Poles and Zeros for Examples and Additional Results and Examples: R. C. Nongpiur, D. J. Shpak, and A. Antoniou, "Design of IIR Digital Differentiators Using Constrained Optimization," *IEEE Trans. on Signal Processing* (in press).

This document provides the poles and zeros for Examples 1 to 10 in the above paper and also additional examples and results.

Example 1

Proposed Method 1 (Example 1)	
Poles	Zeros
-0.802939710229065	1.685398737456287 + 6.071796610826690i
-0.241380950498653	1.685398737456287 - 6.071796610826690i
0.083893496449488 + 0.146793964733408i	1.00000000000001
0.083893496449488 - 0.146793964733408i	-0.782457582401973
Но	0.029122624790710

Proposed Method 2 (Example 1)	
Poles	Zeros
-0.927649925869125	4.969200549370092
-0.650119824864531	-1.214579621718989 + 4.448766658563339i
0.100763481534592 + 0.133421456705378i	-1.214579621718989 - 4.448766658563339i
0.100763481534592 - 0.133421456705378i	1.00000000000002
-0.132834931374619	-0.924835080249195
-0.132595352473694	-0.624598789038767
Но	-0.010937362221720

Example 2

Proposed Method 1 (Example 2)	
Poles	Zeros
-0.761663688370332	1.00000000000000
-0.094596243487183	-0.725564150323285
Но	-1.173370446979618

Proposed Method 2 (Example 2)	
Poles	Zeros
-0.869635736897934	11.125020236118004
-0.127994742174087	1.00000000000000
0.020819765180775	-0.862698322974249
Но	-0.104018813668788

Proposed Method 1 (Example 3)	
Poles	Zeros
-0.736764971286088	1.00000000000000
-0.107044029734546	-0.693865746550412
Но	1.168706485627214

Proposed Method 2 (Example 3)	
Poles	Zeros

-0.867395089454792	12.888748038196136
-0.173180694762977	1.00000000000000
0.069176941669491	-0.856503834132135
Но	-0.089528242053933

Proposed Method (Example 4)	
Poles	Zeros
-0.562359925296005 + 0.551713315560392i	5.071836543495142
-0.562359925296005 - 0.551713315560392i	1.00000000000001
0.122522727708173 + 0.156211319017677i	-0.809042883798810 + 0.411496961528866i
0.122522727708173 - 0.156211319017677i	-0.809042883798810 - 0.411496961528866i
Но	-0.154047458887425

Example 5

Proposed Method 1 (Example 5)	
Poles	Zeros
0.324266352462174 + 0.684489022581523i	2.585554855000773
0.324266352462174 - 0.684489022581523i	1.00000000000000
0.478053004887125 + 0.225065123823776i	-0.260795397088261 + 0.804615265544004i
0.478053004887125 - 0.225065123823776i	-0.260795397088261 - 0.804615265544004i
Но	0.083005158062897

Proposed Method 2 (Example 5)	
Poles	Zeros
0.387268767496249 + 0.612679644602625i	5.480915299019374
0.387268767496249 - 0.612679644602625i	1.705766374319428 + 0.935683687788366i
0.587097851836742	1.705766374319428 - 0.935683687788366i
0.493610476289837 + 0.310539128286949i	-0.929595031773406
0.493610476289837 - 0.310539128286949i	1.00000000000000
Но	-0.009348821397799

Proposed Method 1 (Example 6)	
Poles	Zeros
0.351967642455433 + 0.499074142965067i	2.534817269382062
0.351967642455433 - 0.499074142965067i	-0.960640904275117
0.462890092806419	1.00000000000000
Но	-0.115230030359596

Proposed Method 2 (Example 6)	
Poles	Zeros
0.160500130044039 + 0.508476009641183i	2.618838341239818
0.160500130044039 - 0.508476009641183i	1.00000000000001
0.328174454900780 + 0.244073231585899i	-0.561086821019342 + 0.588068082140887i
0.328174454900780 - 0.244073231585899i	-0.561086821019342 - 0.588068082140887i
Но	-0.105636564605152

Proposed Method 1 (Example 7)			
Poles Zeros			
0.007537208087305 + 0.444257353375315i	3.584485697669815		
0.007537208087305 - 0.444257353375315i	-0.938885431418600		
0.238881865812303	1.00000000000000		
Но	-0.168807340853109		

