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Compressive Sensing and Signal Recovery

A signal x(n) of length N is K -sparse if it contains K nonzero
components with K � N .

A signal is near K -sparse if it contains K significant components.
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Compressive Sensing and Signal Recovery, cont’d

Compressive sensing (CS) is a data acquisition process whereby a
sparse signal x or an image X represented by a vector x of length
N can be determined using a small number of projections
represented by a matrix Φ of dimension M × N .

In CS, measurement vector y and signal vector x are interrelated
by the equation

y = Φ · x

=

16 measurements projection matrix 4-sparse signal
of size 16× 30 of length 30
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Compressive Sensing and Signal Recovery, cont’d

A sparse signal x can be recovered by using an `1-norm
minimization that solves the problem

minimize
x

||x||1 =
N∑
i=1

|xi |

subject to y = Φx

An `p-pseudonorm minimization that solves the problem

minimize
x

||x||pp =
N∑
i=1

|xi |p

subject to y = Φx

where a p in the range 0 < p < 1 can be used to yield a sparser
signal.
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Image Recovery Using Total-Variation Minimization

Many synthetic and natural images have a spatially sparse
gradient.

The spatial gradient of an image X of size n1× n2 can be obtained
as a matrix G of size n1× n2 whose {i , j}th component is given by

gi ,j =



√
(xi ,j − xi+1,j)

2 + (xi ,j − xi ,j+1)2 for

{
1 ≤ i < n1,
1 ≤ j < n2

|xi ,j − xi+1,j | for

{
j = n2,

1 ≤ i < n1

|xi ,j − xi ,j+1| for

{
i = n1,

1 ≤ j < n2
0 for i = n1, j = n2

where xi ,j is the {i , j}th component of X.
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Image Recovery Using Total-Variation Minimization, cont’d

The Shepp-Logan Phantom image has a sparse spatial gradient:

Phantom image Sparse spatial gradient
of Phantom image
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Image Recovery Using Total-Variation Minimization, cont’d

The Cameraman image has near-sparse spatial gradient:

Cameraman image Near-sparse spatial gradient
of Cameraman image
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Image Recovery Using Total-Variation Minimization, cont’d

The sparsity of the spatial gradient of an image X can be
measured in terms of the total-variation norm given by

TV (X) =
n1∑
i=1

n2∑
j=1

gi ,j

where gi ,j is the {i , j}th element of matrix G.

The smaller the TV (X), the sparser the gradient of X.

An image X with sparse spatial gradient represented by a vector x
can be recovered from measurements y by solving the
optimization problem

minimize
x

1
2
||Φx− y||22 + λTV (X)

where λ a regularization parameter.
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Image Recovery Using Nonconvex Total-Variation
Minimization

Inspired by the success of `p over `1 minimization in CS, we
consider the nonconvex version of the TV norm, called the TVp

pseudonorm, given by

TVp(X) =

[
n1−1∑
i=1

n2−1∑
j=1

(
x ′ii ,j

2
+ x ′ji ,j

2
)p/2

+
n1−1∑
i=1

(
x ′ii ,n2

2
)p/2

+
n2−1∑
j=1

(
x ′jn1,j

2
)p/2]1/p

where x ′ii ,j = xi ,j − xi+1,j , x
′j
i ,j = xi ,j − xi ,j+1, and 0 < p < 1.

From the nonconvexity and nondifferentiability of the `p
pseudonorm, it follows that function TVp(X) remains nonconvex
and nondifferentiable for p < 1.
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Image Recovery Using Nonconvex Total-Variation
Minimization, cont’d

To render the TVp pseudonorm differentiable and to facilitate its
optimization, we consider the approximate TVp pseudonorm given
by

TV p
p,ε(X) =

n1−1∑
i=1

n2−1∑
j=1

(
x ′ii ,j

2
+ x ′ji ,j

2
+ ε2

)p/2
+

n1−1∑
i=1

(
x ′ii ,n2

2
+ ε2

)p/2
+

n2−1∑
j=1

(
x ′jn1,j

2
+ ε2

)p/2
where ε is a nonzero parameter used to render it differentiable.

