16) 96 (193,177) 5 16 1/12 (192,16) 95 (192,176) 5
(547,14) 336 (547,533) 5 14 1/39 (546,14) 335 (546,532) 5
(757,9) 486d9 (757,748) 3 9 1/84 (756,9) 485 (756,747) 3

(1093,7)M 729 (1093,1086) 3 7 1/156 (1092,7) 728 (1092,1085) 3
(3581,11) 2538d27 (3581,3570) 3 11 1/350 (3580,11) 2537 (3580,3569) 3

Notes: n
o denotes a best code

n
M denotes a Maximum length sequence code

n
Q denotes a Quadratic Residue code

n
dz weights divisible by z

m is the circulant size.
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Table 6.5: Power Residue Codes, their Duals and Related Quasi-Cyclic Codes
Over GF(4)

PR code dmin dual code dmin m rate QC code dmin dual code dmin

(3,1)Qo 3 (3,2)o 2 1 1/2 (2,1)o 2
(5,2)Qo 4d4 (5,3)o 3 2 1/2 (4,2)o 3
(7,3)Qo 4 (7,3) 3 3 1/2 (6,3)o 3
(11,5)Qo 6 (11,6)o 5 5 1/2 (10,5)o 5
(13,6)Qo 6 (13,7)o 5 6 1/2 (12,6)o

(17,4)o 12d4 (17,13)o 4 4 1/4 (16,4)o 11 (16,12)o 4
(17,8) 6 (17,9) 5 4 1/2 (16,8) 5

(19,9)Q
o 8 (19,10)o 7 9 1/2 (18,9)o 7

(23,11)Q 8 (23,12) 7 11 1/2 (22,11) 7
(31,5) 16d8 (31,26) 3 5 1/6 (30,5) 15 (30,25) 3
(31,10) 10 (31,21) 5 5 1/6 (30,5) 9 (30,25) 5
(41,10) 20d4 (41,31) 6 10 1/4 (40,10) 19 (40,30) 6
(43,7) 27 (43,36) 5 7 1/6 (42,7) 26 (42,35) 5
(73,9) 28 (73,64) 3 7 1/8 (72,9) 27 (72,63) 3
(89,11) 40d4 (89,78) 4 11 1/8 (88,11) 39 (88,77) 4
(127,7) 64d32 (127,120) 3 7 1/26 (126,7) 63 (126,119) 3
(257,8) 180d4 (257,249) 4 8 1/32 (256,8) 179 (256,248) 4
(683,11) 289 (683,672) 3 11 1/62 (682,11) 288 (682,671) 3

Notes: n
o denotes a best code

n
Q denotes a Quadratic Residue code

n
dz weights divisible by z

m is the circulant size.
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Table 6.6: Power Residue Codes, their Duals and Related Quasi-Cyclic Codes
Over GF(5)

PR code dmin dual code dmin m rate QC code dmin dual code dmin

(11,5)Qo 6 (11,6)o 5 5 1/2 (10,5)o 5
(13,4)o 8 (13,9)o 4 4 1/3 (12,4)o 7 (12,8)o 4
(19,9)Q 8 (19,10) 7 9 1/2 (18,9)o 7
(31,3)Mo 25 (31,28)o 3 3 1/10 (30,3)o 24 (30,27)o 3
(31,6) 19 (31,25) 4 3 1/5 (30,6) 18 (30,24) 4
(71,5) 50d5 (71,66) 3 5 1/14 (70,5) 49 (70,65) 3
(71,10) 44 (71,61) 6 10 1/7 (70,10) 43 (60,50) 6
(521,10) 370 (521,511) 4 10 1/52 (520,10) 369 (520,510) 4
(829,9) 635d5 (829,820) 3 9 1/92 (828,9) 634 (828,819) 3

(19531,7) 15625 (19531,19524) 3 7 1/2790 (19530,7) 15624 (19530,7) 3

Notes: n
o denotes a best code

n
M denotes a Maximum length sequence code

n
Q denotes a Quadratic Residue code

n
dz weights divisible by z

m is the circulant size.

Table 6.7: Power Residue Codes, their Duals and Related Quasi-Cyclic Codes
Over GF(7)

PR code dmin dual code dmin m rate QC code dmin dual code dmin

(3,1)Qo 3 (3,2)o 2 1 1/3 (2,1)o 2
(19,3)o 15 (19,16)o 3 3 1/6 (18,3)o 14 (18,15)o 3
(19,6) 11 (19,13) 5 3 1/3 (18,6) 10 (18,12) 5
(29,7) 19 (29,22) 6 7 1/4 (28,7) 18 (28,21) 6
(43,6) 30 (43,37) 4 6 1/7 (42,6) 29 (42,36) 4

(2801,5)M 2401 (2801,2796) 3 5 1/560 (2800,5) 2400 (2800,2795) 3

Notes: n
o denotes a best code

n
M denotes a Maximum length sequence code

n
Q denotes a Quadratic Residue code

m is the circulant size.
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Table 6.8: Power Residue Codes, their Duals and Related Quasi-Cyclic Codes
Over GF(8)

PR code dmin dual code dmin m rate QC code dmin dual code dmin

(7,1) 7 (7,6) 2 1 1/6 (6,1) 6 (6,5) 2
(7,2) 6 (7,5) 3 1 1/3 (6,2) r (6,4) 3

(7,3)Q 4 (7,4) 3 1 1/2 (6,3) 3
(13,4) 9 (13,9) 4 4 1/3 (12,4) 8 (12,8) 4

(17,8)Q 6 (17,9) 5 8 1/2 (16,8) 5
(19,6) 12 (19,13) 6 6 1/3 (18,6) 11 (18,12) 6
(31,5) 16d4 (31,26) 3 5 1/6 (30,5) 15 (70,65) 3
(73,3) 64M (73,70) 3 3 1/24 (72,3) 63 (72,69) 3
(73,6) 56d4 (73,67) 3 3 1/12 (72,6) 63 (72,66) 3
(127,7) 64d16 (127,7) 3 7 1/18 (126,7) 63 (126,119) 3
(151,5) 121 (151,146) 3 5 1/30 (150,5) 120 (150,145) 3
(337,7) 253 (337,330) 3 7 1/48 (336,7) 252 (336,329) 3

Notes: n
o denotes a best code

n
M denotes a Maximum length sequence code

n
Q denotes a Quadratic Residue code

n
dz weights divisible by z

m is the circulant size.

