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Introduction

� Some landmark advancements in mathematics over the
period 1770 to 1970 that pertain to the roots of DSP will be
examined.
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Introduction

� Some landmark advancements in mathematics over the
period 1770 to 1970 that pertain to the roots of DSP will be
examined.

� It will be shown that the mathematical tools for spectral
analysis were introduced by a group of French
mathematicians who studied or taught at École
Polytechnique in Paris during or soon after the French
Revolution over a period of 50 years or so.
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Introduction Cont’d

� The processing of continuous-time signals by digital means
is possible by virtue of the sampling theorem.

� It is attributed to Nyquist and/or Shannon.

� To elucidate the origins of the sampling theorem, the
contributions of Nyquist and Shannon to this discovery will
be examined.
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Introduction Cont’d

� The construction of machines that can perform numerical
calculations has been explored by several engineers and
scientists, including Pascal and Leibniz, but the most
ambitious attempt was by Babbage who is often regarded
to be the father of computers.
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Introduction Cont’d

� The construction of machines that can perform numerical
calculations has been explored by several engineers and
scientists, including Pascal and Leibniz, but the most
ambitious attempt was by Babbage who is often regarded
to be the father of computers.

� Babbage’s work will be examined here from the
perspective of the DSP practitioner.
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Introduction Cont’d

� Time permitting, the talk will also deal with certain
landmark achievements during the 1960s which led to the
emergence of DSP as a field of study.

� The talk is based on an article to be published in the IEEE
Circuits and Systems Magazine in November 2007 (see
[Antoniou, 2007]).
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The French Mathematicians

Five generations of French mathematicians who lived during or
after the French Revolution have given us the basic tools for the
spectral representation of signals:

� Jean Baptiste Joseph Fourier (1768–1830)
� Siméon-Denis Poisson (1781–1840)
� Augustin Louis Cauchy (1789–1857)
� Johann Peter Gustav Lejeune Dirichlet (1805–1859)
� Pierre Laurent (1813–1854)
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Jean Baptiste Joseph Fourier

� Fourier studied at École Normal in Paris where he was
taught by Lagrange and Laplace.

� He was appointed at École Polytechnique soon after.

� In 1798, he was selected to accompany Napoleon’s army
in its invasion of Egypt as a scientific advisor.

Note: The biographical notes on these slides originate from
[Indexes of Biographies] and other websites on the Internet.
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Fourier Cont’d

� He returned to Paris in 1801 along with what remained of
the French expeditionary force.

� Soon after, he was appointed by Napoleon as a Prefect in
Grenoble.

� In this capacity, he had to supervise the draining of
swamps and the construction of a new highway from
Grenoble to Turin.
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Discovery of Fourier Series

� During 1804–1807, while in Grenoble, Fourier found time
to pursue research work on heat transfer, presumably in
his spare time.
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Discovery of Fourier Series

� During 1804–1807, while in Grenoble, Fourier found time
to pursue research work on heat transfer, presumably in
his spare time.

� He presented a paper entitled On the Propagation of Heat
in Solid Bodies at the Institut de France.
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Discovery of Fourier Series

� During 1804–1807, while in Grenoble, Fourier found time
to pursue research work on heat transfer, presumably in
his spare time.

� He presented a paper entitled On the Propagation of Heat
in Solid Bodies at the Institut de France.

� The paper caused controversy from the start: the
committee appointed to report on the work, which included
Fourier’s teachers Lagrange and Laplace, opposed the
work

– on account of analytic difficulty of the heat transfer
equations involved, and

– the extensive use of trigonometric series in the derivation,
now known universally as the Fourier series.
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Fourier Series Cont’d

� To resolve the issue once and for all, the Institut de France
made "Propagation of Heat" the subject of the Grand Prize
for 1811.

� There was one more candidate for the prize in addition to
Fourier.

� The committee, which included Lagrange and Laplace as
members, awarded the prize to Fourier.

� However, the written report of the committee expressed
reservation about the rigor and generality of the work.
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Fourier Series Cont’d

� Formal publication of the work did not take place until 1822
when the Academy of Sciences published a treatise by
Fourier entitled Théory Analytique de la Chaleur.

