Improved Data-Selective LMS-Newton Adaptation Algorithms

Md. Zulfiquar A. Bhotto and Andreas Antoniou

Dept. of Elec. and Comp. Eng. University of Victoria Victoria, BC, Canada Email: zbhotto@ece.uvic.ca aantoniou@ieee.org

16th International Conference on Digital Signal Processing July 5–7, 2009

Slide # 1/23

Md. Z. A. Bhotto and A. Antoniou

Known LMS-Newton adaptation algorithms

Slide # 2/23

Known LMS-Newton adaptation algorithms

Proposed data-selective LMS-Newton adaptation algorithms

Slide # 2/23

- Known LMS-Newton adaptation algorithms
- Proposed data-selective LMS-Newton adaptation algorithms
- Simulation results and comparisons

- Known LMS-Newton adaptation algorithms
- Proposed data-selective LMS-Newton adaptation algorithms
- Simulation results and comparisons

Adaptation Algorithms

Usually adaptation algorithms use the *a posteriori* error, ε_k, at iteration k given by

$$e_k = d_k - \mathbf{w}_k^T \mathbf{x}_k$$

to adjust the weight vector \mathbf{w}_k using the input signal vector \mathbf{x}_k and desired signal d_k .

Improved LMS-Newton Algorithms · ·

3

ictoria

Known LMS-Newton Adaptation Algorithms

The basic LMS-Newton algorithm (Farhang-Boroujeny and Gazor, IEE Proc., 1991) solves the optimization problem

minimize
$$E\left[(d_k - \mathbf{w}_k^T \mathbf{x}_k)^2\right]$$

 \mathbf{w}_k

by using the update equations

$$z_{k} = \frac{1-\alpha}{\alpha} + \mathbf{x}_{k}^{T} \hat{R}_{k-1}^{-1} \mathbf{x}_{k}$$
$$\mathbf{w}_{k} = \mathbf{w}_{k-1} + \frac{2\mu}{\alpha} \frac{e_{k} \hat{R}_{k-1}^{-1} \mathbf{x}_{k}}{z_{k}}$$
$$\hat{R}_{k}^{-1} = \frac{1}{1-\alpha} \left(\hat{R}_{k-1}^{-1} - \frac{\hat{R}_{k-1}^{-1} \mathbf{x}_{k} \mathbf{x}_{k}^{T} \hat{R}_{k-1}^{-1}}{z_{k}} \right)$$

where $e_k = d_k - \mathbf{w}_{k-1}^T \mathbf{x}_k$ is the *a priori* error at iteration *k*, \hat{R}_k^{-1} is an estimate of the inverse of the input-signal autocorrelation matrix, μ is the *step size*, and α is the *convergence factor*.

Md. Z. A. Bhotto and A. Antoniou

< □ > < □ > < □ > < ≡ > < ≡ >
 Improved LMS-Newton Algorithms ····

Known LMS-Newton Adaptation Algorithms Cont'd

Slide # 5/23

Md. Z. A. Bhotto and A. Antoniou

Improved LMS-Newton Algorithms · · ·

-

Known LMS-Newton Adaptation Algorithms

Two specific LMS-Newton adaptation algorithms, referred to as Algorithms I and II, were described by Diniz, de Campos, and Antoniou in IEEE Transactions on Signal Processing in 1995.

Algorithm I of Diniz et al.

► Algorithm I uses a *variable convergence factor*

$$\alpha_k = \frac{1}{1 + (2b - 1)\mathbf{x}_k^T \hat{R}_{k-1}^{-1} \mathbf{x}_k}$$

and fixed step size $\mu_k = b\alpha_k$ where b > 0.5 in the basic LMS-Newton algorithm.

Slide # 7/23

Algorithm I of Diniz et al.

► Algorithm I uses a *variable convergence factor*

$$\alpha_k = \frac{1}{1 + (2b - 1)\mathbf{x}_k^T \hat{R}_{k-1}^{-1} \mathbf{x}_k}$$

and fixed step size $\mu_k = b\alpha_k$ where b > 0.5 in the basic LMS-Newton algorithm.