Table 6.9: Best Rate 1/2 QC Codes over GF(3) for m = 2 to 12

(2m,m) Generator
QC Polynomial dmin

code c(x)
(4,2) 12 2
(6,3) 112 3
(8,4) 1112 4
(10,5) 1221 5
(12,6) 1112 5
(14,7) 11211 6
(16,8) 11221 6
(18,9) 11121 6
(20,10) 1101121 7
(22,11) 100111212 8
(24,12) 10112112 8
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Table 6.10: Generator Polynomials for m = 2 to 5 over GF(3)

Polynomial m
Number 2 3 4 5

1 1 1 1 1
2 11 11 11 11
3 12 12 12 101
4 111 101 102
5 112 102 111
6 111 112
7 112 121
8 121 122
9 122 1011
10 1112 1012
11 1122 1021
12 1022
13 1111
14 1112
15 1121
16 1202
17 1211
18 1212
19 1221
20 1222
21 11112
22 11122
23 12122
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Table 6.11: Rate 1/p, m = 2 Quasi-Cyclic Codes over GF(3)

Code dmin Generators
(6,2) 4 1,2,3
(8,2) 6 1,1,2,3
(10,2) 7 1,1,1,2,3
(12,2) 8 1,1,2,2,3,3
(14,2) 10 1,1,1,2,2,3,3
(16,2) 12 1,1,1,1,2,2,3,3
(18,2) 13 1,1,1,1,1,2,2,3,3
(20,2) 14 1,1,1,1,2,2,2,3,3,3
(22,2) 16 1,1,1,1,1,2,2,2,3,3,3
(24,2) 18 1,1,1,1,1,1,2,2,2,3,3,3

Table 6.12: Rate 1/p, m = 3 Quasi-Cyclic Codes over GF(3)

Code dmin Generators
(9,3) 6 1,2,5
(12,3) 8 1,2,2,3
(15,3) 9 1,1,2,2,3
(18,3) 12 1,1,1,2,2,3
(21,3) 14 1,1,1,2,2,2,3
(24,3) 16 1,1,1,1,2,2,2,3
(27,3) 18 1,1,1,1,2,2,2,2,3
(30,3) 20 1,1,1,1,2,2,2,2,3,3
(33,3) 22 1,1,1,1,2,2,2,2,2,3,3
(36,3) 24 1,1,1,1,1,2,2,2,2,2,3,3
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Table 6.13: Rate 1/p, m = 4 Quasi-Cyclic Codes over GF(3)

Code dmin Generators
(12,4) 6 1,3,7
(16,4) 9 1,3,7,8
(20,4) 12 1,3,5,8,10
(24,4) 15 1,6,7,8,9,10
(28,4) 18 1,3,4,6,7,9,10
(32,4) 21 1,2,3,6,7,8,9,10
(36,4) 23 1,2,3,5,6,7,8,9,10
(40,4) 25 1,2,3,4,5,6,7,8,9,10
(44,4) 28 1,2,3,4,5,6,6,7,8,9,10
(48,4) 31 1,2,2,3,4,5,6,7,8,9,10,11

Table 6.14: Rate 1/p, m = 5 Quasi-Cyclic Codes over GF(3)

Code dmin Generators
(15,5) 8 1,13,19
(20,5) 12 1,7,13,19
(25,5) 15 1,2,9,18,22
(30,5) 18 1,2,10,13,15,20
(35,5) 21 1,4,5,6,15,17,22
(40,5) 24 1,3,5,6,6,7,19,22
(45,5) 28 1,5,6,8,9,12,15,17,22
(50,5) 31 1,5,6,7,8,9,10,11,13,21
(55,5) 35 1,2,6,7,8,10,12,13,16,21,23
(60,5) 38 1,4,7,7,8,9,10,11,14,17,20,23
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Table 6.15: Generator Polynomials for q = 3, m = 6

1 1 11 1101 21 10202 31 11211
2 101 12 1102 22 10121 32 11212
3 111 13 1111 23 10212 33 12121
4 112 14 1112 24 10221 34 12122
5 121 15 1121 25 11012 35 12202
6 122 16 1202 26 11021 36 12221
7 1011 17 1212 27 11111 37 111112
8 1012 18 1222 28 11112 38 112122
9 1021 19 10112 29 11121 39 112222
10 1022 20 10121 30 11122

Table 6.16: Rate 1/p, m = 6 Quasi-Cyclic Codes over GF(3)

Code dmin Generators
(18,6) 9 1,8,15
(24,6) 13 1,17,19,25
(30,6) 17 1,6,13,23,29
(36,6) 20 1,7,13,14,16,33
(42,6) 24 1,3,10,22,29,32,39
(48,6) 28 1,4,5,8,18,26,31,37
(54,6) 33 1,3,7,11,15,20,32,34,36
(60,6) 36 1,2,4,5,6,28,30,32,35,36
(66,6) 40 1,6,8,12,14,15,21,24,36,38
(72,6) 44 1,3,4,5,7,9,11,25,27,32,33,39
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Table 6.17: Generator Polynomials for q = 3, m = 7

1 1 11 1222 21 11222 31 102112 41 112121 51 122122
2 111 12 10011 22 12112 32 102122 42 112122 52 122211
3 121 13 10021 23 12122 33 102202 43 120221 53 122212
4 122 14 10112 24 12201 34 102221 44 121021 54 1111112
5 1001 15 10122 25 12202 35 110111 45 121102 55 1122222
6 1002 16 10211 26 101022 36 110121 46 121112 56 1212122
7 1011 17 10221 27 101112 37 110122 47 121122 57 1222222
8 1102 18 11112 28 101212 38 110202 48 121211
9 1201 19 11122 29 101221 39 111121 49 122021
10 1202 20 11211 30 101222 40 112102 50 122112

Table 6.18: Rate 1/p, m = 7 Quasi-Cyclic Codes over GF(3)

Code dmin Generators
(21,7) 10 1,39,52
(28,7) 15 1,8,20,46
(35,7) 18 1,13,14,18,36
(42,7) 24 1,9,11,34,45,48
(49,7) 27 1,21,23,25,38,44,51
(56,7) 32 1,7,10,16,22,27,37,50
(63,7) 36 1,2,3,4,17,26,31,41,54
(70,7) 41 1,2,5,15,24,30,32,36,53,57
(77,7) 45 1,3,4,6,14,19,29,33,35,42,56
(84,7) 50 1,4,6,7,12,23,28,40,43,49,51,55
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Table 6.19: Generator Polynomials for q = 3, m = 8

1 1 14 11221 27 111112 40 1012011 53 1122202
2 112 15 12011 28 112101 41 1012122 54 1122221
3 121 16 12101 29 112122 42 1022111 55 1202221
4 122 17 12201 30 112201 43 1102111 56 1210222
5 1002 18 12222 31 112221 44 1110122 57 1211021
6 1112 19 101021 32 120201 45 1111212 58 1211111
7 10111 20 101201 33 121112 46 1112012 59 1212112
8 10121 21 102021 34 121122 47 1112021 60 1221121
9 10122 22 102112 35 122021 48 1112111 61 1221211
10 10211 23 102121 36 122102 49 1112121 62 1220222
11 11011 24 102222 37 122211 50 1112122 63 11122222
12 11101 25 110211 38 122222 51 1120122
13 11202 26 110212 39 1011221 52 1121111

Table 6.20: Rate 1/p, m = 8 Quasi-Cyclic Codes over GF(3)

Code dmin Generators
(24,8) 11 1,7,50
(32,8) 16 1,18,36,51
(40,8) 21 1,10,30,32,45
(48,8) 26 1,12,29,41,47,56
(56,8) 30 1,2,15,26,34,44,52
(64,8) 36 1,2,28,49,53,57,62,63
(72,8) 41 1,3,17,21,27,31,43,54,59
(80,8) 46 1,6,14,19,22,24,25,35,55,60
(88,8) 51 1,8,11,13,14,20,37,38,39,58,61
(96,8) 56 1,4,5,9,16,23,33,40,42,46,48,50
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Table 6.21: Generator Polynomials for q = 3, m = 9

