Robust Signal Recovery Approach for Compressive Sensing Using Unconstrained Optimization

F. C. A. Teixeira, S. W. A. Bergen, and A. Antoniou

Dept. of Elec. and Comp. Eng. University of Victoria Victoria, BC, Canada

2010 IEEE International Symposium on Circuits and Systems

IEEE ISCAS 2010

Compressive Sensing

- Wavelet basis and sparse representations
- Sensing problem and incoherent sampling
- Robust signal recovery

Compressive Sensing

- Wavelet basis and sparse representations
- Sensing problem and incoherent sampling
- Robust signal recovery

Sparsity Promoting Functions

- The ℓ_1 norm and beyond
- The smoothly clipped absolute deviation

- Wavelet basis and sparse representations
- Sensing problem and incoherent sampling
- Robust signal recovery
- Sparsity Promoting Functions
 - The ℓ_1 norm and beyond
 - The smoothly clipped absolute deviation
- Proposed Approach for Robust Recovery

- Wavelet basis and sparse representations
- Sensing problem and incoherent sampling
- Robust signal recovery
- Sparsity Promoting Functions
 - The ℓ_1 norm and beyond
 - The smoothly clipped absolute deviation
- 3 Proposed Approach for Robust Recovery
- 4 Numerical Simulations

of Victoria

- Wavelet basis and sparse representations
- Sensing problem and incoherent sampling
- Robust signal recovery
- Sparsity Promoting Functions
 - The ℓ_1 norm and beyond
 - The smoothly clipped absolute deviation
- 3 Proposed Approach for Robust Recovery
- 4 Numerical Simulations
- 5 Conclusions

of Victoria

• Compressive sensing (CS) refers to the process of representing a large signal by a small number of *sparse* linear measurements.

- Compressive sensing (CS) refers to the process of representing a large signal by a small number of *sparse* linear measurements.
- CS exploits the signal's sparsity or *compressibility* of its transform coefficients to achieve a compact signal representation.

- Compressive sensing (CS) refers to the process of representing a large signal by a small number of *sparse* linear measurements.
- CS exploits the signal's sparsity or *compressibility* of its transform coefficients to achieve a compact signal representation.
- The price that must be paid for compact signal representation is a *nontrivial recovery process*, i.e., finding a sparse solution to an underdetermined system of equations.

- Compressive sensing (CS) refers to the process of representing a large signal by a small number of *sparse* linear measurements.
- CS exploits the signal's sparsity or *compressibility* of its transform coefficients to achieve a compact signal representation.
- The price that must be paid for compact signal representation is a *nontrivial recovery process*, i.e., finding a sparse solution to an underdetermined system of equations.
- CS finds many application, e.g.,

3 / 19

IEEE ISCAS 2010

- Compressive sensing (CS) refers to the process of representing a large signal by a small number of *sparse* linear measurements.
- CS exploits the signal's sparsity or *compressibility* of its transform coefficients to achieve a compact signal representation.
- The price that must be paid for compact signal representation is a *nontrivial recovery process*, i.e., finding a sparse solution to an underdetermined system of equations.
- CS finds many application, e.g.,
 - Data compression.

- Compressive sensing (CS) refers to the process of representing a large signal by a small number of *sparse* linear measurements.
- CS exploits the signal's sparsity or *compressibility* of its transform coefficients to achieve a compact signal representation.
- The price that must be paid for compact signal representation is a *nontrivial recovery process*, i.e., finding a sparse solution to an underdetermined system of equations.
- CS finds many application, e.g.,
 - Data compression.
 - Medical imaging.

of Victoria

- Compressive sensing (CS) refers to the process of representing a large signal by a small number of *sparse* linear measurements.
- CS exploits the signal's sparsity or *compressibility* of its transform coefficients to achieve a compact signal representation.
- The price that must be paid for compact signal representation is a *nontrivial recovery process*, i.e., finding a sparse solution to an underdetermined system of equations.
- CS finds many application, e.g.,
 - Data compression.
 - Medical imaging.
 - Channel coding.

• The robust recovery process is carried out by *minimizing* a term that penalizes in the least-square sense the unknown noise signal plus another regularization term that promotes a sparse solution.

- The robust recovery process is carried out by *minimizing* a term that penalizes in the least-square sense the unknown noise signal plus another regularization term that promotes a sparse solution.
- Widely used methods usually promote *sparsity* by means of the l₁ norm:

4 / 19

IEEE ISCAS 2010

- The robust recovery process is carried out by *minimizing* a term that penalizes in the least-square sense the unknown noise signal plus another regularization term that promotes a sparse solution.
- Widely used methods usually promote *sparsity* by means of the ℓ_1 norm:
 - ℓ_1 -Magic suite of algorithms.

4 / 19

IEEE ISCAS 2010

- The robust recovery process is carried out by *minimizing* a term that penalizes in the least-square sense the unknown noise signal plus another regularization term that promotes a sparse solution.
- Widely used methods usually promote *sparsity* by means of the ℓ_1 norm:
 - ℓ_1 -Magic suite of algorithms.
 - Gradient projection for sparse reconstruction (GSPR).

• Sparsity promoting functions such as the ℓ_0 norm can outperform the ℓ_1 norm.

- Sparsity promoting functions such as the ℓ_0 norm can *outperform* the ℓ_1 norm.
- However, the ℓ_0 norm is generally of *little practical* use because its computation is *intractable*.

- Sparsity promoting functions such as the ℓ_0 norm can *outperform* the ℓ_1 norm.
- However, the ℓ_0 norm is generally of *little practical* use because its computation is *intractable*.
- We propose a robust signal recovery approach for compressive sensing using unconstrained optimization.

