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OUTLINE

• Part I: Fourier Series, Gibbs Phenomenon, and Window Functions

• Part II: The Ultraspherical Window and Spectral Characteristics

• Part III: Nonrecursive Digital Filter Design Using the
Ultraspherical Window
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MOTIVATION

• Windows are time-domain weighting functions that are used to
reduce Gibbs’ oscillations that are caused by the truncation of a
Fourier series.

• They are employed in a variety of traditional applications
including power spectral estimation, beamforming, and digital
filter design.

• More recently, windows have been used in conjunction with
electrocardiograms to facilitate the detection of irregular and
abnormal heartbeat patterns in patients.

• Medical imaging systems, such as the ultrasound, have also
shown enhanced performance when windows are used to
improve the contrast resolution of the system.

• Windows have also been employed to aid in the classification of
cosmic data and to improve the reliability of weather prediction
models.
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FOURIER SERIES

• A periodic function x(t) defined over the interval [−τ0/2, τ0/2] can
be represented by the Fourier series

x(t) =
a0

2
+

∞∑
k=1

(ak cos ω0t + bk sin kω0t)

where

ak =
1

π

∫ τ0/2

−τ0/2
x(t) coskω0t dt and bk =

1

π

∫ τ0/2

−τ0/2
x(t) sin kω0t dt

• Alternatively, the Fourier series of x(t) can be expressed as

x(t) =
∞∑

k=−∞
Ake

jkω0t where Ak =
1

2π

∫ τ0/2

−τ0/2
x(t)e−jkω0tdt

• The two representations are interrelated in terms of the following
formula

Ak =

⎧⎨⎩
1
2(ak + jbk) for k < 0
1
2a0 for k = 0
1
2(ak − jbk) for k > 0
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EXAMPLE

Consider the function

x(t) =

⎧⎨⎩
0 for −π ≤ t < −π/2
1 for −π/2 < t < π/2

0 for π/2 < t ≤ π

Since x(t) is an even function, we have

ak =
1

π

∫ π

−π

x(t) coskt dt =
2

π

∫ π/2

0
cos kt dt

=
2

πk
sin

kπ

2

a0 =
2

π

∫ π/2

0
dt = 1

and bk = 0. Hence,

x(t) =
1

2
+

2

π

[
cos t − 1

3
cos 3t +

1

5
cos 5t − ...

]
=

1

2
+

2

π

∞∑
k=0

(−1)k cos(2k + 1)t

(2k + 1)
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Jean Baptiste Joseph Fourier [1]
(1768-1830)
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Jean Baptiste Joseph Fourier Cont’d

• Fourier was a French mathematician who had Lagrange and
Laplace as teachers.

His interests included mechanics and heat transfer.

• At 19 he began studying to become a priest but changed his mind
before too long.

• He got himself involved with the French Revolution and on two
occasions he was imprisoned.

• In due course, he joined Napoleon’s army in its invasion of Egypt
as a scientific advisor.

• Fourier returned form Egypt in 1801 to find himself appointed by
Napoleon as Prefect (Chief Administrative Officer) stationed in
Grenoble.

His achievements as Prefect included draining the swamps of
Bourgoin and supervising the construction of a new highway
from Grenoble to Turin!

• Fourier most likely did not like this assignment but who could
refuse Napoleon — his power was absolute in 1801!
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Jean Baptiste Joseph Fourier Cont’d

• It was during his time at Grenoble that he developed his ideas on
the Fourier series.

He presented his work in a treatise (memoir) titled On the
Propagation of Heat in Solid Bodies in 1807.

• He claimed that an arbitrary function defined within a finite
interval can always be expressed as a sum of sinusoids.

• The treatise was reviewed by Lagrange, Laplace, and two others
but it was rejected for the following reasons:

– Not original enough.

– A certain Biot claimed that Fourier did not refer to Biot’s work
on the derivation of certain heat transfer equations.

NOTE: Biot’s derivation is now known to be in error!

• In 1811, Fourier submitted his treatise along with some other
work in a competition on the propagation of heat in solid bodies.

