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Compressive Sensing

A signal x(n) of length N is K -sparse if it contains K nonzero
components with K � N .

A signal is near K -sparse if it contains K significant components.
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Compressive Sensing, cont’d

Sparsity is a generic property of signals: A real-world signal always
has a sparse or near-sparse representation with respect to an
appropriate basis.
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Compressive Sensing, cont’d

Compressive sensing (CS) is a data acquisition process whereby a
sparse signal x(n) represented by a vector x of length N is
determined using a small number of projections represented by a
matrix Φ of dimension M × N .

In such a process, measurement vector y and signal vector x are
interrelated by the equation

y = Φ · x 
M×1

=

 
M×N




N×1

measurements projection sparse signal
matrix of interest
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Compressive Sensing, cont’d

CS theory shows that these random projections contain much,
sometimes all, the information content of signal x.

If a sufficient number of such measurements are collected,
recovering signal x from measurements y is possible.

A condition for this to be possible is

M ≥ c · K · log(N/K )

where c is a small constant.

Typically,
K < M < N
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Signal Recovery by `1 Minimization

Recovering signal vector x from measurement vector y such that

Φ
|

M×N

· x
|

N×1

= y
|

M×1

is an ill-posed problem.

Given that x is sparse, x can be reconstructed by solving the
`1-minimization problem

minimize
x

||x||1
subject to Φx = y

where ||x||1 =
N∑

i=1

|xi |.
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Signal Recovery by `1 Minimization, cont’d

Why `1-norm minimization?
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Signal Recovery by `1 Minimization, cont’d

Why `2-norm minimization fails to work?
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Signal Recovery by `1 Minimization, cont’d

Theorem

If Φ = {φij} where φij are independent and identically distributed
random variables with zero-mean and variance 1/N and
M ≥ cK log(N/K ), the solution of the `1-minimization problem would
recover exactly a K -sparse signal with high probability.

For real-valued data {Φ, y}, the `1-minimization problem is a linear
programming problem.
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Signal Recovery by `1 Minimization, cont’d

Example: N = 512, M = 120, K = 26
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Signal Recovery by `p Minimization

The sparsity of a signal can be measured by using its `0

pseudonorm

||x||0 =
N∑

i=1

|xi |0

Hence the sparsest solution of Φx = y can be obtained by solving
the `0-norm minimization problem

minimize
x

||x||0
subject to Φx = y

Unfortunately, the `0-norm minimization problem is nonconvex
with combinatorial complexity.
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Signal Recovery by `p Minimization, cont’d

An effective signal recovery strategy is to solve the
`p-minimization problem

minimize
x

||x||pp with 0 < p < 1

subject to Φx = y

where ||x||pp =
N∑

i=1

|xi |p.

The `p-norm minimization problem is nonconvex.
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Signal Recovery by `p Minimization, cont’d

Contours of ||x||p = 1 with p < 1
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Signal Recovery by `p Minimization, cont’d

Why `p minimization with p < 1?
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[
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c

]
.

The possibility that the contour
will touch the hyperplane at
another point is eliminated.
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Signal Recovery by `p Minimization, cont’d

We propose to minimize an approximate `0-norm

||x||0,σ =
N∑

i=1

(
1− e−x2

i /2σ2
)

where x lies in the solution space of Φx = y, namely,

x = xs + Vrξ

where xs is a solution of Φx = y and Vr is an orthonormal basis
of the null space of Φ.
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Signal Recovery by `p Minimization, cont’d

Why norm ||x||0,σ works?

With σ small, (
1− e−x2

i /2σ2
)∣∣∣

xi=0
= 0

and

(
1− e−x2

i /2σ2
)∣∣∣

xi 6=0
≈ 1

Therefore, for a K -sparse signal,

||x||0,σ =
N∑

i=1

(
1− e−x2

i /2σ2
)
≈ K = ||x||0
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Signal Recovery by `p Minimization, cont’d

Improved recovery rate can be achieved by using a re-weighting
technique.

This involves solving the optimization problem

minimize
ξ

n∑
i=1

wi

{
1− e−[xs(i)+vT

i ξ]2/2σ2
}

where

w
(k+1)
i =

1

|x (k)
i |+ ε
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Performance Evaluation

Number of perfectly recovered instances versus sparsity K by various
algorithms with N = 256 and M = 100 over 100 runs.
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NRAL0
SL0
IR(p=0)
IR(p=0.1)

IR: Iterative re-weighting (Chartrand and Yin, 2008)
SL0: Smoothed `0-norm minimization (Mohimani et. al., 2009)

NRAL0: Proposed
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Performance Evaluation, cont’d

Average CPU time versus signal length for various algorithms with
M = N/2 and K = M/2.5.
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Performance Evaluation, cont’d

Performance comparison of `1 minimization with approximate `0

minimization for N = 512, M = 80, K = 30.
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Conclusions

Compressive sensing is an effective technique for signal sampling.

`1 minimization works in general for the reconstruction of sparse
signals.

`p minimization with p < 1 can improve the recovery performance
for signals that are less sparse.

Approximate `0-norm minimization offers good performance with
improved complexity.
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Thank you for your attention.
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