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Abstract: Recent "connectionist" models provide a new explanatory alternative to the digital computer as a model for brain function.
Evidence from our EEG research on the olfactory bulb suggests that the brain may indeed use computational mechanisms like those
found in connectionist models. In the present paper we discuss our data and develop a model to describe the neural dynamics
responsible for odor recognition and discrimination. The results indicate the existence of sensory- and motor-specific information in
the spatial dimension of EEG activity and call for new physiological metaphors and techniques of analysis. Special emphasis is placed
in our model on chaotic neural activity. We hypothesize that chaotic behavior serves as the essential ground state for the neural
perceptual apparatus, and we propose a mechanism for acquiring new forms of patterned activity corresponding to new learned
odors. Finally, some of the implications of our neural model for behavioral theories are briefly discussed. Our research, in concert
with the connectionist work, encourages a reevaluation of explanatory models that are based only on the digital computer metaphor.
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1. Introduction

To understand brain function we need to know how the
sensory systems process their information. Recent con-
nectionist models provide an interesting explanatory al-
ternative to earlier information-processing models based
on the digital computer that viewed neurons as two-state
logical decision elements organized into networks to
compute simple Boolean functions. In the present article
we outline the results of experiments in our laboratory
that demonstrate the existence of sensory- and motor-
specific information in the spatial dimension of EEG
activity in the central nervous system. On the basis of our
data we develop an explanatory model of the neural states
responsible for sensory encoding; this model departs
significantly from alternatives patterned after digital com-
puters and it converges with recent connectionist models
in the computational principles it uses. We suggest,
however, that brains rely on mechanisms not found in
other models; we propose four such mechanisms that may
be necessary to solve problems critical to the efficient
functioning and survival of any system that has to behave
adaptively in an environment subject to unpredictable
and often violent fluctuations.

Special emphasis is placed in our model on "chaotic"
brain activity.1 We propose that the brain relies on
chaotic as opposed to steady or random activity for several
purposes: Chaos constitutes the basic form of collective
neural activity for all perceptual processes and functions
as a controlled source of noise, as a means to ensure

continual access to previously learned sensory patterns,
and as the means for learning new sensory patterns.

2. Methodological considerations

How does a sensory system process information? Models
based on the digital computer define computation as a
physical operation governed by the substates of the parts
of the system as defined by rules operating on symbol
tokens in virtue of their formal syntactic structure corre-
sponding to real physical differences in the system. The
formal elements or symbols are required to be discrete -
that is, context independent; each distinct semantic prop-
erty must be associated with a distinct physical property
(Pylyshyn 1984, pp. 50, 74).

For many years physiologists have applied the com-
putational model when interpreting their data. Thus,
they found that the "code" of peripheral sensory systems
is based on "labeled lines" (Bullock & Horridge 1965, p.
274); the quality of a stimulus is conveyed by the selection
of one or more axons from the immense number avail-
able, and the intensity is conveyed by the number of
action potentials per unit time on each axon. This model
worked for peripheral motor systems and for some parts
of central nervous systems, to the extent that "feature
detector" and "command" neurons could be identified.
However, the search for this kind of information-process-
ing scheme in the case of central associative functions has
not been successful (Barlow 1972; Perkel & Bullock
1968).
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Our attempt to understand information processing in
olfaction was based on three premises. (1) When an
animal that is conditioned to discriminate between two
odorant stimuli inhales one of them (a conditioned stim-
ulus [CS]) and then responds correctly (with a condi-
tioned response [CR]), there will exist, somewhere and
for some time during the interval between the onsets of
the CS and CR, some odor-specific information in the
olfactory bulb to serve as the basis for the correct CR. (2)
This information will be encoded in the form of a space-
time pattern of neural activity for each odorant CR. (3)
These patterns will be manifested, however indirectly, in
the electroencephalographic (EEG) potentials recorded
from the bulbar surface. After 12 years of search we at last
identified some of the postulated patterns (Freeman &
Viana Di Prisco 1986a). The results were beyond surpris-
ing; they took us so far outside the range of our previous
expectations that we had no physiological metaphors with
which to pin them down, and we had to draw on some
new and fascinating fields of mathematics and physics in
order to understand their implications.

In principle the experiments were simple. Thirsty
rabbits were conditioned (Viana Di Prisco & Freeman
1985) to lick (CR+) in response to an odorant (CS+)
followed after 2 seconds by delivery of water, and merely
to sniff (CR—) in response to an unreinforced odorant
(CS—). Each rabbit had an array of 64 electrodes im-
planted permanently onto the lateral surface of the left
olfactory bulb. The 64 EEG traces were amplified, fil-
tered, and measured in brief time epochs within each
trial; when made with adequate safeguards (Freeman
1987b) these measurements from collections of trials
served to classify EEG epochs into groups both with
respect to CSs and with respect to CRs. The odorant-
specific information was found to exist in the spatial
patterns of the amplitude of the waveform of an oscillation
of EEG potential that was common to all 64 channels and,
by inference, to the entire bulb. We concluded that every
neuron in the bulb participated in every olfactory dis-
criminative response because they all participated in the
oscillation. All that distinguished one odorant EEG pat-
tern from another was the spatial configuration of the
average intensity over an event time window at the
common frequency, in the manner that patterns of mono-
chromatic light are distinguished from each other by
shades of gray. Local variations in phase, amplitude
modulation, frequency modulation, and other aspects of
the 64 traces were not found to contain odorant-specific
information.

With regard to our first premise (that odor-specific
information must exist in the bulb), we chose to study
the olfactory system because it is the simplest and phy-
logenetically the most stable and representative of sen-
sory systems, is the best understood in its structure and
function, and can be studied in its earlier stages without
directly involving the brain stem and thalamus. We
selected the rabbit because its head is sufficiently large
to support the electrical connectors needed for chronic
implantation and recording from 64 channels, yet the
bulb is sufficiently small so that the electrode array forms
a window covering a substantial portion of its surface
area (20% in the rabbit, as opposed to 6% in the cat;
Freeman 1978). We used appetitive conditioning so as to
have distinguishable behavioral responses from each ani-

mal: licking with or without sniffing to the CS+ (CR+)
and sniffing alone to the CS- (CR-). We found that
high relative frequencies of occurrence for these auto-
shaped CRs (naturally occurring motor activity patterns)
emerged within a very few trials in the first session, that
they were stably maintained for numerous sessions, and
that they were subject to quantitative assay with ease
and reliability (Freeman 1981; Viana Di Prisco & Free-
man 1985).

3. Neurophysiological results

3.1. Spatial analysis of neural activity. With regard to our
second premise (that the odor-specific information is
encoded as space-time patterns of activity), the set of
chemoreceptor neurons in the nose and the set of mitral
cells in the bulb to which they send their axons (Figure 1)
both exist in the form of a sheet. Evidence from measure-
ments of receptor unit activity, the electro-olfactogram,
and odorant absorption to the mucosa upon stimulation
with odorants show that receptor cells sensitive to a
particular odorant are clustered nonuniformly in density
in the mucosa, and that their spatial patterns of activation
differ for differing odorants (reviewed in Moulton 1976:

MUCOSA

-»>-Axodendritic Synapse
-\— Reciprocal Synapse

—<->-Mutual Inhibitory Connection
( ) Glomeruli

Functional Surface

Figure 1. Schematic diagram of the main cell types and their
interconnections in the olfactory bulb and prepyriform cortex:
R, receptor; PON, primary olfactory nerve; LOT, lateral olfacto-
ry tract; M, mitral cell; G, granule cell; P, periglomerular cell;
A, superficial pyramidal cell; B, granule cell; C, deep pyramidal
cell. From Freeman (1972).
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Freeman & Skarda 1985). The projection of the primary
olfactory nerve (PON) onto the bulb has a degree of
topographic order. Studies with 2-deoxyglucose (2-DOG)
accumulation in the bulb after 45 minutes of exposure to
an odorant show uneven clustering of dense patches in
the outer (glomerular) layer of the bulb, indicating that a
spatial pattern of receptor activity may result in a spatial
pattern of neural activity in the bulb, which might in turn
transmit odor-specific information to the olfactory cortex.
However, metabolic studies cannot reveal the dynamic
form of that neural activity in time periods on the order of
0.1 sec.

With regard to our third premise (that the odor-specific
information is manifested in the EEG), single neurons in
the receptor layer, bulb, and cortex respond selectively
to test arrays of odorants at various concentrations. The
variability and overlap of response profiles involving
multiple odorants are high at all steps of the olfactory
system, there being no indication that more centrally
located neurons are more "narrowly tuned" to odorants
than are receptors. The number and even the existence of
"primary odors" analogous to colors or tastes are un-
known.

Our early attempts to demonstrate spatial patterns of
bulbar unit activity in responses to odorants were based
on simultaneous multi-unit extracellular recording from
10 microelectrodes; the spatial sample was too small, and
the time required to collect a sample (several minutes)
was much too long. We turned to EEG recording from
the bulbar surface because we had found a close statistical
relationship in time and space between the amplitude of
the EEG potential at selected points on the bulbar
surface and the firing rates of mitral and tufted cells
located at depths of several hundred microns below those
points. That is, the surface EEG (Figure 2), consisting
largely of extracellular compound postsynaptic potentials
of granule cells, the dominant inhibitory interneurons
deep within the bulb (Figure 1), provided indirect access
to a spatial image of the locally averaged mitral cell
activity patterns that constituted the bulbar output to the
olfactory cortex. The theory and experimental evidence
for this inference, including volume conductor theory
and studies of the dynamics of bulbar neurons, have been
compiled in a monograph (Freeman 1975) to which the
interested reader is referred.

Measurements of the spatial spectrum of the bulbar
EEG (Freeman 1980; Freeman & Baird, in press) were
used to fix the optimal intervals between electrodes in
arrays (the spatial digitizing increment) at 0.5 mm, corre-
sponding to a Nyquist frequency of 1.0 dram. An 8 X 8
array gave a "window" onto the bulb of about 3.5 X 3.5
mm, given the restriction to 64 channels. Measurements
of the temporal spectrum of the rabbit EEG indicated
that the range of greatest interest was 20-90 Hz. Filters
were set at 10 and 160 Hz; the temporal digitizing
increment at 2 msec gave a Nyquist frequency of 250 Hz.
A fixed duration of 76 msec was adopted as the minimum
for the bulbar response on single inhalations, so that
measurement of a single unaveraged event upon inhala-
tion of an odorant or the background air for control
consisted of 64 x 38 time values, digitized at 12 bits with
retention of the 8 most significant bits. Each trial yielded
3 control events and 3 test odor events. Each session
yielded 10 CS+ and 10 C S - trials, constituting 120

I inhalation
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Figure 2. Four classes of states are identified for the olfactory
system from EEG traces. Fluctuations are suppressed under
deep anesthesia (lowest trace). In waking but unmotivated
animals the amplitude is low and the trace is irregular and
unpredictable. Under motivation the irregular activity is inter-
rupted by brief oscillatory bursts following activation of the
olfactory bulb by receptors on inhalation. Under several sec-
onds of intense electrical stimulation of the LOT (top trace) an
epileptic seizure is released. It is initiated after the failure of
excitatory input transmission as shown by the decreasing re-
sponses at left to the last 5 pulses of the stimulus train. The
seizure spike train then progressively emerges from a relatively
quiet post-stimulus state. From Freeman (1987a).

events. The data base for the study comprised 18 sessions
with each of 5 rabbits after a familiarization period.

Acquisition of these data required 64 preamplifiers, a
high-speed multiplexer and ADC, and a dedicated com-
puter (Perkin Elmer 3220) and disc. The limiting factor on
data acquisition proved to be the core-to-disc data trans-
fer rate with double buffering during the 6-second trial
periods. Procedures were devised for off-line editing and
artifact rejection (Freeman & Schneider 1982), temporal
filtering and decomposition (Freeman & Viana Di Prisco
1986b), spatial filtering and deconvolution (Freeman
1980; Freeman & Baird, in press), and multivariate statis-
tical analysis of the results of measurement (Freeman &
Grajski, in press; Grajski, Breiman, Viana Di Prisco &
Freeman, in press). The procedures are reviewed else-
where in detail (Freeman 1987b).

The measurement process consisted of curve-fitting of
the 64 traces in each event. A set of 5 elementary
waveforms or basis functions was identified as common to
all 64 traces in varying degree. The sum of these 5 basis
functions was fitted by regression to each trace, yielding 5
matrices of 64 amplitude values that incorporated 80% of
the total variance of the event, as well as the matrix of
residuals and the two matrices of the residues of high- and
low-pass digital filtering, all expressed as root mean
square amplitudes. Evaluation consisted of determining
which of these 8 matrices best served (or served at all) to
classify events correctly with respect to CSs and CRs. No
data were discarded until they were tested in this way.
Moreover, the coefficients of the basis functions were
examined to determine whether they contained odorant-
specific information.

The end results were unequivocal. The matrices of
amplitude of the dominant basis function (the one con-
taining the largest fraction of total power), and only these,
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sufficed to classify events correctly. They did so at far
above chance levels with respect to the two odorants in 4
of the 5 rabbits, who discriminated them behaviorally,
but not the events recorded from the fifth rabbit, who
failed to discriminate them (Freeman & Grajski, in press;
Freeman & Viana Di Prisco 1986b; Grajski et al., in
press).

An example of an event (unaveraged traces) is shown in
Figure 3. The key property is that every trace had the
same temporal waveform. Exceptions were due either to
artifacts or to electrodes not placed on the bulb. The
amplitude differed between channels so as to form a
spatial pattern that (on the average) was relatively con-
stant and easily identified with each animal. These ampli-
tude patterns after familiarization remained constant un-
less and until odorant conditioning was undertaken. New
patterns emerged only in association with reinforced
odorants, not visual or auditory CSs or UCSs alone. They
remained stable within sessions and across sessions pro-
vided the S-R contingencies were unchanged.

Multiple patterns emerged under discriminative con-
ditioning. When a new odorant CS+ was introduced or
when a previous CS+ was changed to a CS —, the entire
set of spatial patterns appeared to change. The amount of
change between stages that involved an altered S-R
contingency, when measured as a fraction of the total
between-session, within-stage variance, was relatively
small (7%). The information in these stable spatial pat-
terns that served to classify events correctly with respect
to CSs and CRs was not localizable to subsets of channels.
That is, the information density (as distinct from content)
was spatially homogeneous, much as a letter-space on a
printed page is of equal value whether it contains a letter,
a punctuation mark, or no character at all.

3.2. The appearance of background activity. It is our
belief that this is the first demonstration of the existence
of sensory- and motor-specific information in the spatial
dimensions of the EEG activity in any part of the cerebral
cortex. The reason this has not been shown before is that

EEG
IIA mvc

TRIAL SET I

-MA-

TRIAL SET 3

Figure 3. Left: A display of single unaveraged EEG traces is
shown comprising a single odor burst among 10 bursts in a file
from one trial set. The (x) marks an example of a bad channel
record that was replaced during editing by an average of two
adjacent records. Right: The root mean square amplitudes are
compared for bursts without odor (above, "air") and with an
odor (below, "amyl" acetate). There is a significant difference
between the two patterns on the left but not the two on the
right. From Freeman and Schneider (1982).

problems had to be solved at all levels of the project.
These included practical problems such as array design
and manufacture, surgical implantation, control and mea-
surement of rabbit behavior, management of data flows
on the order of 1.2 million bits per trial and several billion
bits in each series of experiments, and basic theoretical
problems in diverse fields including volume conductor
analysis, statistical mechanics, nonequilibrium ther-
modynamics, nonlinear dynamics, and multivariate sta-
tistics applied to neural activity. The manufacture of
arrays of electrodes, magnetic pick-ups, or optical probes
and their preamplifiers merely opens the floodgates for
the data. The difficult problems begin with the adaptation
of recording to the conditions of normal, learned behav-
ior, and with the rational design of algorithms for data
reduction and refinement. Our methods happen to be the
first that succeeded; there being no precedents, we have
no other data with which to compare our results. Just as
we have pioneered in their acquisition, we must now
break new ground in attempting to understand what they
tell us about brain function.

The elemental phenomenon that must be dealt with in
olfaction, as in all of brain physiology, is the background
activity manifested in the "spontaneous" EEG (Figure 2)
and unit activity of neurons throughout the CNS. How
does it arise, and what roles does it play? This activity is
exceedingly robust; it survives all but the most drastic
insults to cerebral tissue, such as near-lethal anesthesia,
ischemia, or hypoxia. Perhaps the only reliable way to
suppress it without killing the tissue is to isolate surgically
small slabs of cortex (Burns 1958) by cutting neural
connections while preserving the blood supply (and even
then it may not be completely abolished). This procedure
works for both the bulb and the prepyriform cortex
(Freeman 1986), provided they are isolated from each
other as well as from receptors and the rest of the brain.
Under complete surgical transection of neural connec-
tions but with sufficient circulation for viability, each
structure goes "silent" except when it is electrically or
chemically stimulated. When perturbed and then left
alone each structure generates a response and again falls
silent. The responses to electrical impulse stimuli are
observed through averaged evoked potentials (AEPs) and
post-stimulus time histograms (PSTHs) of action poten-
tials.

The state of a dynamic structure is said to be stable if
the system returns to that state after perturbation. If the
basal state is steady and nonoscillating, the system is said
to be at an equilibrium. When the values of amplitude or
energy are plotted on a graph, one against another, a
response has the appearance of a curve or trajectory that
ends at a point as the system goes to equilibrium. The
same point is reached from many starting conditions
under perturbation. Hence the point is said to represent
an "attractor," and the set of starting conditions defines a
"basin" for the attractor (Figure 4). When the system is
placed by control of its input into the basin of an attractor,
the system dynamics is said to be governed by the
attractor.