The competition had only one other candidate and it was judged
by Lagrange, Laplace, Legendre, and two others.

Fourier won the prize but the review included the following:

... the manner in which the author arrives at these equations is
not exempt of difficulties and that his analysis to integrate them
still leaves something to be desired on the score of generality
and even rigour ...

• After much controversy, the Academie of Sciences published
Fourier’s prize winning essay titled Theorie Analytique de la
Chaleur.

And the rest is history.
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GIBBS’ PHENOMENON

• When a Fourier series is truncated, it will exhibit certain
oscillations known as Gibbs’ oscillations.

• From Example on Foil 5, the partial sum is given by

SN(t) =
1

2
+

2

π

N∑
k=1

(−1)k−1cos(2k − 1)t

(2k − 1)
.

• Gibbs’ oscillations are most pronounced near discontinuities and
due to the slow convergence of the Fourier series.

• The amplitude of Gibbs oscillations tends to be independent of
the number of terms retained in the Fourier series.

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3
t

N=1

N=3

N=2SN(t)

x(t)

N=11



10

+ +

+ +

EARLY SMOOTHING

• First, Lipot Fejer suggested averaging the nth partial sum of the
truncated Fourier series [2].

• Next, Cornelius Lanczos observed that the ripple of the truncated
Fourier series had the period of either the first term neglected or
the last term kept [3].

He argued that smoothing the partial sum over this period would
reduce the ripple.

• These methods can be applied by using the multiplicative factors
as follows:

A(N, k) =

⎧⎨⎩
N−k
N Fejer Averaging

sin πk/N

πk/N
Lanczos Smoothing

to the truncated Fourier series such that

SN(t) =
a0

2
+

∞∑
k=1

A(N, k)[ak cos kω0t + bk sin kω0t]
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WINDOW FUNCTIONS

• A more comprehensive view of the truncation and smoothing
operations can be observed through the use of window functions.

• The truncated Fourier series can be obtained by assigning

An = 0 for |n| > N

in the Fourier series

x(t) =
∞∑

n=−∞
Ane

jnω0t

• This operation is accomplished by using the multiplicative factor

wR(nT ) =

{
1 for |n| ≤ N

0 otherwise

which is said to be the rectangular window function.
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WINDOW FUNCTIONS Cont’d

n

w(nT)

n

1

An

n

. . . . . .

£

=
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SPECTRAL CHARACTERISTICS

• Windows are often quantified in terms of their spectral
characteristics.

• The spectral representation for a window w(nT ) of length
N = 2M + 1 defined over the range −M ≤ n ≤ M is given by the
z transform of w(nT ) evaluated on the unit-circle of the z plane,
i.e.,

W (ejωT ) =

M∑
n=−M

w(nT )e−jωnT

• The frequency spectrum is given by

W (ejωT ) = e−jωMTW0(e
jωT )

where W0(e
jωT ) is called the amplitude function.

• A(ω) = |W0(e
jωT )| and θ(ω) = −ωMT are called the amplitude

and phase spectrums, respectively.

• |W0(e
jωT )|/W0(0) is a normalized version of the amplitude

spectrum.
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EXAMPLE

The frequency spectrum of a rectangular window of length
N = 2M + 1 is given by

WR(ejωT ) =
M∑

n=−M

e−jωnT

= ejωMT + ejω(M−1)T + · · · + e−jω(M−1)T + e−jωMT

=
ejωMT − e−jω(M+1)T

1 − e−jωT

=
ejω(2M+1)T/2 − e−jω(2M+1)T/2

ejωT/2 − e−jωT/2

=
sin(ωNT/2)

sin ωT/2

0

5
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15

–3 –2 –1 1 2 3ω

WR(ejωT)

N=8

N=4



15

+ +

+ +

SPECTRAL CHARACTERISTICS Cont’d

|W0(ej�T)|/W0(0)
1

0
��N �N�R��R

�

�/T

r

��/T

a1

a2

• The null-to-null width Bn and the main-lobe width Br are defined
by Bn = 2ωn and Br = 2ωr.

• The ripple ratio r is defined as

r =
maximum side-lobe amplitude

main-lobe amplitude
.