The update equations are:

$$z_{k} = 2b\mathbf{x}_{k}^{T}\hat{R}_{k-1}^{-1}\mathbf{x}_{k}$$

$$\mathbf{w}_{k} = \mathbf{w}_{k-1} + 2\mu_{k}e_{k}\hat{R}_{k-1}^{-1}\mathbf{x}_{k}$$

$$\hat{R}_{k}^{-1} = \frac{1 + (1 - 0.5/b)z_{k}}{(1 - 0.5/b)z_{k}}\left(\hat{R}_{k-1}^{-1} - \frac{\hat{R}_{k-1}^{-1}\mathbf{x}_{k}\mathbf{x}_{k}^{T}\hat{R}_{k-1}^{-1}}{z_{k}}\right)$$

Slide # 7/23

Md. Z. A. Bhotto and A. Antoniou

Algorithm II of Diniz et al.

Algorithm II uses a variable step size μ_k

$$\mu_k = \frac{1}{2\mathbf{x}_k^T \hat{R}_{k-1}^{-1} \mathbf{x}_k}$$

and a fixed convergence factor α in the basic LMS-Newton algorithm.

Slide # 8/23

Algorithm II of Diniz et al.

Algorithm II uses a variable step size μ_k

$$\mu_k = \frac{1}{2\mathbf{x}_k^T \hat{R}_{k-1}^{-1} \mathbf{x}_k}$$

and a fixed convergence factor α in the basic LMS-Newton algorithm.

▶ The update equations assume the form:

$$z_{k} = \frac{1-\alpha}{\alpha} + \mathbf{x}_{k}^{T} \hat{R}_{k-1}^{-1} \mathbf{x}_{k}$$
$$\mathbf{w}_{k} = \mathbf{w}_{k-1} + 2\mu_{k} e_{k} \hat{R}_{k-1}^{-1} \mathbf{x}_{k}$$
$$\hat{R}_{k}^{-1} = \frac{1}{1-\alpha} \left(\hat{R}_{k-1}^{-1} - \frac{\hat{R}_{k-1}^{-1} \mathbf{x}_{k} \mathbf{x}_{k}^{T} \hat{R}_{k-1}^{-1}}{z_{k}} \right)$$

Slide # 8/23

Md. Z. A. Bhotto and A. Antoniou

Improved LMS-Newton Algorithms · · ·

個 と く ヨ と く ヨ と

 Algorithm I is preferred if the input signal statistics (mean, variance) are not known a priori.

Slide # 9/23

- Algorithm I is preferred if the input signal statistics (mean, variance) are not known a priori.
- ▶ Otherwise, Algorithm II is preferred.

- Algorithm I is preferred if the input signal statistics (mean, variance) are not known a priori.
- ▶ Otherwise, Algorithm II is preferred.
- ► In Algorithms I and II, a reduction factor, q, can be introduced by modifying the update equation as

$$\mathbf{w}_k = \mathbf{w}_{k-1} + 2q\mu_k e_k \hat{R}_{k-1}^{-1} \mathbf{x}_k$$

By using q = 1, *fast convergence* can be achieved.

- Algorithm I is preferred if the input signal statistics (mean, variance) are not known a priori.
- ▶ Otherwise, Algorithm II is preferred.
- ► In Algorithms I and II, a reduction factor, q, can be introduced by modifying the update equation as

$$\mathbf{w}_k = \mathbf{w}_{k-1} + 2q\mu_k e_k \hat{R}_{k-1}^{-1} \mathbf{x}_k$$

By using q = 1, *fast convergence* can be achieved.

On the other hand, by using a suitable value of *q* less than one, *minimum misalignment* can be achieved.

Modified LMS-Newton Adaptation Algorithms I and II

The proposed two LMS-Newton algorithms are essentially modified versions of Algorithms I and II reported by Diniz et al.

Slide # 10/23

Modified LMS-Newton Adaptation Algorithms I and II

- The proposed two LMS-Newton algorithms are essentially modified versions of Algorithms I and II reported by Diniz et al.
- In these algorithms, we use the step size that solves the optimization problem

$$\mu_{k} = \begin{cases} \text{argmin} \quad \left(|\boldsymbol{d}_{k} - \mathbf{x}_{k}^{T} \mathbf{w}_{k}| - \gamma \right) & \text{if } |\boldsymbol{e}_{k}| > \gamma \\ \mu_{k} & \\ 0 & \text{otherwise} \end{cases}$$

where e_k is the *a priori* error at iteration *k* and γ is a prespecified error bound.

Modified LMS-Newton Adaptation Algorithms I and II

- The proposed two LMS-Newton algorithms are essentially modified versions of Algorithms I and II reported by Diniz et al.
- In these algorithms, we use the step size that solves the optimization problem

$$\mu_{k} = \begin{cases} \text{argmin} \quad \left(|\boldsymbol{d}_{k} - \mathbf{x}_{k}^{T} \mathbf{w}_{k}| - \gamma \right) & \text{if } |\boldsymbol{e}_{k}| > \gamma \\ \mu_{k} & \\ 0 & \text{otherwise} \end{cases}$$

where e_k is the *a priori* error at iteration *k* and γ is a prespecified error bound.