When the stable equilibrium state of the bulb (Figure
2, bottom trace) or cortex is induced by deep anesthesia
(Freeman 1986) or by cryogenic blockade of the axonal
connections between the bulb and prepyriform cortex
(Gray 1986) it is reversible. As recovery takes place the
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Figure 4. This vase-shaped structure is an attempt to portray a
state space diagram for olfactory dynamics. The two horizontal
dimensions constitute the axes for the amplitudes of activity of
an excitatory subset and an inhibitory subset. The vertical axis
serves to represent a bifurcation parameter, in this case the
average level of driving input to the two subsets, consisting of
input from centripetal activation of receptors and the input from
centrifugal projection relating to arousal and motivation. The
lowermost line represents an equilibrium or point attractor.
Shaded areas represent a chaotic attractor, and the open circles
represent limit cycle attractors. The activity for each stage is
shown in Figure 2. A phase portrait derived from this diagram is
shown in Figure 11. From Freeman (1987a).

background activity reappears; the system can be said to
"bifurcate" or change to a new state, such that the point
attractor is replaced by a point "repellor" (Figure 4). A
repellor is manifested when attempts to quash or inhibit
activity fail or succeed only transiently. The intercon-
nected structures, the bulb and prepyriform cortex, can-
not stay at equilibrium and must enter ceaseless activity,
even if they are only connected to each other and not to
the rest of the brain (Freeman 1987a). A bifurcation takes
place when the system undergoes a major transition in its
dynamics, equivalent to, for example, the transition from
sleep to waking, or from normal to seizure activity. The
governing equations are the same, but the solutions
change radically. We say that the control of the system
dynamics is shifted from a point attractor to a chaotic
attractor. This simply means that the system falls into a
condition of restless, but bounded, activity. It is station-
ary in the statistical sense, but its mathematical proper-
ties differ from those of "noise" (Grassberger & Procaccia
1983).

This background activity is statistically indistinguisha-
ble from what we call band-limited noise - that is, white
noise passed through a band pass filter. We had known for
years that the interval histograms of spike trains from
single neurons conform to a Poisson process with a refrac-
tory period, so we had inferred that the background EEG
was a local average of the dendritic potentials reflecting or
governing the spike trains, a kind of "Brownian motion."
In seeming confirmation of this view the correlation
coefficient between pairs of traces fell with increasing

distance between their recording sites. From our recent
studies we now know that this view was incorrect. The
instantaneous frequency of bulbar EEG activity is always
and everywhere the same, no matter how "noisy" the
waveform may seem. The inverse relation of correlation
with distance is due to small but systematic phase gra-
dients extending over the entire bulb (Freeman & Baird,
in press) and not to statistical independence of the sam-
ples. The commonality of waveform does not extend
outside the bulb, but does extend over distances of
several mm within it, much too far to be accounted for by
volume conduction. The bulbar EEG is a global property
that arises from dense feedback interactions within the
bulb and yet is conditioned or made possible by extra-
bulbar feedback interactions.

3.3. Evidence for chaos. An explanation of the neural
mechanism of the background activity stemmed from our
use of an assay, the Grassberger-Procaccia (1983) al-
gorithm, to measure the degrees of freedom (the Haus-
dorff dimension) of a prolonged sample of the EEG from
our animals at rest. Preliminary estimates ranged be-
tween 4 and 7 (Freeman 1987b), indicating that the
activity reflected not "noise" but chaos (see note 1). This
crucial distinction is analogous to the difference between
the noise of a crowd at a ball game and the noise of a family
dispute. Chaos is indistinguishable from random noise in
appearance and in statistical properties, but it is deter-
ministic and not stochastic (Garfinkel 1983; Rossler 1983).
It has relatively small degrees of freedom; it can be turned
on and off virtually instantaneously, as with a switch,
through bifurcation (see sect. 3.2), unlike thermal noise,
for example, which requires relatively slow heating and
cooling. Chaos is controlled noise with precisely defined
properties. Any system that needs random activity can
get it more cheaply and reliably from a chaotic generator
than from a noise source. Even the random number
generators of digital computers are algorithms for chaos;
given the same seed, sequences of random numbers are
precisely replicated.

In order to replicate the EEGs of the olfactory system,

AON

PC

OB

A

A
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TIME, 200 MSEC

Figure 5. Impulse responses of the neural sets simulated for M
(mitral unit activity), A of the AON (EEG), E of the PC (EEG),
and G of the OB (EEG activity). The internal gains, kee, kei, and
kji, are: OB (0.25, 1.50, 1.50, 1.80); AON (1.50, 1.50, 1.50,
1.80); PC (0.25,1.40,1.40,1.80). The nonzero equilibria are not
detectable with AEPs; the negative value for the PC is con-
sistent with the silence of the PC after section of the LOT
through the AON. From Freeman (1986).
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we used sets of nonlinear ordinary differential equations
that had already been used separately to model the bulb,
anterior olfactory nucleus (AON), and prepyriform cortex
(PC) with respect to their averaged evoked potentials
(Figure 5). We coupled them into an interactive network
(Figure 6). With proper settings of the feedback gains and
distributed delays in accordance with our understanding
of the anatomy and physiology of the larger system, the
model yielded sustained chaotic activity that was statis-
tically indistinguishable from the background EEG of
resting animals (Figure 7). Under conditions of simulated
receptor input the model generated "bursts" of oscilla-
tion that closely resembled those events seen in olfactory
EEGs (Figure 8) during inhalation.

With some minor changes in gains between the bulb
and AON the model system entered a degenerate state

PON

LOT

* r

Receptors

Bulb
(OB)

MOT

Nucleus
(AON)

Prepyriform
Cortex •
(PC)

Output

Figure 6. Flow diagram for the equation of the olfactory
system. Each circle (except R) represents a second-order non-
linear differential equation (Freeman 1987a). Input from recep-
tors (R) by the primary olfactory nerve (PON) is to peri-
glomerular (P) and mitral (M) cells through the glomeruli (gl)
subject to attenuation (x-), with connections to granule cells (G).
Output by the lateral olfactory tract (LOT) is to the superficial
pyramidal cells of the AON (E) and PC (A), each with inhibitory
neurons respectively (I) and (B). Output of the PC is by deep
pyramidal cells (C) into the external capsule (EC) and cen-
trifugally to the AON and OB in the medial olfactory tract
(MOT). The AON also feeds back to the granule cells (G) and the
glomerular layer (P). Excitation is (+); inhibition is (—). Laten-
cies (LI to L4) are calculated from measurements of the conduc-
tion velocities and distances between structures. Each part is
treated as a lumped system in this first approximation. Each
path is assigned a gain - for example, kMG = kee in the OB, kME

from the OB to the AON, and kEG from* the AON to the OB.
From Freeman (1986).

OB

AON

PC

• ^ 1 ^ ^

TIME, 4 SEC

Figure 7. Examples of chaotic background activity generated
by the model, simulating bulbar unit activity (M) and the EEGs
of the OB, AON, and PC. Qm = 5.0, kME = 1.5, kEG = 0.67.
kEP = 1.0, kPM = 0.1, kMA = 1.0, kEA = 1.5, kAI = 1.0, kAP =
1.0

with a Hausdorff dimension near 2, manifesting a re-
petitive spike (Figure 2) that very closely resembled an
epileptiform spike train that accompanied an electrically
induced olfactory seizure (Figure 9). This phenomenon
offered one means of studying the transition from a stable
point attractor to a chaotic attractor (Babloyantz & De-
stexhe 1986) (Figure 4). We did this by increasing an
excitatory gain connection in the model (kPM in Figure
10, between sets P and M in Figure 6). This yielded the
Ruelle-Takens-Newhouse route to chaos (Schuster 1984).
The chaotic attractor of the "seizure" state of the model
was a 2-torus; the chaotic attractor of a normal hyper-
chaotic background activity was much higher in dimen-
sion, and its geometric structure remained unknown.
These results, which represent the first successful simula-
tion of normal and abnormal EEG activity, and the
experimental evidence supporting the mathematical
model (Freeman 1987a) are reviewed elsewhere (Free-
man 1986).

Given this broad picture of the dynamics of this neural
system (Figures 2, 3, and 4) we can sketch a metaphorical
picture of its multiple stable states in terms of a phase
portrait. Each state is represented (Figure 11) by a
surface in the two dimensions of the activity level of a
representative local subset of excitatory neurons (left—

AON\,\

PC

INPUT TIME, O.5 SEC

Figure 8. Left: A simulated burst induced by giving a surge of
input at R similar to receptor input density during inhalation
and exhalation lasting 0.2 sec. Right: Sustained input onto
preexisting chaotic activity. From Freeman (1986).
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Figure 9. Examples of 2-second time segments of EEGs re-
corded from a rat during a seizure, comparing these with the
outputs of the model (see Figure 7). From Freeman (1987a).

right axis) and another of inhibitory neurons (axis in-out of
the page). Vertical height in each place indicates the
amount of energy in the active state of a point. An evoked
potential would appear as a counterclockwise spiral tra-
jectory; background activity would appear as a roughly
circular squiggle around the base of the central projec-
tion. The equilibrium state of deep anesthesia is repre-
sented in the lowest plate at the bottom of a well. Its
lowest point is the point attractor. The shift upward from
one plate to the next depends on the degree of interaction
within the system (the bifurcation parameter), which is
subject to numerous parameters in the model and to
various conditions in the brain relating to input and
arousal. The sequence of bifurcation to the waking but
unmotivated state is shown by the emergence of the
central uplift, a point repellor, and the formation of a
surrounding well that contains at its base the chaotic
attractor. The state changes by which the central uplift
occurs results in transfer of governance from a point
attractor to a chaotic attractor (Figure 4).

Figure 11 indicates that the olfactory system and its
corresponding model have a hierarchy of states. The basic
neural dynamics and the equations are the same in all
states but, depending on various neural conditions and
model parameters, the systems behave differently (e.g.,
during waking, sleeping, bursts, interburst intervals,
seizures, and so on). Both systems display the capacity for
abrupt, dramatic, global jumps from one state to another.
These are the bifurcations. These are analogous to phase

/-^yvuxt.

Figure 10. The traces at left show the spike train output (1.0
sec) of the model for 3 values of KPM, showing a low-dimension
limit cycle (above), a high-dimension limit cycle, and a chaotic
attractor. (In one sense the limit cycle has only one dimension,
that along its trajectory, but in another sense it exists in multiple
dimensions, so that it never crosses itself.) Reconstruction of the
chaotic attractor in 3 dimensions shows that it is a 2-torus
without detectable orifices or folds. The upper-right frame
shows a short segment (0.25 sec) from a different perspective.
The lower-right frames compare the accessible OB and PC EEG
traces during a seizure in a rat with the comparable output
variables of the model. Although related, they are not identical.
From Freeman (1987a).

Seizure

Inhalation

Exhalation
Motivation

Waking Rest

Deep Anesthesia

Figure 11. A set of hypothetical phase portraits is constructed
from the bifurcation diagram shown in Figure 4. Inhalation
results in the emergence of the collection of learned limit cycle
attractors, one of which may be selected by odorant input
placing the system in its basin. Alternatively, the response may
fall into the chaotic well. This appears to occur on about 10% of
control inhalations and about 40% of the test odor inhalations
after completion of training, as well as reliably with novel
odorants (Freeman & Viana Di Prisco 1986). On exhalation the
learned attractors vanish, so the system is freed to accept new
input. At the top is the chaotic attractor of seizure; at the bottom
is the point attractor of deep anesthesia. From Freeman (1987a).
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transitions in physical systems: ice to water to steam, for
example. The bifurcations occur in many forms and vari-
eties, so a formal definition is difficult if not impossible to
provide.

3.4. Roles of chaos in odor recognition. This configura-
tion is retained under increasing motivation (as by food or
water deprivation), resulting in higher amplitudes of
background activity, but only during late exhalation.
During late inhalation and early exhalation a surge of
receptor input reaches the bulb, depolarizes the mitral
cells, sensitizes the bulb, and induces an oscillatory
burst. This is a bifurcation from a low-energy chaotic state
to a high-energy state with a narrow temporal spectral
distribution of its energy, suggesting that it is governed
by a limit cycle attractor. Order emerges from chaos in
two respects. First, a narrow spectral peak emerges,
indicating high temporal coherence. Second, the local
amplitudes of oscillation take on values that are re-
producibly related to particular odorants serving as CSs.
The values differ for different odors, indicating that multi-
ple limit cycle attractors exist, one for each odorant an
animal has learned to discriminate behaviorally, and each
one leading to regular oscillation in a burst.

As hypothesized in Figure 11, these attractors are
latent during late exhalation and in the absence of moti-
vation. They reappear, all of them, with each inhalation
under motivation and then vanish with exhalation. We
postulate that the selection of an attractor upon inhalation
is made by the presence of a CS odorant in the inhaled air
or by the absence of an odorant, leading to the selection of
an attractor corresponding to the background odor, the
behavioral status quo. That is, the chemical stimulation of
a particular set of receptors places the mechanism into a
particular basin when the attractors emerge under bifur-
cation. The system is released into its basal state with
exhalation, setting the stage for the processing of a new
sample of information about an odor in the inhaled air.

The dominance of a chaotic attractor, perhaps in some
sense closely related at all levels, is seen to extend from
the low-level state of rest to the high-energy state of
seizure. We conjecture that chaotic activity provides a
way of exercising neurons that is guaranteed not to lead to
cyclic entrainment or to spatially structured activity
(Conrad 1986). It also allows rapid and unbiased access to
every limit cycle attractor on every inhalation, so that the
entire repertoire of learned discriminanda is available to
the animal at all times for instantaneous access. There is
no search through a memory store. Moreover, the chaotic
well during inhalation provides a catch-basin for failure of
the mechanism to converge to a known attractor, either
because the sample is inadequate or because a novel or
unfamiliar odor is present in the inhaled air. In either case
a "disorderly" or chaotic burst results that is charac-
terized by a relatively low peak frequency and a broad
temporal spectrum reflecting excessive frequency modu-
lation. Despite the spatial commonality of waveform,
these bursts do not converge to a consistent spatial
pattern of amplitude modulation, unless by repeated
presentation under reinforcement a new CS and a new
CR are formed, in which case a new limit cycle attractor
emerges. In other words, the chaotic well provides an
escape from all established attractors, so that an animal
can classify an odorant as "novel" with no greater delay

than for the classification of any known sample, and it
gains the freedom to maintain unstructured activity while
building a new attractor.

In our view, then, chaos plays several crucial roles; the
system is designed and built so as to ensure its own steady
and controlled source of "noise" (i.e., chaos). Most re-
markably, "signals" are not detected "in" the chaos be-
cause the mechanism turns the chaos "off' when it turns a
signal "on." The immunity of EEGs to trauma shows that
the mechanism is extremely stable, but not absolutely so.
Petit mal type seizures (Figure 2) occur when the feed-
back control system is driven outside its normal range by
excessive electrical stimulation and develops a dynamic
asymmetry. This imbalance results in a pathological in-
stability that carries the system temporarily into a degen-
erate and low- dimensional basin of chaotic activity; its
pattern resembles the EEG spike activity seen during the
early stage of recovery from "silence" under deep anes-
thesia. We believe that this common form of epilepsy
manifests an "Achilles heel" of a common and widespread
neural mechanism for the genesis and maintenance of
various forms of chaos as the essential ground states of the
perceptual apparatuses of the brain.

3.5. Learning and nerve cell assemblies. The neural
mechanisms that underlie changes leading to the forma-
tion of a new limit cycle attractor have been described and
discussed elsewhere in detail (Freeman 1975; 1979a-c;
1981; 1983b). Our model is based on studies of changes in
the waveforms of averaged evoked potentials in the olfac-
tory system when the electrical stimulus is used as a CS+
or CS- , and on replication of these waveforms by the
impulse response solutions to differential equations simu-
lating the dynamics of the bulb or cortex. Briefly, the
excitatory neurons in each of these structures are synap-
tically linked by axon collaterals ending mainly on the cell
bodies in bidirectional synapses (Willey 1973). When
these neurons are co-activated pair-wise by a CS+ their
joint synapses are strengthened in accordance with the
Hebb rule (Viana Di Prisco 1984). The required rein-
forcement is mediated by norepinephrine, which is re-
leased into the bulb and cortex (and elsewhere) by the
locus coeruleus (Gray 1986; Gray, Freeman & Skinner,
1986). Our models indicate that a modest increase of 25-
40% in synaptic strength can increase the sensitivity of
the bulb to a CS+ by 40,000-fold (Freeman 1979a;
1979b).

The linking together of a selected subset of neurons
comprising perhaps 1-5% of the total by strengthened
excitatory synapses constitutes the formation of a nerve
cell assembly (NCA). Thereafter, excitation of any portion
of it tends to disseminate into activating the whole of it.
We imagine that each NCA exists as a filamentous net-
work in the bulb resembling mold growing on a piece of
bread. We hypothesize that the activation of some of the
neurons of a specified NCA selects the basin of the
attractor into which the bulbar mechanism converges on
inhalation.

The key to understanding this switching device lies in
an appreciation of the static nonlinearity that governs the
behavior of neurons in an interactive mass. When left
without input, neurons tend to fall below threshold and
remain silent. Under maintained excitation they give
steady output. Owing to the ionic mechanism of the
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action potential there is a dynamic range near threshold
in which the tendency to form an action potential in-
creases exponentially with depolarization. Restorative
forces released by an action potential serve to limit the
rate of firing, but only after the fact, so to speak.

During exhalation, when receptor input is low, the
bulbar neurons tend to fall to a low level of activity and
sensitivity. During inhalation the surge of receptor input
not only excites bulbar neurons, it augments exponen-
tially their tendency to fire in response to input from
receptors and from each other. Their strength of interac-
tion increases dramatically over the entire bulb. At some
point a threshold is reached in which the entire bulbar
mechanism bifurcates from a low-energy chaotic state to a
high-energy state. The NCA operates at the moment of
choice when the surge of receptor input strongly forces
the bulb far away from its rest state to some new activity
pattern.