1 1 14 101102 27 1011212 40 10111211 53 12121121
2 111 15 101221 28 1012111 41 10201022 54 12210212
3 121 16 102021 29 1022101 42 10210202 55 12211111
4 122 17 102212 30 1101011 43 11012012 56 12221111
5 1011 18 110022 31 1110221 44 11021202 57 111111122
6 1121 19 110111 32 1111101 45 11022021 58 111111212
7 10111 20 110212 33 1111201 46 11111221 59 111121122
8 11011 21 111022 34 1121202 47 11112212 60 111222122
9 11121 22 112101 35 1201211 48 11201221 61 112222212
10 11212 23 112112 36 1210111 49 11222121
11 12011 24 112201 37 1212221 50 12012121
12 100102 25 1002112 38 10102102 51 12112022
13 100222 26 1010201 39 10111111 52 12112102

Table 6.22: Rate 1/p, m = 9 Quasi-Cyclic Codes over GF(3)

Code dmin Generators
(27,9) 11 1,6,40
(36,9) 17 1,11,25,46
(45,9) 23 1,30,34,36,49
(54,9) 28 1,2,10,35,44,56
(63,9) 33 1,4,23,37,38,39,44
(72,9) 38 1,3,7,18,22,41,48,58
(81,9) 45 1,3,8,15,31,42,45,59,61
(90,9) 51 1,13,14,19,20,29,33,42,51,55
(99,9) 55 1,12,17,26,27,28,32,52,53,54,60
(108,9) 60 1,4,5,10,14,16,21,24,43,47,50,57
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Table 6.23: Best Rate 1/2 QC Codes over GF(4) for m = 2 to 12

(2m,m) Generator
QC Polynomial dmin

code c(x)
(4,2) 12 3
(6,3) 112 4
(8,4) 1112 4
(10,5) 1122 5
(12,6) 1112 5
(14,7) 11121 6
(16,8) 11121 6
(18,9) 1112031 7
(20,10) 12113323 8
(22,11) 1123221 8
(24,12) 1011122323 9
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Table 6.24: Generator Polynomials for m = 2 to 4 over GF(4)

Polynomial m
Number 2 3 4

1 1 1 1
2 11 11 11
3 12 12 12
4 13 13 13
5 111 102
6 112 103
7 113 111
8 121 112
9 122 113
10 123 121
11 132 122
12 133 123
13 131
14 133
15 1112
16 1113
17 1122
18 1123
19 1133
20 1213
21 1222
22 1323
23 1333
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Table 6.25: Rate 1/p, m = 2 Quasi-Cyclic Codes over GF(4)

Code dmin Generators
(6,2) 4 1,2,3
(8,2) 6 1,2,3,4
(10,2) 8 1,1,2,3,4
(12,2) 9 1,1,2,3,3,4
(14,2) 11 1,1,1,2,3,3,4
(16,2) 12 1,1,2,2,3,3,4,4
(18,2) 14 1,1,1,2,2,3,3,4,4
(20,2) 16 1,1,1,1,2,2,3,3,4,4
(22,2) 17 1,1,1,1,2,2,3,3,3,4,4
(24,2) 19 1,1,1,1,1,2,2,3,3,4,4,4

Table 6.26: Rate 1/p, m = 3 Quasi-Cyclic Codes over GF(4)

Code dmin Generators
(9,3) 6 1,3,6
(12,3) 8 1,3,4,6
(15,3) 11 1,3,4,6,7
(18,3) 13 1,2,3,4,6,9
(21,3) 15 1,2,2,3,4,6,7
(24,3) 17 1,1,2,3,4,6,7,9
(27,3) 20 1,1,2,3,4,6,6,7,9
(30,3) 22 1,1,2,2,3,4,6,6,7,9
(33,3) 24 1,2,3,4,5,6,7,9,10,11,12
(36,3) 26 1,1,2,3,4,5,6,7,9,10,11,12

Table 6.27: Rate 1/p, m = 4 Quasi-Cyclic Codes over GF(4)

Code dmin Generators
(12,4) 7 1,3,15
(16,4) 11 1,9,11,20
(20,4) 13 1,8,9,14,22
(24,4) 16 1,5,7,8,12,15
(28,4) 19 1,4,8,10,14,19,20
(32,4) 22 1,4,7,8,9,11,12,17
(36,4) 25 1,6,7,8,11,12,13,18,23
(40,4) 28 1,4,6,7,8,9,11,13,15,21
(44,4) 32 1,2,5,8,10,11,12,13,15,16,17
(48,4) 35 1,3,6,7,8,9,10,11,14,18,20,21
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Table 6.28: Generator Polynomials for q = 4, m = 5

1 1 14 1013 27 1223 40 11212
2 101 15 1023 28 1231 41 11232
3 102 16 1031 29 1232 42 11312
4 103 17 1032 30 1233 43 11323
5 111 18 1113 31 1302 44 11333
6 112 19 1121 32 1311 45 12222
7 113 20 1123 33 1313 46 12323
8 121 21 1131 34 1321 47 12333
9 122 22 1133 35 1322 48 13133
10 131 23 1202 36 1333 49 13232
11 132 24 1203 37 11112 50 13233
12 133 25 1211 38 11122 51 13323
13 1011 26 1221 39 11132 52 13333

Table 6.29: Rate 1/p, m = 5 Quasi-Cyclic Codes over GF(4)

Code dmin Generators
(15,5) 8 1,24,52
(20,5) 12 1,8,10,37
(25,5) 16 1,2,19,25,43
(30,5) 20 1,11,17,27,36,40
(35,5) 23 1,3,12,20,21,32,44
(40,5) 27 1,4,5,19,25,29,35,39
(45,5) 31 1,22,23,27,28,33,38,41,48
(50,5) 34 1,6,7,8,14,16,33,36,42,48
(55,5) 38 1,3,8,9,12,15,18,34,41,47,51
(60,5) 41 1,8,9,12,13,18,26,30,31,35,46,50
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Table 6.30: Generator Polynomials for q = 4, m = 6

1 1 11 1101 21 1322 31 11132 41 12321 51 112133
2 103 12 1102 22 1333 32 11133 42 12323 52 113222
3 111 13 1103 23 10211 33 11221 43 13113 53 113232
4 112 14 1112 24 10212 34 11232 44 13203 54 122222
5 113 15 1133 25 10313 35 12032 45 13221 55 122233
6 121 16 1202 26 10321 36 12103 46 13331 56 123213
7 1012 17 1203 27 11012 37 12211 47 111112 57 123332
8 1013 18 1213 28 11102 38 12222 48 111133 58 123333
9 1032 19 1232 29 11113 39 12231 49 111313 59 131333
10 1033 20 1233 30 11123 40 12303 50 112123 60 132233

Table 6.31: Rate 1/p, m = 6 Quasi-Cyclic Codes over GF(4)

Code dmin Generators
(18,6) 9 1,6,29
(24,6) 13 1,4,44,54
(30,6) 18 1,10,19,25,47
(36,6) 22 1,10,11,33,46,60
(42,6) 26 1,6,12,16,32,45,56
(48,6) 30 1,2,17,20,22,38,41,57
(54,6) 35 1,3,7,9,24,30,34,47,50
(60,6) 40 1,4,23,26,28,39,42,53,58,59
(66,6) 44 1,5,6,8,18,24,35,48,49,51,55
(72,6) 48 1,13,15,21,27,31,36,37,40,43,46,52
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Table 6.32: Generator Polynomials for q = 4, m = 7