- Sparsity promoting functions such as the ℓ_0 norm can *outperform* the ℓ_1 norm.
- However, the ℓ_0 norm is generally of *little practical* use because its computation is *intractable*.
- We propose a robust signal recovery approach for compressive sensing using unconstrained optimization.
- We employ a convex and differentiable quadratic approximation of the smoothly clipped absolute deviation (SCAD) as the sparsity promoting function.

Victoria

• Wavelets are commonly used as the representation basis in CS.

- Wavelets are commonly used as the representation basis in CS.
- They offer *sparse* representations of discrete signals.

- Wavelets are commonly used as the representation basis in CS.
- They offer *sparse* representations of discrete signals.
- ${\ensuremath{\,\circ}}$ The wavelet expansion of the discrete signal f can be expressed by

- Wavelets are commonly used as the representation basis in CS.
- They offer *sparse* representations of discrete signals.
- ${\ensuremath{\,\circ\,}}$ The wavelet expansion of the discrete signal f can be expressed by

 $\mathsf{a} = \Psi^\mathsf{T} \mathsf{f}$

- Wavelets are commonly used as the representation basis in CS.
- They offer *sparse* representations of discrete signals.
- ${\ensuremath{\, \circ }}$ The wavelet expansion of the discrete signal f can be expressed by

$\mathbf{a} = \Psi^{\mathsf{T}} \mathbf{f}$

- Ψ is the $\mathcal{N} \times \mathcal{N}$ wavelet matrix formed by setting ψ_i as the *i*th column of Ψ .

- Wavelets are commonly used as the representation basis in CS.
- They offer *sparse* representations of discrete signals.
- ${\ensuremath{\,\circ}}$ The wavelet expansion of the discrete signal f can be expressed by

$\mathbf{a} = \Psi^{\mathsf{T}} \mathbf{f}$

- Ψ is the $\mathcal{N} \times \mathcal{N}$ wavelet matrix formed by setting ψ_i as the *i*th column of Ψ .
- The set $\{\psi_i : i = 1, 2, \dots, N\}$ is the collection of orthonormal wavelet bases.

6 / 19

IEEE ISCAS 2010

- Wavelets are commonly used as the representation basis in CS.
- They offer *sparse* representations of discrete signals.
- ${\ensuremath{\,\circ}}$ The wavelet expansion of the discrete signal f can be expressed by

 $\mathbf{a} = \Psi^{\mathsf{T}} \mathbf{f}$

- Ψ is the $\mathcal{N} \times \mathcal{N}$ wavelet matrix formed by setting ψ_i as the *i*th column of Ψ .
- The set $\{\psi_i : i = 1, 2, \dots, N\}$ is the collection of orthonormal wavelet bases.
- The signal's transform coefficient vector $\mathbf{a} = \begin{bmatrix} a_1 & a_2 & \cdots & a_N \end{bmatrix}$ is obtained by computing inner products $a_i = \langle \mathbf{f}, \psi_i \rangle$.

- Wavelets are commonly used as the representation basis in CS.
- They offer *sparse* representations of discrete signals.
- ${\ensuremath{\,\circ}}$ The wavelet expansion of the discrete signal f can be expressed by

 $\mathbf{a} = \boldsymbol{\Psi}^\mathsf{T} \mathbf{f}$

- Ψ is the $\mathcal{N} \times \mathcal{N}$ wavelet matrix formed by setting ψ_i as the *i*th column of Ψ .
- The set $\{\psi_i : i = 1, 2, \dots, N\}$ is the collection of orthonormal wavelet bases.
- The signal's transform coefficient vector $\mathbf{a} = \begin{bmatrix} a_1 & a_2 & \cdots & a_N \end{bmatrix}$ is obtained by computing inner products $a_i = \langle \mathbf{f}, \psi_i \rangle$.
- The coefficient vector **a** is assumed to be sparse in the sense that it has only *S* nonzero values and *S* < *N*.

University of Victoria

 In CS, we obtain a set of linear measurements of the coefficient vector a instead of directly measuring f (as in ordinary sampling).

- In CS, we obtain a set of linear measurements of the coefficient vector a instead of directly measuring f (as in ordinary sampling).
- The $\mathcal{Q} \times \mathcal{N}$ sensing matrix Θ is given by

- In CS, we obtain a set of linear measurements of the coefficient vector a instead of directly measuring f (as in ordinary sampling).
- The $\mathcal{Q} \times \mathcal{N}$ sensing matrix Θ is given by

$$\boldsymbol{\Theta} = \begin{bmatrix} \boldsymbol{ heta}_1 & \boldsymbol{ heta}_2 & \cdots & \boldsymbol{ heta}_\mathcal{N} \end{bmatrix}$$

- In CS, we obtain a set of linear measurements of the coefficient vector a instead of directly measuring f (as in ordinary sampling).
- The $\mathcal{Q} \times \mathcal{N}$ sensing matrix Θ is given by

$$\boldsymbol{\Theta} = egin{bmatrix} \boldsymbol{ heta}_1 & \boldsymbol{ heta}_2 & \cdots & \boldsymbol{ heta}_\mathcal{N} \end{bmatrix}$$

- Sensing vector is $\boldsymbol{\theta}_k = \begin{bmatrix} \theta_1 & \theta_2 & \cdots & \theta_{\mathcal{Q}} \end{bmatrix}^{T}$.