We view the bulb as operating in two modes. During
late exhalation and early inhalation it is in a receiving or
diastolic mode (Figures 2, 3, and 11). Intrinsic interaction
strength is low. The activity of afferent axons is imposed
on bulbar neurons, which are free to accept it and to adopt
corresponding levels of firing. Both the temporal and
spatial transfer functions are broadly tuned so as to accept
information and maintain it by local firing (Freeman &
Ahn 1976). This is the low-level chaotic state. On bifurca-
tion the mechanism converts to the transmitting, or
systolic, mode. Internal interaction goes to a high level.
The temporal transfer function of the model changes to a
sharp peak at the burst frequency, and the spatial transfer
function changes to give a rapid fall-off in energy above
zero c/mm. The bulbar neurons no longer respond to
receptor input but instead to each other. The information
carried by each neuron is disseminated over the entire
bulb and is integrated by every neuron in the bulb. It is
also sent out of the bulb to the cortex, where it undergoes
further temporal and spatial integration. The integration
is facilitated by the high temporal coherence of the
oscillatory burst and by the occurrence of the burst center
frequency in the optimal pass band of the prepyriform
cortex viewed as a passive filter (Freeman 1975; Bressler
1987a,b). Feedback from the prepyriform cortex and
AON to the bulb has the form of modulatory biases,
because the conducting pathways have strongly disper-
sive delays that act as low pass filters and smooth the
feedback activity. Upon reduction in receptor input dur-
ing exhalation the system collapses back into low-level
chaos and the diastolic mode.

3.6. Strong and weak points of our model. This view of
olfactory discrimination arises from insights gained by
inspection of the activity patterns revealed by these new
data. It is consistent with most of what is known or
believed about olfactory function from conventional elec-
trophysiology, including the specificities of neuronal fir-
ing in response to odorant stimulation in anesthetized
animals and the spatial patterns of selective 2-DOG (2-
deoxyglucose) uptake in the glomerular layer (Lancet,
Greer, Kauer & Shepherd 1982) on prolonged exposure
of waking animals to odorants. It is also compatible with
findings in olfactory psychophysics, particularly those
relating to the relatively small number of odorants subject
to absolute identification in the absence of prolonged

training or (in man) the use of verbal labels (Cain 1980). It
also solves the problem of neuroanatomical interfacing by
the bulb between the receptors and the primary olfactory
cortex as follows.

The input path to the bulb, the primary olfactory nerve
(PON), has a certain spatial organization that is imposed
by ontogenetic development and by functional needs to
be met in getting receptor input into the glomeruli in the
face of lifelong replacement of the primary receptors
(every 120 days, on the average). The output path, the
lateral olfactory tract (LOT), has its own constraints in its
ontogeny and in the need to service an array of targets
ranging from the AON and tubercle to the amygdaloid
nucleus and hippocampal rudiments. By our hypothesis,
within a few msec following bifurcation all information
that is fed into the bulb during its "diastole" (the inter-
burst period) is spread and mixed uniformly through the
bulb during its "systole" (the burst). Each fraction of the
bulbar output, perhaps on the order of 20%, irrespective
of which part of the bulb it comes from, suffices to convey
with adequate resolution all that the bulb has to say.
Hence there need be no coordination or sharing of con-
straints in the developmental construction of the input
and output paths, particularly with respect to their topo-
graphic organizations.

Several challenges and uncertainties exist for the phys-
iology of our model. One of the key features by which it
must stand or fall is its requirement that the interneurons
in the outer layer of the bulb (Figures 1 and 6), the
periglomerular cells, must be excitatory to each other and
to mitral cells (Freeman 1987a). Substantial but indirect
experimental evidence has been adduced in support of
this requirement (Martinez & Freeman 1984) as well as
against it (Shepherd 1972). The cells in question are
mixed populations of cells secreting GABA, dopamine,
and one or more neuropeptides. Conventional wisdom
has it that small GABA-ergic neurons are inhibitory. This
appears to be valid for the deep-lying granule cells.
Recent studies in the hippocampus have shown that
GABA is hyperpolarizing when applied to the basal den-
drites of pyramidal cells but depolarizing when applied to
the apical dendrites (Misgeld, Deisz, Dodt & Lux 1986),
suggesting that a chloride gradient along the apical den-
dritic shafts might reverse the sign of action of GABA
between the two parts of the pyramidal cells (Newberry &
Nicoll 1985). Were this or an equivalent mechanism to
hold for the mitral cells in the bulb, an important predic-
tion by our model would be confirmed.

Another key property of our model is the requirement
of mutually inhibitory feedback among inhibitory inter-
neurons in the bulb, AON, and cortex. No direct demon-
stration that this does or does not exist has yet been
devised. Evidence for chemical and electrical synapses
between granule cells has been sought but not found. The
possibility exists that the stellate cells of Golgi, Cajal, and
Blanes, which are thought to be GABA-ergic, inhibit
granule cells through their widely distributed axons, and
might receive inhibitory input from them.

A third weakness concerns the requirement for mutu-
ally excitatory connections among mitral cells in the bulb
and among superficial pyramidal cells in the prepyriform
cortex, which are modified under learning. The evidence
that these requirements hold comes largely from record-
ings of field potentials and is therefore indirect. Studies of
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the predicted synaptic changes and their kinetics under
modulatory neurochemical agents may be crucial for the
support of our model. However, we emphasize that the
jury is still out on these questions, that an answer of a
particular kind is required for each by our model, and that
some other answers can falsify it. We therefore have a
brain theory that can be tested, elaborated, or negated by
physiological experiments; it is not merely computa-
tional.

In its mathematical structure our model is still in its
infancy. We have some experience with a distributed
system of coupled equations in bifurcation between equi-
librium and limit cycle states (Freeman 1979c), but our
chaotic generator is a lumped model using ordinary
differential equations. In its psychological dimension our
model is extremely limited, being competent to simulate
only preattentive cognition (Freeman 1983a; Julesz 1984)
and the instantaneous apperception of a stimulus, and not
attentive inspection or sequential analysis. The feasibility
of extending these ideas and experimental methods to
neocortical systems is under exploration; evidence has
been found that the visual cortex in a rhesus monkey
operates according to the same basic neural dynamics as
the olfactory bulb (Freeman & van Dijk, submitted).
Most important, no claim for firm and substantial under-
standing of large-scale neural circuitry can be advanced
until the mathematical theorists of distributed dissipative
systems have caught up with experimentalists, or until
engineers have built hardware models based on our
equations and determined whether they behave the way
parts of brains do. We are pleased to present something
new to think about.

4. Philosophical aspects

4.1. Neural dynamics and the digital computer. Our pres-
ent hypothesis is that odor discrimination and recognition
depend on self-organizing neural processes in the olfacto-
ry bulb. The process that we label the "expectation" of an
odor is realized in the formation of strengthened connec-
tions in a network of neurons constituting the NCA. This
assembly, whose role is to amplify and stereotype the
small input received on any given inhalation, produces a
disseminated but low-density activity pattern in response
to the stimulus, and then provides the crucial mechanism
for mediating the emergence of an odor-specific activity
pattern in a process of bifurcation. With this state change
the entire olfactory bulb, rather than the limited number
of nerve cells comprising the NCA, is engaged by a
process of global integration to produce a stereotypic
activity pattern mediated by the NCA but going far
beyond it. Thus, when placed in a learned input domain,
the neural system has a tendency to generate a
qualitatively distinctive form of ordered behavior that
emerges from the chaotic background state.

Several important lessons concerning recent explanato-
ry models in cognitive science can be drawn from our
research. First, our model, based on self-organizing neu-
ral dynamics, makes it desirable to reevaluate the ade-
quacy of the explanatory models based on digital and
analog computers that have until recently provided the
most influential metaphor in cognitive science. Accord-
ing to this metaphor, the behavior of a system is caused by

the formal manipulation of bits of data (symbols) accord-
ing to rules and operations specified by programs de-
signed for a given task or tasks. The metaphor involves a
distinction between system hardware and software, the
functioning of a central processor that operates on the
data and drives the system, and a memory housed in a
separate space. Several factors have contributed to the
decline of this metaphor, among them the evidence that
implementations of it fail to produce behaviors in which
animals and humans excel (Dreyfus & Dreyfus 1986) and
the emergence of alternatives in the form of "connec-
tionist" models.

Our data indicate that what takes place in the olfactory
system does not resemble the processes responsible for
generating behavior in the classical computer paradigm.
In the olfactory bulb, learning consists in the selective
strengthening of excitatory connections among the neu-
rons leading to the constitution of an NCA and to the
possibility of bifurcation to a global activity state manifest-
ing an attractor. Learning takes place during the first 2
seconds following odor CS+ and UCS presentation with
the release of norepinephrine in the bulb and elsewhere.
Memory for an odor consists in the set of strengthened
excitatory connections of the NCA, which, when acti-
vated under stimulus input, possesses the tendency to
produce a global activity pattern characteristic of a given
odor. These are not the types of mechanisms used by
digital or analog computers. No program-specified rule or
operation is brought to bear on input to the olfactory
system. The component neurons generate their own
ordered response to stimuli; they are self-organizing.
There is no central processor, and learning and memory
are functions distributed throughout the neural network.

The process of odor recognition and discrimination can
be conceived in terms of dynamic interactions at the level
of the neural mass without appeal to symbols. There is
preliminary evidence from anatomical and EEG studies
indicating that this distributed model can be generalized
for neural dynamics throughout the cortex (Freeman &
Skarda 1985; Freeman & van Dijk, submitted). This
means that the classical computer analogy may be unsuit-
able to explain the neural bases of behavior. This does not
mean that digital computer models are to be discarded.
Von Neuman machines have successfully produced some
interesting classes of behavior, and to date psychological
models seem to lend themselves more simply to formula-
tions stated in terms of symbols and their formal manip-
ulation by rules. What we wish to point out here is that
brains do not use the same principles as the digital
computer to produce behavior. This information may
help neurophysiologists in framing hypotheses for further
research. Rather than viewing brain function along the
lines suggested by the classical computer paradigm - as a
rule-driven and controlled system solving problems,
completing patterns, and forming hypotheses by manip-
ulating symbols - neural dynamics suggest that the brain
should be viewed as a self-organized process of adaptive
interaction with the environment.

4.2. Neural dynamics and connectionist models. Our
model supports the line of research pursued by propo-
nents of connectionist or parallel distributed processing
(PDP) models in cognitive science (Baird, in press; Feld-
man & Ballard 1982; Hinton 1985; Hinton & Anderson
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1981; Hopfield 1982; Kohonen 1984; Rumelhart, Mc-
Clelland & PDP Research Group 1986). Although the
models that fall under the rubric of connectionism are not
identical, they do share a number of basic characteristics
(Feldman & Ballard 1982). Each involves a processing
system consisting of a densely interconnected network of
units that interact with one another by sending and
receiving signals modulated by the weights associated
with the connections between the units. Processing is
distributed throughout the system. The units may be
organized into layers, and each layer sends to and re-
ceives signals from other layers composed of densely
interconnected units. The state of each layer results from
a synthesis of the states of other layers from which it
receives input.

What takes place in the brain may resemble the dy-
namic processes of self-organization used by these mod-
els. Our neural model and the connectionist models
converge in several respects. Both rely on parallel, dis-
tributed processes among highly interconnected units in
interacting networks to produce behavior; both empha-
size a self-organized or bottom-up, rather than a rule-
driven or top-down, explanatory approach; and both rely
heavily on organized feedback among components within
the system.

The convergence of our model with connectionist mod-
els is instructive. Equally striking are the dissimilarities
(Baird, in press). Comparing the models shows that the
study of brain dynamics provides essential information
about the physical processes responsible for behavior that
is not available from current engineering research alone.
Our data show that neural dynamics exhibit features not
found in connectionist models, features that we hypoth-
esize are essential for odor recognition and discrimina-
tion. Modifying the connectionist models along these
lines could yield more flexible systems capable of operat-
ing successfully in a more realistic environment.

4.3. Feedback of multiple kinds. The first point of dif-
ference between our model and connectionism concerns
the process of feedback. Neural masses possess (and their
collective dynamic behavior is determined by) dense
local feedback among the neural units comprising the
bulb and within it the multiple existing NCAs. This
property is essential for the complicated dynamical pro-
cesses of neural interaction needed for state changes and
for the chaotic and limit cycle behaviors discussed above.
Without locally dense feedback formed by the dendritic
plexus that provides for a continuum of local interactions
in a spatially distributed manner, the dynamic processes
responsible for odor recognition and discrimination could
not take place.

There are two points to make regarding feedback in
connectionist models. First, approaches of the per-
ceptron class (Hinton 1985; Rosenblatt 1962; Rumelhart
et al. 1986) do not realize this kind of feedback in their
models, even to the extent circumscribed by limitations
on the hardware. Some models of this class do involve
feedback from one layer of units to another layer (Hinton
1985; Rumelhart et al. 1986). In these models the activity
of one layer (B) is fed back to a previous layer (A), thereby
modifying the weights of the units in layer A. In contrast
to these models the process of "backward propagation" in
the brain imposes long delays, temporal dispersions, and

spatial divergences that do not hold for local feedback
(Figure 5, L1-L4). Feedback between layers (e.g., be-
tween bulb and prepyriform cortex) is not equivalent to
the short-latency, focused feedback taking place in the
neuropil. There each node has surrounding plexuses of
connections which concurrently excite and inhibit by
recursive actions. Second, most connectionist models
(e.g., Anderson, Silverstein, Ritz& Jones 1977; Hopfield
1982; Kohonen 1984) have excitatory feedback domi-
nantly or exclusively; the role of inhibition has received
scant attention. Models based on symmetric matrices of
connection weights cannot simulate neural functions be-
cause of the existence in the nervous system of the mix of
positive and negative feedback. There are exceptions in
the connectionist literature; the models developed by
Grossberg (1980) feature the local inhibitory feedback
found in the neural mass. But the types of dynamics and of
connectivity in those models still do not approach those
occurring in the bulb and its NCAs, and we doubt that
they can produce the global behaviors that characterize
its neural dynamics.

4.4. Roles of chaos. A second, related point of difference
between neural dynamics and connectionism involves
the nature of dynamic behavior exhibited, on the one
hand, by neural masses, and on the other hand, by
connectionist networks. Our data support the hypothesis
that neural dynamics are heavily dependent on chaotic
activity. We have suggested that without chaotic behav-
ior the neural system cannot add a new odor to its
repertoire of learned odors. Chaos provides the system
with a deterministic "I don't know" state within which
new activity patterns can be generated, as shown by what
happens when the system encounters a previously un-
known odor. If the odor occurs without reinforcement,
habituation takes place; thereafter, the neural system
exhibits patterned activity that we have identified as the
control state for the status quo. With reinforcement,
however, a completely different process occurs. If the
odor is novel and the system does not already have a
global activity pattern corresponding to the odor, then
instead of producing one of its previously learned activity
patterns, the system falls into a high-level chaotic state
rather than into the basin for the background odor. This
"chaotic well" enables the system to avoid all of its
previously learned activity patterns and to produce a new
one.

In the neural system, we postulate that the process of
state change leading to the unstructured chaotic domain
is essential for preventing convergence to previously
learned patterns, and hence for the emergence of new
patterned activity in the bulb and the corresponding
ability of the animal to recognize new odors. In the
olfactory system the chaotic background state provides
the system with continued open-endedness and read-
iness to respond to completely novel as well as to familiar
input, without the requirement for an exhaustive memo-
ry search.

Connectionist models can certainly be modified to
produce chaotic and oscillatory behavior, but current
theorists have not included these behaviors in their
models, nor have they adequately explored the potential
benefits of doing so. One reason for this may be that we all
lack the appropriate mathematical tools to implement
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these behaviors at the spatial computational level. An-
other is that engineers have traditionally viewed oscillato-
ry and chaotic behaviors as undesirable and something to
be eliminated (Garfinkel 1983).

The connectionist model reviewed by Hopfield and
Tank (1986) is instructive in this regard. This model
captures the dynamics of a system at a point in time after
the bifurcation included in our model from diastole to
systole has taken place. It is pictured in their phase
portrait by a set of point attractors. Input places the
system into the basin of one or another of these point
attractors, to which the system then converges. There are
two problems with this model from our perspective.
First, the neural system does not exhibit behavior that
can be modeled with point attractors, except under deep
anesthesia or death. Convergence to a point attractor
amounts to "death" for the system. In the Hopfield and
Tank model, after the system converges to a point attrac-
tor there is no intrinsic mechanism by which the system
can escape from it. An obvious solution is to turn the
system off and then to reset it so that it is free to converge
again to another point attractor. This is like using a
muzzle-loader instead of a machine gun. Second, their
connectionist model lacks an intrinsic mechanism like the
chaotic well in our model that enables the neural system
to add new odors to its repertoire. Without such a
mechanism the system cannot avoid reproducing pre-
viously learned activity patterns and can only converge to
behavior it has already learned. The neural system does
not have this problem; chaotic mechanisms enable the
neural network to learn new behaviors.

4.5. Pattern completion versus destabilization. A third
difference between neural dynamics and connectionism
concerns the general conceptual framework in which the
two models are explained. Connectionist models are
sometimes understood as pattern completion devices, in
which, for example, when the receptor units are given
part of a pattern as input, the complete pattern can be
reconstructed by interactions among appropriately
weighted units comprising the network.