• The side-lobe roll-off ratio s which is defined as

s =
a1

a2

For the side-lobe roll-off ratio to have meaning, the envelope of
the side-lobe pattern should be monotonically increasing or
decreasing.
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CONVOLUTION

• The z transform of two discrete-time signals is equal to the
complex convolution of the z transforms of the two signals.

• Evaluating the complex convolution on the unit circle of the z

plane yields

Xw(ejωT ) =
T

2π

∫ 2π/T

0
X(ej�T )W (ej(ω−�)T ) d�

which is the convolution of the frequency spectrums of the two
windows.

• The effects of a window on a signal can be illustrated by
considering a signal x(t) with the frequency spectrum

X(ejωT ) =

{
1 for −π/2 ≤ ω ≤ π/2

0 otherwise

and some arbitrary window with a spectrum W (ejωT ).
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CONVOLUTION Cont’d

Xw(ejωT ) =
T

2π

∫ 2π/T

0
X(ej�T )W (ej(ω−�)T ) d�
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CONVOLUTION Cont’d

• The side ripples in the spectrum of the window cause ripples in
the spectrum of the signal whose amplitude is increases with the
ripple ratio.

• The main-lobe width causes transition bands in Xw(ejωT ) whose
width is directly proportional to the main-lobe width.
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STANDARD WINDOWS

Many window functions have been proposed over the years.

• triangular

• Blackman

• von Hann

• Hamming

• Kaiser

• Dolph-Chebyshev

• Saramäki

• Ultraspherical
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STANDARD WINDOWS Cont’d

Standard windows can be fixed or adjustable.

• Fixed windows have one parameter, namely, the window length
which controls the main-lobe width.

• Adjustable windows have two or more independent parameters,
namely, the window length, as in fixed windows, and one or more
additional parameters that can control other window
characteristics.

• The and Saramäki windows [4][5] have two parameters and
achieve close approximations to discrete prolate functions that
have maximum energy concentration in the main lobe relative to
that in the side lobes .

• The Dolph-Chebyshev window [6] has two parameters and
produces the minimum main-lobe width for a specified maximum
side-lobe level.
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THE ULTRASPHERICAL WINDOW

• The ultraspherical window has three parameters, namely, the
window length, as in fixed windows, and two additional
parameters [7].

• The window can control the width of the main lobe and the
relative amplitude of the side lobes, as in the Kaiser, Saramäki,
and Dolph-Chebyshev windows and, in addition, arbitrary
side-lobe patterns can be achieved.
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THE ULTRASPHERICAL WINDOW Cont’d

The coefficients of the ultraspherical window of length N = 2M + 1

are calculated as [8]

w(nT ) =

{
ŵ(nT )/ŵ(AT ) for |n| ≤ M

0 otherwise
(A)

with A = 0 and 0.5 for odd and even N , respectively,

ŵ(nT ) =
µx2M

µ

M + |n|
(

µ + M + |n| − 1

M + |n| − 1

)
·
M−|n|∑
m=0

(
µ + M − |n| − 1

M − |n| − m

)(
M + |n|

m

)
Bm

where µ, xµ, and N are independent parameters, B = 1 − x−2
µ , and the

binomial coefficients
(
α
p

)
can be calculated using the following

formulas:(
α

0

)
= 1;

(
α

p

)
=

α(α − 1) · · · (α − p + 1)

p!
for p ≥ 1
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THE ULTRASPHERICAL WINDOW Cont’d

• The amplitude function for the ultraspherical window is given by

W0(e
jωT ) = Cµ

N−1 [xµ cos(ωT/2)]

where Cµ
n (x) is the ultraspherical polynomial which can be

calculated using the recurrence relationship

Cµ
r (x) =

1

r

[
2x(r + µ − 1)Cµ

r−1 (x) − (r + 2µ − 2)Cµ
r−2 (x)

]
for r = 2, 3, ..., n, where Cµ

0 (x) = 1 and Cµ
1 (x) = 2µx.

• The Dolph-Chebyshev window is the special case for µ = 0,
which results in

W0(e
jωT ) = TN−1 [xµ cos(ωT/2)]

where
Tn(x) = cos(n cos−1 x)

is the Chebyshev polynomial of the first kind.