� The controversy continued among mathematicians for
some years until Dirichlet, one of Fourier’s students,
published the conditions for the convergence of the Fourier
series in 1829.
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Siméon-Denis Poisson

� Poisson’s father wanted him to become a surgeon and sent
him off to serve as an apprentice surgeon under the
guidance of an uncle.

� Handicapped by a dreadful lack of dexterity not to mention
a lack of motivation for the medical profession, he soon
failed.

� In due course, with his father’s consent, he began to study
his favorite subject, mathematics, at École Polytechnique in
1798.
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Poisson Cont’d

� Like Fourier, Poisson had Lagrange and Laplace as
teachers.

� His big break came about in 1806 when he was appointed
to the professorship vacated by Fourier upon the latter’s
departure for Grenoble.

� He is known for a probability distribution, an integral, and a
summation formula that carry his name and many other
discoveries.
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Poisson Summation Formula

In the context of signal analysis, the Poisson Summation
Formula can be expressed as

∞∑
n=−∞

x (t + nT ) = 1
T

∞∑
n=−∞

X (jnωs)ejωs t

where
� x (t ) is a signal,
� X (jω) is its Fourier transform or frequency spectrum,
� T is a period in s, and
� ωs = 2π/T is a frequency in rad/s.
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Poisson Summation Formula Cont’d

By using the Poisson summation formula, one can show that
the spectrum of a sampled signal x̂ (t ) is given by

X̂ (jω) = XD(ejωT ) = 1
T

∞∑
n=−∞

X (jω + jnωs)

where
� XD(ejωT ) is the z transform of x (nT ) evaluated on the unit

circle z = ejωT of the z plane,
� T is the sampling period, and
� ωs is the sampling frequency.

(see [Antoniou, 2005] for derivation.)
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Poisson Summation Formula Cont’d

By using the Poisson summation formula, one can show that
the spectrum of a sampled signal x̂ (t ) is given by

X̂ (jω) = XD(ejωT ) = 1
T

∞∑
n=−∞

X (jω + jnωs)

where
� XD(ejωT ) is the z transform of x (nT ) evaluated on the unit

circle z = ejωT of the z plane,
� T is the sampling period, and
� ωs is the sampling frequency.

(see [Antoniou, 2005] for derivation.)

In effect, given the frequency spectrum X (jω) of a
continuous-time signal x (t ), the spectrum of the corresponding
discrete-time signal x (nT ) can be readily obtained.
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Poisson Summation Formula Cont’d

−40 −30 −20 −10 0 10 20 30 40
0

0.1

0.2

−40 −30 −20 −10 0 10 20 30 40
0

0.1

0.2

−40 −30 −20 −10 0 10 20 30 40
0

0.1

0.2

|XD(ejωT)|

|X(jω)|

Filtered
|XD(ejωT)|

Frame # 16 Slide # 21 A. Antoniou On the Roots of DSP: 1770 to 1970



Poisson Summation Formula Cont’d
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Poisson Summation Formula Cont’d

−40 −30 −20 −10 0 10 20 30 40
0

0.1

0.2

−40 −30 −20 −10 0 10 20 30 40
0

0.1

0.2

−40 −30 −20 −10 0 10 20 30 40
0

0.1

0.2

Frame # 18 Slide # 23 A. Antoniou On the Roots of DSP: 1770 to 1970



Poisson Summation Formula Cont’d

The last slide shows clearly that a continuous-time signal can
be recovered from a sampled version of the signal by using a
lowpass filter, i.e., the validity of the sampling theorem is
demonstrated.
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Augustine Louis Cauchy

� He studied at École Polytechnique during 1805-1807 and
upon graduation he entered École des Ponts and
Chaussées (School of Bridges and Roadways) to study
engineering.

� From 1815 to 1830 he taught at École Polytechnique.

� He left France in 1830 to get away from an unfavorable
political situation to spend some time in Switzerland, Turin,
and Prague but returned to Paris in 1838.

� He contributed extensively to the mathematics of physics
and in the process he developed new techniques such as
transforms, diagonalization of matrices, and the calculus of
residues.
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Cauchy Cont’d

� Cachy’s contribution to DSP is the residue theorem which
is a straightforward application of the Cauchy integral
theorem.
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Cauchy Cont’d

� Cachy’s contribution to DSP is the residue theorem which
is a straightforward application of the Cauchy integral
theorem.