Note that TV p
p,ε(X)→ TV (X) as ε→ 0, p → 1.
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Image Recovery Using Nonconvex Total-Variation
Minimization, cont’d

The reconstruction involves solving the optimization problem

(P-TVp) minimize
x

Fλ,p,ε(X) = 1
2
||Φx− y||22 + λTV p

p,ε(X)

for a small values εT and λT of ε and λ, respectively, and p < 1.

The gradient of the objective function Fλ,p,ε(X) can be evaluated
as

g = ΦT (Φx− y) + λpu

where u is a vector representing the gradient of TV p
p,ε(X)/p.
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Image Recovery Using Nonconvex Total-Variation
Minimization, cont’d

The problem P-TVp can be solved by using the following
sequential procedure:

Select {ε = ε1, λ = λ1} so that {ε1 > εT , λ1 > λT}, set the zero vector
as initializer, and solve problem P-TVp. Denote the resulting solution
as x∗.

Using x∗ as the initializer, solve problem P-TVp again for smaller values
of ε and λ.

Repeat this procedure until problem P-TVp is solved for the pair
{ε = εT , λ = λT}. Denote the final solution as x∗T .

Construct image X∗ from the final solution x∗T .

Output X∗ and stop.

The Fletcher-Reeves’ conjugate-gradient (FR-CG) technique can
be applied to solve problem P-TVp for a given pair of values of
{ε, λ}.
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Image Recovery Using Nonconvex Total-Variation
Minimization, cont’d

In the FR-CG technique, iterate xk is updated to xk+1 as

xk+1 = xk + αkdk

where
dk = −gk + βk−1dk−1,

βk−1 =
||gk ||

2
2∣∣∣∣gk−1
∣∣∣∣2

2

,

and gk is the gradient at x = xk .

Step size αk is obtained by using the recursion

αl+1 = G (αl) for l = 2, 3, . . .

with α0 ≥ 0 where function G (α) depends on xk , Φ, dk , y, ε, and
p.
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Performance Evaluation

The performance of the proposed TVp-RLS and conventional
TV -RLS algorithms was tested using six images, namely,

“Circles”, “Resolution Chart”, and “Shepp-Logan Phantom” having
sparse spatial gradient and
“Cameraman”, “Aeroplane”, and “Clock” having near-sparse spatial
gradient.

The image reconstruction performance was measured in terms of
the peak signal-to-noise ratio (PSNR) which is defined as

PSNR = 20 log

(
IMAX√
MSE

)
dB

where IMAX = 2b − 1 and b = 8 is the number of bits used to
encode the components of image X.

The mean-square error is defined as

MSE =
1

n1n2

∣∣∣∣∣∣X− X̂
∣∣∣∣∣∣2
F
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Performance Evaluation, cont’d

Experimental results:

PSNR and CPU Time for TVp-RLS and TV -RLS Algorithms

Images
TVp-RLS (p = 0.5) TV -RLS
PSNR CPU time PSNR CPU time
(dB) (seconds) (dB) (seconds)

Cameraman 32.8 47.1 32.2 952.8
Aeroplane 41.7 49.1 41.5 767.0

Circles 90.1 43.6 58.4 483.0
Clock 38.4 48.1 37.3 911.4

Resolution Chart 74.6 45.0 49.7 1201.7
Shepp-Logan 86.5 44.1 76.2 121.2
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Performance Evaluation, cont’d

Reconstruction of an angiogram of size 256× 256:

(a) (b) (c)

(a) Original angiogram
(b) Angiogram reconstructed using TVp-RLS algorithm with p = 0.5

(c) Angiogram reconstructed using TV -RLS algorithm
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Performance Evaluation, cont’d

Segments of the angiograms shown in Slide 17 for the range
120 ≤ ny ≤ 220, 120 ≤ nx ≤ 220 where ny and nx are pixel
indices for vertical and horizontal directions, respectively:

(a) (b) (c)

(a) Original angiogram
(b) Angiogram reconstructed using TVp-RLS algorithm with p = 0.5

(c) Angiogram reconstructed using TV -RLS algorithm
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Conclusions

Compressive sensing is an effective technique for sampling sparse
signals.

`1 and `p minimizations work in general for the reconstruction of
sparse signals.

Total variation minimization is effective for the reconstruction of
images.

Nonconvex total-variation minimization offers improved
reconstruction performance relative to the total-variation
minimization for images with sparse spatial gradient.
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Thank you for your attention.
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