• The Saramäki window is the special case for µ = 1, which results
in

W0(e
jωT ) = UN−1 [xµ cos(ωT/2)]

where

Un(x) =
sin[(n + 1) cos−1 x]

sin(cos−1 x)

is the Chebyshev polynomial of the second kind.
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PRESCRIBED SPECTRAL CHARACTERISTICS

• With the appropriate selection of parameters µ, xµ, and N ,
ultraspherical windows can be designed to achieve prescribed

– side-lobe roll-off ratio,

– ripple ratio, and

– one of the two width characteristics simultaneously [9].

• Parameter µ alters the side-lobe roll-off ratio, xµ alters the ripple
ratio, and N alters the main-lobe width.

• The next few transparencies explain how each specification can
be achieved.
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PRESCRIBED SIDE-LOBE ROLL-OFF RATIO

• To achieve a prescribed side-lobe roll-off ratio s, one selects the
parameter µ appropriately for a fixed N by solving

minimize
µL≤µ≤µH

F =

⎛⎝s −
∣∣∣∣∣∣
Cµ

N−1

(
x

(µ+1)
N−2

)
Cµ

N−1(0)

∣∣∣∣∣∣
⎞⎠2

• The upper and lower bounds are

µL = 0 and µU = 10 for s > 1

µL = −0.9999 and µU = 0 for 0 < s < 1

• The parameter x
(µ+1)
N−2 , which is the largest zero of Cµ+1

N+2 (x), is
found using Algorithm 1 (see next transparency) with the inputs
λ = µ + 1, n = N − 2, and ε = 10−6.
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LARGEST ZERO OF Cλ
n (x)

The largest zero of Cλ
n (x) , denoted as x

(λ)
n , can be found using the

following algorithm.

Algorithm 1

• Step 1
Input λ, n, and ε.
If λ = 0, then output x∗ = cos(π/2n) and stop.
Set k = 1, and compute

y1 =

√
n2 + 2nλ − 2λ − 1

n + λ

• Step 2
Compute

yk+1 = yk − Cλ
n(yk)

2λCλ+1
n−1(yk)

• Step 3
If |yk+1 − yk| ≤ ε, then output x∗ = yk+1 and stop.
Set k = k + 1, and repeat from Step 2.

NOTES:

• A termination tolerance ε = 10−6 causes the algorithm to
converge in 5 or 6 iterations.

• The algorithm uses the Newton-Raphson method as a line search
because of its simplicity and efficiency but many other methods
can also be used.
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PRESCRIBED NULL-TO-NULL WIDTH

• To achieve a prescribed null-to-null half width of ωn rad/s, one
selects the parameter xµ appropriately for a fixed µ and N using

xµ =
x

(µ)
N−1

cos(ωn/2)

• The zero x
(µ)
N−1 is found using Algorithm 1 with the inputs λ = µ,

n = N − 1, and ε = 10−6.
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PRESCRIBED MAIN-LOBE WIDTH

• To achieve a prescribed main-lobe half width of ωr rad/s, one
selects the parameter xµ appropriately for a fixed µ and N using

xµ =
xa

cos(ωr/2)

• Parameter xa is found through a two-step process:

– Find the zero x
(µ+1)
N−2 using Algorithm 1 with the inputs

λ = µ + 1, n = N − 2, and ε = 10−6 and then calculate the

parameter a =
∣∣∣Cµ

N−1

(
x

(µ+1)
N−2

)∣∣∣.
– Find xa using a modified version of Algorithm 1 where the

second equation is replaced with

yk+1 = yk − Cµ
n(yk) − a

2µCµ+1
n−1(yk)

which uses the inputs λ = µ, n = N − 1, and ε = 10−6.

NOTE: Instead of finding the largest zero of f(x) = Cµ
n(x), the

modified algorithm finds the largest zero of f(x) = Cµ
n(x) − a, which

is parameter xa.