� By using the residue theorem, the inverse of an arbitrary z
transform, X (z), can be deduced as

x (nT ) = 1
2π j

∮
�

X (z)zn−1 dz =
P∑

i=1

Res z→pi

[
X (z)zn−1

]

where

Res z=pi

[
X (z)zn−1

]
= 1

(mi − 1)!
lim

z→pi

dmi−1

dzmi −1

[
(z − pi )

mi X (z)zn−1
]

(see Chap. 3 of [Antoniou, 2005]).
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Johann Peter Gustav Lejeune Dirichlet

� Laplace, Fourier, and Poison were his teachers.

� He married the sister of Felix Mendelssohn.
� As mentioned earlier, he deduced the conditions for the

convergence of the Fourier series, which are known as the
Dirichlet conditions.
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Pierre Laurent

� He studied at École Polytechnique.

� He discovered a series which is now know as the Laurent
series.

� He submitted a paper on complex analysis that included
the Laurent series for the Grant Prize for Mathematics of
the Academy of Science.

� Unfortunately, he submitted the paper after the official
deadline and, consequently, it was not considered
seriously by the Academy.

� Despite several attempts by Cauchy to help Laurent publish
his paper, the series he discovered was not published until
some years after his death at the early age of 41.
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Laurent Cont’d

According to Laurent, an analytic function F (z) can be
represented by an the infinite series of the form

F (z) =
∞∑

n=−∞
an(z − a)−n

where a is an arbitrary complex constant and

an = 1
2π j

∮
�

F (z)(z − a)n−1 dz

where � is a closed contour in the annulus of convergence that
encircles point z = a.
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Laurent Cont’d

The Laurent series is given by

F (z) =
∞∑

n=−∞
an(z − a)−n

The z transform is defined as

X (z) =
∞∑

n=−∞
x (nT )z−n
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Laurent Cont’d

The Laurent series is given by

F (z) =
∞∑

n=−∞
an(z − a)−n

The z transform is defined as

X (z) =
∞∑

n=−∞
x (nT )z−n

If we now let an = x (nT ) and a = 0 in the Laurent series, we
get the z transform and, in effect, the z transform is one of
several possible Laurent series of a rational function.
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Laurent Cont’d

� Cauchy tried unsuccessfully to help Laurent publish his
series.

� Interestingly, coefficients an for −∞ < n < ∞ are the
residues of function F (z), which can be evaluated using
the residue theorem and, as mentioned, the residue
theorem is based on Cachy’s integral.
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Laurent Cont’d

� Fourier and Laurent are related through their association
with École Polytechnique.

� Their contributions to the roots of DSP are also related:
The Fourier transform of an impulse modulated signal is
numerically equal to the z transform of a corresponding
discrete-time signal evaluate on the unit circle of the z
plane.
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Laurent Cont’d

x(nT)

kT
nT

x(kT)

(b)

(a)
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t

x(kT)

x(t)ˆ

—
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The Sampling Theorem

� The next major discovery in spectral analysis, after the
Fourier series, is the formulation of the sampling theorem
during the early part of the 20th century.

� Notable contributions to the understanding of this important
theorem were made by

– Harry Nyquist (1889–1976), and

– Claude Shannon (1916–2001)
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Harry Nyquist

� Nyquist was born in Nilsy, Sweden.
� He emigrated to the USA in 1907.
� Received the bachelor’s and master’s degrees from the

University of North Dakota and the PhD degree from Yale
University in 1914, 1915, and 1917, respectively.

� He spent his professional life until his retirement in 1954 at
Bell Telephone Laboratories.
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Nyquist Cont’d

� In addition to his association with the sampling theorem,
Nyquist is known for his work on the stability of amplifiers.

