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Compressive Sensing

A signal x(n) of length N is K -sparse if it contains K nonzero
components with K � N .

A signal is near K -sparse if it contains K significant components.
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Compressive Sensing, cont’d

Sparsity is a generic property of signals: A real-world signal always
has a sparse or near-sparse representation with respect to an
appropriate basis.
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Compressive Sensing, cont’d

Compressive sensing (CS) is a data acquisition process whereby a
sparse signal x(n) represented by a vector x of length N is
determined using a small number of projections represented by a
matrix Φ of dimension M × N .

In such a process, measurement vector y and signal vector x are
interrelated by the equation

y = Φ · x 
M×1

=

 
M×N




N×1

measurements projection sparse signal
matrix of interest
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Compressive Sensing, cont’d

CS theory shows that these random projections contain much,
sometimes all, the information content of signal x.

If a sufficient number of such measurements is collected,
recovering signal x from measurements y is possible.

A condition for this to be possible is

M ≥ c · K · log(N/K )

where c is a small constant.

Typically,
K < M < N
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Signal Recovery by Using `1 and `p Minimizations

The inverse problem of recovering signal vector x from
measurement vector y such that

Φ
|

M×N

· x
|

N×1

= y
|

M×1

is an ill-posed problem.

A classical approach for solving this problem is to find a vector x∗

with minimum `2 norm in the translated null space of Φ such that

x∗ = arg min
x
||x||2 subject to Φx = y

Unfortunately, the `2 minimization fails to recover a sparse signal.

Compressive Sensing 7 University of Victoria



Signal Recovery by Using `1 and `p Minimizations

The inverse problem of recovering signal vector x from
measurement vector y such that

Φ
|

M×N

· x
|

N×1

= y
|

M×1

is an ill-posed problem.

A classical approach for solving this problem is to find a vector x∗

with minimum `2 norm in the translated null space of Φ such that

x∗ = arg min
x
||x||2 subject to Φx = y

Unfortunately, the `2 minimization fails to recover a sparse signal.

Compressive Sensing 7 University of Victoria



Signal Recovery by Using `1 and `p Minimizations

The inverse problem of recovering signal vector x from
measurement vector y such that

Φ
|

M×N

· x
|

N×1

= y
|

M×1

is an ill-posed problem.

A classical approach for solving this problem is to find a vector x∗

with minimum `2 norm in the translated null space of Φ such that

x∗ = arg min
x
||x||2 subject to Φx = y

Unfortunately, the `2 minimization fails to recover a sparse signal.

Compressive Sensing 7 University of Victoria



Signal Recovery by Using `1 and `p Minimizations, cont’d

Why `2-norm minimization fails to work?
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Signal Recovery by Using `1 and `p Minimizations, cont’d

A sparse signal, say x∗, can be obtained by finding a vector with
minimum `1 norm in the translated null space of Φ, i.e., using

x∗ = arg min
x
||x||1 subject to Φx = y
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Signal Recovery by Using `1 and `p Minimizations, cont’d

Theorem

If Φ = {φij} where φij are independent and identically distributed
random variables with zero-mean and variance 1/N and
M ≥ cK log(N/K ), the solution of the `1-minimization problem would
recover exactly a K -sparse signal with high probability.

For real-valued data {Φ, y}, the `1-minimization problem is a linear
programming problem.
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Signal Recovery by Using `1 and `p Minimizations, cont’d

Example: N = 512, M = 120, K = 26

100 200 300 400 500

−1

−0.5

0

0.5

1

A Sparse Signal with K = 26

n

x(
n)

100 200 300 400 500

−1

−0.5

0

0.5

1

Reconstructed Signal by L1 Minimization, M = 120

n

x(
n)

100 200 300 400 500
−1

−0.5

0

0.5

1
x 10

−5 Reconstruction Error

n

E
rr

or

100 200 300 400 500

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

n

x(
n)

Reconstructed Signal by L2 Minimization, M = 120

Compressive Sensing 11 University of Victoria



Signal Recovery by Using `1 and `p Minimizations, cont’d

Example: N = 512, M = 120, K = 26

100 200 300 400 500

−1

−0.5

0

0.5

1

A Sparse Signal with K = 26

n

x(
n)

100 200 300 400 500

−1

−0.5

0

0.5

1

Reconstructed Signal by L1 Minimization, M = 120

n

x(
n)

100 200 300 400 500
−1

−0.5

0

0.5

1
x 10

−5 Reconstruction Error

n

E
rr

or

100 200 300 400 500

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

n

x(
n)

