Reconstruction of Sparse Signals by Minimizing a Re-Weighted Approximate  $\ell_0$ -Norm in the Null Space of the Measurement Matrix

#### J. K. Pant, W.-S. Lu, and A. Antoniou

University of Victoria

August 3, 2010



Image: A matrix

Comperssive Sensing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

#### Comperssive Sensing

#### Signal Recovery by $\ell_1$ Minimization



- Comperssive Sensing
- Signal Recovery by  $\ell_1$  Minimization
- Signal Recovery by  $\ell_p$  Minimization with p < 1

・ロト ・回 ト ・ヨト ・ヨト

三 のへで

- Comperssive Sensing
- Signal Recovery by  $\ell_1$  Minimization
- Signal Recovery by  $\ell_p$  Minimization with p < 1
- Performance Evaluation

**Compressive Sensing** 

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● � � �

#### **Compressive Sensing**

A signal x(n) of length N is K-sparse if it contains K nonzero components with K ≪ N.



#### **Compressive Sensing**

- A signal x(n) of length N is K-sparse if it contains K nonzero components with K ≪ N.
- A signal is near K-sparse if it contains K significant components.



 Sparsity is a generic property of signals: A real-world signal always has a sparse or near-sparse representation with respect to an appropriate basis.

Sparsity is a generic property of signals: A real-world signal always has a sparse or near-sparse representation with respect to an appropriate basis.



Compressive sensing (CS) is a data acquisition process whereby a sparse signal x(n) represented by a vector x of length N is determined using a small number of projections represented by a matrix Φ of dimension M × N.



- Compressive sensing (CS) is a data acquisition process whereby a sparse signal x(n) represented by a vector x of length N is determined using a small number of projections represented by a matrix Φ of dimension M × N.
- In such a process, measurement vector y and signal vector x are interrelated by the equation



CS theory shows that these random projections contain much, sometimes all, the information content of signal x.

- CS theory shows that these random projections contain much, sometimes all, the information content of signal x.
- If a sufficient number of such measurements are collected, recovering signal x from measurements y is possible.

- CS theory shows that these random projections contain much, sometimes all, the information content of signal x.
- If a sufficient number of such measurements are collected, recovering signal x from measurements y is possible.
- A condition for this to be possible is

$$M \geq c \cdot K \cdot \log(N/K)$$

where c is a small constant.

**Compressive Sensing** 

- CS theory shows that these random projections contain much, sometimes all, the information content of signal x.
- If a sufficient number of such measurements are collected, recovering signal x from measurements y is possible.
- A condition for this to be possible is

$$M \geq c \cdot K \cdot \log(N/K)$$

where c is a small constant.

Typically,

University of Victoria

**Compressive Sensing** 

Recovering signal vector **x** from measurement vector **y** such that

Λ

is an ill-posed problem.

Recovering signal vector x from measurement vector y such that

$$\mathbf{\Phi} \cdot \mathbf{x} = \mathbf{y}_{\substack{| \\ M \times N} } \mathbf{y}_{N \times 1}$$

is an ill-posed problem.

Given that **x** is sparse, **x** can be reconstructed by solving the  $\ell_1$ -minimization problem

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & ||\mathbf{x}||_{1} \\ \text{subject to} & \mathbf{\Phi}\mathbf{x} = \mathbf{y} \end{array}$$

Image: A matrix

**University of Victoria** 

where 
$$||\mathbf{x}||_1 = \sum_{i=1}^{N} |x_i|$$

. .

**Compressive Sensing** 

• Why  $\ell_1$ -norm minimization?

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへで



As *c* increases, the contour of  $||\mathbf{x}||_1 = c$ grows and touches the hyperplane  $\mathbf{\Phi}\mathbf{x} = \mathbf{y}$ , yielding a sparse solution

$$\mathbf{x}^* = \left[ egin{array}{c} 0 \\ c \end{array} 
ight]$$

University of Victoria

Contours for  $||\mathbf{x}||_1 = c$ 

#### **Compressive Sensing**

• Why  $\ell_2$ -norm minimization fails to work?

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへで

• Why  $\ell_2$ -norm minimization fails to work?



