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Adaptation Algorithms

� Usually adaptation algorithms use the a posteriori error, εk , at
iteration k given by

ek = dk − wT
k xk

to adjust the weight vector wk using the input signal vector xk and
desired signal dk .

+

Adaptation
algorithm

xk ek

dk

wk
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Known LMS-Newton Adaptation Algorithms

� The basic LMS-Newton algorithm (Farhang-Boroujeny and Gazor,
IEE Proc., 1991) solves the optimization problem

minimize E
[
(dk − wT

k xk)
2
]

wk

by using the update equations

zk =
1 − α

α
+ xT

k R̂−1
k−1xk

wk = wk−1 +
2μ

α

ek R̂
−1
k−1xk

zk

R̂−1
k =

1

1 − α

(
R̂−1

k−1 −
R̂−1

k−1xkxT
k R̂−1

k−1

zk

)

where ek = dk − wT
k−1xk is the a priori error at iteration k , R̂−1

k is
an estimate of the inverse of the input-signal autocorrelation matrix,
μ is the step size, and α is the convergence factor.
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Known LMS-Newton Adaptation Algorithms Cont’d

+

LMS-Newton
algorithm

xk ek

dk

wk

Slide # 5/23 Md. Z. A. Bhotto and A. Antoniou Improved LMS-Newton Algorithms · · ·



Known LMS-Newton Adaptation Algorithms

� Two specific LMS-Newton adaptation algorithms, referred to
as Algorithms I and II , were described by Diniz, de Campos,
and Antoniou in IEEE Transactions on Signal Processing in
1995.
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Algorithm I of Diniz et al.

� Algorithm I uses a variable convergence factor

αk =
1

1 + (2b − 1)xT
k R̂−1

k−1xk

and fixed step size μk = bαk where b > 0.5 in the basic
LMS-Newton algorithm.
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Algorithm I of Diniz et al.

� Algorithm I uses a variable convergence factor

αk =
1

1 + (2b − 1)xT
k R̂−1

k−1xk

and fixed step size μk = bαk where b > 0.5 in the basic
LMS-Newton algorithm.

� The update equations are:

zk = 2bxT
k R̂−1

k−1xk

wk = wk−1 + 2μkek R̂−1
k−1xk

R̂−1
k =

1 + (1 − 0.5/b)zk

(1 − 0.5/b)zk

(
R̂−1

k−1 −
R̂−1

k−1xkx
T
k R̂−1

k−1

zk

)

Slide # 7/23 Md. Z. A. Bhotto and A. Antoniou Improved LMS-Newton Algorithms · · ·



Algorithm II of Diniz et al.

� Algorithm II uses a variable step size μk

μk =
1

2xT
k R̂−1

k−1xk

and a fixed convergence factor α in the basic LMS-Newton
algorithm.
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Algorithm II of Diniz et al.

� Algorithm II uses a variable step size μk

μk =
1

2xT
k R̂−1

k−1xk

and a fixed convergence factor α in the basic LMS-Newton
algorithm.

� The update equations assume the form:

zk =
1 − α

α
+ xT

k R̂−1
k−1xk

wk = wk−1 + 2μkek R̂−1
k−1xk

R̂−1
k =

1

1 − α

(
R̂−1

k−1 −
R̂−1

k−1xkx
T
k R̂−1

k−1

zk

)
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Algorithm I Versus Algorithm II

� Algorithm I is preferred if the input signal statistics (mean, variance)
are not known a priori.
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Algorithm I Versus Algorithm II

� Algorithm I is preferred if the input signal statistics (mean, variance)
are not known a priori.

� Otherwise, Algorithm II is preferred.

� In Algorithms I and II, a reduction factor, q, can be introduced by
modifying the update equation as

wk = wk−1 + 2qμkek R̂
−1
k−1xk

By using q = 1, fast convergence can be achieved.
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Algorithm I Versus Algorithm II

� Algorithm I is preferred if the input signal statistics (mean, variance)
are not known a priori.

� Otherwise, Algorithm II is preferred.

� In Algorithms I and II, a reduction factor, q, can be introduced by
modifying the update equation as

wk = wk−1 + 2qμkek R̂
−1
k−1xk

By using q = 1, fast convergence can be achieved.