� He carried out important work on thermal noise which is
often referred to as Johnson-Nyquist noise.
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Nyquist Cont’d

What Nyquist did in connection with the sampling theorem was
to show that a periodic pulse signal constructed from a
sequence of N equally spaced rectangular pulses of arbitrary
amplitudes can be uniquely determined from the amplitudes
and phase angles of the first N/2 sinusoidal components of the
Fourier series of the periodic signal by solving a set of N/2
simultaneous equations [Nyquist, 1929].

kτ

τ t

x(kτ)

x(t)

T=Nτ 2T
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Nyquist Cont’d

The fundamental of such a signal in Hz is given by

f0 = 1
T

= 1
Nτ

where T is the period of the pulse signal and τ is the duration of
each rectangular pulse.

kτ

τ t

x(kτ)

x(t)

T=Nτ 2T
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Nyquist Cont’d

· · ·
f0 = 1

T
= 1

Nτ

If B is the bandwidth from 0 up to and including harmonic N/2,
then we have

B = N
2

f0 = N
2

· 1
Nτ

= 1
2τ

and if we let 1/τ = fs, we get

B = fs
2

in Hz or
ωs

2
in rad/s

where ωs = 2π fs.
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Nyquist Cont’d

· · ·
f0 = 1

T
= 1

Nτ

If B is the bandwidth from 0 up to and including harmonic N/2,
then we have

B = N
2

f0 = N
2

· 1
Nτ

= 1
2τ

and if we let 1/τ = fs, we get

B = fs
2

in Hz or
ωs

2
in rad/s

where ωs = 2π fs.

In other words, the pulse signal can be uniquely determined
from the spectrum of the signal over the frequency range 0 to
fs/2 where fs/2 is commonly known as the Nyquist frequency.
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Nyquist Cont’d

� Nyquist derived his result in the context of telegraphy – no
sampled signals were involved.

� However, if τ becomes infinitesimally small, then the
dashed curve may be deemed to be a sampled signal.

kτ

τ t

x(kτ)

x(t)

T=Nτ 2T
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Nyquist Cont’d

� In order to extend the validity of his result to the case of
nonperiodic signals, Nyquist suggested that period T could
be made very large, a day or a year, in his words, by
adding pulses of zero amplitude.

kτ

τ t

x(kτ)

x(t)

T=Nτ 2T
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Nyquist Cont’d

� Unfortunately, Nyquist’s analysis breaks down because the
Fourier-series coefficients which are given by

Xk = 1
T

∫ T

0
x (t )e−jkω0t dt

would become zero when T becomes infinite.
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Claude Elwood Shannon

� Shannon studied at the University of Michigan graduating
with two Bachelor of Science degrees, one in electrical
engineering and the other in mathematics in 1936.

� He pursued graduate studies at the Massachusetts
Institute of Technology earning a master’s degree in
electrical engineering and a PhD in mathematics in 1940.

� He joined the mathematics department at Bell Labs in
1941 and remained affiliated with Bell Labs until 1972.

� He was appointed as Donner Professor of Science at MIT
in 1958 and continued from 1978 on as professor emeritus.
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Shannon Cont’d

� His contributions are both numerous and diverse.

� He proposed the application of Boolean algebra for the
description of switching circuits, which became in due
course the standard design methodology for digital circuits
and computers.

� From 1940 on he began to be involved with the emerging
field of communication theory and over the years he laid
the foundation of what is now known as information theory.

� What is of interest here is his contribution to the
understanding of the sampling theorem.
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Shannon Cont’d

� Essentially, what Shannon did was to provide a more
general proof that a signal which satisfies the Nyquist
condition can be recostructed from its values x (nT ) for
−∞ < n < ∞ (see [Shannon, 1949]).
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Shannon Cont’d

If a signal x (t ) that satisfies the Nyquist condition is passed
through an ideal channel with a frequency response

H (jω) =
{

1 for −ωs/2 < ω < ωs/2

0 otherwise

then a signal of the form

x (t ) =
∞∑

n=−∞
x (nT )

sinωs(t − nT )/2
ωs(t − nT )/2

(A)

would be obtained at the receiving end.
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Shannon Cont’d

· · ·
x (t ) =

∞∑
n=−∞

x (nT )
sinωs(t − nT )/2
ωs(t − nT )/2

(A)

� Since the channel would not disturb the spectrum of the
signal, he concluded that the received signal must be the
original signal.
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Shannon Cont’d

· · ·
x (t ) =

∞∑
n=−∞

x (nT )
sinωs(t − nT )/2
ωs(t − nT )/2

(A)

� Since the channel would not disturb the spectrum of the
signal, he concluded that the received signal must be the
original signal.