As r increases, the contour of  $||\mathbf{x}||_2 = r$ grows and touches the hyperplane  $\mathbf{\Phi}\mathbf{x} = \mathbf{y}$ .

The solution **x**<sup>\*</sup> obtained is not sparse.

University of Victoria

Contours of 
$$||\mathbf{x}||_2 = r$$

**Compressive Sensing** 

#### Theorem

If  $\mathbf{\Phi} = \{\phi_{ij}\}$  where  $\phi_{ij}$  are independent and identically distributed random variables with zero-mean and variance 1/N and  $M \ge cK \log(N/K)$ , the solution of the  $\ell_1$ -minimization problem would recover exactly a *K*-sparse signal with high probability.

・ロト ・回ト ・ヨト ・

#### Theorem

If  $\mathbf{\Phi} = \{\phi_{ij}\}$  where  $\phi_{ij}$  are independent and identically distributed random variables with zero-mean and variance 1/N and  $M \ge cK \log(N/K)$ , the solution of the  $\ell_1$ -minimization problem would recover exactly a *K*-sparse signal with high probability.

For real-valued data {Φ, y}, the ℓ<sub>1</sub>-minimization problem is a linear programming problem.

イロト イポト イヨト イヨ

• Example: N = 512, M = 120, K = 26

**Compressive Sensing** 

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

#### • Example: N = 512, M = 120, K = 26



**Compressive Sensing** 

11

• The sparsity of a signal can be measured by using its  $\ell_0$  pseudonorm

$$||\mathbf{x}||_0 = \sum_{i=1}^N |x_i|^0$$

・ロン ・回 と ・ ヨ と ・ ヨ と

∃ <\0<</p>

• The sparsity of a signal can be measured by using its  $\ell_0$  pseudonorm

$$||\mathbf{x}||_0 = \sum_{i=1}^N |x_i|^0$$

Hence the sparsest solution of  $\Phi x = y$  can be obtained by solving the  $\ell_0$ -norm minimization problem

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & ||\mathbf{x}||_{0} \\ \text{subject to} & \mathbf{\Phi}\mathbf{x} = \mathbf{y} \end{array}$$

The sparsity of a signal can be measured by using its  $\ell_0$  pseudonorm

$$||\mathbf{x}||_0 = \sum_{i=1}^N |x_i|^0$$

Hence the sparsest solution of Φx = y can be obtained by solving the ℓ<sub>0</sub>-norm minimization problem

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & ||\mathbf{x}||_{0} \\ \text{subject to} & \mathbf{\Phi}\mathbf{x} = \mathbf{y} \end{array}$$

・ロト ・同ト ・ヨト

University of Victoria

• Unfortunately, the  $\ell_0$ -norm minimization problem is nonconvex with combinatorial complexity.

An effective signal recovery strategy is to solve the  $\ell_p$ -minimization problem

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & ||\mathbf{x}||_{p}^{p} & \text{with} & 0$ 

where  $||\mathbf{x}||_{p}^{p} = \sum_{i=1}^{N} |x_{i}|^{p}$ .

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● ○○○

An effective signal recovery strategy is to solve the  $\ell_p$ -minimization problem

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & ||\mathbf{x}||_{p}^{p} & \text{with} & 0$ 

where 
$$||\mathbf{x}||_{p}^{p} = \sum_{i=1}^{N} |x_{i}|^{p}$$
.

• The  $\ell_p$ -norm minimization problem is nonconvex.

#### **Compressive Sensing**

◆□ → ◆□ → ◆三 → ◆三 → ● ● ●

• Contours of  $||\mathbf{x}||_p = 1$  with p < 1



**Compressive Sensing** 

• Why  $\ell_p$  minimization with p < 1?

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへで

• Why  $\ell_p$  minimization with p < 1?



As *c* increases, the contour  $||\mathbf{x}||_{p}^{p} = c$  grows and touches the hyperplane  $\mathbf{\Phi}\mathbf{x} = \mathbf{y}$ , yielding a sparse solution  $\mathbf{x}^{*} = \begin{bmatrix} 0 \\ c \end{bmatrix}$ .

The possibility that the contour will touch the hyperplane at another point is eliminated.