1 1 14 10221 27 112111 40 131213 53 1131213
2 103 15 10321 28 112333 41 132111 54 1132122
3 111 16 11012 29 113023 42 132122 55 1132322
4 112 17 11033 30 113233 43 1111123 56 1132323
5 113 18 11121 31 113321 44 1111223 57 1212132
6 122 19 11213 32 120121 45 1112112 58 1212322
7 1033 20 11231 33 121333 46 1112213 59 1223332
8 1202 21 13233 34 122023 47 1113123 60 1321323
9 1312 22 13322 35 122211 48 1113132 61 1323332
10 10112 23 102222 36 122221 49 1121313
11 10123 24 103122 37 122223 50 1122113
12 10132 25 103213 38 123032 51 1122132
13 10133 26 110221 39 123123 52 1123312

Table 6.33: Rate 1/p, m = 7 Quasi-Cyclic Codes over GF(4)

Code dmin Generators
(21,7) 11 1,9,33
(28,7) 15 1,7,16,61
(35,7) 20 1,44,47,55,60
(42,7) 24 1,43,48,50,52,58
(49,7) 30 1,8,15,17,31,45,49
(56,7) 35 1,3,11,14,20,40,41,46
(63,7) 40 1,2,4,21,28,34,35,38,57
(70,7) 44 1,2,4,12,17,23,30,32,48,54
(77,7) 50 1,5,10,11,22,24,25,27,36,39,59
(84,7) 55 1,6,10,13,18,19,26,29,37,42,51,53
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Table 6.34: Best Rate 1/2 QC Codes over GF(5) for m = 2 to 10

(2m,m) Generator
QC Polynomial dmin

code c(x)
(4,2) 12 3
(6,3) 112 4
(8,4) 1112 4
(10,5) 1112 5
(12,6) 11124 6
(14,7) 111121 6
(16,8) 111213 7
(18,9) 123144 7
(20,10) 1113123 8
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Table 6.35: Generator Polynomials for m = 2 to 4 over GF(5)

Polynomial m
Number 2 3 4

1 1 1 1
2 11 11 11
3 12 12 12
4 13 13 13
5 14 14 14
6 112 103
7 113 111
8 114 112
9 122 113
10 123 121
11 132 122
12 142 123
13 143 124
14 131
15 133
16 134
17 141
18 144
19 1113
20 1114
21 1122
22 1123
23 1124
24 1132
25 1134
26 1142
27 1143
28 1213
29 1232
30 1333
31 1422
32 1424
33 1432
34 1442
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Table 6.36: Rate 1/p, m = 2 Quasi-Cyclic Codes over GF(5)

Code dmin Generators
(6,2) 4 1,3,4
(8,2) 6 1,2,3,4
(10,2) 8 1,2,3,4,5
(12,2) 10 1,1,2,3,4,5
(14,2) 11 1,1,2,3,3,4,5
(16,2) 13 1,1,1,2,3,3,4,5
(18,2) 14 1,1,2,2,3,3,4,4,5
(20,2) 16 1,1,2,2,3,3,4,4,5,5
(22,2) 18 1,1,1,2,2,3,3,4,4,5,5
(24,2) 20 1,1,1,1,2,2,3,3,4,4,5,5

Table 6.37: Rate 1/p, m = 3 Quasi-Cyclic Codes over GF(5)

Code dmin Generators
(9,3) 6 1,3,6
(12,3) 8 1,3,4,6
(15,3) 11 1,4,5,6,10
(18,3) 13 1,3,4,5,6,10
(21,3) 16 1,3,4,5,6,12,13
(24,3) 19 1,2,3,4,6,8,10,11
(27,3) 21 1,2,3,4,5,6,7,8,10
(30,3) 24 1,2,3,4,5,6,8,9,10,11
(33,3) 25 1,2,3,4,5,6,7,8,10,11,12
(36,3) 28 1,2,2,3,4,5,6,8,8,9,10,11

Table 6.38: Rate 1/p, m = 4 Quasi-Cyclic Codes over GF(5)

Code dmin Generators
(12,4) 7 1,2,22
(16,4) 11 1,8,16,19
(20,4) 14 1,7,8,15,28
(24,4) 17 1,7,8,18,32,34
(28,4) 20 1,8,9,11,18,27,31
(32,4) 23 1,5,6,8,14,20,21,25
(36,4) 26 1,4,5,6,8,20,21,23,29
(40,4) 30 1,3,7,15,16,17,19,22,32,33
(44,4) 33 1,2,4,6,7,12,26,27,29,32,33
(48,4) 36 1,2,8,9,10,11,13,16,17,22,24,30
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Table 6.39: Generator Polynomials for q = 5, m = 5

1 1 11 134 21 1123 31 1331 41 11124 51 12134
2 12 12 142 22 1124 32 1333 42 11213 52 13222
3 101 13 1011 23 1132 33 1341 43 11232 53 13233
4 102 14 1013 24 1212 34 1403 44 11242 54 13322
5 111 15 1022 25 1213 35 1413 45 11312 55 14223
6 112 16 1024 26 1214 36 1414 46 11313 56 14322
7 121 17 1043 27 1244 37 11112 47 11332
8 123 18 1113 28 1302 38 11113 48 11412
9 124 19 1121 29 1322 39 11114 49 11432
10 131 20 1122 30 1324 40 11123 50 11433

Table 6.40: Rate 1/p, m = 5 Quasi-Cyclic Codes over GF(5)

Code dmin Generators
(15,5) 9 1,6,30
(20,5) 13 1,9,26,39
(25,5) 16 1,7,8,19,37
(30,5) 20 ,3,22,30,38,40
(35,5) 24 1,4,11,21,40,44,48
(40,5) 28 1,8,14,16,27,41,42,47
(45,5) 32 1,8,10,12,13,18,43,45,49
(50,5) 36 1,9,21,23,25,28,37,50,51,52
(55,5) 40 1,5,17,24,29,33,34,35,36,53,54
(60,5) 44 1,2,12,15,19,20,31,32,33,46,55,56
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Table 6.41: Best Rate 1/2 QC Codes over GF(7) for m = 2 to 7

(2m,m) Generator
QC Polynomial dmin

code c(x)
(4,2) 12 3
(6,3) 112 4
(8,4) 111 4
(10,5) 1112 5
(12,6) 11124 6
(14,7) 111213 7

Table 6.42: Generator Polynomials for m = 2 to 3 over GF(7)

Polynomial m
Number 2 3

1 1 1
2 11 11
3 12 12
4 13 13
5 14 14
6 15 15
7 16 16
8 112
9 113
10 114
11 115
12 116
13 123
14 125
15 132
16 134
17 143
18 144
19 146
20 155
21 162
22 164
23 165
24 166
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Table 6.43: Rate 1/p, m = 2 Quasi-Cyclic Codes over GF(7)

Code dmin Generators
(6,2) 5 1,3,4
(8,2) 6 1,3,4,5
(10,2) 8 1,2,3,4,5
(12,2) 10 1,2,3,4,5,6
(14,2) 12 1,2,3,4,5,6,7
(16,2) 14 1,1,2,3,4,5,6,7
(18,2) 15 1,1,2,3,3,4,5,6,7
(20,2) 17 1,1,1,2,3,3,4,5,6,7
(22,2) 19 1,1,1,2,3,3,4,4,5,6,7
(24,2) 20 1,1,2,2,3,3,4,4,5,5,6,7

Table 6.44: Rate 1/p, m = 3 Quasi-Cyclic Codes over GF(7)