� The formula in Eq. (A) is essentially an interpolation
formula that reconstructs the original signal from its values
x (nT ) for −∞ < n < ∞.
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Shannon Cont’d

· · ·
x (t ) =

∞∑
n=−∞

x (nT )
sinωs(t − nT )/2
ωs(t − nT )/2

(A)

� Since the channel would not disturb the spectrum of the
signal, he concluded that the received signal must be the
original signal.

� The formula in Eq. (A) is essentially an interpolation
formula that reconstructs the original signal from its values
x (nT ) for −∞ < n < ∞.

� Shannon used the Fourier transform in his proof and, in
effect, he has shown that the Nyquist condition applies to
periodic as well as nonperiodic signals that have a Fourier
transform.
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Shannon Cont’d

� Like Nyquist, Shannon was not concerned with sampled
signals in today’s context.
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Shannon Cont’d

� Like Nyquist, Shannon was not concerned with sampled
signals in today’s context.

� However, given a continuous-time signal x (t ) with a
spectrum X (jω) that satisfies the Nyquist condition, the
spectrum of the sampled signal would simply be

1
T

X (jω) for − ωs/2 < ω < ωs/2

by virtue of the Poisson summation formula.
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Shannon Cont’d
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Shannon Cont’d

� In effect, Shannon’s proof applies equally well to the
situation where a sampled signal is passed through an
ideal lowpass filter.
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Shannon Cont’d

� In effect, Shannon’s proof applies equally well to the
situation where a sampled signal is passed through an
ideal lowpass filter.

� Since a lowpass filter will also reject the sidebands
introduced by the sampling process, Shannon’s proof also
incorporates a practical technique that can be used to
recover continuous-time signals from their sampled
versions.
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Shannon Cont’d

� It should be mentioned that Shannon pointed out in his
paper that the sampling theorem was common knowledge
in the art of communications and that it had been given
previously in other forms by mathematicians; in fact, he
cites a mathematical treatise by Whittaker published in
1913.
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Shannon Cont’d

� It should be mentioned that Shannon pointed out in his
paper that the sampling theorem was common knowledge
in the art of communications and that it had been given
previously in other forms by mathematicians; in fact, he
cites a mathematical treatise by Whittaker published in
1913.

� In recent years it has been found out that the sampling
theorem was ‘discovered’ independently by several others,
e.g., Kotelnikov in 1933 , Raabe in 1939 , and Someya in
1949 , according to a recent article by Lüke [Lüke, 1999].
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Shannon Cont’d

� It should be mentioned that Shannon pointed out in his
paper that the sampling theorem was common knowledge
in the art of communications and that it had been given
previously in other forms by mathematicians; in fact, he
cites a mathematical treatise by Whittaker published in
1913.

� In recent years it has been found out that the sampling
theorem was ‘discovered’ independently by several others,
e.g., Kotelnikov in 1933 , Raabe in 1939 , and Someya in
1949 , according to a recent article by Lüke [Lüke, 1999].

� In fact, the underlying principle is closely related to the
barycentric interpolation formula of Lagrange.
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Emergence of Computers

� DSP has mushroomed into a multifaceted discipline with
applications in most fields of science and technology
mainly because of the extraordinary advancements in
computers brought about by advancements in VLSI
technologies.
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Emergence of Computers

� DSP has mushroomed into a multifaceted discipline with
applications in most fields of science and technology
mainly because of the extraordinary advancements in
computers brought about by advancements in VLSI
technologies.

� Therefore, a survey of the events that led to DSP would be
incomplete without a word or two on the emergence of
computers.
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Emergence of Computers Cont’d

� The rapid advancements in mathematics and most other
sciences during the Renaissance led to commensurate
advancements in engineering, manufacturing,
transportation, navigation, trade, banking, etc.

� Consequently, a great need for numerical calculations
emerged be it to estimate the position of a ship using
astronomical measurements, to establish the trajectory of a
heavenly body, or to design a bridge or steam engine.
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Emergence of Computers Cont’d

� To expedite such calculations, published numerical tables,
such as logarithm and trigonometric tables, had been in
use since the 1600s.

� The calculations necessary to construct numerical tables
were carried out by people who spent endless monotonous
hours performing manual calculations.