29

+ +

+ +

PRESCRIBED RIPPLE RATIO

• To achieve a prescribed ripple ratio r, one selects the parameter
xµ appropriately for a fixed µ and N are fixed using a two-step
process:

– Find the zero x
(µ+1)
N−2 using Algorithm 1 with the inputs

λ = µ + 1, n = N − 2, and ε = 10−6 and then calculate the

parameter a =
∣∣∣Cµ

N−1

(
x

(µ+1)
N−2

)∣∣∣.
– Find xµ using a modified version of Algorithm 1 where the

second equation is replaced with

yk+1 = yk − Cµ
n(yk) − a/r

2µCµ+1
n−1(yk)

which uses the inputs λ = µ, n = N − 1, and ε = 10−6.

NOTE: Instead of finding the largest zero of f(x) = Cµ
n(x), the

modified algorithm finds the largest zero of f(x) = Cµ
n(x) − a/r which

is the parameter xµ.
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PRESCRIBED SPECIFICATIONS — EXAMPLE

For N = 51, generate the ultraspherical windows that will yield R = 50

dB for (a) S = −10 dB and (b) S = 30 dB.
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Both designs meet the prescribed specifications and produced
main-lobe widths of (a) ωr = 0.2783 rad/s and (b) ωr = 0.2975 rad/s.

Using the methods described resulted in (a) µ = −0.3914 and (b)
µ = 1.5151 and (a) xµ = 1.0107 and (b) xµ = 1.0091.
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COMPARISON OF ULTRASPHERICAL WITH OTHER WINDOWS

• Ultraspherical windows of the same length were designed to
achieve the side-lobe roll-off ratio and main-lobe width produced
by the Kaiser window, for values of the Kaiser-window parameter
α in the range [1, 10].

• The resulting ripple ratios for the two window families were
measured and compared using

∆R = RU − RK

where RU and RK are the ripple ratios of the ultraspherical and
Kaiser windows, respectively, in dB.
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COMPARISON Cont’d

• Thus for a given window length, there is a corresponding
main-lobe half width, say, ωrU , for which the ultraspherical
window gives a better ripple ratio than the Kaiser window.

• For main-lobe half widths that are larger than ωrU , the Kaiser
window gives a larger ripple ratio.

In effect, if the point [N, ωr] is located below the curve, the
ultraspherical window is preferred and if it is located above the
curve, the Kaiser window is preferred.
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DESIGN OF NONRECURSIVE LOWPASS FILTERS

The design of nonrecursive filters involves four general steps as
follows:

1. An idealized frequency response is assumed and through the use
of the Fourier series, an idealized infinite-duration noncausal
design is obtained.

2. A suitable window is selected and the parameters of the window
are chosen to achieve the desired filter specifications.

3. The window function is constructed and applied.

4. The resulting finite-duration noncausal filter is converted into a
causal filter.
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DESIGN OF NONRECURSIVE FILTERS Cont’d

Infinite-duration impulse response

The infinite-duration impulse response of the noncausal lowpass filter
is obtained by applying the Fourier series to the idealized frequency
response

H(ejωT ) =

{
1 for |ω| ≤ ωc

0 for ωc < |ω| ≤ ωs/2
(B)

Straightforward analysis gives

hid(nT ) =

⎧⎨⎩ωc/π for n = 0
sinωcnT

nπ
for n �= 0

(C)
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DESIGN OF NONRECURSIVE FILTERS Cont’d

Finite-duration impulse response

A finite-duration impulse response is obtained by applying a window
w(nT ), say, of length N = 2M + 1 as

h0(nT ) = w(nT )hid(nT ) (D)



36

+ +

+ +

DESIGN OF NONRECURSIVE FILTERS Cont’d

Choice of Window Parameters [10]

• The window parameters, i.e., µ and xµ for the ultraspherical
window, must be chosen such that the filter specifications are
satisfied with the lowest possible filter length N .

• Given a set of specifications, the optimum values of µ and xµ can
be determined through simple trial-and-error techniques but such
an approach is laborious and time-consuming.

• As it turned out, we were able to develop a fairly general,
although empirical, method that can be used to determine the
window parameters for arbitrary filter specifications.