Code dmin Generators
(9,3) 6 1,8,9
(12,3) 9 1,4,8,10
(15,3) 12 1,5,9,14,19
(18,3) 14 1,5,6,8,9,10
(21,3) 17 1,3,7,8,9,13,24
(24,3) 19 1,2,5,7,16,18,20,22
(27,3) 22 1,5,6,7,8,13,15,17,24
(30,3) 24 1,4,5,7,9,10,18,22,23,24
(33,3) 27 1,2,3,5,7,8,10,14,18,21,24
(36,3) 30 1,3,5,6,7,8,9,10,11,12,13,14
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Table 6.45: Generator Polynomials for q = 7, m = 4

1 1 11 121 21 1124 31 1252 41 1532
2 14 12 123 22 1125 32 1256 42 1545
3 15 13 125 23 1126 33 1263 43 1553
4 16 14 134 24 1136 34 1333 44 1566
5 102 15 143 25 1146 35 1342 45 1636
6 104 16 152 26 1154 36 1343 46 1645
7 111 17 1112 27 1162 37 1365 47 1653
8 113 18 1113 28 1213 38 1445 48 1665
9 114 19 1116 29 1234 39 1455 49 1666
10 116 20 1123 30 1235 40 1462

Table 6.46: Rate 1/p, m = 4 Quasi-Cyclic Codes over GF(7)

Code dmin Generators
(12,4) 8 1,12,17
(16,4) 11 1,11,16,43
(20,4) 14 1,2,13,17,20
(24,4) 18 1,3,15,18,22,28
(28,4) 21 1,3,12,19,20,22,35
(32,4) 25 1,3,7,15,24,36,37,43
(36,4) 28 1,3,5,9,17,22,28,30,33
(40,4) 31 1,14,25,29,38,41,42,43,45,48
(44,4) 34 1,4,6,8,10,11,17,22,26,32,44
(48,4) 37 1,21,22,23,27,31,34,39,40,46,47,49
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Table 6.47: Best Rate 1/2 QC Codes over GF(8) for m = 2 to 6

(2m,m) Generator
QC Polynomial dmin

code c(x)
(4,2) 12 3
(6,3) 112 4
(8,4) 111 4
(10,5) 1112 5
(12,6) 11123 6

Table 6.48: Generator Polynomials for m = 2 over GF(8)

1 1 5 14
2 11 6 15
3 12 7 16
4 13 8 17

Table 6.49: Rate 1/p, m = 2 Quasi-Cyclic Codes over GF(8)

Code dmin Generators
(6,2) 5 1,3,4
(8,2) 7 1,3,4,5
(10,2) 8 1,3,4,5,6
(12,2) 10 1,2,3,4,5,6
(14,2) 12 1,2,3,4,5,6,7
(16,2) 14 1,2,3,4,5,6,7,8
(18,2) 16 1,1,2,3,4,5,6,7,8
(20,2) 17 1,1,2,3,3,4,5,6,7,8
(22,2) 19 1,1,1,2,3,3,4,5,6,7,8
(24,2) 21 1,1,1,2,3,3,4,4,5,6,7,8
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Table 6.50: Generator Polynomials for q = 8, m = 3

1 1 11 115 21 145 31 175
2 12 12 116 22 152 32 177
3 13 13 117 23 155
4 14 14 123 24 156
5 15 15 124 25 157
6 16 16 125 26 164
7 17 17 126 27 165
8 112 18 133 28 166
9 113 19 143 29 167
10 114 20 144 30 174

Table 6.51: Rate 1/p, m = 3 Quasi-Cyclic Codes over GF(8)

Code dmin Generators
(9,3) 7 1,17,19
(12,3) 9 1,8,9,15
(15,3) 12 1,8,9,15,19
(18,3) 14 1,9,10,11,14,15
(21,3) 17 1,4,6,8,12,13,16
(24,3) 20 1,4,6,8,11,12,15,19
(27,3) 23 1,3,6,8,17,18,21,30,31
(30,3) 25 1,4,5,6,10,13,19,22,28,29
(33,3) 27 1,2,3,17,19,23,25,26,27,28,32
(36,3) 30 1,4,5,6,7,10,12,19,20,20,24,28
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Table 6.52: Generator Polynomials for q = 8, m = 4

1 1 11 113 21 135 31 1132 41 1263
2 13 12 114 22 152 32 1133 42 1272
3 14 13 117 23 161 33 1142 43 1314
4 16 14 121 24 166 34 1145 44 1335
5 17 15 123 25 172 35 1146 45 1455
6 101 16 124 26 1112 36 1176 46 1542
7 102 17 125 27 1115 37 1233 47 1573
8 103 18 131 28 1122 38 1234 48 1646
9 104 19 132 29 1123 39 1235
10 111 20 134 30 1124 40 1253

Table 6.53: Rate 1/p, m = 4 Quasi-Cyclic Codes over GF(8)

Code dmin Generators
(12,4) 8 1,16,26
(16,4) 11 1,2,26,40
(20,4) 15 1,13,18,29,31
(24,4) 18 1,3,20,30,36,45
(28,4) 21 1,4,15,20,25,29,42
(32,4) 25 1,4,15,25,26,31,35,41
(36,4) 28 1,6,15,21,24,31,37,42,46
(40,4) 31 1,7,11,14,19,21,29,30,33,39
(44,4) 34 1,4,8,12,19,23,29,29,38,47,48
(48,4) 37 1,5,8,9,14,17,28,29,29,32,34,43
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Table 6.54: Maximum Minimum Distances for (pm, m) Systematic QC Codes
over GF(3)

p
m 2 3 4 5 6 7 8 9 10 11 12
2 2o 4o 6o 7o 8o 10o 12o 13o 14o 16o 18o

3 3o 6o 8o 9o 12o 14o 16o 18o 20o 22o 24o

4 4o 6o 9o 12o 15o 18o 21o 23o 25o 28o 31o

5 5o 8o 12o 15o 18 21 24 28 31 35 38
6 5o 9o 13 17 20 24 28 33 36 40 44
7 6o 10 15 18 24 27 32 36 41 45 50
8 6o 11 16 21 26 30 36 41 46 51 56
9 6o 11 17 23 28 33 38 45 51 55 60

Table 6.55: Maximum Minimum Distances for (pm, m) Systematic QC Codes
over GF(4)

p
m 2 3 4 5 6 7 8 9 10 11 12
2 3o 4o 6o 8o 9o 11o 12o 14o 16o 17o 19o

3 4o 6o 8o 11o 13o 15o 17o 20o 22o 24o 26o

4 4o 7o 11o 13 16 19 22 25 28 32 35
5 5o 8o 12 16 20 23 27 31 34 38 41
6 5o 9 13 18 22 26 30 35 40 44 48
7 6o 11 15 20 24 30 35 40 44 50 55

Note: no denotes a best code.
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Table 6.56: Maximum Minimum Distances for (pm, m) Systematic QC Codes
over GF(5)

p
m 2 3 4 5 6 7 8 9 10 11 12
2 3o 4o 6o 8o 10o 11o 13o 14o 16o 18o 20o

3 4o 6o 8o 11o 13o 16o 19o 21o 24o 25o 28o

4 4o 7o 11o 14o 17o 20o 23o 26o 30o 33o 36o

5 5o 9o 13 16 20 24 28 32 36 40 44

Table 6.57: Maximum Minimum Distances for (pm, m) Systematic QC Codes
over GF(7)

p
m 2 3 4 5 6 7 8 9 10 11 12
2 3o 5o 6o 8o 10o 12o 14o 15o 17o 19o 20o

3 4o 6o 9o 12o 14o 17o 19o 22o 24o 27o 30o

4 4o 8o 11 14 18 21 25 28 31 34 37

Table 6.58: Maximum Minimum Distances for (pm, m) Systematic QC Codes
over GF(8)

p
m 2 3 4 5 6 7 8 9 10 11 12
2 3o 5o 7o 8o 10o 12o 14o 16o 17o 19o 21o

3 4o 7o 9o 12o 14o 17o 20o 23o 25o 27o 30o

4 4o 8o 11 15 18 21 25 28 31 34 37

Note: no denotes a best code.
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Table 6.59: MDS QC Codes over GF(11), GF(13) and GF(16)