The neural system we have described is not best
thought of as a pattern completion device, although it
may do that (Freeman 1983b). The problem is epis-
temological; we do not know what a completed pattern is
(so convergence to it cannot be ascertained as in an error
correction device), nor, we suspect, does the brain. We
postulate that an NCA is activated wholly by input to any
of its neural members, but we have no measure or
observation of what the NCA looks like or how completely
it is activated. The output of the system does not consist of
the "completed" pattern of the NCA but of the entire
bulb governed by an attractor. This global state tends to
recur within certain "clusters" of spatial patterns, pos-
sibly expressed as vectors in some high-dimensional
space, but no two are identical, and there is no expression
for a boundary, such as the outline of a letter that is to be
filled in. Most generally, these neural activity patterns
are generated from within. Whatever "meaning" they
have is embedded in the self-organized matrix of the
entire brain. We have no way of knowing what constitutes
a "completed" pattern or how to distinguish it from an
"incomplete" one, either in terms of neural activity
patterns or the mental life of an animal, presuming it

exists. The pattern-completion concept is realizable only
in terms of ideographs or conventional signs and symbols,
and if we reject these, as we have for neurophysiology,
then the concept too must go.

We also think that the term "pattern" in the ex-
pressions "pattern completion" and "neural activity pat-
tern" has very different connotations and different im-
plications for our understanding of system dynamics. The
term "pattern completion" describes a process in which a
circumscribed structure can be generated as output from
input that provides information about only part of the
structure. Generally, the process depends on a prior
"optimal" presentation of the pattern to adjust the
weights among units comprising the network. The neural
system works differently. It cannot depend on optimal
input in its first (or, in fact, any) encounter with an object
against which to compare or judge subsequent input. In
the neural system, chaos is the rule, and the patterned
activity to which the system converges following each
state change is never twice the same, so again the notion
of pattern completion loses its meaning.

We think that the notion of "destabilization" provides a
better description of the essentials of neural functioning
than the concept of pattern completion. In an alert,
motivated animal, input destabilizes the system, leading
to further destabilization and a bifurcation to a new form
of patterned activity. We hypothesize that convergence
to an attractor in one system (e.g., the olfactory bulb) in
turn destabilizes other systems (e.g., the motor system),
leading to further state changes and ultimately to manip-
ulation of and action within the environment. Our re-
search leads us to postulate that behavior can best be
modeled as a sequence of ordered, stable states in an
evolutionary trajectory (Freeman & Skarda 1985). Input
to the system continually destabilizes the present stable
state and necessitates convergence to a new form of
behavior.

4.6. The sensory/motor loop. This raises a fourth issue.
The fundamental character of behavior is adaptive in-
teraction in the world (Churchland 1986; Skarda 1986).
Feedback from the consequences of behavior modifies
the system and projects it into a higher order of stability.
In the nervous system, each change in the dynamic
structure of the system, which in our mathematical model
requires a new solution with its own trajectory, occurs in a
sequence of state changes. The convergence to a pat-
terned activity state, which marks the end state of this
process, is externally manifested in some physical state
(e.g., chewing) or in some anatomical structure (Er-
mentrout, Campbell & Oster 1986). What is important
here is that this state has a musculoskeletal pattern that
constitutes both input to and output from the nervous
system. The global activity pattern we record is the result
of the destabilizing effects of receptor input to the system,
but it is likewise the cause of motor output (e.g., licking)
that causes further sensory input and manipulation of the
environment, as well as being the result of previous
motor activity (e. g., sniffing). These global patterns of the
nervous system are at all times locked into both sensory
and motor patterns of input and output.

We know that the neural system accomplishes this, but
our model clearly does not contain a description of the
mechanism by which this interaction is achieved. There
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are existing prototypes that can be drawn upon by theo-
rists in the work of Walter (1953), Ashby (1952), and
Grossberg (1980) of systems with perceptual processes
that interact with the environment via motor functions.
Further interdisciplinary research along these lines is
required before the mechanisms responsible for adaptive
interaction will be understood.

Our data lead us to the view that the neural processes
of self-organization in the olfactory bulb are quite selec-
tive. The olfactory system does not respond to each odor
presented to it by producing a corresponding activity
pattern. Neural dynamics and the formation of patterned
activity that can be correlated with a specific odor are a
function of "motivation." What we have labeled moti-
vation can also be characterized as a complex process
whereby the organism predictively controls and main-
tains itself in the optimal condition given the circum-
stances in which it exists and acts. These global objec-
tives constrain neural dynamics in two ways: They limit
the possible range of patterned neural behaviors and
they mediate interaction among various neural sub-
systems, such as that between the brain stem including
reticular formation, the locus coeruleus, and the olfacto-
ry system relating to arousal, attention motivation,
learning, and so on.

Nonbiological self-organizing systems are different.
Their behavior is not constrained by either of the global
constraints operating in the neural system (Ashby 1952).
Storms, for example, are self-organized phenomena that
can be mathematically modeled using the same principles
we use to model neural dynamics. A storm takes in and
gives out energy, moves across a random path buffeted by
external forces, and finally dissipates when it has de-
pleted its energy sources. Storms, however, do not exhib-
it adaptive responses: The system dynamics of a vortex
are not constrained by a global demand for preservation of
the system, and the system does not incorporate informa-
tion about its environment. The storm may, for example,
move toward land, but it does not do so under the
constraint to survive as a unity.

The distinction we have drawn between brains and
nonbiological forms of self-organization does not guaran-
tee that brain dynamics will always exhibit the self-
promoting constraint just outlined. Sometimes brains
produce behaviors that resemble the system dynamics
characteristic of weather patterns; we identify some
"neural storms" as seizures (Freeman 1986). The pres-
ence, however, of a self-organized neural process that is
not self-promoting disrupts normal functioning at all
levels. These otherwise common and efficient non-
biological forms of self-organization take on a pathological
character when they occur in the brain. We propose that
they are identified as pathological because they violate
the global constraints for self-promotion and adaptive
control characteristic of normal brain functioning. Thus, a
difference between biological and nonbiological forms of
self-organization shows up at the level of the neural
assembly long before there is any reason to refer to
"consciousness" or "beliefs." Self-preservation plays a
central role in biological self-organized systems, and
processes that do not possess this feature may be selected
against during evolution.

The constraints on self-organization operative in the
nervous system are not present in all biological systems.

For example, plants exhibit adaptive behavior indicating
that their systems are governed by the constraint for self-
promotion over time. Eucalyptus trees influence (modify)
their environment by inhibiting the growth of other tree
species and shrubs in their vicinity, and they promote
their own rainfall from coastal fog. These are clear exam-
ples of self-promoting control of the environment, a
feature that sets apart biological self-organized systems
from nonbiological ones. But brains introduce a further
constraint, not found in other biological forms. The key
property of brain dynamics, we suggest, is control of body
movement in space for the self-promoting purposes of
search, attack, ingestion, escape, and reproduction.
Plants have no brains. This is why we claim that there can
be no adequate explanation of brain function without
consideration of sensation in conjunction with move-
ment. Nervous system dynamics is a self-organized pro-
cess constrained by the requirement that the system
anticipate and incorporate the immediate consequences
of its own output within the larger constraints of regulat-
ing its well-being and the long-term optimization of its
chances for survival. This is subsumed in J. J. Gibson's
(1979) theory of "affordances." We are a long way yet from
understanding how brains accomplish this.
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NOTE
1. "Chaos" in the oldest sense means the formless void

from which order springs. The term is now commonly
applied to disorderly, unpredictable happenings that give an
observer no sense of regularity. In the technical sense used
here it describes a kind of activity that appears to be random
or stochastic by every standard statistical test, but is not. It
is deterministic, in the sense that it can be reliably
simulated by solving sets of coupled nonlinear ordinary
differential equations or generated by building a system to
certain specifications and putting energy into it. It is
pseudorandom noise that can be reproduced with high
precision if the initial conditions are identical on repeated
runs, but which is unpredictable if new initial conditions are
used. In contrast to noise, chaos has fewer degrees of
freedom and is said to be low-dimensional. Chaos exists in
many forms and degrees; Rossler (1983) has formulated an
instructive hierarchy of equations to exemplify types of
chaotic activity that will be of great interest for neural
theorists. Introductory texts are by Schuster (1984) and
Abraham and Shaw (1985).
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Chaotic dynamics in brain activity

A. Babloyantz
Faculty des Sciences, Universite Libre de Bruxelles, Campus Plaine CP
231, 1050 Brussels, Belgium

Skarda & Freeman (S&F) attempt to extend the recent advances
in the analyses of nonlinear dynamical systems to the study of
the olfactory bulb.

The suggestion that brain activity has chaotic deterministic
dynamics is not new and has already been proposed by several
authors (Kaczmarek & Babloyantz 1977; Nicolis 1985a; Roschke
& Basar, in press). The degree of chaos in various stages of sleep
and wakefulness has been evaluated from human EEG record-
ings (Babloyantz & Destexhe, in press; Babloyantz, Nicolis &
Salazar 1985; Layne, Mayer-Kress & Holzfuss 1986; Rapp,
Zimmerman, Albano, Deguzman & Greenbaun 1985). A low-
dimensional deterministic chaos was found in an episode of petit
mal seizure (Babloyantz & Destexhe 1986).

Reference to the above-cited material might have strength-
ened the main point of S&F's target article, namely, that brain
activity in animals as well as in man conforms to deterministic
dynamics of a chaotic nature.

In order to describe the various concepts of nonlinear dynam-
ics without the help of mathematics, several misleading state-
ments are introduced by S&F. "Chaos is controlled noise with
precisely defined properties" (Sect. 3.3, para. 1) is an example.
To understand S&F's paper, the reader must refer to more
technical publications.

In spite of these remarks, S&F's combination of multiple
electrode recordings and dimensional analyses is a very promis-
ing method for analyzing brain activity. Such an approach sheds
light on some aspects of cerebral dynamics not accessible by
other methods.

Chaos, symbols, and connectionism

John A. Barnden
Computer Science Department, Indiana University, Bloomington, Ind.
47405

As I have no doubt that the study of chaotic behavior in neural
networks is an interesting and fruitful line of research, I shall
confine my comments largely to some philosophical claims
Skarda & Freeman (S&F) make and to the relationship of their
model to connectionism.

Governing metaphors should be kept constantly under re-
view as a matter of principle. But I am not convinced that S&F's
findings and arguments constitute a serious threat to the "digital
computer metaphor," or, more precisely, to views of the brain
as a symbol-manipulation device. There is, first, the danger of
extrapolating from findings and theories about low-level sensory
mechanisms to high-level cognition. S&F are sensitive to the
danger and freely admit that their model is extremely limited
psychologically (see end of Sect. 3.6), but they would nev-
ertheless like us to allow the extrapolation. More important,
however, S&F do not give us any new reason to be worried
about viewing higher-level cognitive processes as based on
symbol manipulation. As far as I know, the "symbol manipula-
tionists" have in any case always presumed that low levels of
perception are at least largely based on specialized mechanisms
that are probably not to be regarded profitably as manipulating
symbols in any conventional sense. [The fact that AI (artificial
intelligence) researchers and others simulate such mechanisms
on digital computers is of course only weakly relevant here.] To
show, therefore, that the olfactory bulb is best described as
operating in a way foreign to symbol manipulation is not to push
the backs of the symbol manipulationists any nearer to the wall.

The question of what the rest of the brain does with the output

of the olfactory bulb (and directly connected brain centers) is
significant. S&F themselves come near to suggesting that the
bulb produces symbols when they say the inhalation of a learned
odor pushes the bulb into a qualitatively distinctive, stereotypic
state of activity. What is to stop us regarding these patterns as
symbols? In what way is the idea that the rest of the brain uses
these patterns in a symbol-manipulation style rendered im-
plausible? I am not arguing that the rest of the brain does so use
them, but only wondering what light is thrown on the issue by
the S&F model.

S&F might reply that the activity pattern resulting from a
specific learned odor varies somewhat in response to environ-
mental context and preexisting internal state, and therefore
cannot be regarded as a symbol. This point has some force, but
there appears to be nothing to stop me from retreating slightly
and saying that the rest of the brain proceeds to extract a symbol
- corresponding to some invariant part or aspect of the pattern.
(That such a part or aspect exists is surely at the basis of S&F's
model.) Also, no retreat at all might be necessary if we allowed
symbols to embody a certain amount of "fuzz." This would
depart from the conventional view of symbols in artificial intel-
ligence and cognitive science, but it is not clear that the un-
fuzziness of symbols is crucial to those fields, even if most
researchers in those fields think it is. The most crucial aspect of
the symbol-manipulation view seems to me to be the ability to
form complex structures out of basic symbols, to analyze such
structures, to compare symbols, and to associate symbols with
symbols and other entities. None of these abilities requires
unfuzziness of symbols in principle [Nelson Goodman's (1968)
views on notational systems notwithstanding].

S&F would do well to be more careful about nomenclature
when making their philosophical claims. The metaphor that
their attack is directed at is surely the symbol-manipulation
metaphor, not a metaphor of the brain as a digital computer as
such, since it is clear that the brain is not like a computer at a low
level of description. Now, at the electronic level of description a
computer does not operate by symbol manipulation any more
than a neural net does at the neurophysiological level of descrip-
tion, so that any terminology that confuses levels is likely to be
misleading. When, for instance, S&F say in Sect. 4.1 that the
process of odor recognition and discrimination can be conceived
in terms of dynamic interactions at the level of the neural mass
without appeal to symbols, we might well respond that the
behavior of a program running on a computer can be conceived
in terms of dynamic interactions at the level of the electronic
mass without appeal to symbols. That this response would not (I
take it) get at the heart of what the authors are saying would be
their own fault, to put it abruptly.

While we are on the subject of levels, I dispute the implica-
tion in Sect. 4.2 that "self-organized" is correlated with "bot-
tom-up" or that "rule-driven" is antithetical to "self-organized."
A rule-driven system can be self-organized at the level of rules
(since rules can modify themselves and other rules), and a top-
down decomposition of a system can involve elements of self-
organization at any level. Actually, it is not clear that either
connectionists or S&F are adopting a bottom-up approach. To
be sure, they are suggesting particular low-level mechanisms to
explain particular high-level behaviors, but that does not make
the approaches bottom-up. It is more that they are adopting a
top-down approach different from those taken by certain other
researchers.

I am a little puzzled at the claimed divergence from connec-
tionism with respect to types of feedback (Sect. 4.3). There
seems to be nothing in the spirit of connectionism that disallows
"locally dense feedback." Also, inhibitory feedback, which is
claimed by S&F to have been given scant attention in connec-
tionism, has played a very significant role in connectionist
thinking for some time. One need only look, for instance, at the
model of McClelland and Rumelhart (1981) and at the impor-
tance given to lateral inhibition in the Kohonen (1984) book
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cited by S&F. On the other hand, I do agree that connectionists
would do well to look more closely at the transmission delays
and temporal dispersion effects on connections (whether or not
they are feedback connections). I think it is really best to regard
S&F's reliance on chaos and certain feedback effects as con-
stituting a (most intriguing) extension of present-day connec-
tionism rather than as diverging from it.

Finally, I would be interested to know what happens in the
olfactory bulb and in S&F's model when several individually
learned odors are presented simultaneously. Can a spurious
output result, by virtue of the combined odors pushing the
system into an activity state corresponding to another learned
odor? Does this, if it happens, have any correlation to observed
behavior? What new light is thrown on whether the output
patterns can be usefully viewed as taking part in symbol
manipulation?

matters are what DeMott's monograph is largely about. Other-
wise, it is a personal history (I find it a sad one) of what can
happen to those who arrive before their time and choose to go it
alone. With uncommon frankness, he tells of his long struggle
with journal editors and grant reviewers, who eventually put an
end to his research career on August 31, 1968, ten years after the
toposcopic project had begun. His efforts deserve to be
remembered.

Such carping out of the way, I will conclude by saying that I
otherwise enjoyed the paper by S&F. Better than most of us,
they have utterly banished the homunculus, or "green man,"
from their thinking and have called attention to the fundamental
weaknesses of the simple-minded brain-computer analogies.
Yet I find S&F's records difficult to interpret, just as reviewers
found DeMott's. Only time will tell whether chaos is in fact the
route to making sense of the world.

Spatial analysis of brain function:
Not the first

Robert M. Boynton
Department of Psychology, University of California at San Diego, La Jolla,
Calif. 92093

Skarda & Freeman (S&F) believe that their work is "the first
demonstration of the existence of sensory- and motor-specific
information in the spatial dimensions of the EEG activity in any
part of the cortex" (Sect. 3.2, para. 1). Not so: Their attention
should be directed to Toposcopic Studies of Learning, a book by
Donald W. DeMott (1970). In addition to reporting his own
work on toposcopy (study of the cortex in two dimensions of
space), DeMott reviews the history of the subject, stating that
two earlier reviews had been published previously, one by A.
R6mond in 1955, the other by Livanov and Anan'yev in 1961
(which I will not cite directly, because I have not seen them). He
states that the first toposcopic experiments that produced useful
data were published by Lilly and Cherry (1951; 1954) using a 25-
channel apparatus.

DeMott studied a variety of learning problems in the monkey
while trying to record simultaneously from as many as 400
electrode positions in the brain. He describes both AC and DC
changes in the recorded potentials and relates his results to such
phenomena as dominant focus, contingent negative variation,
hemispheric dominance, and localization of function. For exam-
ple, in his "one tone, one-string problem," a monkey received a
grape reward for pulling the string, contingent upon the pres-
ence of the tone. Five Cebus and four Saimiri were studied over
several sessions. On some trials, toposcopic patterns, in the
form of an array of lights whose intensities were proportional to
brain potentials, were recorded with a high-speed camera of
original design at 250 frames per second. DeMott discerned a
distinctive pattern of electrical activity associated with the first
behavioral signs of learning, one that straddled the parieto-
occipital sulcus. Such activity was never otherwise observed,
even during analogous visual learning studies. He refers to this
activity as an apparent "lateral movement of activity in the
region of the focus . . . sharply limited, as if by an invisible
fence around the critical area" (p. 93).

DeMott's book also includes detailed discussion of the design
and manufacture of electrode arrays and of the problems en-
countered with respect to surgical implantation as well as the
formidable problems of data analysis in what was, for him -
given his limited resources - the precomputer era.