Reconstructed Signal by L2 Minimization, M = 120

Compressive Sensing 11 University of Victoria



Signal Recovery by Using `1 and `p Minimizations, cont’d

The sparsity of a signal can be measured by using its `0

pseudonorm

||x||0 =
N∑

i=1

|xi |0

Hence the sparsest solution of Φx = y can be obtained by finding
the vector x∗ with the smallest value of the `0 pseudonorm in the
translated null space of Φ, i.e.,

x∗ = arg min
x
||x||0 subject to Φx = y

Unfortunately, the above `0-pseudonorm minimization problem is
nonconvex with combinatorial complexity.
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Signal Recovery by Using `1 and `p Minimizations, cont’d

An effective signal recovery strategy is to solve the
`p-minimization problem

minimize
x

||x||pp with 0 < p < 1

subject to Φx = y

where ||x||pp =
N∑

i=1

|xi |p.

This `p-norm minimization problem is nonconvex.
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Signal Recovery by Using `1 and `p Minimizations, cont’d

Contours of ||x||p = 1 with p < 1
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Signal Recovery by Using `1 and `p Minimizations, cont’d

Why `p minimization with p < 1?
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.

The possibility that the contour
will touch the hyperplane at
another point is eliminated.
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Signal Recovery by Using Regularized `p Minimization

We propose to minimize a regularized `p norm

||x||pp,ε =
N∑

i=1

(
x2
i + ε2

)p/2

where x lies in the null space of Φ translated by the `2-norm
solution vector, say xs , of Φx = y, namely,

x = xs + Vrξ

where Vr is an orthonormal basis of the null space of Φ.
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Signal Recovery by Using Regularized `p Minimization,
cont’d

Note that as ε → 0, we have

(
x2
i + ε2

)p/2 ≈ |xi |p

Therefore,

||x||pp,ε

∣∣
ε→0

≈ ||x||pp
i.e., the regularized `p norm closely approximates the `p norm.

The reconstruction involves solving the optimization problem

(P1) minimize
ξ

n∑
i=1

{
[xs(i) + vT

i ξ]2 + ε2
}p/2

for a small value of ε.
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Signal Recovery by Using Regularized `p Minimization,
cont’d

Optimization overview:

Obtain an `2-norm solution x, set ξ = 0, and select an initial value of ε
to satisfy the inequality

ε ≥
√

1− p ·maximum
1≤i≤N

|xsi |

Using ξ as an initializer, solve the optimization problem P1 using a
quasi-Newton algorithm such as Broyden-Fletcher-Goldfarb-Shanno
algorithm. Set the resulting solution to ξ.

Reduce the value of ε, use ξ as an initializer, and solve problem P1
again using the same quasi-Newton algorithm.

Repeat this procedure until problem P1 is solved for a sufficiently small
value of ε.
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Signal Recovery by Using Regularized `p Minimization,
cont’d

Line Search Based on Banach’s Fixed-Point Theorem:
The (k + 1)th iterate is computed as

ξk+1 = ξk + αdk

According to Banach’s fixed-point theorem, the step size α can be
computed using a finite number of iterations of

αl+1 = −

N∑
i=1

xi · vi · γi (αl , ε)
p/2−1

N∑
i=1

v2
i · γi (αl , ε)p/2−1

where

γi (αl , ε) = (xi + αvi )
2 + ε2, xi = xsi + vT

i ξk , vi = vT
i dk

Compressive Sensing 19 University of Victoria
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Performance Evaluation

Number of perfectly recovered instances versus sparsity K by various
algorithms with N = 256 and M = 100 over 100 runs.

URLP: Proposed
NRAL0: Null space re-weighted approximate `0 (Pant, Lu, and Antoniou, 2010)

SL0: Smoothed `0-norm minimization (Mohimani et. al., 2009)
IR: Iterative re-weighting (Chartrand and Yin, 2008)
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Performance Evaluation, cont’d

Average CPU time versus signal length for various algorithms with
M = N/2 and K = M/2.5.

URLP: Proposed
NRAL0: Null space re-weighted approximate `0 (Pant, Lu, and Antoniou, 2010)

SL0: Smoothed `0-norm minimization (Mohimani et. al., 2009)
IR: Iterative re-weighting (Chartrand and Yin, 2008)
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Conclusions

Compressive sensing is an effective technique for sampling sparse
signals.

`1 minimization works in general for the reconstruction of sparse
signals.

`p minimization with p < 1 can improve the recovery performance
for signals that are less sparse.

Regularized `p minimization offers improved signal rconstruction
performance.

A line search method based on Banach’s fixed-point theorem
offers improved complexity.
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Thank you for your attention.

This presentation can be downloaded from:

http://www.ece.uvic.ca/∼andreas/RLectures/ISCAS2011-Jeevan-Web.pdf
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