- In CS, we obtain a set of linear measurements of the coefficient vector a instead of directly measuring f (as in ordinary sampling).
- The $\mathcal{Q} \times \mathcal{N}$ sensing matrix Θ is given by

$$\boldsymbol{\Theta} = egin{bmatrix} \boldsymbol{ heta}_1 & \boldsymbol{ heta}_2 & \cdots & \boldsymbol{ heta}_\mathcal{N} \end{bmatrix}$$

- Sensing vector is $\boldsymbol{\theta}_k = \begin{bmatrix} \theta_1 & \theta_2 & \cdots & \theta_{\mathcal{Q}} \end{bmatrix}^T$.
- In the CS theory, θ_k is usually a *Gaussian vector* with independent standard normal entries.

- In CS, we obtain a set of linear measurements of the coefficient vector a instead of directly measuring f (as in ordinary sampling).
- The $\mathcal{Q} \times \mathcal{N}$ sensing matrix Θ is given by

$$\boldsymbol{\Theta} = \begin{bmatrix} \boldsymbol{ heta}_1 & \boldsymbol{ heta}_2 & \cdots & \boldsymbol{ heta}_\mathcal{N} \end{bmatrix}$$

- Sensing vector is $\boldsymbol{\theta}_k = \begin{bmatrix} \theta_1 & \theta_2 & \cdots & \theta_{\mathcal{Q}} \end{bmatrix}^{T}$.
- In the CS theory, θ_k is usually a *Gaussian vector* with independent standard normal entries.
- The combination of Θ and Ψ define a *near-optimal acquisition* scheme, i.e., U_{CS} = ΘΨ^T.

- In CS, we obtain a set of linear measurements of the coefficient vector a instead of directly measuring f (as in ordinary sampling).
- The $\mathcal{Q} \times \mathcal{N}$ sensing matrix Θ is given by

$$\boldsymbol{\Theta} = \begin{bmatrix} \boldsymbol{ heta}_1 & \boldsymbol{ heta}_2 & \cdots & \boldsymbol{ heta}_\mathcal{N} \end{bmatrix}$$

- Sensing vector is $\boldsymbol{\theta}_k = \begin{bmatrix} \theta_1 & \theta_2 & \cdots & \theta_Q \end{bmatrix}^T$.
- In the CS theory, θ_k is usually a *Gaussian vector* with independent standard normal entries.
- The combination of Θ and Ψ define a *near-optimal acquisition scheme*, i.e., $U_{CS} = \Theta \Psi^{T}$.
- $\bullet\,$ The ${\cal Q}$ linear measurements are the components of vector ${\boldsymbol b}$ given by

Incoherent Sampling

- In CS, we obtain a set of linear measurements of the coefficient vector a instead of directly measuring f (as in ordinary sampling).
- The $\mathcal{Q} \times \mathcal{N}$ sensing matrix Θ is given by

$$\boldsymbol{\Theta} = \begin{bmatrix} \boldsymbol{ heta}_1 & \boldsymbol{ heta}_2 & \cdots & \boldsymbol{ heta}_\mathcal{N} \end{bmatrix}$$

- Sensing vector is $\boldsymbol{\theta}_k = \begin{bmatrix} \theta_1 & \theta_2 & \cdots & \theta_Q \end{bmatrix}^T$.
- In the CS theory, θ_k is usually a *Gaussian vector* with independent standard normal entries.
- The combination of Θ and Ψ define a *near-optimal acquisition scheme*, i.e., $U_{CS} = \Theta \Psi^{T}$.
- $\bullet\,$ The ${\cal Q}$ linear measurements are the components of vector ${\boldsymbol b}$ given by

 $\mathbf{b} = U_{CS}(\mathbf{f})$

IEEE ISCAS 2010

Incoherent Sampling

- In CS, we obtain a set of linear measurements of the coefficient vector a instead of directly measuring f (as in ordinary sampling).
- The $\mathcal{Q} \times \mathcal{N}$ sensing matrix Θ is given by

$$\boldsymbol{\Theta} = \begin{bmatrix} \boldsymbol{ heta}_1 & \boldsymbol{ heta}_2 & \cdots & \boldsymbol{ heta}_\mathcal{N} \end{bmatrix}$$

- Sensing vector is $\boldsymbol{\theta}_k = \begin{bmatrix} \theta_1 & \theta_2 & \cdots & \theta_{\mathcal{Q}} \end{bmatrix}^T$.
- In the CS theory, θ_k is usually a *Gaussian vector* with independent standard normal entries.
- The combination of Θ and Ψ define a *near-optimal acquisition scheme*, i.e., $U_{CS} = \Theta \Psi^{T}$.
- $\bullet\,$ The ${\cal Q}$ linear measurements are the components of vector ${\boldsymbol b}$ given by

$$\mathbf{b} = U_{CS}(\mathbf{f})$$

• The incoherence $\mu(\Theta, \Psi)$ is *low*.

IEEE ISCAS 2010

$$ilde{\mathbf{b}} = \mathsf{U}_{\mathsf{CS}}(\mathbf{f}) + \mathbf{e}$$

$$\tilde{\mathbf{b}} = \mathsf{U}_{\mathsf{CS}}(\mathbf{f}) + \mathbf{e}$$

- Vector **e** is some unknown bounded perturbation such that $||\mathbf{e}||_{\ell_2} \leq \epsilon$ where ϵ is a small positive constant.

 $\tilde{\bm{b}} = \bm{U}_{\mathsf{CS}}(\bm{f}) + \bm{e}$

- Vector **e** is some unknown bounded perturbation such that $||\mathbf{e}||_{\ell_2} \leq \epsilon$ where ϵ is a small positive constant.
- The process of recovering **f** is *challenging* because the available information is severely incomplete and the few available observations are also inaccurate.