S&F also state, "there being no precedents, we have no other
data with which to compare our results. Just as we have pi-
oneered in their acquisition, we must now break new ground in
attempting to understand what they tell us about brain function"
(Sect. 3.2, para. 1). As I hope the foregoing will attest, these

Can brains make psychological sense of
neurological data?

Robert Brown
Department of Psychology, University of Exeter, Exeter EX4 4QG, England

Churchland (1980) distinguishes two varieties of scepticism
concerning the usefulness of brain research for our understand-
ing of how the mind-brain works: "boggled" and "principled"
scepticism. Presumably this distinction is only a makeshift one,
and scepticism merely an imprecise "folk-psychological" no-
tion, but since the terms have not yet been eliminated from our
psychological vocabulary I will assume that they are still mean-
ingful. Skarda & Freeman's (S&F's) target article, for all its good
intentions, increases my scepticism (of both kinds).

Being blinded by science could well be a function of one's own
intellectual eyesight. No one expects the general theory of
relativity to be easily assimilable in comic-book format, but an
argument is still expected to meet the criteria of clarity and
intelligibility. In their account of the collection, analysis, and
interpretation of data S&F mystify and intimidate, albeit unwit-
tingly. It must be a small and specialised community indeed that
can follow each of the technical and mathematical steps with a
truly critical eye. This is not a trivial criticism. It is claimed that
the model can be tested, elaborated, negated, or falsified. We
know that falsification (or potential falsification) is not the cut-
and-dried procedure it was once thought; given such sheer
complexity, what would it really take to falsify this model? There
could be many an inferential slip 'twixt sniff and sip, and how
many would honestly be the wiser?

However, boggled scepticism is not a serious complaint; it can
be cured in this case (in principle) by getting down to the hard
work of understanding volume conductor analysis and the
Ruelle-Takens-Newhouse route to chaos (Schuster 1984).
Clashes of principle are clearly more serious, occasionally termi-
nal, disorders. S&F's main metatheoretical thrust is that in view
of certain complex neurological findings (in conjunction with
certain relatively simple behavioural manipulations) the com-
putational metaphor, although not to be scrapped outright,
needs a serious overhaul. An alternative view is that the com-
putational metaphor, although not immune to attack, cannot
seriously be threatened by this kind of attack, for the following
reasons:

Clarity and chaos. It is difficult to appreciate S&F's argument
clearly because of a marked tendency to switch chaotically
between different levels of discourse. On the one hand they
appear to support naive materialism at the neural level; the
"theory can be tested . . . by physiological experiments; it is not
merely computational" (Sect. 3.6, para. 5; italics added). Of
course, computational theorists are not constrained by the
merely physiological, but that is beside the point. On the other
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hand we are told that we will not understand "large-scale neural
circuitry . . . until the mathematical theorists . . . have caught
up with experimentalists, or until engineers have built hard-
ware models . . . and determined whether they behave the way
parts of brains do" (Sect. 3.6, para. 6). What does this imply for
the bedrock status of the neural/physiological? Are hardware
models somehow more convincing simulations than "mere"
computer simulations (hardware and software)? Perhaps, be-
cause there is a subsequent favourable reference to the simple
mechanical models of the early cyberneticists. And if we change
a few substantives in the quotation, it sounds suspiciously like
what computationists are doing for cognition anyway - that is,
they will never understand complex cognitive processes until
appropriate formal languages have been developed for their
description and they have been successfully simulated on com-
puters. Finally, what is one to make of "the brain should be
viewed as a self-organized process" (Sect. 4.1, para. 4; italics
added); this is symptomatic of the general confusion over struc-
ture and function, description and explanation, computers and
computation.

Metaphor and simile. Part of this confusion arises from the
assumption that the computational metaphor is just the comput-
er metaphor. S&F's characterisation of the former is essentially
a description of a rather basic computer; I doubt whether many
computational theorists would wish to defend such a description
as adequately capturing the features of a complex organism. The
computational metaphor is usually seen as much more abstract;
indeed, it has often been said that, since any process can be
construed as a computational process, the metaphor is tainted
with overgenerality, tautology, irrefutability, or emptiness.
[See Pylyshyn: "Computation and Cognition" BBS 3(1) 1980.]

The main problem with metaphorical assertions is that they
can be taken as literally false (it doesn't rain "cats and dogs").
Why, then, can't they be taken as literally true, as saying
something about "reality" ("information is held in short-term
memory and transferred to a long-term store")? Now, whereas
metaphor misleadingly implies a kind of identity, simile makes
the weaker implication of resemblance. If the rain is "like lead
shot" we can at least ask, "In what respect?" There has been
much needless debate because relations of simple resemblance
have been stated or understood as something stronger. How can
a model of discrimination be explanatory if it contains a primi-
tive element that discriminates? If we say that a suitably pro-
grammed computer "understands questions," does it really
understand? How can we have visual images when there cannot
really be pictures in our heads? There are many such examples.
On the other hand, when simile is seen for what it is, such
problems do not arise; hydraulic ethological models were never
seriously criticised because there seem to be no pipes and valves
in the nervous system, and Freudian hypotheses are not falsified
by pointing to the absence of three interacting figurines in the
skull. [See also Hoyle: "The Scope of Neuroethology" BBS 7(3)
1984.]

The computational metaphor has strength, flexibility, and
appeal because it is not really a metaphor, it is just a simile; and if
the functional resemblance between two systems is sufficiently
convincing, that is all that matters. But S&F are not convinced.
Why? They look into the nervous system (albeit very indirectly)
and find no symbols, only dynamic neural patterns. Is this
surprising? Symbols are in the eye of the beholder. One can look
at this page and find no symbols, only patterns of grey. The
popular dogma that brains and computers deal in symbols is
misleading; their currency is electricity. By saying that a device
manipulates symbols we are attributing intentionality to it -
how else would it know what things were or were not "sym-
bols"? But if dynamic neural patterns are to be discriminated,
then surely they can be named, formalised, computed? Other-
wise we would only see chaos, in its everyday sense.

It would be foolish to suggest that neural dynamics or statics
are completely irrelevant for an understanding of mind and

behaviour, and equally foolish to suggest that the computational
metaphor is impregnable. If S&F are simply claiming that their
data require different kinds of computations, then this is unex-
ceptionable, but they seem to be simultaneously attacking a
straw man and trying to throw the baby out with the bath water
(not literally, of course). Principled attacks on the computational
approach are likely to be top-down in terms of intentional and
experiential arguments (Dreyfus 1972; Gauld & Shotter 1977;
Searle 1980). And since computational theorists handle inten-
tionality at worst trivially and at best controversially, I fail to see
how neuroscientists could even begin to tackle the issues.

When the "chaos" is too chaotic and the
"limit cycles" too limited, the mind boggles
and the brain (model) flounders

Michael A. Corner and Andre J. Noest
Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The
Netherlands

Let's start from the beginning. To begin with, the olfactory bulb
must respond to each odor the mucosa is capable of discriminat-
ing with some sort of specific pattern of excitation, presumably
derived from the ontogenetically determined distribution of
osmochemical receptor specificities. If each class of receptor
cells is spread out over a large enough area of the olfactory
mucosa, a widespread projection of odor-specific sensory vol-
leys can be guaranteed even if, as in other sensory systems,
nearest neighbor relations are largely preserved in the central
projections. In this sense Skarda & Freeman's (S&F's) tan-
talizingly brief statement in Sect. 3.6 about the absence of a
requirement for ontogenetic constraints on afferent topography
is true enough, as far as it goes (provided, of course, that each
receptor's terminal field does not encroach too much upon the
territory of its neighbors). The next step in olfactory discrimina-
tion would be the evocation of a diffuse polyneuronal oscillation
in the bulb during the inhalation phase of each sniff in a
motivated animal. This "something is out there" carrier wave-
form is manifested as a "chaotic" broad-band EEG signal within
the gamma range of frequencies (ca. 40-80 cps). The dual effect
of a smell - to provide sensory information together with a
nonspecific signal preparing the brain for dealing with it - thus
resembles, in general terms, the classical picture of a "reticular
arousal system" linked to sensory projections to the neocortex.
In the latter case, however, rather than high-frequency waves
being triggered, low-frequency waves (EEG alpha and delta
bands) become suppressed during arousal. Alerting responses
in the septohippocampal system in turn consist of a syn-
chronized neuronal oscillation, but one which is much slower (in
the EEG theta band) than the one found in the olfactory system.
Why these differences?

S&F's suggestive attempt to generalize their paleocortical
model by postulating the existence of similar waves (i.e., in the
EEG "gamma" range) in the neocortex (that have gone un-
detected owing to cytoarchitectonic differences between the
two structures) fails to reach our plausibility threshold. The
laminar organization of neocortical tissues would appear to be
eminently suitable, despite its relative complexity, for detecting
even weakly synchronized fluctuations of neuronal activity. An
important task facing any theory which aspires, albeit implicitly,
to providing a general explanation of the biological significance
of "brain waves" must surely be to explain the appearance of
prominent cortical oscillations - alpha rhythms, "spindling,"
delta waves - precisely at those times (ranging from drowsiness
to deep sleep) when sensory processes appear to be at a mini-
mum even with respect to internal sources - as in dreaming. On
the other hand, the basic notion of widely synchronized neu-
ronal carrier waves that become "destabilized" by afferent input
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(see Sect. 4.5), in a spatially distinctive manner for each discrim-
inable stimulus, is by no means excluded by differences among
brain regions displaying the precise characteristics of these
(chaotic) waves. Perhaps the major challenge for S&F's model,
therefore, will be to account for the olfactory system displaying
the very EEG waveform and amplitude-pattern that have actu-
ally been observed. By the same token, light needs to be shed on
the possible significance of the low-amplitude, highly chaotic,
"background" EEG present between sniffs (as well as continu-
ously in a nonmotivated animal). This is the activity, after all,
which the authors believe (see Sect. 3.2) constitutes "the ele-
mental phenomenon . . . in all of brain physiology'(!). Disap-
pointingly, it is almost totally neglected thereafter, although
this omission became apparent to us only after our realization
that the broad-band EEG gamma waves seen during (moti-
vated) inhalation in a naive animal were not, in fact, what was
meant by the term "background" activity as used in the target
article!

Odor-specific differences are reported to become overtly
manifest in the multichannel olfactory EEG only after proper
reinforcement has taken place. Spatially distinctive amplitude
patterns are then detectable, taking the form of extensive limit-
cycle activity in the bulb, contained within a relatively narrow
band of EEG gamma frequencies. These patterns presumably
reflect the magnification of preexisting differences in the spatial
distribution of afferent signals and evoked synaptic activities in
the bulb, without which no distinction among various inhaled
(unconditioned) odors could have been made in the first place.
What, then, needs to be "learned" about such signals or (as S&F
would put it) to be added to the animal's smell repertoire?
Nothing else, surely, than that the odor in question has acquired
a particular behavioral significance: eat it, jump it, avoid it, and
so on. This being the case, isn't it possible - even likely - that
each recognizable new EEG pattern carries information not
about the input but, rather, about the output side of the
olfactory loop (i.e., the motor response system to which the
stimulus has become linked by virtue of conditioning)? We're
very much interested in knowing, therefore, exactly how many
of these distinctive spatial patterns have in fact been identified,
and whether two odors with more or less the same "meaning"
for the organism would stand much chance of being discrimi-
nated on the basis of EEG analysis.

Finally, serious semantic ambiguities have arisen in the
course of our attempt to understand the more strictly mathe-
matical aspects of S&F's paper. After satisfactorily dispensing
with the straw man of digital computers as useful for modeling
any kind of brain, the authors proceed to find fault with "connec-
tionist" models because of their current shortcomings in the
light of recent neurophysiological findings. But in what sense is
the Freeman model - not the lumped (i.e., spatially averaged)
version described here, which, by definition, is incapable of
even beginning to deal with the spatial EEG patterns on which
the whole theory rests, but the promised but still preliminary
distributed model - itself not a connectionist model? In the
absence of any definition of a qualitatively new class of models
incorporating features that are inherently absent in a connec-
tionist approach, S&F's scheme must be considered as con-
stituting simply a possible improvement within that category. If
we then try to pinpoint what their precise suggestions for the
incorporation of new features are, we are unable to find any
satisfactory starting point for carrying out the proposed im-
provements. Several of the deficiencies attributed to existing
models, such as failure to incorporate inhibition, asymmetric
synapses, or endogenous noise in the system, fail to do justice to
the state of the art in this field. Even if the next step were to
entail the introduction of coupled limit-cycle oscillators, dis-
tributed models involving sheets of interacting circuits (each
resembling the basic one in the lumped model presented by
Freeman & Skarda) have in fact already been studied
extensively.1

Even in structurally homogeneous variants of such models,
oscillating activity can (among many other possibilities) become
ordered in spatially inhomogeneous, nonperiodic patterns.
These can usually be characterized by topologically conserved
phase patterns involving "vortex' - or "string" - singularities
embedded in a smooth phase-field. It can be predicted that in
case of spatial smoothing over a scale larger than the size of the
vortices, such phase patterns would appear instead as spatially
nonuniform amplitude patterns associated with a smooth phase-
field. If the present data turn out not to be explicable along these
lines, then it seems logical to assume some form of "pinning" of
the oscillatory patterns by structural disorder. It is plausible to
suppose that each of the many possible distinct patterns could
then be "nucleated" by the appropriate set of incoming stimuli.
Developing such conjectures into testable theories will proba-
bly require that investigators start delving into the complexities
of structurally inhomogeneous models. In view of the many
possible ways of generalizing the existing ones, it would be
extremely helpful if experimentalists attempted to specify, as
precisely as possible, the lessons to be learned (for example,
from olfactory cortex physiology) that would allow such im-
proved models to be developed.

It is wonderful for psycho(physio)Iogists to master the mathe-
matics of cooperative networks, and to try to apply this knowl-
edge to the unraveling of the deepest (or even the superficial)
mysteries of the brain, but the required conceptual underpin-
nings for such flights into higher spheres must not be neglected.
In our opinion, much more attention needs to be devoted to
such fundamental things as clarity of definitions, explication of
assumptions, rigor in logical structure, and completeness in the
consideration of relevant theoretical and empirical material.

NOTE
1. There exists a considerable body of literature on spatially dis-

tributed, coupled limit-cycle oscillations. Good lists of core references
are cited by Oono and Kohmoto (1985) and Winfree (1980).

On the differences between cognitive and
noncognitive systems

D. C. Earle
Department of Psychology, Washington Singer Laboratories, University of
Exeter, Exeter EX4 4QG, England

Skarda & Freeman (S&F) interpret their findings as supporting
the proposal that brain function is a self-organized process of
adaptive interaction with the environment, a process to be
conceived in connectionist terms and involving parallel dis-
tributed processing. These views are set in opposition to the
proposal that the brain is a rule-driven and controlled system
solving problems, completing patterns, and forming hypotheses
by manipulating symbols.

Two separate issues are conflated here. The first concerns
the question whether the appropriate model for the brain is the
connectionist model, with distributed parallel processing, or
that taken from the digital computer, with a limited-capacity
central processor and a sequential organization. This question
is separate from whether the brain is a symbol-manipulating
and rule-driven problem-solving device. The former is a ques-
tion about the functional architecture of the brain, whereas the
latter is the question whether or not the brain is an informa-
tion-processing device. A distributed information-processing
system may implement rules, complete patterns, manipulate
symbols, and, if need be, formulate hypotheses. Consider, for
example, a distributed information-processing system that
takes as its input a symbolic representation, performs a trans-
formation, and then outputs a different symbolic representa-
tion. Such a system is exemplified by certain implementations
of the cooperative stereo-matching algorithm proposed by
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Marr and Poggio (1976). An information-processing system
may be described at the highest level in terms of its computa-
tional theory; however, the computational theory may be real-
ised in devices using different functional architectures - that
is, devices with distributed parallel processing or sequential
processing.

To adopt the proposal that the brain is an information-
processing and symbol-manipulating system is a methodological
decision of its proponents, and as such constitutes adherence to
a particular research programme. An information process may-
be realised in a neural system or a computer, whether it is
sequentially organized or performs distributed parallel process-
ing, but on the higher level of analysis it remains an information-
processing system. As such, it should be described using infor-
mational terms - that is, rules, symbols, representations, and
the language of information-processing operations (e.g., detec-
tion and discrimination). Information processes are not to be
conceived directly in neurophysiological terms or in the termi-
nology of electronics. If, for example, one says of a certain cell in
the visual cortex that it is a bar detector or that it makes a
measurement on the image, then one describes that cell in
information-processing terms (insofar as detection and measure-
ment are information-processing operations). At this level of
description the output of such a cell and its interactions with any
neighbouring cells are symbolic in that they represent a detec-
tion or its absence, or a measurement.

If the information-processing paradigm is not adopted, then
the appropriate terminology is not that of symbols, rules, and so
on, but a description in terms of whatever are now judged to be
the intrinsic properties of the system being described. In the
case of a neural system, these may be synaptic connections,
inhibition, fatigue, electrical impulses, and perhaps chaos, at-
tractors, and repellors. Thus, an account of the visual tilt
aftereffect can be given in terms of differential fatigue of cortical
cells with orientated receptive fields without recourse to the
language of information-processing systems; it can be given in
terms of the intrinsic properties of the neural substrate. In such
a case there may be no basis for adopting the information-
processing paradigm and giving an account using the notion of
bar detectors - although, in principle, the account could be
phrased in these terms were that paradigm to be adopted. It
may not be necessary to use the language and concepts of
information processing to give an account of the tilt aftereffect,
but when considering the correspondence problem in stereop-
sis (Marr 1982) there may be considerable advantages in using
such a language. The connectionist movement offers two funda-
mental challenges: First, a different functional architecture for
information-processing systems is proposed. Second, and sepa-
rately, the connectionists claim to provide a way of describing
the behavior of aggregates of processors without the assumption
that the processing is an informational one.

