A New Algorithm for Compressive Sensing Based on Total-Variation Norm

J. K. Pant, W.-S. Lu, and A. Antoniou

University of Victoria Victoria, British Columbia, Canada

May 21, 2013

Compressive Sensing

Image: 1 million of the second sec

・ロト ・回ト ・モト ・モト

E 990

- Compressive Sensing and Signal Recovery
- Image Recovery Using Total-Variation Minimization

A B >
A B >
A

(< ≥) < ≥)</p>

University of Victoria

э.

- Compressive Sensing and Signal Recovery
- Image Recovery Using Total-Variation Minimization
- Image Recovery Using Nonconvex Total-Variation Minimization

Image: A matrix

- Compressive Sensing and Signal Recovery
- Image Recovery Using Total-Variation Minimization
- Image Recovery Using Nonconvex Total-Variation Minimization
- Performance Evaluation

Image: A matrix

A signal x(n) of length N is K-sparse if it contains K nonzero components with K ≪ N.

- A signal x(n) of length N is K-sparse if it contains K nonzero components with K ≪ N.
- A signal is near K-sparse if it contains K significant components.

Compressive sensing (CS) is a data acquisition process whereby a sparse signal x or an image X represented by a vector x of length N can be determined using a small number of projections represented by a matrix Φ of dimension M × N.

- Compressive sensing (CS) is a data acquisition process whereby a sparse signal x or an image X represented by a vector x of length N can be determined using a small number of projections represented by a matrix Φ of dimension M × N.
- In CS, measurement vector y and signal vector x are interrelated by the equation

■ A sparse signal **x** can be recovered by using an ℓ₁-norm minimization that solves the problem

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & ||\mathbf{x}||_{1} = \sum_{i=1}^{N} |x_{i}| \\ \text{subject to} & \mathbf{y} = \mathbf{\Phi} \mathbf{x} \end{array}$$

<ロ> (四) (四) (注) (注) (注) (三)

■ A sparse signal **x** can be recovered by using an ℓ₁-norm minimization that solves the problem

$$\begin{array}{ll} \underset{\mathbf{x}}{\mathsf{minimize}} & ||\mathbf{x}||_{1} = \sum_{i=1}^{N} |x_{i}| \\ \mathsf{subject to} & \mathbf{y} = \mathbf{\Phi} \mathbf{x} \end{array}$$

An ℓ_p -pseudonorm minimization that solves the problem

minimize
$$||\mathbf{x}||_{\rho}^{\rho} = \sum_{i=1}^{N} |x_i|^{\rho}$$

subject to $\mathbf{y} = \mathbf{\Phi} \mathbf{x}$

where a p in the range 0 can be used to yield a sparser signal.

University of Victoria

Compressive Sensing

 Many synthetic and natural images have a spatially sparse gradient.

- Many synthetic and natural images have a spatially sparse gradient.
- The spatial gradient of an image X of size n₁ × n₂ can be obtained as a matrix G of size n₁ × n₂ whose {i, j}th component is given by

$$g_{i,j} = \begin{cases} \sqrt{\left(x_{i,j} - x_{i+1,j}\right)^2 + \left(x_{i,j} - x_{i,j+1}\right)^2} & \text{for} & \begin{cases} 1 \le i < n_1, \\ 1 \le j < n_2 \\ \\ j = n_2, \\ 1 \le i < n_1 \\ 1 \le i < n_1 \\ 1 \le j < n_2 \\ 0 & \text{for} & \begin{cases} i = n_1, \\ 1 \le j < n_2 \\ 1 \le j < n_2 \\ 0 & \text{for} & i = n_1, j = n_2 \end{cases} \end{cases}$$

where $x_{i,j}$ is the $\{i, j\}$ th component of **X**.

Compressive Sensing

The Shepp-Logan Phantom image has a sparse spatial gradient:

Phantom image

Sparse spatial gradient of Phantom image

University of Victoria

Compressive Sensing

The Cameraman image has near-sparse spatial gradient:

Cameraman image

Near-sparse spatial gradient of Cameraman image

University of Victoria

Compressive Sensing

The sparsity of the spatial gradient of an image X can be measured in terms of the total-variation norm given by

$$TV(\mathbf{X}) = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} g_{i,j}$$

where $g_{i,j}$ is the $\{i, j\}$ th element of matrix **G**.

The sparsity of the spatial gradient of an image X can be measured in terms of the total-variation norm given by

$$TV(\mathbf{X}) = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} g_{i,j}$$

where $g_{i,j}$ is the $\{i, j\}$ th element of matrix **G**.

The smaller the $TV(\mathbf{X})$, the sparser the gradient of \mathbf{X} .