 $\tilde{\bm{b}} = {\sf U}_{\sf CS}(\bm{f}) + \bm{e}$

- Vector **e** is some unknown bounded perturbation such that $||\mathbf{e}||_{\ell_2} \leq \epsilon$ where ϵ is a small positive constant.
- The process of recovering **f** is *challenging* because the available information is severely incomplete and the few available observations are also inaccurate.
- It has been shown by Candès et al. that we can *recover* **f** with an error that is at most proportional to the noise level by using the recovery process

 $\tilde{\mathbf{b}} = \mathsf{U}_{\mathsf{CS}}(\mathbf{f}) + \mathbf{e}$

- Vector **e** is some unknown bounded perturbation such that $||\mathbf{e}||_{\ell_2} \leq \epsilon$ where ϵ is a small positive constant.
- The process of recovering **f** is *challenging* because the available information is severely incomplete and the few available observations are also inaccurate.
- It has been shown by Candès et al. that we can *recover* **f** with an error that is at most proportional to the noise level by using the recovery process

 $\underset{\boldsymbol{f}}{\mathsf{minimize}} \quad || \boldsymbol{\Psi}^{\mathcal{T}} \boldsymbol{\mathsf{f}} ||_{\ell_1} \quad \mathsf{subject to} \quad || \boldsymbol{\tilde{\mathsf{b}}} - \mathsf{U}_{\mathsf{CS}}(\boldsymbol{\mathsf{f}}) ||_{\ell_2} \leq \epsilon$

• The ℓ_1 norm plays an important role in CS theory as it is a well known *sparsity-promoting function*.

- The ℓ_1 norm plays an important role in CS theory as it is a well known *sparsity-promoting function*.
- Other types of sparsity-promoting functions are now under active investigation.

- The ℓ_1 norm plays an important role in CS theory as it is a well known *sparsity-promoting function*.
- Other types of sparsity-promoting functions are now under active investigation.
- The ℓ_p norm, given by $||\mathbf{a}||_{\ell_p} = (|a_1|^p + |a_2|^p + \cdots + |a_N|^p)^{\frac{1}{p}}$ gives the number of nonzero entries in \mathbf{a} when p = 0.

- The ℓ_1 norm plays an important role in CS theory as it is a well known *sparsity-promoting function*.
- Other types of sparsity-promoting functions are now under active investigation.
- The ℓ_p norm, given by $||\mathbf{a}||_{\ell_p} = (|a_1|^p + |a_2|^p + \dots + |a_N|^p)^{\frac{1}{p}}$ gives the number of nonzero entries in \mathbf{a} when p = 0.
- We would then be inclined to replace the ℓ_1 by the ℓ_0 norm in robust signal recovery process.

- The ℓ_1 norm plays an important role in CS theory as it is a well known *sparsity-promoting function*.
- Other types of sparsity-promoting functions are now under active investigation.
- The ℓ_p norm, given by $||\mathbf{a}||_{\ell_p} = (|a_1|^p + |a_2|^p + \dots + |a_N|^p)^{\frac{1}{p}}$ gives the number of nonzero entries in \mathbf{a} when p = 0.
- We would then be inclined to replace the ℓ_1 by the ℓ_0 norm in robust signal recovery process.
- The solution of the new optimization problem could recover sparse solutions with *much fewer* measurements *Q*.

- The ℓ_1 norm plays an important role in CS theory as it is a well known *sparsity-promoting function*.
- Other types of sparsity-promoting functions are now under active investigation.
- The ℓ_p norm, given by $||\mathbf{a}||_{\ell_p} = (|a_1|^p + |a_2|^p + \dots + |a_N|^p)^{\frac{1}{p}}$ gives the number of nonzero entries in \mathbf{a} when p = 0.
- We would then be inclined to replace the ℓ_1 by the ℓ_0 norm in robust signal recovery process.
- The solution of the new optimization problem could recover sparse solutions with *much fewer* measurements *Q*.
- This is of little practical use as the optimization problem becomes nonconvex requiring an intractable combinatorial search.

Jniversity of Victoria

• An interesting *alternative* to the ℓ_0 norm as a sparsity-promoting function is the *SCAD*.

- An interesting *alternative* to the ℓ_0 norm as a sparsity-promoting function is the *SCAD*.
- In the statistical estimation literature, Fan and Li used the function for model selection.

- An interesting *alternative* to the ℓ_0 norm as a sparsity-promoting function is the *SCAD*.
- In the statistical estimation literature, Fan and Li used the function for model selection.
- The SCAD penalty function can be defined as

- An interesting *alternative* to the ℓ_0 norm as a sparsity-promoting function is the *SCAD*.
- In the statistical estimation literature, Fan and Li used the function for model selection.
- The SCAD penalty function can be defined as

$$\mathcal{P}_{\lambda}(\mathbf{a}) = \sum_{i=1}^{\mathcal{N}}
ho(a_i), \qquad
ho(a_i) = egin{cases} \lambda |a_i|, & |a_i| \leq \lambda \ -rac{a_i^2 - 2c\lambda |a_i| + \lambda^2}{2(c-1)}, & \lambda < |a_i| \leq a\lambda \ (c+1)\lambda^2/2, & |a_i| > a\lambda \end{cases}$$

- An interesting *alternative* to the ℓ_0 norm as a sparsity-promoting function is the *SCAD*.
- In the statistical estimation literature, Fan and Li used the function for model selection.
- The SCAD penalty function can be defined as

$$\mathcal{P}_{\lambda}(\mathbf{a}) = \sum_{i=1}^{\mathcal{N}}
ho(a_i), \qquad
ho(a_i) = egin{cases} \lambda |a_i|, & |a_i| \leq \lambda \ -rac{a_i^2 - 2c\lambda |a_i| + \lambda^2}{2(c-1)}, & \lambda < |a_i| \leq a\lambda \ (c+1)\lambda^2/2, & |a_i| > a\lambda \end{cases}$$