The problem of distinguishing between cognitive and non-
cognitive self-organising and distributed processing systems
may now be viewed differently from the position adopted by
S&F. I propose that the critical property distinguishing cog-
nitive from noncognitve systems is not adaptivity, but informa-
tion processing. One would not want to say of a weather system
that it is an information-processing system, and one would
explain its behaviour in terms of the intrinsic properties of the
system - that is, the pressure and temperature of air masses,
humidity levels, turbulence, and so on. A variety of homeostatic
and adaptive devices (e.g., thermostats and eucalyptus trees)
can also be described in terms of their intrinsic properties
without appeal to informational concepts. Perhaps the major
challenge of the connectionist movement in relation to psychol-
ogy is that, although not necessitating a noncognitivist stance, it
nevertheless promises to provide a noncognitive account of
complex behaviour.

Finally, it is to be noted that S&F have given a connectionist
account only of neural activity in the olfactory bulb. Their claim,

however, is to have given such an account of odour recognition
and discrimination, and this is a different matter. As they are at
pains to emphasize, the connectionist processing that they
describe for the olfactory bulb must be linked to the motor
system to enable interaction with the environment - that is,
discriminative behaviour. To this end, a particular pattern of
neural activity in the bulb must serve as the condition for a
condition-action link. One difficulty here is that a distributed
parallel processing module may be embedded in a more com-
plex hybrid and controlled system with a sequential organiza-
tion. Furthermore, a condition-action link can be interpreted as
a rule in an information system or as a direct neural pathway in a
noncognitive system. Skarda & Freeman attempt to draw con-
clusions concerning the brain as a whole on the basis of the study
of only a small part of the neural substrate of a discriminative
interaction with the environment.

The virtues of chaos

Alan Garfinkel
Department of Kinesiology, University of California at Los Angeles, Los
Angeles, Calif. 90024

Only recently (Lorenz 1963) was it realized that deterministic
systems can display behavior that appears random. This phe-
nomenon, called "chaos," offers a new approach to modeling
erratic processes. It should be stressed that the chaos that arises
in deterministic systems is not total chaos, but rather is con-
trolled and bounded, and has definite qualitative form. It also
differs from ordinary random behavior in that it is low-dimen-
sional, whereas traditional "noise" arises from the central limit
theorem, which predicts a normal distribution from the addition
of a large number of independent contributions.

Skarda & Freeman (S&F) propose that the background EEG
in the olfactory bulb is chaotic. The principal evidence for this
claim is their report of calculations of the "dimension" as lying
between 4 and 7. Such calculations of apparent dimension are
one way of distinguishing chaos from noise, although there are
difficulties and pitfalls in this approach (see especially Grass-
berger, 1986, for a discussion of fallacious calculations).

But the calculation of dimension is only one way of dis-
tinguishing chaos from noise, and it suffers from being just a
number. Methods like attractor reconstruction and Poincare'
sections (Froehling, Crutchfield, Farmer, Packard & Shaw
1981) have the additional advantage that they give qualitative
pictures of the behavior and of the form of its underlying
mechanisms. Such information is much deeper; the dictum here
is that "quantitative is just poor qualitative." See Roux, McCor-
mick, and Swinney (1981) and Farmer, Hart, and Weidman
(1982) for applications of these methods to chemical chaos and
fluid turbulence.

Once one has established the fact that a given phenomenon is
a chaotic process, the next question is: What is chaos doing
there? S&F suggest that it is playing a functional role, an idea
that is something of an about-face for chaos. Most writers on the
subject tend to assume that chaos is something bad; the pro-
posed examples of chaos in physiology, such as cardiac and
respiratory arrhythmias (Glass & Mackey 1979), would support
this view. But chaotic behavior can also be functional and
adaptive. Consider the chaos of fluid turbulence. Turbulent
fluids have useful properties that are not found in nonturbulent
states. For example, the mixing properties of turbulence greatly
increase the fluid's ability to take imposed heat or movement
and equipartition it out.

A striking example of the functional role of chaos can be found
in a study of population dynamics by Auslander, Guchen-
heimer, and Oster (1978). They study a model of a coevolving
host/parasite system and find that, for certain ranges of key
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parameters, the host species displays chaotic variations in popu-
lation level over time. They interpret this by suggesting that
"for a host population being pursued by a coevolving predator, it
is surely adaptive to maintain a demographic and genetic pat-
tern as 'untrackable' to the parasite as possible" (p. 290).

It may well be that in physiology, chaotic behavior can be
quite useful, serving to randomize a system in cases where
regular behavior would be damaging. A case in point might be
the normal cortical EEC It is interesting that many writers
have suggested that epileptic seizures might be examples of
chaos. In fact, the opposite seems to be true: In seizures, the
EEG becomes regular and periodic, and it is the normal ("de-
synchronized") EEG that is irregular. Given the undesirability
of periodic cortical behavior, it is reasonable to suppose that the
nervous system has evolved a reliable mechanism to de-
synchronize the EEG. As an example of the utility of such
"active desynchronization," consider the behavior of a platoon
of soldiers crossing a bridge. Since periodic behavior (marching
in ranks) might set the bridge into destructive resonant oscilla-
tion, the soliders "break ranks." It is likely that the nervous
system can effect a similar active desynchronization, in situa-
tions where randomness is too important to be left to chance. In
the case of the soldiers, there is a commanding officer who gives
the order to desynchronize. Here the difference between high-
dimensional noise and low-dimensional chaos becomes crucial.
If one wanted to desynchronize a process, the availability of a
chaotic attractor would offer an opportunity to do it by a low-
dimensional control: Only a few parameters need be altered to
move the system into and out of chaos.

A similar phenomenon may occur in muscle activation. If
individual motor units were to fire periodically, they might tend
to synchronize, producing undesirable tremor. Hence, there
may well be an active desynchronization mechanism in sus-
tained contraction that "spreads out" the motor unit timings to
fill the time interval of the activity.

In general, it may be that for all oscillatory processes in
physiology, a perfectly periodic oscillation is undesirable. Chaos
could here play the role of introducing a useful wobble into the
period or amplitude, while retaining the overall form of the
process.

Stable self-organization of sensory
recognition codes: Is chaos necessary?

Stephen Grossberg
Center for Adaptive Systems, Boston University, Boston, Mass. 02215

Freeman and his colleagues have developed one of the classical
experimental and modeling paradigms of neurobiology through
a remarkable synthesis of technical virtuosity, physical intui-
tion, and intellectual courage. Their systematic approach has
led them to articulate a number of fundamental problems
concerning the self-organization of sensory codes and to propose
possible approaches to the solutions of these problems. Due to
these characteristics, data and modeling ideas from the Free-
man school provide one of the best vertebrate sources of quan-
titative results about interactions between cortical sensory rep-
resentations and their appetitive modulation, and have
therefore played a valuable role in testing the principles and
mechanisms of adaptive resonance theory (Grossberg 1982a).

Even in such a systematically explored neural paradigm,
definitive data are more the exception than the rule. In the
absence of data that afford a unique specification of generative
neural mechanisms, a number of theoretical tools can be
invoked to impose additional constraints. Two such tools are
mathematical and simulation analyses of the emergent proper-
ties of those model neural systems that are consistent with
basic neural organizational principles and the data at hand.

Such results are briefly reviewed here to help weigh the key
hypotheses of Skarda & Freeman (S&F).

After reviewing fundamental facts about spatial pattern cod-
ing by temporally entrained waveforms and the role of asso-
ciative learning and expectancies, S&F focus on their central
"conjecture that chaotic activity provides a way of exercising
neurons that is guaranteed not to lead to cyclic entrainment or to
spatially structured activity. It also allows rapid and unbiased
access to every limit cycle attractor on every inhalation, so that
the entire repertoire of learned discriminanda is available to the
animal at all times for instantaneous access" (Sect. 3.4, para. 3).
They propose this hypothesis in an unusually strong form, going
on to claim that "without chaotic behavior the neural system
cannot add a new odor to its repertoire of learned odors" (Sect.
4.4, para. 1).

S&F's hypothesis raises the difficult issue that a data phe-
nomenon, despite its correlation with a particular functional
property, may not be necessary to achieve that functional
property. When this is true, it is not possible to assert that the
system has been designed to generate the property for that
functional purpose. One can defeat the claim that the property
in question is necessary by providing a mathematical counterex-
ample of its necessity.

Gail Carpenter and I (Carpenter & Grossberg 1987) have
done just that. We have completely analyzed an explicit exam-
ple of an adaptive resonance theory architecture, called ART 1,
which shares many features with those of the Freeman data, and
we have mathematically proved that this architecture has the
following properties. ART 1 can self-organize, self-stabilize, and
self-scale a sensory recognition code in response to an arbitrary,
possibly infinite, list of binary input patterns. During code
learning, it carries out an efficient self-adjusting memory search;
after learning self-stabilizes, recognition occurs without search
by direct access to the optimal learned recognition code. The
course of learning is, moreover, remarkably stable; all adaptive
weights, or long-term memory traces, oscillate at most once
through time due to their dynamic buffering by system inter-
actions.

Such ART architectures have been explicitly designed to
provide "the system with continued open-endedness and read-
iness to respond to completely novel as well as to familiar input,
without the requirement for an exhaustive memory search"
(S&F, Sect. 4.4., para. 2). To discover systems capable of coping
with this "stability-plasticity dilemma," all the operations of
ART systems have been developed to explain and predict
difficult parametric data from a number of behavioral and neural
paradigms: for example, Cohen and Grossberg (1986), Gross-
berg (1987a,b), Grossberg and Stone (1986).

The key point for present purposes is that chaos plays no role
in the extremely flexible and powerful learning and recognition
performance of such a system. Hence chaos is not necessary to
achieve the type of competence that has been uniquely ascribed
to it by S&F.

This argument does not deny that chaos has been measured in
S&F's experiments. In fact, one of the important mathematical
issues in neural network theory concerns the manner in which
parameter changes within a single neural model can cause
bifurcations between point attractors, limit cycle attractors, and
bursting or chaotic attractors. In a book to which Freeman and I
both contributed, I reviewed results concerning how suitable
parameter changes could cause a cooperative-competitive feed-
back network to bifurcate from one with point attractors into one
with limit cycle attractors of a type (standing waves) that could
support an olfactory code (Grossberg 1981). It was there sug-
gested how a parameter called the quenching threshold (QT)
could modulate the olfactory bulb's excitability in phase with the
breath cycle; and it had been known for some time (Ellias &
Grossberg 1975) how such gain changes could cause a Hopf
bifurcation from a point attractor into a limit cycle. The bifurca-
tion described by S&F from a low-energy state to a high-energy
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state with a narrow temporal spectral distribution is clarified by
such results. So too is their observation that during early
inhalation, intrinsic interaction strength is low, since one way to
alter the QT is by altering the gain of system interactions, as
occurs in ART 1 through its attentional gain control channel
(Carpenter & Grossberg, 1987). When attentional gain control
is low, cell populations can become decoupled.

These relationships between point attractors and limit cycle
attractors delineate a family of models, all of which can support
similar functional coding properties, with or without chaos. A
formal model with such functional properties can also possess a
tonically active point equilibrium or chaotic attractor in its rest
state. Such a state of tonic activation can support one or more
basic functional properties [e.g., maintaining a baseline activity
that can be excited or inhibited without a loss of sensitivity,
feeding signals into habituating chemical transmitters that can
compensate for spatial fluctuations in the basal activation level
and therefore keep the tissue in a spatially unbiased state
(Grossberg 1983), or driving antagonistic rebounds in response
to sudden offsets of sensory inputs (Grossberg 1980)]. All these
functions can be carried out equally well by point or chaotic
attractors. On the other hand, in a state of tonic activity but low
attentional gain control, a physically realized network of cells
can exhibit small but complex, even chaotic, fluctuations.

In summary, just as one can conceive of slime mold aggrega-
tions that proceed continuously or in a pulsatile fashion through
time as parametric variations of a single model, so too can one
envisage a sensory coding model in which point or chaotic
attractors support similar functional characteristics. Thus, al-
though the issues raised by S&F are important ones for under-
standing cortical design, further argument is needed to support
their strong claim for the necessity of chaos to achieve key
functional coding properties.

S&F have also raised the legitimate challenge that "no claim
for firm and substantial understanding of large-scale neural
circuitry can be advanced until the mathematical theorists of
distributed dissipative systems have caught up with experimen-
talists, or until engineers have built hardware models" (Sect.
3.6, para. 6). The Carpenter-Grossberg (1987) theorems have,
in fact, provided such mathematical guarantees about the ART 1
architecture, and these guarantees have encouraged engineers
to start building an ART 1 chip in hardware. The kind of
functional competence Skarda & Freeman have seen in their
data is thus already helping to define the technological products
of a biologically derived artificial intelligence.
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Is chaos the only alternative to rigidity?

Daniel S. Levine
Department of Mathematics, University of Texas at Arlington, Arlington,
Tex. 76019

The Freeman laboratory continues to do exciting work in the
neural representations of olfactory stimuli, as it has for almost 20
years. As always, the Skarda & Freeman (S&F) work is pioneer-
ing, both technically and philosophically. The changes in EEG
patterns from a neutral to a reinforcing odorant stimulus are
particularly significant. From the modelers perspective, how-
ever, I retain some skepticism about the philosophical role of
chaos that S&F propound.

S&F write that "the process of state change leading to the
unstructured chaotic domain is essential for preventing con-
vergence to previously learned patterns, and hence for the
emergence of new patterned activity" (Sect. 4.4, para. 2).
Although the authors state this most strongly for the olfactory

bulb, they clearly hope to apply the same principle to other
sensory modalities, and have adduced some evidence for it in
the visual system.

In neural models of the "connectionist" variety, based on
nonlinear differential equations, the capacity to respond to both
novel and familiar inputs can exist even in the absence of chaos.
In fact, learning often transforms novel inputs to familiar ones,
with the consequent change in response properties. A series of
articles by Grossberg (in particular, 1975; 1980; 1982b) discusses
a striving for balance between an attentional system (which
biases the network's responses toward previously learned in-
puts) and an arousal system (which enables the network to
overcome the attention system's rigidity when important new
events occur). One mechanism for responding to novel events in
these networks is the activity of populations of "mismatch
detectors," which are actively inhibited by correspondence
between the activity patterns in two separate on-center off-
surround fields of cell populations (such as one field represent-
ing an actual "bottom-up" stimulus event and another repre-
senting a "top-down" expectation of an event). This correspon-
dence causes the total energy from the summation of the two
fields to be sufficiently large to shut off the mismatch detector
activity, which plays a role analogous to S&F's chaos. Like the
chaotic EEG pattern, mismatch activity ensues if an unfamiliar
pattern occurs, because the mismatch is not inhibited by corre-
spondence. Hence, in Grossberg's model as in S&F's work, "an
animal can classify an odorant as 'novel' with no greater delay
than for the classification of any known sample" (S&F, Sect. 3.4,
para. 3).

There is obviously no complete isomorphism between model
network "minimal anatomies" (Grossberg 1975) and real neu-
roanatomies. S&F's point about the limitations of the connec-
tionist model of Hopfield and Tank (1986) is well taken (Sect.
4.4, para. 4). Both in that model and in the more general model
of Cohen and Grossberg (1983), theorems show that the network
always converges to an equilibrium state representing a "deci-
sion" about short-term pattern storage. As S&F rightly point
out, such behavior is too circumscribed for the actual nervous
system. In fact, in real-time simulations of behavioral data,
networks of that variety typically model only the short-time
dynamics of a part of an entire network that includes both
associative and competitive parts. An example of such real-time
simulation occurs in the Pavlovian conditioning model of
Grossberg and Levine (submitted) [also summarized by Levine
(1986)].

Hence there is room for many years of research on how
established neural network theories of specific processes con-
catenate into large-scale systems that actually reproduce signifi-
cant data, in the olfactory cortex and elsewhere. Obviously, the
chaotic EEG patterns in the resting olfactory bulb are important
to the theory of that area. Whether the chaos is essential to the
purpose of the bulb's function or epiphenomenal to other things
that are essential, I cannot hazard a guess. The answer will be
related to that of the larger unanswered question concerning
what the EEG measures in general!

Chaos in brains: Fad or insight?

Donald H. Perkel
Theoretical Neurobiology Facility, Department of Psychobiology and
Department of Physiology and Biophysics, University of California, Irvine,
Calif. 92717

The brain sciences, in their more reflective phases, are notori-
ous for their immersion in analogy and metaphor (e.g., Arbib
1972). Traditional brain metaphors arise from technology. The
nineteenth-century analogy between neuronal processes and
undersea cables survives as modern cable theory. Subsequent
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technological metaphors have been based on telegraphic net-
works, telephone exchanges, control systems (Ashby 1952),
digital computers (von Neumann 1958), holograms, and non-
linear networks (Hopfield & Tank 1986; Rosenblatt 1962;
Rumelhart, Hinton & Williams 1986). Each of these metaphors
has contributed valuable insights, some more than others; none
provides a global theory of brain function.

Mathematical structures have also served as neural meta-
phors. Probabilistic examples include random-walk models for
impulse-interval distributions (Fienberg 1974: Gerstein & Man-
delbrot 1964; Sampath & Srinivasan 1977), stochastic point-
process models of nerve-impulse sequences (Moore, Perkel &
Segundo 1966; Perkel, Gerstein & Moore 1967a; 1967b), and
the binomial model for quantal release of neurotransmitter (del
Castillo & Katz 1954; Zucker 1973). Other primarily mathe-
matical theories include the formal neuron model of McCulloch
and Pitts (1943), interacting oscillator theories of the EEG,
thermodynamically inspired theories of interacting populations
of nerve cells (Cowan 1968), information theory as a paradigm
for brain function, tensors as the basis of cerebellar function
(Pellionisz & Llin&s 1979), and the "trion" theory of cortical cell
assemblies (Shaw, Silverman & Pearson 1985), essentially a
probabilistic cellular automaton (Wolfram 1984).