GF(11)
Code dmin Generator Polynomials
(10,2) 9 1,12,13,15,17
(9,3) 7 1,113,12(10)
(8,4) 5 1,1125
(10,5) 11 1,1(10)375

GF(13)
Code dmin Generator Polynomials
(12,2) 11 1,12,13,14,15,16
(12,3) 10 1,112,135,153
(12,4) 9 1,1347,172(11)
(10,5) 6 1,11292
(12,6) 7 1,1(11)(10)482

GF(16)
Code dmin Generator Polynomials
(16,2) 15 1,12,13,14,15,18,1(10),1(11)
(15,3) 13 1,185,13(12),178,1(15)(13)
(12,4) 9 1,1247,1776
(15,5) 11 1,13(10)5(11),1(13)623
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Chapter 7

Summary of Results and

Suggestions for Future Work

In Chapter 1, the historical background and fundamentals of error

correcting codes were introduced. The mathematical framework for the spe-

cific class of Quasi-Cyclic codes was developed.

Chapter 2 presented the results of a successful search to find good

or best rate 1/p and (p − 1)/p Quasi-Cyclic (QC) codes (they are optimal

only if no better linear code exists). Codes up to rates 1/18 and 17/18 were

constructed, and for m up to 16. As well, rate 1/2 codes up to m = 31 and

rate 2/3 codes up to m = 26 were found. Of the many new binary codes

in this dissertation, 14 extend the known bounds on the minimum distance

of binary linear codes. As well, many of the binary QC codes listed attain

the bounds as given in [32]. The methods for creating these codes was also

described.

In Chapter 3 QC codes were constructed from Power Residue codes.

The minimum distances of the binary PR codes, their duals and related QC

codes was found for m up to 32 and n < 10000. This extends the very limited

known results on these codes. Their subcodes were used to construct other

systematic QC codes. Search techniques for QC codes with m > 16 are ex-

tremely difficult because of the large number of available circulant matrices.

The PR codes permit a reduced exhaustive search for good codes, and this
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has produced many best QC codes. The generator polynomials of the PR

codes were used to initialize the search algorithm in Chapter 2.

The construction of primitive polynomials with linearly independent

roots was the topic of Chapter 4. Tables of polynomials were presented

for GF(2), GF(3), GF(4), GF(5), GF(7), GF(8), GF(11), GF(13), GF(16),

GF(17) and GF(19). Tables of these polynomials over nonbinary fields are

unknown, and over GF(2) they are incomplete. This search was motivated

by a requirement for a normal basis over the corresponding fields, which can

be formed with the polynomial roots. A normal basis was used in Chapter 3

to construct QC codes from PR codes.

In Chapter 5 QC codes were derived from Optimum Distance Profile

convolutional codes. Several best rate 2/3 codes were found in this manner.

This extends the known results for this construction, a Table of rate 1/2

QC codes. The (60,40) dmin = 8 QC codes found using this method con-

stitute the only known QC codes with these dimensions and distance. This

warrants further investigation into the connection between QC codes and

convolutional codes.

In Chapter 6 the methods of Chapters 2 and 3 were extended to non-

binary QC codes. Codes over GF(3), GF(4), GF(5), GF(7) and GF(8) were

tabulated. In addition, Maximum Distance Separable QC codes over GF(11),

GF(13) and GF(16) were given. These represent the only known nonbinary

QC codes, and establish a basis with which to compare other nonbinary

codes, QC or otherwise. Future work in this area will include a comparison

with nonbinary Cyclic codes, of which little is presently known.

7.1 Suggestions for Future Work

The paper by Tanner [23] provides a tantalizing look at a class of

transforms which may be useful for QC codes. However, the class of Quasi-

Cyclic codes requires a mathematical framework designed exclusively for
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them. The use of frequency domain concepts, while useful for BCH, RS

and other algebraically structured codes, is not well suited to QC codes. An

approach based on permutation or group theory may be more appropriate.

The analysis of codes of rates other than 1/p and (p− 1)/p, i.e., 2/5,

2/7, 3/5, etc., should yield many new best codes. Convolutional codes have

already been constructed for these rates [50].

There exist Hadamard and Conference matrices over complex and

other fields. The binary Hadamard matrices have been used successfully to

construct Quasi-cyclic codes [51]. As well, Conference matrices have been

used to construct ternary QC codes [10, 52]. The use of these types of ma-

trices to construct nonbinary QC codes is therefore quite promising, and

well worth further research. As an example, consider the following code over

GF(3) with Generator matrix

G = [I8 P ] ,

where P is defined as

P =

[

1 q
qT C

]

and C is a 7 × 7 circulant matrix defined by the polynomial c(x) = 1 + x +

2x2 + x3 + 2x4 + 2x5 + 2x6. This is based on the (7,3,1) cyclic difference set,

(see Appendix B), with 0 mapped to -1 (2). q is the all 1’s vector. This code

has dmin = 6 and is a Self-Dual code over GF(3) with weights divisible by 3.

7.1.1 Construction of Good Convolutional Codes From

Quasi-Cyclic Codes

The construction of good block codes (large minimum distance) has

been extensively researched in past work with many algorithms constructed.

Most exploit the algebraic structure of the codes. Among these are methods

to construct Quasi-Cyclic codes. On the other hand, algorithms to construct
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good convolutional codes are not as plentiful or powerful, as they are gen-

erally based on search techniques. Thus it seems natural to find a method

of constructing convolutional codes from good block codes. The reverse has

already been shown to be successful in a previous Section. The recent link

found between convolutional codes and Quasi-Cyclic codes[23] may be ex-

ploited using the Quasi-Cyclic codes already known to find good convolu-

tional codes. However, as experienced with the construction of QC codes

from ODP codes in Chapter 5, the criteria for good codes differs between

them, and this can affect the quality of the new codes. Thus block code

search techniques should be developed (modified) to find QC codes which

will yield good convolutional codes.
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Appendix A

Computation of an Upper

Bound on the Minimum
Distance of Quasi-Cyclic Codes

When searching a large number of rate 1/p QC codes, it is impor-

tant to obtain minimum distance estimates quickly. As well, computation

of the true minimum distance of an arbitrary QC code can only be done for

moderate sized codes, unless a large amount of resources are expended. It

is well known that the computational complexity is exponentially dependent

on the size of the code, (i.e., the circulant size m). This is especially true

for nonbinary codes, where the number of codewords increases as powers of

the alphabet size. A method which efficiently bounds the minimum distance

with a complexity which is more proportional to the size of the code is pre-

sented. This provides a partial solution to an intractable problem. It has

been designed to give a quick upperbound on the minimum distance. The

algorithm selectively constructs lower weight codewords in search of a min-

imum weight codeword. The robustness of this algorithm has been tested

against many codes with known minimum distances.

It has been reported that a polynomial time algorithm for finding

minimum distance codewords exists[53], but no further results have been

forthcoming. The method given here exists as a viable means of bounding

the minimum distance. The algorithm was designed to exploit the cyclic
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nature of these codes.