 It is used in our proposed robust recovery process for two main reasons:

- An interesting *alternative* to the ℓ_0 norm as a sparsity-promoting function is the *SCAD*.
- In the statistical estimation literature, Fan and Li used the function for model selection.
- The SCAD penalty function can be defined as

$$\mathcal{P}_{\lambda}(\mathbf{a}) = \sum_{i=1}^{\mathcal{N}}
ho(a_i), \qquad
ho(a_i) = egin{cases} \lambda |a_i|, & |a_i| \leq \lambda \ -rac{a_i^2 - 2c\lambda |a_i| + \lambda^2}{2(c-1)}, & \lambda < |a_i| \leq a\lambda \ (c+1)\lambda^2/2, & |a_i| > a\lambda \end{cases}$$

- It is used in our proposed robust recovery process for two main reasons:
 - The SCAD performs as well as the *oracle* estimator, i.e., as if the coefficients which are zero were known.

- An interesting *alternative* to the ℓ_0 norm as a sparsity-promoting function is the *SCAD*.
- In the statistical estimation literature, Fan and Li used the function for model selection.
- The SCAD penalty function can be defined as

F. Teixeira, S. Bergen, A. Antoniou (UVic)

$$\mathcal{P}_{\lambda}(\mathbf{a}) = \sum_{i=1}^{\mathcal{N}}
ho(a_i), \qquad
ho(a_i) = egin{cases} \lambda |a_i|, & |a_i| \leq \lambda \ -rac{a_i^2 - 2c\lambda |a_i| + \lambda^2}{2(c-1)}, & \lambda < |a_i| \leq a\lambda \ (c+1)\lambda^2/2, & |a_i| > a\lambda \end{cases}$$

- It is used in our proposed robust recovery process for two main reasons:
 - The SCAD performs as well as the *oracle* estimator, i.e., as if the coefficients which are zero were known.
 - Fan and Li proposed a local quadratic approximation (LQA) of the SCAD which renders the problem *computationally tractable*.

Robust Recovery Approach for CS

10 / 19

IEEE ISCAS 2010

• The original robust signal recovery form can be rewritten in its *Lagrangian form* as follows

• The original robust signal recovery form can be rewritten in its *Lagrangian form* as follows

minimize
$$\frac{1}{2} || \tilde{\mathbf{b}} - \mathbf{\Theta} \mathbf{a} ||_{\ell_2}^2 + \lambda || \mathbf{a} ||_{\ell_1}$$

• The original robust signal recovery form can be rewritten in its *Lagrangian form* as follows

$$\underset{\mathbf{a}}{\mathsf{minimize}} \ \frac{1}{2} || \tilde{\mathbf{b}} - \mathbf{\Theta} \mathbf{a} ||_{\ell_2}^2 + \lambda || \mathbf{a} ||_{\ell_1}$$

 Using the SCAD instead of the l₁ norm as the sparsity-promoting function yields the objective function

• The original robust signal recovery form can be rewritten in its *Lagrangian form* as follows

$$\underset{\mathbf{a}}{\mathsf{minimize}} \; \frac{1}{2} || \tilde{\mathbf{b}} - \mathbf{\Theta} \mathbf{a} ||_{\ell_2}^2 + \lambda || \mathbf{a} ||_{\ell_1}$$

 Using the SCAD instead of the l₁ norm as the sparsity-promoting function yields the objective function

$$\mathcal{F}(\mathbf{a}) = \frac{1}{2} ||\tilde{\mathbf{b}} - \mathbf{\Theta}\mathbf{a}||_{\ell_2}^2 + \mathcal{P}_{\lambda}(\mathbf{a}) = \frac{1}{2} ||\tilde{\mathbf{b}} - \mathbf{\Theta}\mathbf{a}||_{\ell_2}^2 + \sum_{i=1}^{N} \rho(a_i)$$

of Victoria

• The original robust signal recovery form can be rewritten in its *Lagrangian form* as follows

$$\underset{\mathbf{a}}{\mathsf{minimize}} \; \frac{1}{2} || \tilde{\mathbf{b}} - \mathbf{\Theta} \mathbf{a} ||_{\ell_2}^2 + \lambda || \mathbf{a} ||_{\ell_1}$$

 Using the SCAD instead of the l₁ norm as the sparsity-promoting function yields the objective function

$$\mathcal{F}(\mathbf{a}) = \frac{1}{2} ||\tilde{\mathbf{b}} - \mathbf{\Theta}\mathbf{a}||_{\ell_2}^2 + \mathcal{P}_{\lambda}(\mathbf{a}) = \frac{1}{2} ||\tilde{\mathbf{b}} - \mathbf{\Theta}\mathbf{a}||_{\ell_2}^2 + \sum_{i=1}^{N} \rho(a_i)$$

• $\mathcal{P}_{\lambda}(\mathbf{a})$ is nonconvex.

of Victoria

• The original robust signal recovery form can be rewritten in its *Lagrangian form* as follows

$$\underset{\mathbf{a}}{\mathsf{minimize}} \; \frac{1}{2} || \tilde{\mathbf{b}} - \mathbf{\Theta} \mathbf{a} ||_{\ell_2}^2 + \lambda || \mathbf{a} ||_{\ell_1}$$

 Using the SCAD instead of the l₁ norm as the sparsity-promoting function yields the objective function

$$\mathcal{F}(\mathbf{a}) = \frac{1}{2} ||\tilde{\mathbf{b}} - \mathbf{\Theta}\mathbf{a}||_{\ell_2}^2 + \mathcal{P}_{\lambda}(\mathbf{a}) = \frac{1}{2} ||\tilde{\mathbf{b}} - \mathbf{\Theta}\mathbf{a}||_{\ell_2}^2 + \sum_{i=1}^{N} \rho(a_i)$$

- $\mathcal{P}_{\lambda}(\mathbf{a})$ is nonconvex.
- Nonconvexity can be overcome by using an LQA of $\mathcal{P}_{\lambda}(\mathbf{a})$, e.g.,

. .