Not all of these mathematical metaphors have fared well in
the neuroscientific community. Random-walk models for im-
pulse-interval distributions make nonunique predictions. The
strict binomial model for neurotransmitter release yields mis-
leading interpretations of experimental data (Brown, Perkel &
Feldman 1976). Other mathematical models have been crit-
icized on the grounds that the mathematical structure has
dictated the biological assumptions or that the theory was
leading the data.

Recently, much attention has been paid to the modern treat-
ment of nonlinear differential equations, including catastrophe
theory, bifurcation theory, Poincartj maps, strange attractors,
"chaos," and fractals. Biological applications have abounded,
sparked by May's (1976) demonstration of chaotic behavior in
population dynamics. Bifurcation theory has been applied to
excitable cells (Chay & Rinzel 1985). Skarda & Freeman (S&F)
make broad claims about the explanatory role of bifurcations and
the emergence of "chaos" in the functioning of the olfactory
bulb. Similar claims have been advanced for activity in inverte-
brate ganglia (Mpitsos & Cohan 1986) and in cardiac ar-
rhythmias (Mandell 1986), among others.

The question that immediately arises is whether the biolog-
ical phenomena themselves dictate or justify the theory's math-
ematical structures. The alternative is that the beauty, ver-
satility, and power of the mathematical approach may have led
its aficionado to find areas of application in the spirit of the
proverbial small boy with a hammer, who discovers an entire
world in need of pounding. Is bifurcation theory merely a trendy
framework for a Procrustean approach to nervous-system func-
tion? Does it make any more sense to say that the olfactory bulb
makes chaos to make sense of the world of smell than it does to
say that the cerebellum is a tensor, or that the hippocampus is a
map, or that the visual system is a Fourier transformer, or that
cognitive processes are executions of computer programs? Is the
theory of familiar and strange attractors a natural way of looking
at neurobiological phenomena - at the olfactory bulb in particu-
lar - or is it a method in search of a roosting place?

At the cellular level, the use of bifurcation theory by Chay and
Rinzel (1985) clarifies the behavior of their system in a plausible
and rewarding way; it enriches our insight. However, the bulb is
immeasurably more complex, far less perfectly characterized,
and harder to measure than the single cell; bifurcation analysis
of the bulb is necessarily more risky, less readily quantifiable,
and more subject to distortion.

Assuming that surface EEG measurements sufficiently well
represent mitral-cell firing rates, what S&F have sketched is not
a theory of odor recognition and learning, or of olfactory bulb

function, but rather an outline of a research program to produce
and refine such theories. Their experimental findings, although
far from conclusive, in fact make their argument plausible, in
the context of the behavior of other nonlinear dynamic systems.

S&F correctly point out that connectionist models can gener-
ate chaotic behavior if artificial constraints on connectivity are
lifted. A serious problem, however, remains: How does the
system read out the information - that is, the identity of a
familiar odorant - when its "representation" is so dynamic and
volatile? The answer must lie in the anatomy and physiology of
the bulb and more central structures, but the working principles
of specific odorant identification remain to be elucidated.

Do the operating principles of the olfactory system hold for
other sensory systems that have highly topographic anatomical
representations? It may be that widespread chaos and self-
organization are peculiar to the olfactory system or the brain
stem, and that topographic systems "use" chaos in a much more
restricted fashion.

Inhibition, as S&F point out, is essential to the operation of
the system. Unaccountably, they mention the strengthening of
excitatory synapses but not inhibitory synapses, although
Wilson, Sullivan, and Leon (1985) describe increased inhibition
in mitral cells after olfactory learning. It seems prudent to
impute plasticity to inhibitory synapses as well.

S&F lament the weakness of the purely mathematical meth-
ods. The inescapable remedy is to mount a series of increasingly
realistic, large-scale simulations of the system. The chief contri-
bution of digital computers to theoretical neurobiology may be
as tools for analysis and synthesis, rather than as marginally
appropriate metaphors.

Finally, what is most attractive about S&F's theoretical ap-
proach is the biological flavor of its predictions. The picture of a
spontaneously active bulb, goaded by sensory input into chaot-
ic-appearing nonrecurring spatiotemporal patterns of activity,
was sketched almost half a century ago: "millions of flashing
shuttles weave a dissolving pattern, though never an abiding
one; a shifting harmony of subpatterns" - the "enchanted loom"
of Sherrington (1940; rev. ed. 1953, p. 178). When the skeletal
theory has been fleshed out with more fine-grained experimen-
tal evidence and correspondingly realistic simulation studies, it
may well be that bifurcation theory and chaos, arising out of
"connectionist" models, may provide a cohesive, unifying, and
apt theory for widespread aspects of brain functioning.

Connectionist models as neural abstractions

Ronald Rosenfeld, David S. Touretzky, and the Boltzmann
Group
Computer Science Department, Carnegie Mellon University, Pittsburgh, Pa.
15213

Skarda & Freeman's (S&F's) findings and interpretations pro-
vide strong support for the connectionist paradigm. They clearly
illustrate the importance of distributed representations and
dynamic system theory for understanding computation in the
brain. The paper concludes by criticizing various aspects of
current connectionist models. It is this criticism that we wish to
address.

Connectionist models are chiefly concerned with computa-
tional aspects of cognitive phenomena. At the current stage of
this research, simplicity is often preferable to biological fidelity.
We realize that the brain is likely to employ mechanisms beyond
our present computational taxonomy, let alone our understand-
ing or mathematical tools, but we nonetheless believe that
current models, crude though they may be, advance the under-
standing of cognitive systems and contribute to the emergence
of a new taxonomy. One should not confuse claims about the
accuracy of certain connectionist models vis-a-vis real nervous
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systems with claims about their computational adequacy or
scientific utility. S&F appear to have made this mistake.

S&F's target article repeatedly emphasizes the superiority of
dynamic attractors over static ones, holding that connectionist
models are inadequate since they do not have the former. But
this is not so; a Boltzmann machine (Ackley et al. 1985) annealed
down to a temperature slightly above its freezing point is
manifesting a dynamic attractor state very similar to the one
advocated by S&F. More important, the target article fails to
demonstrate any computational advantage of dynamic models.
Connectionist models are abstractions. Stationary patterns of
activity in these models need not correspond to stationary
patterns in the brain, just as connectionist units and their
weighted connections need not correspond one-for-one with
real neurons and synapses. Connectionists are perfectly happy
to stipulate that the stable states of a Hopfield net (Hopfield
1982) or a Boltzmann machine are abstractions of dynamic
attractors in the brain. We will abandon models with simple
point attractors only if dynamic models can be shown to have
useful computational properties that static ones lack. We have
not yet seen the evidence that could support such a claim.

S&F maintain that chaotic behavior is essential for learning,
but they do not make clear what role chaos is supposed to play in
the learning that takes place in the rabbit olfactory bulb. The
target article claims that a chaotic well - a "don't-know" state -
is a prerequisite for the system to learn to recognize new odor
categories. But which of the characteristics of chaos are neces-
sary to the role it plays in generating new attractors, and which
are irrelevant? S&F's article does not answer this key question.

S&F further criticize connectionist models because of their
need to be externally reset after reaching a stable state. But the
olfactory bulb does in fact settle into a single (albeit dynamic)
state that is computationally equivalent to a corner of a hyper-
cube; and it does not spontaneously escape from one dynamic
attractor to other interesting ones. The return to the chaotic well
(cf. the center of the hypercube) that takes place at exhalation in
the rabbit appears to be precisely a forced reset action.

S&F next advise connectionists to give up the view of neural
networks as pattern completion devices. They maintain that no
pattern completion activity takes place in the olfactory bulb,
since its output is a coherent global state generated from within,
not merely a completed pattern within one nerve cell assembly
(NCA). But to say that no pattern completion takes place in the
olfactory bulb is to mix levels of description. Receptor cells send
their pulses to the olfactory bulb, which in turn settles into a
dynamically stable state - one of several preexisting pos-
sibilities. This is precisely what pattern completion is about!
Stationary pattern completion activity in connectionist models
is an abstraction. It need not correspond to stationary pattern
completion in the brain. On the other hand, the "destabiliza-
tion" paradigm advocated by S&F is merely a metaphor, and
will remain so until it is supported by a concrete computational
model.

The target article rightly points out that feedback mechanisms
in the brain are far richer than those used in many connectionist
models. But it also maintains that the "long delays, temporal
dispersions, and spatial divergences" (Sect. 4.3, para. 2) present
in the brain are necessary for the production of global behavior.
In order to extend connectionist models to include these fea-
tures, one must first have some idea of their essential role.
There is no (computational) point in blindly simulating neural
circuitry without first having an analytical handle on the role of
the elements involved. By starting our analysis and simulation
with minimal assumptions, we make sure that only essential
features of the system will be admitted into our models.

Finally, we would like to point out some technical difficulties
in the use of nerve cell assemblies to explain the formation of
stable states. It is postulated that the NCAs are responsible for
the selection of the basin to which the system bifurcates.
According to this hypothesis, each NCA corresponds to a specif-

ic basin, and therefore to a specific known odor. The neurons in
each NCA are supportive of one another, so that activating only
some of them will cause the whole assembly to become active.
How, then, is similarity between odors accounted for in this
model? Do NCAs of two similar odors share neurons? If so, the
presence of the first odor will activate its associated NCA. The
latter will in turn activate the other NCA, irrespective of
whether the odor it stands for is present. Moreover, what
happens when a combination of two or more familiar odors is
presented to the receptor cells? Are several NCAs activated
simultaneously? What kind of basin is created, and how is it
related to the basins of the component odors? What state does
the system settle into eventually? The target article does not
address these issues.

Chaos can be overplayed

Ren6 Thom
Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France

More than a century ago the German mathematician B.
Riemann, in his little-known philosophical writings, addressed
the mind-body problem as follows: "When we think a given
thought, then the meaning of this thought is expressed in the
shape of the corresponding neurophysiological process. ' It is
comforting to see this old idea unearthed after hard experimen-
tal work, and put forward by Skarda & Freeman (S&F) as a major
discovery. (Here, of course, "meaning" has to be understood as
a nonverbal conceptualization of smells in the rabbit's psyche.)
First, it seems to me, there is a gap to be filled in the findings of
S&F: To what extent does the shape of the EEG amplitude on
the bulb depend on the experimental procedure - in particular,
on the nature of the conditioning stimulus? Would the pattern
observed for a given odorant when the subject is conditioned,
say, by subsequent electric shocks, be the same as the one
observed when reinforcement is obtained by giving water to the
thirsty subject? The rather rough model offered for the underly-
ing general dynamics is very suggestive (S&F's Figure 11), but
the idea that for each of these attractors (or rabbits' pseudocon-
cepts) there should exist a specific triggering NCA (nerve cell
assembly) seems to me another instance of what A. N. White-
head (1960) called the "fallacy of misplaced concreteness" (p.
11). For if, as S&F claim, there exists in principle a virtual
infinity of such attractors (due to the infinite fecundity of
"chaos"), then this would require an infinite number of distinct
NCAs, something difficult to accept.

Here one sees clearly the limits of neurophysiological re-
search. When one tries to describe the anatomical constraints
imposed by some specific functional behavior on the physiologi-
cal level, "connectionist models" ultimately mean very little -
namely, that a neural mass exhibits internal symmetry of a
geometric type (translation, rotation, etc.) and that this symme-
try may lead to corresponding "first integrals" of the associated
neural dynamics. S&F give for the word "chaos" the definition
once proposed by Ruelle-Takens (1971): differential systems
which display the property of sensitivity to initial data. In this
they follow the present fashion, to which I do not personally
subscribe. "Chaos" and "chaotic" should be reserved for sys-
tems that cannot be explicitly described either quantitatively or
qualitatively (there are plenty of them). Hence, such chaotic
systems have no equations. Systems defined by equations have
attractors (the precise mathematical definition of which may in
fact be very difficult). It is to be expected that after the present
initial period of word play, people will realize that the term
"chaos" has in itself very little explanatory power, as the invar-
iants associated with the present theory - Lyapunov exponents,
Hausdorff dimension, Kolmogoroff-Sinai entropy (Gucken-
heimer & Holmes 1983) - show little robustness in the presence
of noise.
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The same misuse of terminology may be seen in S&F's
systematic use of "self-organizing process." By that, I suppose,
they mean a process that, starting from a given set ft of initial
data, will follow a specific trajectory (F) to a very good approx-
imation, at least for a given time span [or, more generally, a
process exhibiting spatially invariant configurations, as for
Rayleigh (1916)-Be'nard (1900) convective patterns]. In such a
case, the old concept of "chreod," once proposed by C. H.
Waddington (1957), would do the same job, and could be given
under the notion of "morphogenetic field" a very precise mathe-
matical formulation.

All in all, I would say that the main interest of the target article
lies in the physiological description of the effects of Pavlovian
conditioning on a given sensory input: formation of a high-
frequency peak, spatially modulated in amplitude according to a
specific pattern on the bulbar surface. This dynamical finding
suggests that the propagative character of Pavlovian condition-
ing - the "prignance"1 of the stimulus - could be explained as a
purely dynamical effect of resonance.

NOTE
1. The French word "pregnance" was proposed by this commentator

as a property of an externally perceived form that is the opposite of
"saillance" (saliency).

neuronal system's own symbols, as these states stand in a regular
relation to events in the world and signify potentials for action.
This distinction highlights the departure from current cog-
nitivism, for which meaning is assigned to symbols by an
observer. It seems that Dretske (1986) drew a similar distinction
in another context.

Once symbols are viewed as the system's own creations, any
reference to representations becomes superfluous; Occam's
razor can unburden us of the Trojan horse that was smuggled
from the land of Artificial Intelligence into Neuroscience. Per-
haps the protestations that representations exist only in the
mind of the observer who jointly beholds an environment and an
observed organism (brain) will at last be heard (Maturana &
Varela 1980).

The overriding importance of the work reviewed by S&F lies,
in my view, in the fact that it sketches the outlines of a
neurologically based approach to cognition as an alternative to
the tenets of current cognitivism. This in itself represents an
important contribution in proposing a viable alternative to
representational-computational cognitivism, and in suggesting
modifications of current connectionist models. The target article
sets the stage for a "pluralistic methodology," which P. Feyera-
bend (1975) considers a vital element in support of competitive
argumentation among theories, forcing each into greater artic-
ulation, and all of them contributing to greater clarity.

Cognition as self-organizing process

Gerhard Werner
Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa. 15213

Cognitivists of the representation-computation persuasion
could, with some justification, support their case by pointing to
the absence of neurobiologically viable and conceptually con-
sistent alternative theories. The experimental findings and the
elegant interpretations presented in the target article weaken
this argument substantially. Although admittedly limited to
"preattentive cognition" and not incorporating aspects of atten-
tive stimulus exploration, Skarda & Freeman's (S&F's) model
contains elements of potentially more general relevance, which
are awaiting further elaboration of mathematical theories of
distributive, dissipative systems, and more extended validation
of the correspondence between brain electrical events and
stimulations according to the operational principles proposed;
nor is there anywhere else in the brain evidence for the occur-
rence of stimulus-related high-amplitude bursts of oscillatory
activity comparable to the olfactory EEG on which the in-
terpretation of the experimental data is based. Moreover, with-
in its own domain, the model presupposes a number of modu-
latory neurochemical processes and synaptic connections that
await empirical confirmation before conclusive validation is
possible.

Notwithstanding this current restriction in generality and
conclusiveness, the concepts developed in the target article
raise tantalizing issues by sketching the outlines of an internally
consistent and coherent model of perception and cognition that
eliminates some of the solipsistic implications of representa-
tional cognitivism.

The evidence assembled by S&F attributes a primary role to
cooperative, self-organizing activity in neural structures, which
can individuate situation-specific, spatiotemporal profiles of
neural activity, contingent on past stimulus exposure and be-
havior-regulating expectancies. The conceptual implications of
this position merit underscoring: History is not represented as a
stored image of the past; nor is the present a mirror of the
environment. Instead, environmental events are specified by
states of neural activity that are the result of the neuronal
system's internal organization and dynamics. In this sense, the
neural structure uses information to create its own internal
states, which acquire meaning: The internal states are the

Authors' Response

Physiology: Is there any other game
in town?

Christine A. Skarda8 and Walter J. Freeman"
"CREA, Ecole Polytechnique, 75005 Paris, France and bDepartment of
Physiology-Anatomy, University of California, Berkeley, Calif. 94720

We thank the commentators for taking the time to read,
think about, and critically respond to our target article.
The material we presented is diverse and difficult, de-
spite (or perhaps in part because of) our effort to simplify
it and make it accessible to researchers in other disci-
plines. Our exposition and our hypotheses extend from
basic physiology through behavioral and cognitive theo-
ry, relying on mathematical techniques for quantitative
description and prediction. The commentaries touch on
all these levels and we have grouped our responses
accordingly. Our overall conclusion is that our proposed
view of the brain and the dynamics by which it generates
behavior emerge intact from this scrutiny. However, we
think that there is a problem of miscommunication that
stems from failure of physiologists, psychologists, and
modelers alike to follow through with careful considera-
tion of the logical consequences of both new and long-
standing findings on brain function.

Meetings, symposia, and workshops on neural net-
works and connectionism deriving from brain studies
have now become commonplace. Yet we believe that
physicists, engineers, and mathematicians have little
understanding of the functional architecture of networks
of real neurons, and that neural networking is just the
newly derived technical capability to handle large arrays
of interconnected elements with dynamic properties
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that, although simple for the element, are endlessly
complex for the array. Underlying this work is a weak
description of a nervous system that bypasses the basic
questions about the essential character and organization
of brains. Physiologists and anatomists, however, are
equally deficient in failing to face the epistemological and
philosophical consequences of their findings and conclu-
sions and in interpreting them in terms other than those
they have inherited from reflexologists.