University of Victoria

#### **Compressive Sensing**

• We propose to minimize an approximate  $\ell_0$ -norm

$$||\mathbf{x}||_{0,\sigma} = \sum_{i=1}^{N} \left(1 - e^{-x_i^2/2\sigma^2}\right)$$

where **x** lies in the solution space of  $\Phi \mathbf{x} = \mathbf{y}$ , namely,

$$\mathbf{x} = \mathbf{x}_s + \mathbf{V}_r \boldsymbol{\xi}$$

where  $\mathbf{x}_s$  is a solution of  $\mathbf{\Phi}\mathbf{x} = \mathbf{y}$  and  $\mathbf{V}_r$  is an orthonormal basis of the null space of  $\mathbf{\Phi}$ .

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Victoria

**Compressive Sensing** 

• Why norm  $||\mathbf{x}||_{0,\sigma}$  works?

**Compressive Sensing** 

◆□ → ◆□ → ◆臣 → ◆臣 → ○三 ・ のへで

• Why norm  $||\mathbf{x}||_{0,\sigma}$  works?

With  $\sigma$  small,

$$\left(1-e^{-x_i^2/2\sigma^2}\right)\Big|_{x_i=0}=0$$

and

$$\left. \left( 1 - e^{-x_i^2/2\sigma^2} \right) 
ight|_{x_i 
eq 0} pprox 1$$

**Compressive Sensing** 

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

• Why norm  $||\mathbf{x}||_{0,\sigma}$  works?

With  $\sigma$  small,

$$\left(1-e^{-x_i^2/2\sigma^2}\right)\Big|_{x_i=0}=0$$

and

$$\left. \left( 1 - e^{-x_i^2/2\sigma^2} \right) 
ight|_{x_i 
eq 0} pprox 1$$

Therefore, for a K-sparse signal,

$$||\mathbf{x}||_{0,\sigma} = \sum_{i=1}^{N} \left(1 - e^{-x_i^2/2\sigma^2}\right) \approx K = ||\mathbf{x}||_0$$

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A 3 1 A 3 1

3

**University of Victoria** 

**Compressive Sensing** 

Improved recovery rate can be achieved by using a re-weighting technique.

・ロン ・回 と ・ ヨン ・ ヨン

- Improved recovery rate can be achieved by using a re-weighting technique.
- This involves solving the optimization problem

$$\underset{\boldsymbol{\xi}}{\text{minimize}} \sum_{i=1}^{n} w_i \left\{ 1 - e^{-[\mathbf{x}_{\mathbf{s}}(i) + \mathbf{v}_i^T \boldsymbol{\xi}]^2 / 2\sigma^2} \right\}$$

where

$$w_i^{(k+1)} = rac{1}{|x_i^{(k)}| + \epsilon}$$

イロト イポト イヨト イヨト

**University of Victoria** 

#### **Compressive Sensing**

#### Performance Evaluation

Number of perfectly recovered instances versus sparsity K by various algorithms with N = 256 and M = 100 over 100 runs.





**Compressive Sensing** 

#### Performance Evaluation, cont'd

Average CPU time versus signal length for various algorithms with M = N/2 and K = M/2.5.



**Compressive Sensing** 

# Performance Evaluation, cont'd

Performance comparison of  $\ell_1$  minimization with approximate  $\ell_0$  minimization for N = 512, M = 80, K = 30.



**Compressive Sensing** 

21

Compressive sensing is an effective technique for signal sampling.

\*ロト \*@ > \*注 > \*注

-

- Compressive sensing is an effective technique for signal sampling.
- $\ell_1$  minimization works in general for the reconstruction of sparse signals.

・ロト ・回ト ・ヨト ・

- Compressive sensing is an effective technique for signal sampling.
- $\ell_1$  minimization works in general for the reconstruction of sparse signals.
- $\ell_p$  minimization with p < 1 can improve the recovery performance for signals that are less sparse.

- Compressive sensing is an effective technique for signal sampling.
- $\ell_1$  minimization works in general for the reconstruction of sparse signals.
- $\ell_p$  minimization with p < 1 can improve the recovery performance for signals that are less sparse.
- Approximate  $\ell_0$ -norm minimization offers good performance with improved complexity.

#### Thank you for your attention.

・ロト ・回ト ・ヨト ・ヨト

3