► The required μ_k can be deduced as $\mu_k = \frac{\beta_k}{2\mathbf{x}_k^T \hat{R}_{k-1}^{-1} \mathbf{x}_k}$ where $\beta_k = \begin{cases} 1 - \frac{\gamma}{|e_k|} & \text{if } |e_k| > \gamma \\ 0 & \text{otherwise} \end{cases}$

The step size μ_k forces the equality |e_k| = γ whenever the magnitude of the *a priori* error at iteration k assumes a value greater than γ.

Slide # 11/23

- The step size μ_k forces the equality |e_k| = γ whenever the magnitude of the *a priori* error at iteration k assumes a value greater than γ.
- ▶ The update equations of improved Algorithm I are:

$$z_{k} = 2b\mathbf{x}_{k}^{T}\hat{R}_{k-1}^{-1}\mathbf{x}_{k}$$
$$\mathbf{w}_{k} = \mathbf{w}_{k-1} + 2\mu_{k}e_{k}\hat{R}_{k-1}^{-1}\mathbf{x}_{k} \text{ with } \mu_{k} = \frac{\beta_{k}}{2\mathbf{x}_{k}^{T}\hat{R}_{k-1}^{-1}\mathbf{x}_{k}}$$
$$\hat{R}_{k}^{-1} = \frac{1 + (1 - 0.5/b)z_{k}}{(1 - 0.5/b)z_{k}} \left(\hat{R}_{k-1}^{-1} - \frac{\hat{R}_{k-1}^{-1}\mathbf{x}_{k}\mathbf{x}_{k}^{T}\hat{R}_{k-1}^{-1}}{z_{k}}\right)$$

Slide # 11/23

Md. Z. A. Bhotto and A. Antoniou

Improved LMS-Newton Algorithms · · ·

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ...

► The update equations of improved LMS-Newton Algorithm II are:

$$z_{k} = \frac{1-\alpha}{\alpha} + \mathbf{x}_{k}^{T} \hat{R}_{k-1}^{-1} \mathbf{x}_{k}$$
$$\mathbf{w}_{k} = \mathbf{w}_{k-1} + 2\mu_{k} e_{k} \hat{R}_{k-1}^{-1} \mathbf{x}_{k} \text{ with } \mu_{k} = \frac{\beta_{k}}{2\mathbf{x}_{k}^{T} \hat{R}_{k-1}^{-1} \mathbf{x}_{k}}$$
$$\hat{R}_{k}^{-1} = \frac{1}{1-\alpha} \left(\hat{R}_{k-1}^{-1} - \frac{\hat{R}_{k-1}^{-1} \mathbf{x}_{k} \mathbf{x}_{k}^{T} \hat{R}_{k-1}^{-1}}{z_{k}} \right)$$

Slide # 12/23

▶ The update equations of improved LMS-Newton Algorithm II are:

$$z_{k} = \frac{1-\alpha}{\alpha} + \mathbf{x}_{k}^{T} \hat{R}_{k-1}^{-1} \mathbf{x}_{k}$$
$$\mathbf{w}_{k} = \mathbf{w}_{k-1} + 2\mu_{k} e_{k} \hat{R}_{k-1}^{-1} \mathbf{x}_{k} \text{ with } \mu_{k} = \frac{\beta_{k}}{2\mathbf{x}_{k}^{T} \hat{R}_{k-1}^{-1} \mathbf{x}_{k}}$$
$$\hat{R}_{k}^{-1} = \frac{1}{1-\alpha} \left(\hat{R}_{k-1}^{-1} - \frac{\hat{R}_{k-1}^{-1} \mathbf{x}_{k} \mathbf{x}_{k}^{T} \hat{R}_{k-1}^{-1}}{z_{k}} \right)$$

Since 0 ≤ β_k < 1, β_k acts as a variable reduction factor and, therefore, a reduced steady-state misalignment would be obtained without reducing the convergence speed.

・ 同 ト ・ ヨ ト ・ ヨ ト

Md. Z. A. Bhotto and A. Antoniou

The reduction factor β_k tends to remain close to unity during transience and hence the *convergence speed* of the improved algorithm tends to be similar to that of the known algorithm.

