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Compressive Sensing

A signal x(n) of length N is K -sparse if it contains K nonzero
components with K � N .

A signal is near K -sparse if it contains K significant components.

Example: an image with near sparse wavelet coefficients:

An image of An equivalent Wavelet coefficients
Lena 1-D signal
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Compressive Sensing, cont’d

Compressive sensing (CS) is a data acquisition process whereby a
sparse signal x(n) represented by a vector x of length N is
determined using a small number of projections represented by a
matrix Φ of dimension M × N .

In such a process, measurement vector y and signal vector x are
interrelated by the equation

y = Φ · x

=

16 measurements projection matrix 4-sparse signal
of size 16× 30 of length 30
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Signal Recovery by Using `1 or `p Minimization

The inverse problem of recovering signal x from measurement y
such that

Φ
|

M×N

· x
|

N×1

= y
|

M×1

is an ill-posed problem.

`2 minimization often fails to yield a sparse x, i.e., a signal
obtained as

x∗ = arg
x

min||x||2 subject to Φx = y

is often not sparse.

A sparse x can be recovered using `1 minimization as

x∗ = arg
x

min||x||1 subject to Φx = y
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Signal Recovery by Using `1 or `p Minimization, cont’d

Recently, `p minimization based algorithms have been shown to
recover sparse signals using fewer measurements.

In these algorithms, the signal is recovered by using the
optimization problem

minimize
x

||x||pp =
∑N

i=1 |xi |p

subject to Φx = y

where p < 1.

Note that the objective function ||x||pp in the above problem is
nonconvex and nondifferentiable.

Despite this, it has been shown in the literature that if the above
problem is solved with sufficient care, improved reconstruction
performance can be achieved.
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Signal Recovery by Using `1 or `p Minimization, cont’d

Example: N = 256, K = 35, M = 100.
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Recovery of Block-Sparse Signals

Let N , d , and N/d be positive integers such that d < N and
N/d < N .

A signal x of length N can be divided into N/d blocks as

x =
[
x̃1 x̃2 · · · x̃N/d

]T
where

x̃i =
[
x(i−1)d+1 x(i−1)d+1 · · · x(i−1)d+d

]T
for i = 1, 2, . . . ,N/d .

Signal x is said to be K -block sparse if it has K nonzero blocks
with K � N/d .

Note that the definition of K -sparse in the conventional CS is the
special case of K -block sparse with d = 1.
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Recovery of Block-Sparse Signals, cont’d

Block-sparsity naturally arises in various signals such as speech
signals, multiband signals, and some images.

Speech signal:

Multiband spectrum:
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Recovery of Block-Sparse Signals, cont’d

An image of Jupiter:

An image of Jupiter An equivalent 1-D signal

The 1-D signal from n = 170000 to 176000
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Recovery of Block-Sparse Signals, cont’d

The block sparsity of a signal can be measured using the
`2/0-pseudonorm which is given by

||x||2/0 =

N/d∑
i=1

(||x̃i ||2)0

The value of function ||x||2/0 is equal to the number of blocks of
x which have all-nonzero components.
A block-sparse signal can therefore be recovered by solving the
optimization problem

minimize
x

||x||2/0
subject to Φx = y

Unfortunately, this problem is nonconvex with combinatorial
complexity.
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Recovery of Block-Sparse Signals, cont’d

A practical method for recovering a block sparse signal is to solve
the problem

minimize
x

||x||2/1
subject to Φx = y

where

||x||2/1 =

N/d∑
i=1

||x̃i ||2

Note that function ||x||2/1 is the `1 norm of the vector[
||x1||2 ||x2||2 · · · ||xN/d ||2

]T
,

which essentially gives a measure of the inter-block sparsity of x.
The above problem is a convex programming problem which can
be solved using a semidefinite-programming or a second-order
cone-programming (SOCP) solver.
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Recovery of Block-Sparse Signals, cont’d

Example: N = 512, d = 8, K = 5, M = 100.
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Block-Sparse Signal Recovery by Using `2/p Minimization

We propose reconstructing a block-sparse signal x from
measurement y by solving the `2/p-regularized least-squares
problem

minimize
x

Fε(x) = 1
2
||Φx− y||22 + λ||x||p2/p,ε (P)

with p < 1 for a small ε where

||x||p2/p,ε =

N/d∑
i=1

(
||x̃i ||22 + ε2

)p/2

Note that
lim
ε→0
||x||p2/p,ε = ||x||p2/p

lim
p→0
||x||p2/p = ||x||2/0
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Block-Sparse Signal Recovery by Using `2/p Minimization,
cont’d

Good signal reconstruction performance is expected when problem
P on slide 14 is solved with a sufficiently small ε.