• The original robust signal recovery form can be rewritten in its *Lagrangian form* as follows

$$\underset{\mathbf{a}}{\mathsf{minimize}} \; \frac{1}{2} || \tilde{\mathbf{b}} - \mathbf{\Theta} \mathbf{a} ||_{\ell_2}^2 + \lambda || \mathbf{a} ||_{\ell_1}$$

 Using the SCAD instead of the l₁ norm as the sparsity-promoting function yields the objective function

$$\mathcal{F}(\mathbf{a}) = \frac{1}{2} ||\tilde{\mathbf{b}} - \mathbf{\Theta}\mathbf{a}||_{\ell_2}^2 + \mathcal{P}_{\lambda}(\mathbf{a}) = \frac{1}{2} ||\tilde{\mathbf{b}} - \mathbf{\Theta}\mathbf{a}||_{\ell_2}^2 + \sum_{i=1}^{N} \rho(a_i)$$

- $\mathcal{P}_{\lambda}(\mathbf{a})$ is nonconvex.
- *Nonconvexity* can be overcome by using an *LQA* of $\mathcal{P}_{\lambda}(\mathbf{a})$, e.g.,

$$\mathcal{P}_{\lambda}(\mathbf{a}^{\kappa}) pprox \sum_{i=1}^{\mathcal{N}} \left\{
ho(\mathbf{a}_{i}^{\kappa-1}) + rac{\left[(\mathbf{a}_{i}^{\kappa})^{2} - (\mathbf{a}_{i}^{\kappa-1})^{2}
ight]
ho'(\mathbf{a}_{i}^{\kappa-1})}{2|\mathbf{a}_{i}^{\kappa-1}|}
ight\}$$

• The problem of minimizing the objective function $\mathcal{F}(\mathbf{a})$ is an unconstrained nonlinear programming problem (UNLP).

- The problem of minimizing the objective function $\mathcal{F}(\mathbf{a})$ is an unconstrained nonlinear programming problem (UNLP).
- In order to solve it, we employ the *Newton method* with an *inexact line search*.

- The problem of minimizing the objective function $\mathcal{F}(\mathbf{a})$ is an unconstrained nonlinear programming problem (UNLP).
- In order to solve it, we employ the *Newton method* with an *inexact line search*.
- Closed-form expressions for the gradient $\nabla \mathcal{F}(\mathbf{a})$ and Hessian $\nabla \{\nabla^T \mathcal{F}(\mathbf{a})\}\$ of $\mathcal{F}(\mathbf{a})$ can be obtained as

- The problem of minimizing the objective function $\mathcal{F}(\mathbf{a})$ is an unconstrained nonlinear programming problem (UNLP).
- In order to solve it, we employ the *Newton method* with an *inexact line search*.
- Closed-form expressions for the gradient $\nabla \mathcal{F}(\mathbf{a})$ and Hessian $\nabla \{\nabla^T \mathcal{F}(\mathbf{a})\}\$ of $\mathcal{F}(\mathbf{a})$ can be obtained as

$$abla \mathcal{F}(\mathbf{a}) = \mathbf{\Theta}^{\mathcal{T}} \left(\mathbf{\Theta} \mathbf{a} - \mathbf{b}
ight) + \mathbf{E}_{\mathcal{P}_{\lambda}} \mathbf{a}$$

- The problem of minimizing the objective function $\mathcal{F}(\mathbf{a})$ is an unconstrained nonlinear programming problem (UNLP).
- In order to solve it, we employ the *Newton method* with an *inexact line search*.
- Closed-form expressions for the gradient $\nabla \mathcal{F}(\mathbf{a})$ and Hessian $\nabla \{\nabla^T \mathcal{F}(\mathbf{a})\}$ of $\mathcal{F}(\mathbf{a})$ can be obtained as

$$\begin{aligned} \nabla \mathcal{F}(\mathbf{a}) &= \mathbf{\Theta}^{\mathcal{T}} \left(\mathbf{\Theta} \mathbf{a} - \mathbf{b} \right) + \mathbf{E}_{\mathcal{P}_{\lambda}} \mathbf{a} \\ \nabla \left\{ \nabla^{\mathcal{T}} \mathcal{F}(\mathbf{a}) \right\} &= \mathbf{\Theta}^{\mathcal{T}} \mathbf{\Theta} + \mathbf{E}_{\mathcal{P}_{\lambda}} \end{aligned}$$