The steps involved are detailed in the next two or three
transparencies.
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Choice of Window Parameters

• A nonrecursive (noncausal) lowpass filter is typically required to
satisfy the equations

1 − δp ≤ H(ejωT ) ≤ 1 + δp for ω ∈ [0, ωp]

− δa ≤ H(ejωT ) ≤ δa for ω ∈ [ωa, ωs/2]

where δp and δa are the passband and stopband ripples and ωp

and ωa are the passband and stopband edge frequencies,
respectively.

• In nonrecursive filters designed with the window method, the
passband ripple turns out to be approximately equal to the
stopband ripple.

Therefore, one can design a filter that has a passband ripple δp or
a filter that has a stopband ripple δa.

• If the specifications call for an arbitrary passband ripple Ap and a
minimum stopband attenuation Aa, both specified in dB, then it
can be easily shown that

δp =
100.05Ap − 1

100.05Ap + 1
and δa = 10−0.05Aa (E)

By designing a filter on the basis of

δ = min(δp, δa) (F)

then if δ = δp a filter will be obtained that has a passband ripple
which is equal Ap dB and a minimum stopband attenuation which
is greater than Aa dB; and if δ = δa a filter will be obtained that
has a minimum stopband attenuation which is equal to Aa dB and
a passband ripple which is less than Ap dB.
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Choice of Window Parameters — µ

• Through extensive experimentation, we found out that
parameters µ and xµ control the passband and stopband ripples
and, consequently, the actual stopband attenuation, namely,

Aa = −20 log10(δ) (G)

On the other hand, the filter length N controls the transition
width of the filter, namely,

∆ω = ωa − ωp

Conversely, the required µ and N are critically dependant on the
actual stopband attenuation Aa and the transition width ∆ω,
respectively.

• It turns out that the required value of N is largely dependent on µ

and is relatively independent of xµ.

The value of µ that minimizes the filter length obeys the law in the
graph shown below:
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Choice of Window Parameters — µ

Through curve fitting, an empirical formula was derived for the
optimal µ as

µ = aA2
a + bAa + c for AL ≤ Aa ≤ AH (H)

where coefficients a, b, and c and bounds AL and AH are given in the
table shown:

Parameters for formula for µ

AL AH a b c

20 30 − 3.570E-4 3.051E-2 −2.285E-1
30 40 1.461E-3 − 8.053E-2 1.471E+0
40 42 −7.910E-3 6.663E-1 − 1.340E+1
42 50 − 3.543E-4 3.569E-2 − 2.415E-1
50 65 − 4.272E-5 5.258E-3 5.023E-1
65 90 − 3.239E-5 4.165E-3 5.296E-1
90 120 − 5.576E-5 8.353E-3 3.407E-1
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Choice of Window Parameters — N

The optimum filter length N can be determined as the lowest odd
value of N that satisfies the inequality

N ≥ D

∆ω/ωs
+ 1 (I)

where D is given by the empirical formula

D = 4.517× 10−5A2
a + 6.227× 10−2Aa − 4.839× 10−1 (J)
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Choice of Window Parameters — xµ

Parameter xµ is chosen as

xµ =
x

(µ)
N−1

cos(βπ/N)
(K)

where parameter β is given by the empirical formula

β =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4.024× 10−5A2

a + 2.423× 10−2Aa

+3.574× 10−1 for Aa ≤ 60

7.303× 10−5A2
a + 2.079× 10−2Aa

+4.447× 10−1 for Aa > 60

(L)

and x
(µ)
N−1 is the largest zero of Cµ

N−1 (x), which can be obtained by
using Algorithm 1 with λ = µ, n = N − 1, and ε = 10−6 as input.
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DESIGN ALGORITHM Cont’d

A lowpass nonrecursive filter satisfying the specifications

Passband edge: ωp

Stopband edge: ωa

Passband ripple: Ap

Stopband ripple: Aa

Sampling frequency: ωs

can be designed through the design algorithm to be described in the
next few transparencies.
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DESIGN ALGORITHM

Algorithm 2

Step 1: Design an infinite-duration nonrecursive filter with the
idealized frequency response

H(ejωT ) =

{
1 for |ω| ≤ ωc

0 for ωc < |ω| ≤ ωs/2

with ωc = (ωp + ωa)/2.