- The reduction factor β_k tends to remain close to unity during transience and hence the *convergence speed* of the improved algorithm tends to be similar to that of the known algorithm.
- At steady state, the step size β_k approaches zero and, consequently, a *reduced steady-state misalignment* is achieved.

- The reduction factor β_k tends to remain close to unity during transience and hence the *convergence speed* of the improved algorithm tends to be similar to that of the known algorithm.
- At steady state, the step size β_k approaches zero and, consequently, a *reduced steady-state misalignment* is achieved.
- Since an update is performed only if the threshold the a priori error exceeds threshold γ, a significant reduction in the number updates, and hence in the amount of computation, is achieved.

Learning curves for a system identification problem in a stationary environment:

Improved LMS-Newton Algorithms · ·

3

Victoria

Learning curves for a system identification problem in a nonstationary environment:

Improved LMS-Newton Algorithms · ·

3

/ictoria

▶ Learning curves for a system identification problem in a stationary environment (reduction factor in known algorithm q = 0.34):

Md. Z. A. Bhotto and A. Antoniou

Improved LMS-Newton Algorithms · · ·

Victoria

 Learning curves for a system identification problem in a nonstationary environment (reduction factor in known algorithm q = 0.34):

Slide # 17/23

Md. Z. A. Bhotto and A. Antoniou

Steady-state misalignment in a stationary environment:

SNR	Algorithm I	MSE in dB with data length, N		
		1000	5000	10000
20 dB	Known	-16.50	-16.48	-16.44
	Modified	-18.60	-19.20	-19.26
	Difference	2.10	2.72	2.82
30 dB	Known	-26.54	-26.46	-26.44
	Modified	-28.54	-29.20	-29.10
	Difference	2.00	2.74	2.66
40 dB	Known	-36.51	-36.54	-36.51
	Modified	-38.61	-39.17	-39.20
	Difference	2.10	2.63	2.69

Slide # 18/23

< □ > < □ > < □ > < ≥ > < ≥ > < ≥ > ≥
 Improved LMS-Newton Algorithms ····

Steady-state misalignment in nonstationary environment:

SNR	Algorithm I	MSE in dB with data length, N		
		1000	5000	10000
20 dB	Known	-16.55	-16.64	-16.58
	Modified	-18.71	-18.67	-18.50
	Difference	2.16	2.03	1.92
30 dB	Known	-26.39	-26.47	-26.49
	Modified	-28.65	-28.55	-28.62
	Difference	2.26	2.08	2.13
40 dB	Known	-36.49	-36.40	-36.55
	Modified	-38.63	-38.58	-38.59
	Difference	2.14	2.18	2.04

Slide # 19/23

Improved LMS-Newton Algorithms · · ·

(신문) (신문)

< 🗇 🕨

Simulation Results – Algorithm II

Similar simulation results to those presented have been obtained for modified Algorithm II and are presented in the paper.

Slide # 20/23

Simulation Results - Number of Updates Cont'd

▶ Updates required in 1000 iterations:

Exp.	Algorithm	Weight updates	Reduction, %
1	I	210	79
2	11	190	81
3	I	309	69
4	II	274	72
5	I	222	77
6	П	198	80

University of Victoria

Slide # 21/23

Improved LMS-Newton Algorithms · · ·

A ■

물어 귀절어

 Improved versions of the LMSN algorithms proposed by Diniz et al. have been proposed.

Slide # 22/23

- Improved versions of the LMSN algorithms proposed by Diniz et al. have been proposed.
- They yield a reduced steady-state misalignment relative to that in the known LMSN algorithms while requiring a similar number of iterations to converge in stationary as well as nonstationary environments.

- Improved versions of the LMSN algorithms proposed by Diniz et al. have been proposed.
- They yield a reduced steady-state misalignment relative to that in the known LMSN algorithms while requiring a similar number of iterations to converge in stationary as well as nonstationary environments.
- Using a reduction factor q = 0.34 in the known algorithms, the modified algorithms require a reduced number of iterations to converged while achieving approximately the same misalignment as the known algorithms.

- Improved versions of the LMSN algorithms proposed by Diniz et al. have been proposed.
- They yield a reduced steady-state misalignment relative to that in the known LMSN algorithms while requiring a similar number of iterations to converge in stationary as well as nonstationary environments.
- Using a reduction factor q = 0.34 in the known algorithms, the modified algorithms require a reduced number of iterations to converged while achieving approximately the same misalignment as the known algorithms.
- ► The modified algorithms require a reduced number of updates of the order of 70% or more, which would lead to a *significant* reduction in the computational effort.

Thank you for your attention. Any questions?