- The problem of minimizing the objective function $\mathcal{F}(\mathbf{a})$ is an unconstrained nonlinear programming problem (UNLP).
- In order to solve it, we employ the *Newton method* with an *inexact line search*.
- Closed-form expressions for the gradient $\nabla \mathcal{F}(\mathbf{a})$ and Hessian $\nabla \{\nabla^T \mathcal{F}(\mathbf{a})\}$ of $\mathcal{F}(\mathbf{a})$ can be obtained as

$$egin{aligned}
abla \mathcal{F}(\mathbf{a}) &= \mathbf{\Theta}^{\mathcal{T}} \left(\mathbf{\Theta}\mathbf{a} - \mathbf{b}
ight) + \mathbf{E}_{\mathcal{P}_{\lambda}}\mathbf{a} \
abla &= \mathbf{\Theta}^{\mathcal{T}} \mathbf{\Theta} + \mathbf{E}_{\mathcal{P}_{\lambda}} \end{aligned}$$

where

- The problem of minimizing the objective function $\mathcal{F}(\mathbf{a})$ is an unconstrained nonlinear programming problem (UNLP).
- In order to solve it, we employ the *Newton method* with an *inexact line search*.
- Closed-form expressions for the gradient $\nabla \mathcal{F}(\mathbf{a})$ and Hessian $\nabla \{\nabla^T \mathcal{F}(\mathbf{a})\}$ of $\mathcal{F}(\mathbf{a})$ can be obtained as

$$\nabla \mathcal{F}(\mathbf{a}) = \mathbf{\Theta}^{T} \left(\mathbf{\Theta} \mathbf{a} - \mathbf{b} \right) + \mathbf{E}_{\mathcal{P}_{\lambda}} \mathbf{a} \\ \nabla \left\{ \nabla^{T} \mathcal{F}(\mathbf{a}) \right\} = \mathbf{\Theta}^{T} \mathbf{\Theta} + \mathbf{E}_{\mathcal{P}_{\lambda}}$$

where

$$\mathbf{E}_{\mathcal{P}_{\lambda}} = \mathsf{diag} \begin{pmatrix} \frac{\rho'(\mathsf{a}_0)}{|\mathsf{a}_0|} & \frac{\rho'(\mathsf{a}_1)}{|\mathsf{a}_1|} & \cdots & \frac{\rho'(\mathsf{a}_{\mathcal{N}})}{|\mathsf{a}_{\mathcal{N}}|} \end{pmatrix}$$

University of Victoria

• Two issues must be addressed in the proposed approach:

University of Victoria
- Two issues must be addressed in the proposed approach:
- Model reduction LQA becomes undefined when a coefficient value approaches zero.

- Two issues must be addressed in the proposed approach:
- Model reduction LQA becomes undefined when a coefficient value approaches zero.
 - We employ the *model reduction* technique proposed by Fan and Li to circumvent this problem.

- Two issues must be addressed in the proposed approach:
- Model reduction LQA becomes undefined when a coefficient value approaches zero.
 - We employ the *model reduction* technique proposed by Fan and Li to circumvent this problem.
- Regularization trade-off How to select a suitable value for the regularization parameter λ .

- Two issues must be addressed in the proposed approach:
- Model reduction LQA becomes undefined when a coefficient value approaches zero.
 - We employ the *model reduction* technique proposed by Fan and Li to circumvent this problem.
- Regularization trade-off How to select a suitable value for the regularization parameter λ .
 - A widely used value for λ when $\mathcal{P}_{\lambda}(\textbf{a}) = \lambda ||\textbf{a}||_{\ell_1}$ is

$$\lambda = 0.1\Lambda, \quad \text{with } \Lambda = || \boldsymbol{\Theta}^{T} \tilde{\mathbf{b}} ||_{\ell_{\infty}}$$

- Two issues must be addressed in the proposed approach:
- Model reduction LQA becomes undefined when a coefficient value approaches zero.
 - We employ the *model reduction* technique proposed by Fan and Li to circumvent this problem.
- Regularization trade-off How to select a suitable value for the regularization parameter λ .
 - A widely used value for λ when $\mathcal{P}_\lambda({\boldsymbol{a}}) = \lambda ||{\boldsymbol{a}}||_{\ell_1}$ is

$$\lambda = 0.1\Lambda, \quad \text{ with } \Lambda = || \Theta^T \tilde{\mathbf{b}} ||_{\ell_{\infty}}$$

but poor performance is achieved in simulations.

13 / 19

IEEE ISCAS 2010

- Two issues must be addressed in the proposed approach:
- Model reduction LQA becomes *undefined* when a coefficient value ٩ approaches zero.
 - We employ the *model reduction* technique proposed by Fan and Li to circumvent this problem.
- Regularization trade-off How to select a suitable value for the regularization parameter λ .
 - A widely used value for λ when $\mathcal{P}_{\lambda}(\mathbf{a}) = \lambda ||\mathbf{a}||_{\ell_1}$ is

$$\lambda = 0.1\Lambda, \quad \text{ with } \Lambda = || \Theta^T \tilde{\mathbf{b}} ||_{\ell_{\infty}}$$

but poor performance is achieved in simulations.

Better results can be achieved by using the generalized *cross-validation* statistic

13 / 19

- Two issues must be addressed in the proposed approach:
- Model reduction LQA becomes undefined when a coefficient value approaches zero.
 - We employ the *model reduction* technique proposed by Fan and Li to circumvent this problem.
- Regularization trade-off How to select a suitable value for the regularization parameter λ .
 - A widely used value for λ when $\mathcal{P}_\lambda(\textbf{a}) = \lambda ||\textbf{a}||_{\ell_1}$ is

$$\lambda = 0.1\Lambda, \qquad \text{with } \Lambda = || \boldsymbol{\Theta}^{\mathcal{T}} \tilde{\mathbf{b}} ||_{\ell_{\infty}}$$

but poor performance is achieved in simulations.