On the other hand, by using a suitable value of q less than one,
minimum misalignment can be achieved.
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Modified LMS-Newton Adaptation Algorithms I and II

� The proposed two LMS-Newton algorithms are essentially modified
versions of Algorithms I and II reported by Diniz et al.

Slide # 10/23 Md. Z. A. Bhotto and A. Antoniou Improved LMS-Newton Algorithms · · ·



Modified LMS-Newton Adaptation Algorithms I and II

� The proposed two LMS-Newton algorithms are essentially modified
versions of Algorithms I and II reported by Diniz et al.

� In these algorithms, we use the step size that solves the
optimization problem

μk =

{
argmin

(|dk − xT
k wk | − γ

)
if |ek | > γ

μk

0 otherwise

where ek is the a priori error at iteration k and γ is a prespecified
error bound.

Slide # 10/23 Md. Z. A. Bhotto and A. Antoniou Improved LMS-Newton Algorithms · · ·



Modified LMS-Newton Adaptation Algorithms I and II

� The proposed two LMS-Newton algorithms are essentially modified
versions of Algorithms I and II reported by Diniz et al.

� In these algorithms, we use the step size that solves the
optimization problem

μk =

{
argmin

(|dk − xT
k wk | − γ

)
if |ek | > γ

μk

0 otherwise

where ek is the a priori error at iteration k and γ is a prespecified
error bound.

� The required μk can be deduced as μk = βk

2xT
k R̂−1

k−1xk

where βk =

⎧⎨
⎩

1 − γ

|ek | if |ek | > γ

0 otherwise
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Modified Algorithms I and II Cont’d

� The step size μk forces the equality |ek | = γ whenever the
magnitude of the a priori error at iteration k assumes a value
greater than γ.
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Modified Algorithms I and II Cont’d

� The step size μk forces the equality |ek | = γ whenever the
magnitude of the a priori error at iteration k assumes a value
greater than γ.

� The update equations of improved Algorithm I are:

zk = 2bxT
k R̂−1

k−1xk

wk = wk−1 + 2μkek R̂−1
k−1xk with μk =

βk

2xT
k R̂−1

k−1xk

R̂−1
k =

1 + (1 − 0.5/b)zk

(1 − 0.5/b)zk

(
R̂−1

k−1 −
R̂−1

k−1xkx
T
k R̂−1

k−1

zk

)
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Modified Algorithms I and II Cont’d

� The update equations of improved LMS-Newton Algorithm II are:

zk =
1 − α

α
+ xT

k R̂−1
k−1xk

wk = wk−1 + 2μkek R̂
−1
k−1xk with μk =

βk

2xT
k R̂−1

k−1xk

R̂−1
k =

1

1 − α

(
R̂−1

k−1 −
R̂−1

k−1xkxT
k R̂−1

k−1

zk

)
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Modified Algorithms I and II Cont’d

� The update equations of improved LMS-Newton Algorithm II are:

zk =
1 − α

α
+ xT

k R̂−1
k−1xk

wk = wk−1 + 2μkek R̂
−1
k−1xk with μk =

βk

2xT
k R̂−1

k−1xk

R̂−1
k =

1

1 − α

(
R̂−1

k−1 −
R̂−1

k−1xkxT
k R̂−1

k−1

zk

)

� Since 0 ≤ βk < 1, βk acts as a variable reduction factor and,
therefore, a reduced steady-state misalignment would be obtained
without reducing the convergence speed.
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Modified Algorithms I and II Cont’d

� The reduction factor βk tends to remain close to unity during
transience and hence the convergence speed of the improved
algorithm tends to be similar to that of the known algorithm.
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� The reduction factor βk tends to remain close to unity during
transience and hence the convergence speed of the improved
algorithm tends to be similar to that of the known algorithm.

� At steady state, the step size βk approaches zero and,
consequently, a reduced steady-state misalignment is achieved.
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Modified Algorithms I and II Cont’d

� The reduction factor βk tends to remain close to unity during
transience and hence the convergence speed of the improved
algorithm tends to be similar to that of the known algorithm.

� At steady state, the step size βk approaches zero and,
consequently, a reduced steady-state misalignment is achieved.