The sparsity of the spatial gradient of an image X can be measured in terms of the total-variation norm given by

$$TV(\mathbf{X}) = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} g_{i,j}$$

where $g_{i,j}$ is the $\{i, j\}$ th element of matrix **G**.

- **The smaller the** $TV(\mathbf{X})$, the sparser the gradient of \mathbf{X} .
- An image X with sparse spatial gradient represented by a vector x can be recovered from measurements y by solving the optimization problem

minimize
$$\frac{1}{2} || \mathbf{\Phi} \mathbf{x} - \mathbf{y} ||_2^2 + \lambda T V(\mathbf{X})$$

A B >
A B >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

University of Victoria

where λ a regularization parameter.

Compressive Sensing

Inspired by the success of l_p over l₁ minimization in CS, we consider the nonconvex version of the TV norm, called the TV_p pseudonorm, given by

$$TV_{p}(\mathbf{X}) = \left[\sum_{i=1}^{n_{1}-1}\sum_{j=1}^{n_{2}-1} \left(x_{i,j}^{\prime i} + x_{i,j}^{\prime j}\right)^{p/2} + \sum_{i=1}^{n_{1}-1} \left(x_{i,n_{2}}^{\prime i}\right)^{p/2} + \sum_{j=1}^{n_{2}-1} \left(x_{n_{1},j}^{\prime j}\right)^{p/2}\right]^{1/p}$$

where $x_{i,j}^{\prime i} = x_{i,j} - x_{i+1,j}$, $x_{i,j}^{\prime j} = x_{i,j} - x_{i,j+1}$, and 0 .

Compressive Sensing

・ロト ・日下・ ・ヨト

Inspired by the success of l_p over l₁ minimization in CS, we consider the nonconvex version of the TV norm, called the TV_p pseudonorm, given by

$$TV_{p}(\mathbf{X}) = \left[\sum_{i=1}^{n_{1}-1}\sum_{j=1}^{n_{2}-1} \left(x_{i,j}^{\prime i} + x_{i,j}^{\prime j}\right)^{p/2} + \sum_{i=1}^{n_{1}-1} \left(x_{i,n_{2}}^{\prime i}\right)^{p/2} + \sum_{j=1}^{n_{2}-1} \left(x_{n_{1},j}^{\prime j}\right)^{p/2}\right]^{1/p}$$

where $x_{i,j}^{\prime i} = x_{i,j} - x_{i+1,j}$, $x_{i,j}^{\prime j} = x_{i,j} - x_{i,j+1}$, and 0 .

From the nonconvexity and nondifferentiability of the ℓ_p pseudonorm, it follows that function $TV_p(\mathbf{X})$ remains nonconvex and nondifferentiable for p < 1.

Compressive Sensing

To render the TV_p pseudonorm differentiable and to facilitate its optimization, we consider the approximate TV_p pseudonorm given by

$$TV_{p,\epsilon}^{p}(\mathbf{X}) = \sum_{i=1}^{n_{1}-1} \sum_{j=1}^{n_{2}-1} \left(x_{i,j}^{\prime i} + x_{i,j}^{\prime j} + \epsilon^{2} \right)^{p/2} + \sum_{i=1}^{n_{1}-1} \left(x_{i,n_{2}}^{\prime i} + \epsilon^{2} \right)^{p/2} + \sum_{j=1}^{n_{2}-1} \left(x_{n_{1},j}^{\prime j} + \epsilon^{2} \right)^{p/2}$$

where ϵ is a nonzero parameter used to render it differentiable.

Compressive Sensing

イロト イヨト イヨト イヨト

To render the TV_p pseudonorm differentiable and to facilitate its optimization, we consider the approximate TV_p pseudonorm given by

$$TV_{p,\epsilon}^{p}(\mathbf{X}) = \sum_{i=1}^{n_{1}-1} \sum_{j=1}^{n_{2}-1} \left(x_{i,j}^{\prime i} + x_{i,j}^{\prime j} + \epsilon^{2} \right)^{p/2} + \sum_{i=1}^{n_{1}-1} \left(x_{i,n_{2}}^{\prime i} + \epsilon^{2} \right)^{p/2} + \sum_{j=1}^{n_{2}-1} \left(x_{n_{1},j}^{\prime j} + \epsilon^{2} \right)^{p/2}$$

where ϵ is a nonzero parameter used to render it differentiable.

Note that
$$TV_{p,\epsilon}^{p}(\mathbf{X}) \to TV(\mathbf{X})$$
 as $\epsilon \to 0, p \to 1$.