- Better results can be achieved by using the generalized *cross-validation* statistic

$$\lambda_{GCV} = \arg\min_{\lambda} \left\{ \frac{||\tilde{\mathbf{b}} - \Theta \mathbf{a}||_{\ell_2}^2}{\left[1 - \mathrm{tr} \left(\Theta \left(\Theta^{T} \Theta + \mathbf{E}_{\mathcal{P}_{\lambda}}\right)^{-1} \Theta^{T}\right)\right]^2} \right\}$$

13 / 19

• We compare the signal recovery process of our proposed approach with two competing methods:

- We compare the signal recovery process of our proposed approach with two competing methods:
 - ℓ_1 -Magic suit of algorithms of Candès and Romberg Solves an SOCP by means of interior-point methods.

- We compare the signal recovery process of our proposed approach with two competing methods:
 - ℓ_1 -Magic suit of algorithms of Candès and Romberg Solves an SOCP by means of interior-point methods.
 - Gradient projection for sparse reconstruction (GPSR) of Figueiredo et al. Solves a BCQP by means of gradient projection algorithms.

- We compare the signal recovery process of our proposed approach with two competing methods:
 - ℓ_1 -Magic suit of algorithms of Candès and Romberg Solves an SOCP by means of interior-point methods.
 - Gradient projection for sparse reconstruction (GPSR) of Figueiredo et al. Solves a BCQP by means of gradient projection algorithms.
- Experimental setup:

- We compare the signal recovery process of our proposed approach with two competing methods:
 - ℓ_1 -Magic suit of algorithms of Candès and Romberg Solves an SOCP by means of interior-point methods.
 - Gradient projection for sparse reconstruction (GPSR) of Figueiredo et al. Solves a BCQP by means of gradient projection algorithms.
- Experimental setup:
 - A coefficient vector **a** of length $\mathcal{N} = 128$ with $\mathcal{S} = k$ was selected.

- We compare the signal recovery process of our proposed approach with two competing methods:
 - ℓ_1 -Magic suit of algorithms of Candès and Romberg Solves an SOCP by means of interior-point methods.
 - Gradient projection for sparse reconstruction (GPSR) of Figueiredo et al. Solves a BCQP by means of gradient projection algorithms.
- Experimental setup:
 - A coefficient vector **a** of length $\mathcal{N} = 128$ with $\mathcal{S} = k$ was selected.
 - The *k* nonzero values were chosen randomly from a zero-mean unit-variance Gaussian distribution.

- We compare the signal recovery process of our proposed approach with two competing methods:
 - ℓ_1 -Magic suit of algorithms of Candès and Romberg Solves an SOCP by means of interior-point methods.
 - Gradient projection for sparse reconstruction (GPSR) of Figueiredo et al. Solves a BCQP by means of gradient projection algorithms.
- Experimental setup:
 - A coefficient vector **a** of length $\mathcal{N} = 128$ with $\mathcal{S} = k$ was selected.
 - The *k* nonzero values were chosen randomly from a zero-mean unit-variance Gaussian distribution.
 - The number of measurements is set to Q = 50.

- We compare the signal recovery process of our proposed approach with two competing methods:
 - ℓ_1 -Magic suit of algorithms of Candès and Romberg Solves an SOCP by means of interior-point methods.
 - Gradient projection for sparse reconstruction (GPSR) of Figueiredo et al. Solves a BCQP by means of gradient projection algorithms.

• Experimental setup:

- A coefficient vector **a** of length $\mathcal{N} = 128$ with $\mathcal{S} = k$ was selected.
- The *k* nonzero values were chosen randomly from a zero-mean unit-variance Gaussian distribution.
- The number of measurements is set to Q = 50.
- Sample with Θ under the presence of a Gaussian noise vector **e** assuming a standard deviation σ .

- We compare the signal recovery process of our proposed approach with two competing methods:
 - ℓ_1 -Magic suit of algorithms of Candès and Romberg Solves an SOCP by means of interior-point methods.
 - Gradient projection for sparse reconstruction (GPSR) of Figueiredo et al. Solves a BCQP by means of gradient projection algorithms.

• Experimental setup:

- A coefficient vector **a** of length $\mathcal{N} = 128$ with $\mathcal{S} = k$ was selected.
- The *k* nonzero values were chosen randomly from a zero-mean unit-variance Gaussian distribution.
- The number of measurements is set to Q = 50.
- Sample with Θ under the presence of a Gaussian noise vector **e** assuming a standard deviation σ .
- We ran 500 recovery trials with each approach for several sparsity values $\ensuremath{\mathcal{S}}.$

University of Victoria

-

• Solid lines correspond to the probability of "perfect" signal recovery, such that $||\mathbf{a} - \mathbf{a}^*||_{\ell_{\infty}} \le 10^{-3}$.

 Marked improvement in signal recovery with proposed UNLP over the SOCP and BCQP formulations for a good choice of λ.

• These *improvements* come with an *added computational cost* of roughly 2 to 3 times that required for the SOCP and BCQP.

• A *robust signal recovery approach* for compressive sensing using unconstrained minimization was proposed.

- A *robust signal recovery approach* for compressive sensing using unconstrained minimization was proposed.
- The ℓ_1 norm was replaced by the *SCAD* penalty function which is a *better sparsity-promoting function*.

- A *robust signal recovery approach* for compressive sensing using unconstrained minimization was proposed.
- The ℓ_1 norm was replaced by the *SCAD* penalty function which is a *better sparsity-promoting function*.
- Simulation results presented demonstrate that the *proposed approach* exhibits *superior reconstruction performance*.

- A *robust signal recovery approach* for compressive sensing using unconstrained minimization was proposed.
- The ℓ_1 norm was replaced by the *SCAD* penalty function which is a *better sparsity-promoting function*.
- Simulation results presented demonstrate that the *proposed approach* exhibits *superior reconstruction performance*.
- The *performance improvement* achieved comes with an *additional computational cost*.

of Victoria

Thank you for your attention.