� Since an update is performed only if the threshold the a priori
error exceeds threshold γ, a significant reduction in the
number updates, and hence in the amount of computation, is
achieved.
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Simulation Results – Algorithm I

� Learning curves for a system identification problem in a
stationary environment:

0 200 400 600 800 1000

−40

−30

−20

−10

0

10
M

SE
, d

B

Number of iterations

 

 
Known LMSN
Modif. LMSN

Slide # 14/23 Md. Z. A. Bhotto and A. Antoniou Improved LMS-Newton Algorithms · · ·



Simulation Results – Algorithm I Cont’d

� Learning curves for a system identification problem in a
nonstationary environment:
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Simulation Results – Algorithm I Cont’d

� Learning curves for a system identification problem in a stationary
environment (reduction factor in known algorithm q = 0.34):

0 200 400 600 800 1000

−40

−30

−20

−10

0

10

20
M

SE
, d

B

Number of iterations

 

 
Known LMSN
Modif. LMSN

Slide # 16/23 Md. Z. A. Bhotto and A. Antoniou Improved LMS-Newton Algorithms · · ·



Simulation Results – Algorithm I Cont’d

� Learning curves for a system identification problem in a
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Simulation Results – Algorithm I Cont’d

� Steady-state misalignment in a stationary environment:

MSE in dB with data length, N
SNR Algorithm I

1000 5000 10000

Known −16.50 −16.48 −16.44
20 dB Modified −18.60 −19.20 −19.26

Difference 2.10 2.72 2.82

Known −26.54 −26.46 −26.44
30 dB Modified −28.54 −29.20 −29.10

Difference 2.00 2.74 2.66

Known −36.51 −36.54 −36.51
40 dB Modified −38.61 −39.17 −39.20

Difference 2.10 2.63 2.69
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Simulation Results – Algorithm I Cont’d

� Steady-state misalignment in nonstationary environment:

MSE in dB with data length, N
SNR Algorithm I

1000 5000 10000

Known −16.55 −16.64 −16.58
20 dB Modified −18.71 −18.67 −18.50

Difference 2.16 2.03 1.92

Known −26.39 −26.47 −26.49
30 dB Modified −28.65 −28.55 −28.62

Difference 2.26 2.08 2.13

Known −36.49 −36.40 −36.55
40 dB Modified −38.63 −38.58 −38.59

Difference 2.14 2.18 2.04
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Simulation Results – Algorithm II

� Similar simulation results to those presented have been
obtained for modified Algorithm II and are presented in the
paper.
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Simulation Results – Number of Updates Cont’d

� Updates required in 1000 iterations:

Exp. Algorithm Weight updates Reduction, %
1 I 210 79
2 II 190 81
3 I 309 69
4 II 274 72
5 I 222 77
6 II 198 80
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Conclusions

� Improved versions of the LMSN algorithms proposed by Diniz
et al. have been proposed.

Slide # 22/23 Md. Z. A. Bhotto and A. Antoniou Improved LMS-Newton Algorithms · · ·



Conclusions

� Improved versions of the LMSN algorithms proposed by Diniz
et al. have been proposed.

� They yield a reduced steady-state misalignment relative to
that in the known LMSN algorithms while requiring a similar
number of iterations to converge in stationary as well as
nonstationary environments.
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� Improved versions of the LMSN algorithms proposed by Diniz
et al. have been proposed.

� They yield a reduced steady-state misalignment relative to
that in the known LMSN algorithms while requiring a similar
number of iterations to converge in stationary as well as
nonstationary environments.

� Using a reduction factor q = 0.34 in the known algorithms,
the modified algorithms require a reduced number of
iterations to converged while achieving approximately the
same misalignment as the known algorithms.
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Conclusions

� Improved versions of the LMSN algorithms proposed by Diniz
et al. have been proposed.

� They yield a reduced steady-state misalignment relative to
that in the known LMSN algorithms while requiring a similar
number of iterations to converge in stationary as well as
nonstationary environments.

� Using a reduction factor q = 0.34 in the known algorithms,
the modified algorithms require a reduced number of
iterations to converged while achieving approximately the
same misalignment as the known algorithms.

� The modified algorithms require a reduced number of updates
of the order of 70% or more, which would lead to a significant
reduction in the computational effort.
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Thank you for your attention.

Any questions?
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