Proposed Method 2 (Example 7)			
Poles	Zeros		
-0.106334797631461 + 0.456775124822759i	5.247928490609988 + 5.796417784918430i		
-0.106334797631461 - 0.456775124822759i	5.247928490609988 - 5.796417784918430i		
0.175724163833827 + 0.277347893289393i	5.373578132560946		
0.175724163833827 - 0.277347893289393i	-1.023627467289299		
0.253695536784501	1.00000000000000		
Но	-0.001748944832111		

Example 8

Proposed Method 1 (Example 8)			
Poles	Zeros		
0.137128164507020	-12.306077060448622		
-0.051259186497668 + 0.115630480341598i	4.084369004067208 + 6.189515360016281i		
-0.051259186497668 - 0.115630480341598i	4.084369004067208 - 6.189515360016281i		
-0.101892319175950	1.00000000000000		
Но	0.001818092120882		

Proposed Method 2 (Example 8)		
Poles Zeros		
0.098688835405006 + 0.910061119941870i	-0.980010437479793	
0.098688835405006 - 0.910061119941870i	1.00000000000000	
-0.979999999999966	0.098764485256241 + 0.910128372219393i	
-0.129076995580145	0.098764485256241 - 0.910128372219393i	
Но	1.231706761798416	

Proposed Method (Example 9)			
Poles Zeros			
0.408655892534579 + 0.795779919914023i	1.00000000000000		
0.408655892534579 - 0.795779919914023i	0.298120016672825 + 0.789886604521385i		
0.327867344860575 + 0.367231776543552i	0.298120016672825 - 0.789886604521385i		
0.327867344860575 - 0.367231776543552i	-0.635203537971680		
0.157023475896400	-0.205443879443335		
Но	0.221136590142179		

Proposed Method (Example 10)			
Poles	Zeros		
0.312471615100270 + 0.809891020539611i	0.9999999999999999		
0.312471615100270 - 0.809891020539611i	-0.867231144955044		
0.172837483827109	0.121055731858053 + 0.831530607921186i		
0.172837420508986	0.121055731858053 - 0.831530607921186i		
Но	0.292359933087689		

Example 13

Proposed Method (Example 13)		
Poles Zeros		
-0.714916715171425	1.00000000000000	
-0.115001808853094	-0.665947510077671	
Ho 1.163793160164963		

Starting lower frequency $= 0$ radians			
Parameters	Proposed method	Method in [18]	Method in [18]
		c.f. eqn(4)	c.f. eqn(5)
Filter order	2	2	2
Max. rel. error, δ_r	0.019	∞	∞
Avg. group delay, $\bar{\tau}$	0.5	1	0
Max. phase error, ξ_{ϕ}	9.12	90	90
Sta	rting lower frequency $= 0$.	1% of Nyquist	
Parameters	Proposed method	Method in [18]	Method in [18]
		c.f. eqn(4)	c.f. eqn(5)
Filter order	2	2	2
Max. rel. error, δ_r	0.019	3.3	3.44
Avg. group delay, $\bar{\tau}$	0.5	1.06	0.061
Max. phase error, ξ_{ϕ}	9.12	78.89	79.04
Sta	arting lower frequency = 1	% of Nyquist	
Parameters	Proposed method	Method in [18]	Method in [18]
		c.f. eqn(4)	c.f. eqn(5)
Filter order	2	2	2
Max. rel. error, δ_r	0.019	0.18	0.15
Avg. group delay, $\bar{\tau}$	0.5	1.35	0.35
Max. phase error, ξ_{ϕ}	9.12	69.5	27.11

Table XXIII Design results for Example 13 (Fullband differentiator)

Figure 3: Plots of the amplitude and phase-response errors for Example13 for the proposed method (blue curve), eqn. (4) of [18] (red curve), and eqn (5) of [18] (green curve). The ideal phase response of a differentiator for the evaluation of the phase-response error is obtained by taking the average of the average group delay as in (50). Using some other group-delay value could reduce the phase-response error at some frequencies but the maximum phase-response error, ξ_{ϕ} , would not be reduced.