� The end result was that published tables contained
numerous typographical errors.
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Emergence of Computers Cont’d

� From the 17th century on, a number of notable scientists
and engineers, including Pascal and Leibniz, attempted to
construct calculating machines to alleviate the burden of
numerical calculations.

� The most ambitious of these individuals was Charles
Babbage (1791–1871) who attempted to construct
machines he called difference engines that would perform
the necessary computations as well as print the numerical
tables without human intervention.

In this way, he hoped to produce numerical tables that were
free of numerical errors.
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Charges Babbage

� Babbage studied at Cambridge University, during
1810-1814 earning a BA degree.

� He was elected member of the Royal Society of London in
1816 at the early age of 24.

� In 1819 he began work on his first difference engine having
obtained a grant from the British government.

� He was to spend the rest of his professional life trying to
accomplish this task.
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Babbage Cont’d

� The purpose of the difference engine was to evaluate
polynomials of arbitrary orders with high precision.

� It was to be constructed using the technology of the 1800s,
namely, in terms of cams, gears, and levers.

� Its theoretical basis was a simple numerical extrapolation
technique.

� The underlying principle is illustrated in the two or three
slides for the case where the function

y (n) = n3

is to be evaluated.
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Babbage Cont’d
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Babbage Cont’d

� The first and second columns of the difference table give
the values of independent variable n and the
corresponding values of the function.
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Babbage Cont’d

� The first and second columns of the difference table give
the values of independent variable n and the
corresponding values of the function.

� The third, fourth, and fifth columns give the first, second,
and third backward differences which are defined as

∇y (n) = y (n) − y (n − 1)

∇2y (n) = ∇∇y (n)

∇3y (n) = ∇∇2y (n)
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Babbage Cont’d

� We note that the entries in the fifth column, namely, the
third backward differences, are all equal to 6.

� The reason behind this phenomenon is connected to the
fact that the third derivative of n3 is a constant.

� On the basis of this fact, we can generate a new set of
differences for the table by starting with the next entry in
the fifth column, which is known to be 6, and progressing
towards the left, ending with the next value of the function
in the second column.

Thus an arbitrarily long table of the cubes of n can be
generated.
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Babbage Cont’d

� Extending the same principle, one can show that the nth
backward differences of an nth-order polynomial are also
all equal to a constant.

� Therefore, the extrapolation technique described can be
used to evaluate arbitrary polynomials just as well.
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Babbage Cont’d

� If we now extend the difference table for the evaluation of
y (n) = n3 to entries n − 3, n − 2, n − 1, n, we obtain

∇2y (n) = 6 + ∇2y (n − 1)

∇y (n) = ∇2y (n) + ∇y (n − 1)

y (n) = ∇y (n) + y (n − 1)

� By solving for y (n), we get the difference equation

y (n) = 6x (n) + 3y (n − 1) − 3y (n − 2)

+y (n − 3) (B)

where x (n) = u(nT ) and u(nT ) is the unit-step function.

� Therefore, from Eq. (B) we conclude that what Babbage
was trying to construct was a recursive discrete system in
today’s language.
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Babbage Cont’d

Network representation of Babbage’s difference engine:

x(n)

 −1

 3

 −3

y(n)

6
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Babbage Cont’d

� For various reasons Babbage failed to build a working
difference engine (see [Swade, 2000]).

� All that was left to posterity is an almost complete set of
drawings of Difference Engine No. 2 and certain parts that
escaped recycling.

� However, he was fully vindicated when a team led by
Donald D. Swade, sponsored by the Science Museum in
London, actually built a working model of Difference
Engine No. 2, minus the printing mechanism, based on
Babbage’s drawings.
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Babbage’s Difference Engine No. 2

� Was designed during the period 1847 to 1849.

� Was built at the Science Museum, London, U.K., in 1991
(see [Swade, 1991]).

� Measures 2.1 × 3.4 × 0.5 m.

� Weighs 3 tons.

� Can evaluate 7th-order polynomials.

� Was designed to calculate to 30 significant figures.
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Babbage’s Difference Engine No. 2
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Emergence of Modern Era of DSP

� The pressures of World War II during the 1940s rekindled
strong interest in constructing machines that would perform
calculations accurately and efficiently, and several
machines were built during that period based on the new
emerging electronics technology.