Consider the (n, k) QC code defined by (2.1).

Theorem A.1 A minimum distance codeword will contain the first row of

G.

Proof Choose any minimum distance codeword, c, which does not contain

the first row of G. For some i(x),

c = i(x)G.

A cyclic shift of c by k places is equivalent to the codeword

c′ = (i(x)xk mod xm − 1) G

and this codeword has the same weight as c. Choose k such that i0 = 1.

Then this minimum weight codeword contains the first row of G.2

The search starts by choosing this row of G, so finding a minimum weight

codeword involves only the remaining k − 1 rows.

To continue the search, an additional row of G is added to this code-

word. According to the weight of this new codeword, the following occurs:

• If the weight of the new codeword falls below the target minimum

distance dt, the search ends and the code is rejected.

• If the weight is below a given threshold, dth, the search continues with

that codeword.

• If the weight is above the threshold, this codeword is abandoned, with

another row of G chosen to create a new codeword.

Once the search from one row of G ends, i.e., the search reaches the last row

of G, that row is deleted and the search continues with the next row of G.

If l is the index of the last row added, additional rows are added only from

rows l + 1 to k, (except when a new lowest weight codeword is found).

This algorithm was extensively tested using codes with known mini-

mum distances, (and weight distributions). For a reasonably high threshold
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(> dmin+ ≈ 5− 10), the true minimum distance was arrived at in almost all

instances. In most cases when it was not, the minimum distance was attained

when i(x)ci(x) mod xm − 1 = 0 for some i. This creates a deep ‘hole’ in the

dmin ‘surface’, i.e., the adjacent codewords have a large minimum distance.

The following examples illustrate the capability of this algorithm.

Consider the (70, 35) rate 1/2 QC code based on the twin prime prod-

uct 35. This code is specified by a generator matrix of the form G = [I35, A
∗],

where I35 is a 35 × 35 identity matrix and A∗ is the incidence matrix of the

(35, 18, 9) cyclic difference set [54]. Although, the circulant nature of A∗ was

exploited to reduce the computer time necessary to find the weight distribu-

tion, it still required over one week on a SUN Microsystems 2/120 computer.

Using the developed algorithm, an upperbound of dmin ≤ 12 was found in

18 seconds. Although this is one more than the true minimum distance of

11, there are only 70 codewords with this weight. As well, there are only 315

codewords of weight 12.

For the (70,35) code based on the (35,17,8) cyclic difference set, a

bound of dmin ≤ 11 was found in 2.3 seconds. In this case there are only 7

minimum weight (dmin = 10) codewords, and 315 of weight 11.

These two incidence matrices can be combined to form a (105,35) QC

code. The bound on this code is dmin ≤ 18, found in 9.5 seconds.

As a final example, consider the (123, 41) rate 1/3 QC code based

on the biquadratic residues mod 41 [55]. G is composed of three circulant

matrices,

G = [I41C1C2]

where C1 is the circulant matrix corresponding to c1(x), with the coefficients

of xk equal to 1 or 0 depending on whether or not k is a biquadratic residue or

a biquadratic residue mod 4. c2(x) is the complement of c1(x). The bound of

dmin ≤ 27 was found in 2.1 seconds, whereas the computation of the weight

distribution is intractable with presently available equipment. Comparison
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with the table of bounds reveals that 28 ≤ dmin ≤ 34, so this code does not

meet the lower bound in [32]. Based on this fact, further investigation is not

necessary.
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Appendix B

Majority Logic Decodable

Quasi-Cyclic Codes

This Appendix presents some results on the Majority Logic (ML) de-

coding of Quasi-Cyclic codes. This decoding method is important because of

its relative speed and simplicity. Thus it is worth investigating which Quasi-

Cyclic codes can be decoded in this manner.

Majority logic decoding is well described in [30, 56]. The use of

weighted majority logic decoding was first introduced by Rudolph[57, 58, 59].

The advantage of using weighted ML decoding is an improvement in error

correcting capability over standard ML decoding. In[59] it is proved that any

code can be decoded with one-step majority logic. However, for a general

code the complexity of the resulting circuit makes this method impractical.

By placing restrictions on the structure of a code, this complexity may be

reduced to acceptable levels.

Suppose each error in an (n, k, dmin) Weighted Majority Logic (WML)

decodable code causes s parity checks to be in error. Thus 2ts+1 checks are

required to decode to the true minimum distance, where

t = ⌊
dmin − 1

2
⌋.

Consider those codewords of the dual (n, n−k, dd) code, (combinations of the

rows of H), which have a 1 in the first position, (dd is the minimum distance
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of this dual code). The other n − 1 positions will have a minimum of dd − 1

1’s. Suppose there are p minimum weight codewords in H with this property.

Then a total of ddp 1’s can be distributed amongst n−1 columns. In this case

(n − 1)s

dd − 1

non-orthogonal parity checks are possible, and only if this value is less than

p, the number of minimum distance codewords with a leading 1.

Thus for all WML decodable codes, the following equality must be

satisfied,

(2ts + 1) ≤
(n − 1)s

dd − 1

or,

(n − 1)s ≥ (dd − 1)(2ts + 1).

Now if the received bit in the first position is given weight s, so that it

contributes equally with the other received bits, the inequality becomes,

(n − 1)s ≥ (dd − 1)((2t− 1)s + 1)). (B.1)

As an example, consider the (22, 11) dmin = 7 systematic QC code with

t = 3, n = 22, and dmin = dd = 7. Then,

21s ≥ (7 − 1)(6s + 1) = 30s + 6,

which cannot hold for any s. Now consider the (16,8) dmin = 5 systematic

QC code with t = 2, n = 16 and dmin = dd = 5. The inequality then yields,

15s ≥ (3 − 1)(4s + 1) = 12s + 4.

For s = 1, 15 ≥ 16, which is impossible, but for s > 1, s = 2, 30 ≥ 28 and

s = 3, 45 ≥ 40.

Thus it is proven that orthogonal parity checks (s = 1) cannot be used,

but using non-orthogonal parity checks, WML decoding may be possible.
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Since this is only a necessary condition, the codewords of the dual code H

must be investigated to determine the actual number of weighted parity check

equations for s > 1.

The generator matrix for this code is

G =
[

I8 C
]

=































1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0
0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1
0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1
0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0
0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1
0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0































Then H =
[

CT I
]

and every codeword of G is orthogonal to the row space

of H . H is given by

H =































0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0
1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0
1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0
1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1































The following codewords of H with a leading 1 form 10 parity checks on r0,
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1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0
1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0
1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0
1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1
1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1

For s = 2, a maximum of 8 parity check equations are possible. How-

ever, two errors may cause four checks to be in error, hence WML decoding

is not possible. For s = 3, (and with r0 given 3 votes), there are 13 parity

checks on r0. Note that except for the first column, there are at most 3 1’s

in each column. Thus two errors will result in at most 6 incorrect checks,

leaving a minimum of 7 correct checks. r0 will then be decoded correctly

with a majority vote of the 13 parity checks.

In [60] it is stated that this code is not completely orthogonalizable (s

= 1), and thus cannot be decoded up to minimum distance by conventional

majority logic. However, using a weighted scheme does allow ML decoding.

A second code mentioned in that paper is the (8,4) Q.C. code with

dmin = 4, and this proves to be a most interesting example of WML decod-

ing. This is the same (8,4) QC code used as an example in Chapter 2. For

this code (B.1) gives,

7s ≥ 3(s + 1) = 3s + 3.