Starting lower frequency $= 0$ radians			
Parameters	Proposed method	Method in [15]	Method in[15]
	(same as Example 13)	c.f. eqn(5)	c.f. eqn(6)
Filter order	2	2	2
Max. rel. error, δ_r	0.019	∞	∞
Avg. group delay, $\bar{\tau}$	0.5	0	0
Max. phase error, ξ_{ϕ}	9.12	90	90
Sta	rting lower frequency $= 0.1$	1% of Nyquist	
Parameters	Proposed method	Method in [15]	Method in[15]
	(same as Example 13)	c.f. eqn(5)	c.f. eqn(6)
Filter order	2	2	2
Max. rel. error, δ_r	0.019	0.029	0.39
Avg. group delay, $\bar{\tau}$	0.5	0.42	0.26
Max. phase error, ξ_{ϕ}	9.12	14.16	44.03
Starting lower frequency = 1% of Nyquist			
Parameters	Proposed method	Method in [15]	Method in[15]
	(same as Example 13)	c.f. eqn(5)	c.f. eqn(6)
Filter order	2	2	2
Max. rel. error, δ_r	0.019	0.018	0.035
Avg. group delay, $\bar{\tau}$	0.5	0.49	0.47
Max. phase error, ξ_{ϕ}	9.12	10.75	10.25

 Table XXIV

 Design results for Example 14 (Fullband differentiator)

Figure 4: Plots of the amplitude and phase-response errors for Example14 for the proposed method (blue), eqn. (5) of [15] (red curve), and eqn. (6) of [15] (green curve).

Design results for Example 15 (Fullband differentiator)			
Starting lower frequency $= 0$ radians			
Parameters	Proposed method	Method in [16]	
	(same as Example 13)	(first example)	
Filter order	2	8	
Max. rel. error, δ_r	0.019	∞	
Avg. group delay, $\bar{\tau}$	0.5	4	
Max. phase error, ξ_{ϕ}	9.12	90	
Starting lov	ver frequency = 0.1% of N	yquist	
Parameters	Proposed method	Method in [16]	
	(same as Example 13)	(first example)	
Filter order	2	8	
Max. rel. error, δ_r	0.019	0.87	
Avg. group delay, $\bar{\tau}$	0.5	3.83	
Max. phase error, ξ_{ϕ}	9.12	58.66	
Starting lower frequency = 1% of Nyquist			
Parameters	Proposed method	Method in [16]	
	(same as Example 13)	(first example)	
Filter order	2	8	
Max. rel. error, δ_r	0.019	0.023	
Avg. group delay, $\bar{\tau}$	0.5	3.55	
Max. phase error, ξ_{ϕ}	9.12	9.2	

Table XXV
Design results for Example 15 (Fullband differentiator)

Figure 5: Plots of the amplitude and phase-response errors for Example15 for the proposed method (blue), example 1 of [16] (red).

Design results for Example 16 (Fullband differentiator)			
Parameters	Proposed method	Method in [14]	
	(same as Example 13)	c.f. eqn (4)	
Filter order	2	2	
Max. rel. error, δ_r	0.019	0.04	
Avg. group delay, $\bar{\tau}$	0.5	1.5	
Max. phase error, ξ_{ϕ}	9.12	70.6	

 Table XXVI

 Design results for Example 16 (Fullband differentiator)

Figure 6: Plots of the amplitude and phase-response errors for Example16 for the proposed method (blue curve) and eqn. (4) of [14] (red curve).

Design results for Example 17 (Fullband differentiator)			
Parameters	Proposed method	Method in [10]	
	(same as Example 13)	(first example)	
Filter order	2	2	
Max. rel. error, δ_r	0.019	0.0196	
Avg. group delay, $\bar{\tau}$	0.5	0.5	
Max. phase error, ξ_{ϕ}	9.12	10.49	

Table XXVII

Figure 1: Plots of the amplitude and phase-response errors for Example16 for the proposed method (blue curve) and first example of [10] (red curve).

Proposed Method (Example 18)			
Poles	Zeros		
-0.074512554591850	1		
Но	1.235689437780627		

Design results for Example18 (Fullband differentiator)			
Parameters	Proposed method	Method in [11]	
	-	(last example)	
Filter order	1	1	
Max. rel. error, δ_r	0.15	0.15	
Avg. group delay, $\bar{\tau}$	0.5	0.5	
Max. phase error, ξ_{ϕ}	4.27	8.21	

 Table XXVIII

 Design results for Example18 (Fullband differentiator)

Figure 2: Plots of the amplitude and phase-response errors for Example16 for the proposed method (blue curve) and last example of [11] (red curve).