Compressive Sensing

イロト イヨト イヨト イヨト

The reconstruction involves solving the optimization problem

$$(\mathbf{P}-\mathbf{T}\mathbf{V}_{p}) \qquad \underset{\mathbf{x}}{\text{minimize}} \quad F_{\lambda,p,\epsilon}(\mathbf{X}) = \frac{1}{2} \left| \left| \mathbf{\Phi}\mathbf{x} - \mathbf{y} \right| \right|_{2}^{2} + \lambda T V_{p,\epsilon}^{p}(\mathbf{X})$$

for a small values ϵ_T and λ_T of ϵ and λ , respectively, and p < 1.

・ロト ・ 日 ・ ・ ヨ ・ ・

The reconstruction involves solving the optimization problem

$$\begin{aligned} (\mathbf{P}-\mathbf{T}\mathbf{V}_{p}) & \underset{\mathbf{x}}{\text{minimize}} \quad F_{\lambda,p,\epsilon}(\mathbf{X}) = \frac{1}{2} ||\mathbf{\Phi}\mathbf{x}-\mathbf{y}||_{2}^{2} + \lambda T V_{p,\epsilon}^{p}(\mathbf{X}) \end{aligned}$$
 for a small values ϵ_{T} and λ_{T} of ϵ and λ , respectively, and $p < 1$.
The gradient of the objective function $F_{\lambda,p,\epsilon}(\mathbf{X})$ can be evaluated as

$$\mathbf{g} = \mathbf{\Phi}^{\mathsf{T}} \left(\mathbf{\Phi} \mathbf{x} - \mathbf{y} \right) + \lambda p \mathbf{u}$$

・ロン ・回 と ・ ヨン ・ ヨン

University of Victoria

where **u** is a vector representing the gradient of $TV_{p,\epsilon}^{p}(\mathbf{X})/p$.

Compressive Sensing

- The problem P-TV_p can be solved by using the following sequential procedure:
 - Select {ε = ε₁, λ = λ₁} so that {ε₁ > ε_T, λ₁ > λ_T}, set the zero vector as initializer, and solve problem P-TV_p. Denote the resulting solution as x^{*}.
 - Using x* as the initializer, solve problem P-TV_p again for smaller values of ε and λ.
 - Repeat this procedure until problem \mathbf{P} - \mathbf{TV}_p is solved for the pair $\{\epsilon = \epsilon_T, \lambda = \lambda_T\}$. Denote the final solution as \mathbf{x}_T^* .
 - Construct image **X**^{*} from the final solution **x**^{*}_T.
 - Output X^{*} and stop.

Compressive Sensing

・ロト ・ 日 ・ ・ ヨ ・ ・

- The problem P-TV_p can be solved by using the following sequential procedure:
 - Select {ε = ε₁, λ = λ₁} so that {ε₁ > ε_T, λ₁ > λ_T}, set the zero vector as initializer, and solve problem P-TV_p. Denote the resulting solution as x^{*}.
 - Using x* as the initializer, solve problem P-TV_p again for smaller values of ε and λ.
 - Repeat this procedure until problem \mathbf{P} - \mathbf{TV}_p is solved for the pair $\{\epsilon = \epsilon_T, \lambda = \lambda_T\}$. Denote the final solution as \mathbf{x}_T^* .
 - Construct image **X**^{*} from the final solution **x**^{*}_T.
 - Output X^{*} and stop.
- The Fletcher-Reeves' conjugate-gradient (FR-CG) technique can be applied to solve problem P-TV_p for a given pair of values of {ε, λ}.

Compressive Sensing

In the FR-CG technique, iterate \mathbf{x}_k is updated to \mathbf{x}_{k+1} as

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$$

where

$$\mathbf{d}_{k} = -\mathbf{g}_{k} + \beta_{k-1}\mathbf{d}_{k-1},$$

$$\beta_{k-1} = \frac{||\mathbf{g}_{k}||_{2}^{2}}{||\mathbf{g}_{k-1}||_{2}^{2}},$$

and \mathbf{g}_k is the gradient at $\mathbf{x} = \mathbf{x}_k$.

・ロト ・ 同ト ・ モト ・ モト

In the FR-CG technique, iterate \mathbf{x}_k is updated to \mathbf{x}_{k+1} as

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$$

where

$$\mathbf{d}_{k} = -\mathbf{g}_{k} + \beta_{k-1}\mathbf{d}_{k-1},$$

$$\beta_{k-1} = \frac{||\mathbf{g}_{k}||_{2}^{2}}{||\mathbf{g}_{k-1}||_{2}^{2}},$$

and \mathbf{g}_k is the gradient at $\mathbf{x} = \mathbf{x}_k$.