The impulse response is given by

hid(nT ) =

{
ωc/π for n = 0
sinωcnT

nπ for n �= 0

(see Eqs. (B)–(C)).

Step 2: Find the required ‘design’ ripple

δ = min(δp, δa)

where

δp =
100.05Ap − 1

100.05Ap + 1
and δa = 10−0.05Aa

and update Aa as
Aa = −20 log10(δ)

(see Eqs. (E)–(G)).
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DESIGN ALGORITHM Cont’d

Step 3: Obtain the window parameter µ as

µ = aA2
a + bAa + c for AL ≤ Aa ≤ AH

(see Eq. (H)).

Step 4: Calculate the minimum filter length as

N ≥ D

∆ω/ωs
+ 1

where D is given by the empirical formula

D = 4.517× 10−5A2
a + 6.227× 10−2Aa − 4.839× 10−1

(see Eqs. (I)–(J)).

Step 5: Calculate window parameter xµ as

xµ =
x

(µ)
N−1

cos(βπ/N)

where parameter β is given by the empirical formula

β =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4.024× 10−5A2

a + 2.423× 10−2Aa

+3.574× 10−1 for Aa ≤ 60

7.303× 10−5A2
a + 2.079× 10−2Aa

+4.447× 10−1 for Aa > 60

and x
(µ)
N−1 is the largest zero of Cµ

N−1 (x), which can be obtained by
using Algorithm 1 with λ = µ, n = N − 1, and ε = 10−6 as input. (see
Eqs. (K)–(L)).
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DESIGN ALGORITHM Cont’d

Step 6: With µ, N , and xµ known, the coefficients of the
ultraspherical window can be calculated from Eq. (A).

Step 7: Obtain a finite-duration impulse response as

h0(nT ) = w(nT )hid(nT )

(see Eq. (D)).

Step 8: Obtain a causal design by delaying the impulse response by
M samples, i.e.,

h(nT ) = h0 [(n − M) T ] for 0 ≤ n ≤ N − 1

Step 9: Check your design to ensure that the filter satisfies the
prescribed specifications.

NOTE: The design method can be easily extended to other types of
filters, e.g., highpass, bandpass, and bandstop filters by following the
procedure of Antoniou [11].
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COMPARISON WITH OTHER WINDOWS

• The performance of adjustable windows for filter design can be
measured by comparing the attenuation and performance factor
D = ∆ω(N − 1)/ωs.

• For N = 127, ωc = 0.4π, and ωs = 2π rad/s the following results
were obtained.

1 2 3 4 5 6 7 8
20

30

40

50

60

70

80

90

100

110

120

D

A
a

Equiripple filters 

Ultraspherical window 

DolphChebyshev window

Kaiser window 

NOTE: This relative ranking is relatively independent of N , i.e., it
holds true for low as well as medium values of N .
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EXAMPLE

Design a lowpass filter with ωp = 1, ωa = 1.2 rad/s, and Aa = 80 dB
using the ultraspherical, Kaiser, and Dolph-Chebyshev windows.

The filter lengths required to achieve the specifications were N = 153

for the ultraspherical window, N = 159 for the Kaiser window, and
N = 165 for the Dolph-Chebyshev window.
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CONCLUSIONS

• The ultraspherical window is a three-parameter window that can
control the width of the main lobe, relative amplitude of the side
lobes, and the side-lobe pattern.

• Conventional two-parameter windows cannot control the
side-lobe pattern in the same fashion.

• The ultraspherical window includes both the Dolph-Chebyshev
and Saramäki windows as special cases.

• When applied to digital filter design, the ultraspherical window
has proven to yield lower order filters (improved cost) relative to
other windows.

• Alternatively, for a fixed filter length, the ultraspherical window
gives reduced passband ripple and increased attenuation (better
performance) relative to other windows.

• The Remez method yields more efficient filters but a huge
amount of computation is required which makes the Remez
unsuitable for real or quasi-real time applications.
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