However, for small ε the objective function Fε(x) becomes highly
nonconvex and nearly nondifferentiable.

The larger the ε, the easier the optimization of Fε(x).

Therefore, we propose to solve problem P on slide 14 by using the
following sequential optimization procedure:

Choose a sufficiently large value of ε and solve problem P using
Fletcher-Reeves’ conjugate-gradient (CG) algorithm. Set the solution to
x.
Reduce the value of ε, use x as an initializer, and solve problem P again.
Repeat this procedure until problem P is solved for a sufficiently small
value of ε. Output the final solution and stop.
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Block-Sparse Signal Recovery by Using `2/p Minimization,
cont’d

In the kth iteration of Fletcher-Reeves’ CG algorithm, iterate xk is
updated as

xk+1 = xk + αkdk

where

dk = −gk + βk−1dk−1

βk−1 =
||gk ||22
||gk−1||22

Given xk and dk , the step size αk is obtained by solving the
optimization problem

minimize
α

f (α) = Fε(xk + αdk)
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Block-Sparse Signal Recovery by Using `2/p Minimization,
cont’d

By setting the first derivative of f (α) to zero, we get

α = G (α)

where

G (α) = −
dT
k ΦT (Φxk − y) + λ · p ·

N/d∑
i=1

γi ·
(

x̃T
ki d̃ki

)
||Φdk ||22 + λ · p ·

N/d∑
i=1

γi ·
(

d̃
T

ki d̃ki

)
γi =

(
||x̃i + αd̃i ||22 + ε2

)p/2−1

In the above equations, x̃ki and d̃ki are the ith blocks of vectors
xk and dk , respectively.
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Block-Sparse Signal Recovery by Using `2/p Minimization,
cont’d

Step size αk is determined by using the recursive relation

αl+1 = G (αl) for l = 1, 2, . . .

According to Banach’s fixed-point theorem, if |dG (α)/dα| < 1
then function G (α) is a contraction mapping, i.e.,

|G (α1)− G (α2)| ≤ η |α1 − α2|

with η < 1 and, as a consequence, the above recursion converges
to a solution.

Extensive experimental results have shown that function G (α) for
function f (α) is, in practice, a contraction mapping.
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Performance Evaluation

Number of perfectly recovered instances with N = 512, M = 100,
and d = 8 over 100 runs.

`2/p-RLS: Proposed `2/p-Regularized Least-Squares
`2/1-SOCP: `2/1 Second-Order Cone-Programming (Eldar and Mishali, 2009)

BOMP: Block Orthogonal Matching Pursuit (Eldar et. al., 2010)
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Performance Evaluation, cont’d

Average CPU time with M = N/2, K = M/2.5d , and d = 8 over
100 runs.

`2/p-RLS: Proposed `2/p-Regularized Least-Squares
`2/1-SOCP: `2/1 Second-Order Cone-Programming (Eldar and Mishali, 2009)

BOMP: Block Orthogonal Matching Pursuit (Eldar et. al., 2010)
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Performance Evaluation, cont’d

Example: N = 512, d = 8, K = 9, M = 100.
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Conclusions

Compressive sensing is an effective sampling technique for sparse
signals.

`1-minimization and `p-minimization with p < 1 work well for the
reconstruction of sparse signals.

`2/1-minimization offers improved reconstruction performance for
block-sparse signals.

The proposed `2/p-regularized least-squares algorithm offers
improved reconstruction performance for block-sparse signals
relative to the `2/1-SOCP and BOMP algorithms.
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Thank you for your attention.
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