Step size α_k is obtained by using the recursion

$$\alpha_{l+1} = G(\alpha_l)$$
 for $l = 2, 3, \dots$

with $\alpha_0 \ge 0$ where function $G(\alpha)$ depends on \mathbf{x}_k , $\mathbf{\Phi}$, \mathbf{d}_k , \mathbf{y} , ϵ , and p.

University of Victoria

Compressive Sensing

Performance Evaluation

- The performance of the proposed TV_p-RLS and conventional TV-RLS algorithms was tested using six images, namely,
 - "Circles", "Resolution Chart", and "Shepp-Logan Phantom" having sparse spatial gradient and
 - "Cameraman", "Aeroplane", and "Clock" having near-sparse spatial gradient.

Performance Evaluation

- The performance of the proposed TV_p-RLS and conventional TV-RLS algorithms was tested using six images, namely,
 - "Circles", "Resolution Chart", and "Shepp-Logan Phantom" having sparse spatial gradient and
 - "Cameraman", "Aeroplane", and "Clock" having near-sparse spatial gradient.
- The image reconstruction performance was measured in terms of the peak signal-to-noise ratio (PSNR) which is defined as

$$PSNR = 20 \log \left(\frac{I_{MAX}}{\sqrt{MSE}} \right) dB$$

where $I_{MAX} = 2^b - 1$ and b = 8 is the number of bits used to encode the components of image **X**.

Performance Evaluation

- The performance of the proposed TV_p-RLS and conventional TV-RLS algorithms was tested using six images, namely,
 - "Circles", "Resolution Chart", and "Shepp-Logan Phantom" having sparse spatial gradient and
 - "Cameraman", "Aeroplane", and "Clock" having near-sparse spatial gradient.
- The image reconstruction performance was measured in terms of the peak signal-to-noise ratio (PSNR) which is defined as

$$PSNR = 20 \log \left(\frac{I_{MAX}}{\sqrt{MSE}} \right) dB$$

where $I_{MAX} = 2^b - 1$ and b = 8 is the number of bits used to encode the components of image **X**.

The mean-square error is defined as

$$MSE = \frac{1}{n_1 n_2} \left\| \left\| \mathbf{X} - \hat{\mathbf{X}} \right\|_F^2$$

University of Victoria

Compressive Sensing

Experimental results:

PSNR and CPU Time for TV_p-RLS and TV-RLS Algorithms

	TV_{p} -RLS ($p = 0.5$)		TV-RLS	
Images	PSNR	CPU time	PSNR	CPU time
	(dB)	(seconds)	(dB)	(seconds)
Cameraman	32.8	47.1	32.2	952.8
Aeroplane	41.7	49.1	41.5	767.0
Circles	90.1	43.6	58.4	483.0
Clock	38.4	48.1	37.3	911.4
Resolution Chart	74.6	45.0	49.7	1201.7
Shepp-Logan	86.5	44.1	76.2	121.2

イロト イヨト イヨト イヨト

Performance Evaluation, cont'd

Reconstruction of an angiogram of size 256×256 :

(a) Original angiogram

(b) Angiogram reconstructed using TV_p -RLS algorithm with p = 0.5(c) Angiogram reconstructed using TV-RLS algorithm

Compressive Sensing

・ロト ・回ト ・ヨト ・

Performance Evaluation, cont'd

Segments of the angiograms shown in Slide 17 for the range $120 \le n_y \le 220, 120 \le n_x \le 220$ where n_y and n_x are pixel indices for vertical and horizontal directions, respectively:

(a) Original angiogram (b) Angiogram reconstructed using TV_p -RLS algorithm with p = 0.5(c) Angiogram reconstructed using TV-RLS algorithm

Compressive Sensing

 Compressive sensing is an effective technique for sampling sparse signals.

(日) (四) (三) (三)

- Compressive sensing is an effective technique for sampling sparse signals.
- ℓ_1 and ℓ_p minimizations work in general for the reconstruction of sparse signals.

- Compressive sensing is an effective technique for sampling sparse signals.
- ℓ_1 and ℓ_p minimizations work in general for the reconstruction of sparse signals.
- Total variation minimization is effective for the reconstruction of images.

• • • • • • •

- Compressive sensing is an effective technique for sampling sparse signals.
- ℓ_1 and ℓ_p minimizations work in general for the reconstruction of sparse signals.
- Total variation minimization is effective for the reconstruction of images.
- Nonconvex total-variation minimization offers improved reconstruction performance relative to the total-variation minimization for images with sparse spatial gradient.

Compressive Sensing

Thank you for your attention.

Compressive Sensing

メロト メポト メヨト メヨト

æ