� The most notable of these machines was the Electronic
Numerical Integrator and Computer, or ENIAC, which was
conceived and designed by John Mauchly and J. Presper
Eckert of the University of Pennsylvania.
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Modern Era of DSP Cont’d

� ENIAC bears no ancestral relationship to Babbage’s
difference and analytical engines.

� However, it is of interest to note that just like the difference
engines of Babbage, ENIAC was designed to construct
numerical tables, actually artillery firing tables for the U.S.
Army’s Ballistics Research Laboratory.
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Modern Era of DSP Cont’d

� By the late fifties, a cohesive collection of techniques
referred to as ‘data smoothing and prediction’ began to
emerge through the efforts of pioneers such as Blackman,
Bode, Shannon, and others.
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Modern Era of DSP Cont’d

� By the late fifties, a cohesive collection of techniques
referred to as ‘data smoothing and prediction’ began to
emerge through the efforts of pioneers such as Blackman,
Bode, Shannon, and others.

� During the early sixties, an entity referred to as the ‘digital
filter’ began to appear in the literature to describe a
collection of algorithms that could be used for spectral
analysis and data processing.
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Modern Era of DSP Cont’d

� By the late fifties, a cohesive collection of techniques
referred to as ‘data smoothing and prediction’ began to
emerge through the efforts of pioneers such as Blackman,
Bode, Shannon, and others.

� During the early sixties, an entity referred to as the ‘digital
filter’ began to appear in the literature to describe a
collection of algorithms that could be used for spectral
analysis and data processing.

Note: See [Antoniou, 2007] for references.
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Modern Era of DSP Cont’d

� Digital filters in hardware form began to appear during the
late sixties and an early design was reported by Jackson,
Kaiser, and McDonald.
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Modern Era of DSP Cont’d

� Digital filters in hardware form began to appear during the
late sixties and an early design was reported by Jackson,
Kaiser, and McDonald.

� During the 1960s, the discrete Fourier transform was
formalized and efficient algorithms for its computation,
usually referred to as Fast Fourier Transforms, were
proposed by Cooley, Tukey, and others.
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Modern Era of DSP Cont’d

� Digital filters in hardware form began to appear during the
late sixties and an early design was reported by Jackson,
Kaiser, and McDonald.

� During the 1960s, the discrete Fourier transform was
formalized and efficient algorithms for its computation,
usually referred to as Fast Fourier Transforms, were
proposed by Cooley, Tukey, and others.

� From that time on, the analysis and processing of signals in
the form of numerical data began to be referred to as digital
signal processing, and algorithms, computer programs, or
systems that could be used for the processing of these
signals became firmly established as digital filters.

Frame # 65 Slide # 85 A. Antoniou On the Roots of DSP: 1770 to 1970



Modern Era of DSP Cont’d

More recently, DSP has mushroomed into a multifaceted
collection of related areas with applications in

long-distance and cellular telephone systems; radar sys-
tems; high-definition TVs; audio systems , CD players, and
iPods; speech synthesis; image processing and enhance-
ment; the Internet; instrumentation; photography; process-
ing of biological signals such as ECGs; processing of seis-
mic signals; artificial cochleas; remote sensing; astronomy;
economics; genetic and proteomic signal processing; movie
making

to name just a few.
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Conclusions

� It has been shown that a small number of mathematicians
who taught or studied at École Polytechique in Paris laid
the mathematical foundations of modern spectral analysis.

However, none of them knew anything about signals.
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Conclusions Cont’d

� The contributions of Nyquist and Shannon to the sampling
theorem have been examined from a modern perspective.

� Nyquist’s proof was based on the Fourier series and as
such it was limited to periodic signals.

� Shannon extended the proof to include nonperiodic signals
as well by using the Fourier transform.

� However, the underlying principles of the sampling theorem
are related to an interpolation method due to the great
Lagrange himself who, as mentioned, was the teacher of
Fourier.
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Conclusions Cont’d

� The work of Babbage has then been examined in the
context of DSP.

� Although Babbage is often referred to as the father of
computers what he invented was actually a discrete
system that would implement a difference equation just like
a modern digital filter.
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This slide concludes the presentation.
Thank you for your attention.
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