If s = 1, 7 ≥ 6, so this code can potentially be 1 step orthogonalized. How-

ever, an examination of the possible parity checks shows that this is not the

case, as no two of the parity checks with a leading 1 are orthogonal. This

same conclusion was reached in [60].
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The generator matrix for this code is

G =
[

I4 C
]

=











1 0 0 0 1 1 1 0
0 1 0 0 0 1 1 1
0 0 1 0 1 0 1 1
0 0 0 1 1 1 0 1











.

Then H =
[

CT I
]

and every codeword of G is orthogonal to the row space

of H . H is given by

H =











1 0 1 1 1 0 0 0
1 1 0 1 0 1 0 0
1 1 1 0 0 0 1 0
0 1 1 1 0 0 0 1











The rowspace (codewords) of H are,

0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0
1 0 1 1 1 0 0 0 1 0 1 0 0 1 0 1
1 1 0 1 0 1 0 0 1 0 0 0 1 1 1 0
1 1 1 0 0 0 1 0 0 1 0 0 0 1 1 1
0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1
0 1 1 0 1 1 0 0 0 0 0 1 1 1 0 1
0 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1
1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1

These are the transpose of the codewords of G, and are orthogonal to

them. Now select those codewords of H which have a leading 1 (except for

the all 1’s word),

1 0 1 1 1 0 0 0
1 1 0 1 0 1 0 0
1 1 1 0 0 0 1 0
1 0 0 1 0 0 1 1
1 0 1 0 0 1 0 1
1 0 0 0 1 1 1 0
1 1 0 0 1 0 0 1
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If non-orthogonal checks are used, WML decoding is possible. For

s = 2, a minimum of 5 checks are required to correctly decode a single error.

If r0 is given weight s, 6 checks are available. The extra parity check may be

used for error detection.

If s = 3, 7 parity checks are required. However, with r0 given 3 votes,

10 checks are available. Obviously one error in r0 will produce 3 incorrect

and 7 correct votes. Thus this scheme can correct any single error. As well,

double errors can be detected since two errors not including r0 will produce

only 4 checks in error. If r0 is incorrect along with one other, 3+3 = 6 checks

will be in error, and this can be detected, since the only possible vote inputs

to the majority decision device are

Number of Parity
r0 Others Checks that are

Correct Incorrect
correct correct 10 0
incorrect correct 7 3
correct 1 incorrect 7 3
correct 2 incorrect 6 4
incorrect 1 incorrect 4 6

So if there are less than 7 votes for one value, a double error can be flagged,

and the true minimum distance is attained.

The listed parity check equations form 7 orthogonal parity checks on

r0 (1st bit). Note that except for the first column, there are exactly 3 1’s in

each column. Careful examination of these 7 equations reveals that, with the

first column deleted, they form a (7,7,3,3,1) Symmetric Balanced Incomplete

Block Design (SBIBD) [37]. It is because of this that if two errors other than

r0 occur, only 4 checks will be in error (since λ = 1) and 6 will be correct.

This technique can be extended to other codes. The minimum weight

codewords with a leading 1 in the (24,12) dmin = 8 QC code contain a

(23,253,77,7,21) BIBD. However, the bound on the number of correctable
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errors, given in [61], is only 2. The parameters of the minimum weight

codewords of the (48,24) Quadratic Residue code in QC form also correspond

to those of a BIBD.

The (22,11) QC code with dmin = 7 contains an IBD (Incomplete

Block Design), but is not balanced. The parameters are, v = 21, b = 56, k =

6, and r = 16. Some other possible rate 1
2

WML decodable QC codes

are now presented.

1. The (18,9) dmin = 6 code. In this case, the inequality (B.1), yields,

17s ≥ 5(3s + 1) = 15s + 5

Only for s ≥ 3 can this be satisfied. For s = 2, 8 checks were found,

so two errors can be detected. For s = 5, 22 checks (counting r0), were

found. This is the maximum possible since,

s(n − 1)

dmin − 1
=

5(17)

5
= 17

Since two errors will produce only 10 checks in error, two errors are

correctable.

For this code, 3 of the parity checks are orthogonal (s = 1),

on all but the first bit. This allows the correction of single and some

double errors.

2. The (20,10) dmin = 6 code. From (B.1),

19s ≥ 5(3s + 1)
= 19s ≥ 15s + 5

Thus orthogonalization is possible for s > 1. With s = 4, 17 parity

checks were found, thus double error correction can be done.

3. The (24,12) dmin = 8 code: 23s ≥ 7(5s + 1), or 23s ≥ 35s + 7

4. The (26,13) dmin = 7 code: 25s ≥ 6(5s + 1), or 25s ≥ 30s + 6.
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5. The (28,14) dmin = 8 code: 27s ≥ 7(5s + 1)

6. The (34,17) dmin = 8 code: 33s ≥ 7(5s + 1), or 33s ≥ 35s + 7

7. The (36,18) dmin = 8 code: 35s ≥ 35s + 7

8. The (38,19) dmin = 8 code: 37s ≥ 7(5s + 1), or 37s ≥ 35s + 7

In this case, s ≥ 4 for the inequality to hold.

9. The (40,20) dmin = 9 code: 39s ≥ 8(7s + 1), or 39s ≥ 56s + 8

Clearly this decoding method is suitable only for a small circulant size.

B.1 Majority Logic Decoding of Quasi-Cyclic

Codes Based on (v, k, λ) Difference Sets

A (v, k, λ) difference set [19] provides a simple means of constructing

a one-step Majority Logic decodable QC code. Incomplete cyclic difference

sets, which have ‘don’t care’ differences not in the set can also be employed.

In this case orthogonality still holds, but some of the received bits are not

used in any parity checks. An excellent treatment of cyclic difference sets

can be found in [62]. When λ = 1, the code is completely orthogonalizable

in one-step, whereas with λ > 1, weighted majority logic can be used.

As an example, consider the (31,6,1) Cyclic Difference set, (0,1,3,8,12,18).

If we use these to form c(x) we have G = [I31, C], where c(x) = 1 + x + x3 +

x8 + x12 + x18. The rows of G with a leading 1 are

1101000010001000001000000000000
1010000100010000010000000000001
1000010001000001000000000000110
1000100000100000000000011010000
1000001000000000000110100001000
1000000000000110100001000100000
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From this we can see that all columns have a 1 in the first location and no

other column has more than one 1. Thus this code is three error correcting,

with seven orthogonal parity checks.

For λ = 1, the codes listed in Table B.1 are possible. From this table,

it is clear that the codes are asymptotically poor. However, they do provide

a construction for QC codes that are easily decoded.
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Table B.1: (v, k, λ) Difference Sets for QC Codes

(v, k, λ) t
(7,3,1) 1
(13,4,1) 2
(21,5,1) 2
(31,6,1) 3
(43,7,1) 3
(57,8,1) 4
(73,9,1) 4
(91,10,1) 5
(133,12,1) 6
(157,13,1) 6
(183,14,1) 7
(273,17,1) 8
(307,18,1) 9
(381,20,1) 10
(553,24,1) 12
(757,28,1) 14
(871,30,1) 15
(1057,33,1) 16
(1407,38,1) 17
(1723,42,1) 21
(1893,44,1) 22
(2257,48,1) 24
(2451,50,1) 25
(3541,60,1) 30
(5113,72,1) 36
(6321,80,1) 40
(8011,90,1) 45
(9507,98,1) 49