Our main point lies beyond level confusion, misuse of
terminology, and misconstrual of the tenets of cognitive
science; it is that brains don't work at all in the way
everyone, including ourselves, expected them to. We
asked a simple question: What is the physical form in
which sensory information is registered in the olfactory
bulb? The answer we found - namely, a spatial pattern of
chaotic activity covering the entire olfactory bulb, involv-
ing equally all the neurons in it, and existing as a carrier
wave or wave packet for a few tens of milliseconds - is
orthogonal to the axes of virtually every explanatory
system we are aware of. It is therefore not surprising that
some of our descriptions were misunderstood, and that
some of the comments should be tangential to what we
wrote. The full implications take time to sink in, as do the
lessons to be learned for a new technology.

What emerges from our work, as recognized most
clearly by Werner, is the conclusion that the concept of
"representation" (e.g., symbols, schemata, codes, maps)
is unnecessary as the keystone for explaining the brain
and behavior. This is because the dynamics of basins and
attractors can suffice to account for behavior without
recourse to mechanisms for symbol storage and invariant
retrieval, "teachers "in learning devices, error-correcting
feedback, comparators, correlators, associators, and the
fine-grain point-to-point topographic connectionism that
is required for their effectuation. The nervous system
tolerates (indeed thrives on) an enormous degree of what
can only be called sloppiness in its design, construction,
and maintenance. This is difficult for engineers and logi-
cians to come to terms with, even when it is dressed up as
chaos; but as Garfinkel (1983), Holden (1986), Rossler
(1983), Shaw (1984), and others who write about chaos
have pointed out, it is a quality that makes the difference
in survival between a creature with a brain in the real
world and a robot that cannot function outside a con-
trolled environment.

In sum, cognitivists have written repeatedly for some
years that rule-driven, symbol-manipulating devices are
the only realistic hope for mimicking and explaining
behavior. We submit that the brain can do better.

Psychology: Insight or level confusion? Several com-
mentators have raised the issue of levels of description.
Have we confused different levels of description? Is our
view hopelessly muddled? We think not. Barnden's com-
ments are especially instructive in this regard.

Barnden does not contest our model of olfactory func-
tioning as a distributed, self-organized process whose
functional architecture resembles current connectionist
models, but he raises two important points. First, he
points out that our model of relatively low-level sensory
neural mechanisms cannot be generalized without fur-
ther data and argument to higher-level cognitive pro-
cesses. We agree, but Barnden goes on to claim that

because " 'symbol manipulationists' have in any case
always presumed that low levels of perception are at least
largely based on specialized mechanisms that are proba-
bly not to be regarded profitably as manipulating symbols
in any conventional sense," we consequently have noth-
ing new to offer to the debate. It is not clear which symbol
manipulationists Barnden is referring to here, but we
believe that he is mistaken. First, the neural processes
captured by our model (after the first synapse) cannot be
equated with simple transducer processes or with reflex-
es, both of which have traditionally been viewed as
nonsymbolic. Second, it is not true that symbol manipula-
tionists hold that input analysis, even at a relatively low
level, does not involve symbolic manipulation. On the
contrary, input analyses taking place after the transducer
level have been considered paradigmatic examples of
symbolic processing, whereas more central or higher
cognitive processes have eluded analysis in similar terms.
As one prominent proponent of the symbol-manipulation
view says, "Input systems are computationally elabo-
rated. Their typical function is to perform inference-like
operations on representations [i.e., symbols] of imping-
ing stimuli" [Fodor 1983, p. 83; see also multiple book
review in BBS 8(1) 1985]. This is precisely the view that
our model challenges.

Barnden also raises a more fundamental issue: Even if
the lower-level sensory mechanisms could, as we claim,
be explained in terms of nonsymbolic processing, what is
to stop him and others from viewing the patterned output
to higher cortical areas or the processes taking place in
those areas in terms of symbol manipulation? Can the
dynamic patterns of output from the olfactory bulb be the
symbols Barnden feels compelled to look for in the brain?
It is significant that Barnden is persuaded by our model to
depart from the conventional view of symbols as strings of
discrete bits of information that encode distinct physical
properties, and to introduce what he refers to as "a
certain amount of 'fuzz.'" The patterns he wants to
equate with symbols are context-dependent; at best they
are roughly correlated with events in the world, as he
admits. As a result, crucial aspects of symbolic processing
(e.g., decompositionality and inference) are jeopardized.
We do have a good understanding of logical operations on
conventional symbols, but we have no model for logical
operations on context-dependent ones. Of course, one
could still refer to these patterns as symbols, but what
does the use of this term now buy us? Without the ability
to perform conventional logical operations of the sort
used by traditional symbolic processing, the use of the
term "symbol" for the kinds of patterns we find in the
olfactory system is not doing the work it did in models
developed by the symbol manipulationists, and in the
end it is misleading, because researchers are led to view
the functional architecture of the system in a way that is
not compatible with the distributed processing carried on
by neural networks.

Earle grasped an important point missed by some of
our commentators (Barnden and Brown): What we pro-
posed on the basis of our data and the ensuing model is
that the functional architecture of brains resembles the
distributed, self-organized processes of connectionist
models rather than the rule-driven symbol-manipulating
processes characteristic of digital computers. Contrary to
an apparently popular assumption, physiologists are not
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so naive as to conclude, because they don't find symbols
floating around in the neural tissue, that the brain is not a
symbol-manipulation system. We agree with Barnden
and Brown that a machine-level claim would be ineffec-
tual against this position. But our model is pitched at the
level of the functional architecture of the system: Our
point is that brains use the functional architecture of
distributed networks similar in many ways to present-day
connectionist models. Connectionist models are not plau-
sibly conceived of as symbol-manipulating, rule-driven
systems; so why, if brains use a similar form of information
processing, are the latter so construed?

We disagree, however, with Earle's further claims that
connectionist models promise a "noncognitive" account
of behavior, and that information processing requires
symbols and rules. Connectionist models are not at-
tempts to provide a noncognitive account of behavior, if
by "noncognitive" is meant not having to do with cog-
nitive processes. Connectionist models are explicitly cog-
nitive: Such models deal with mental processes (e.g.,
pattern recognition and completion, generalization, dis-
crimination, associative memory) and the mechanisms
responsible for cognition. Admittedly, our model and
connectionist models in general do not appeal to rules or
symbols, but this is not equivalent to the claim that they
are noncognitive. As has been pointed out, connectionist
models, although exhibiting regularities in processing
information, do not apply rules; nor is the "currency" of
such systems symbols (Rumelhart, McClelland & PDP
Research Group 1986). But it is incorrect to equate
information processing with rule-driven symbol manip-
ulation. The point of connectionism is that a distributed
system of interacting elements is able to produce behav-
ior that was previously thought to require rules and
symbols. Surely the appropriate response is to ask what
makes Earle and others think that rule-driven symbolic
processing is more cognitive than connectionist models.
The connectionist challenge is not to cognitive models
per se, but to a specific class of cognitive models based on
the digital computer.

We accept Brown's concession that we did not wit-
tingly seek to mystify or intimidate our readers. We
suggest that our argument is not so confused as his
quotations out of context might imply, and although we
do not think we are "naive materialists," we do take brain
functioning and the constraints it places on our model
seriously. Unlike Brown, we don't view our model as
"merely physiological." We suspect that there is a lot
packed into Brown's use of the word "merely" here -
specifically, a commitment to the functionalist view that
what neuroscience tells us about is irrelevant to the
concerns of cognitive psychology. The underlying as-
sumption is that physiology is irrelevant to computational
issues because it is concerned only with the specifics of
structural implementation (neurons, membrane con-
stants, neurotransmitters, and so on). But this is not true.
We feel that our research demonstrates that physiologists
need not be (and, in fact, are not) saddled with a function-
structure distinction that once and for all limits their
research project to structural minutiae: Admittedly we
investigated the structural properties of neural nets, but
we did so in the context of viewing these networks as
functional units whose input-output dynamics are cap-
tured by our model. And contrary to the functionalist

assumption, our research at the physiological level led us
to produce a theory of its functional organization. We
suggest that the fashionable dismissal of neuroscience
popularized by a functionalism tied to the symbolic form
of information processing is too simplistic in its under-
standing of neuroscience as practiced by researchers.
(Parenthetically, our experience has been that, contrary
to Brown's assertion, substantial numbers of theorists
believe that the functional architecture of neural activity
is identical to that of digital computers; but perhaps our
dismal experience is attributable to cultural lag, and
fewer people still think this way than we have inferred.
Perhaps.)

What about the role of modeling, an issue raised by
Brown? As a theory of whole brain function that purports
to explain the changes in mass action of neurons that
accompany learning new patterns of behavior, our theory
spans three levels. As such it must provide the conceptual
framework for the display and verification of neurophysi-
ological correlates of behavior. And as a model of "the
integrative action of the nervous system" (Sherrington
1906), it must describe or simulate the dynamic func-
tional properties of the nervous system. Finally, because
the theory attempts to explain behavior as well as brain
function, it has failed if it does not yield neurobehavioral
correlates or lead to methods for simulating animal and
human behavior.

In previous discussions (Freeman 1981) we have
adopted the tenet advanced by Craik (1952) that the
essence of explanation lies in simulation. To understand
some event or process, according to this view, is to
generate or operate a model of it. To answer Brown, we
think this can be done for our theory by using differential
equations that replicate the electrophysiological patterns
to make models that perform the computational opera-
tions we attribute to the brain regions we have studied.
We suppose that it makes little difference a priori
whether the models are made with hardware or software,
although as experimentalists (naive materialists?) we pre-
fer to work with the former. Brown is surely as aware as
we are of the pitfalls in complex programming and numer-
ical integration; in this respect there is no advantage over
hardware. In this use the computer serves as an analog,
and therefore as a simile, not a metaphor. But we view the
software as a helpful approach in the design of a device,
just as a blueprint is a stage in the design of a tool.

We accept Barnden s criticism of our use of top-down
and bottom-up; the point we wished to make is that our
model resembles connectionist models in being a system
that exhibits regularities and processes information with-
out being rule-driven and manipulating symbols. Barn-
den also raises a physiological issue: He asks why we have
not performed experiments involving the simultaneous
presentation of several odors. We have not done this
because it is inappropriate in our system. In olfactory
physiology we have the problem of chemical reactions
upon mixing odors, of new odors arising (e.g., butter and
vanilla give "cake"), of optimizing the ratio of concentra-
tions, of solubility coefficients, and so on. These factors
prohibit the kind of experimentation Barnden proposes
for olfaction in animals. Our theory of functional architec-
ture should first be tested in vision or audition; if it is
found to be valid, his proposed experiments can be done
with relative ease.

BEHAVIORAL AND BRAIN SCIENCES (1987) 10:2 185



Response/Skarda & Freeman: Brain models chaos

The last word in our dialogue with psychologists we
give to Werner. We feel that he has done a major service
by expressing in clear and concise language the major
theoretical implications of our target article for cognitive
science. Although we originally undertook our work in
order to find experimental support for the symbol-manip-
ulationist view of information processing (Freeman
1983a), the relationship we established between mea-
surements of behavior and electrochemical events in the
nervous system forced us to adopt an alternative model
(Freeman & Skarda 1985). This led us to the view that
brains have a capacity to learn using cooperative activity
in neural networks without anything like what the com-
putational model based on digital computers had thought
necessary. In our neural model, as in connectionist mod-
els, there is no discrete semantic interpretation given to
activity in a neural net or to elements of the net; this
activity varies not only with the presence and absence of
particular environmental events, but also with the con-
text. We did not come to this view without spending
several frustrating years of inspecting EEG records and
unit activity.

As Werner points out, the concepts of "representa-
tion" and "symbol" are deeply rooted in the minds of
cognitive scientists; they will be eliminated or replaced
only by the acquisition of a substantial body of data
showing that they are unnecessary to explain behavior.
Unlike Werner, however, we don't think that referring to
these neural patterns as the "neuronal system's own
symbols" is helpful. The distinction we wish to emphasize
is not that between the first-person and third-person
points of view. Our point is that the system can produce
adaptive, ordered, cognitive behavior without using
functional architecture based on rules and symbol manip-
ulation. The neural patterns of our model are not symbols
for the system because a distributed network doesn't
require symbols to produce behavior.

Physiology: What's in a brain? The commentaries from
physiologists raised several issues: the relationship of our
theory to other theories, questions about the physiologi-
cal role and scope of chaotic activity in the brain, and
specific questions about the physiology of the system. We
respond to each of these in turn.

First a word or two about the relationship of our theory
to other theories: What is really new about our work? We
thank Boynton for mentioning the pioneering work of
Demott (1970). We have cited it in previous reports and
could add to the list of pioneers in this field Walter (1953),
Lilly and Cherry (1955), and Livanov (1977). Although
these projects were able - using ingenious and imagina-
tive devices to analyze huge quantities of data - to show
that spatiotemporal patterns exist in brain activity, tech-
nical limitations prevented them from reliably reproduc-
ing or understanding the significance of the observed
patterns.

Our claim to priority is not for the detection and display
of patterns, nor for the technologies required for trans-
duction, processing, and display. The electrode array is a
journeyman device when seen in company with the exotic
apparatus for optical, magnetic, and biochemical trans-
duction, and our use of the digital computer is minor
league in comparison with uses by meteorologists and
geologists. Our primary accomplishment is the systemat-

ic measurement of repeated blocks of data, decomposi-
tion of the data into sections, the systematic testing of
each of those sections for information relating to behav-
ior, and the statistical validation of the results. By follow-
ing our prescription we believe that others can find the
same or similar patterns. Our priority, then, is more like
that of Columbus than the Vikings: Although not the first
to discover the New World, he was the first to show
others how to get there and back reliably. It is this
reliability of the technology to the multivariate system,
and in particular the demonstration of behaviorally signif-
icant regularities in the spatial dimensions of the data,
that forms the substance of our claim to priority.

Access to the digital computer is not the only basis for
the difference between "seeing" that spatial patterns
exist in the brain and comprehending their significance.
What is crucial is the development of the necessary
software. Early on we presented cinematic displays of the
space-time patterns of olfactory EEG waves from elec-
trode arrays (Freeman 1972), but the ability to demon-
strate odorant specificity required that we devise the
tools for measurement, a task that took 12 years to
complete. Unfortunately the available theory of neural
action in perception was not merely unhelpful, it was
misleading. We made repeated attempts without success
to locate "hot spots" of the kind purportedly revealed by
2-deoxyglucose, or to find information in phase or fre-
quency patterns. Eventually, the key to the problem was
found not in the display techniques or in the theory of
nonlinear dynamics; it lay in the development of ade-
quate techniques of measurement, including use of a
behavioral assay to validate those techniques (Freeman
1987b).

We wish to point out in this connection that three
technical aspects of our procedures are crucial. One is the
use of spectral analyses in the temporal and spatial do-
mains of EEG recordings as the basis for determining
digitizing intervals and interelectrode distances for array
recording. This, combined with theoretical analyses of
the biophysical properties of the neurons generating the
EEGs, provided the basis for the separation of "signal"
from "noise" by filtering. A second is the use of a behav-
ioral assay and the repetition of analytic procedures while
optimizing the filter parameter for the extraction of the
desired information. The third is the detailed analysis of
the variance that led to our realization that the significant
spatial patterns of EEG potentials were best seen after
normalization of the amplitudes by channel.

Several commentators, including Corner & Noest,
raise the issue of the relationship of our model to connec-
tionist models. At the risk of repeating our target article,
we concur with those commentators who pointed out that
our approach is inherently "connectionist" and indeed
"must be considered as constituting simply a possible
improvement within that category" (Corner & Noest);
our criticisms of other species within the genus should not
be construed as a denial of our membership. As Barnden
points out, our model is an "extension of present-day
connectionism." We recognize that in this rapidly evolv-
ing field, some of the criticisms we directed against other
connectionist models are already out of date. Nev-
ertheless, we find that too many connectionists are preoc-
cupied with the structural properties of their models
(e.g., relationships between the numbers of nodes and
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the memory capacity of a net) to the exclusion of the
description and analysis of the dynamics. The tested
models that we are at present acquainted with and that
can be described in terms of basins and attractors are
endowed with equilibrium attractors. Our results require
that these be replaced with limit-cycle and chaotic attrac-
tors if they are to be relevant to the brain and the behavior
it controls. In one sense this is a small step, but in many
ways it is very difficult. Corner & Noest note that an
extensive literature already exists on the properties of
spatially distributed coupled oscillators; they sketch
briefly an exciting possible route for further description
and understanding of this baffling but vital system. We
believe that their particular example (concerning the
expression of phase patterns into spatially nonuniform
amplitude patterns owing to spatial smoothing) may be
directly relevant to bulbar EEG analysis, but not in the
manner they suggest. As we have reported (Freeman &
Baird, in press; Freeman & Viana Di Prisco 1986b), the
phase pattern appears as a conic gradient in spherical
coordinates, and the local differences in EEG amplitude
are closely related to local differences in subsurface neu-
ral firing rates that are not subject to spatial smoothing by
the volume conductor. We hope that Corner & Noest will
"start delving into the complexities of structurally inhom-
ogeneous models," and we ask them what information
they need to have "specified more precisely" in order to
"allow such improved models" to be developed.

In a more general vein, Perkel asks whether our use of
nonlinear dynamics and bifurcation theory is meta-
phorical [the brain is (like) a . . .] or operational [the
dynamics of the bulb is described by the equation f(x)
= . . . ] . We believe that it is operational, because our
equations are constructed in accordance with the anat-
omy and known biophysical properties of component
neurons and their interconnections, and are solved with
boundary and initial conditions that conform to the gross
anatomy and the neural input. We adjusted the param-
eters until the solutions to the equations conformed to the
observed and measured patterns of neural activity, and
we did not accept solutions for which the required param-
eter values were anatomically or physiologically unre-
alistic. In this respect our "theory" is no more or less
metaphorical than any other use of descriptive equations
properly selected. Superficially, at least, experimen-
talists can afford to be both skeptical and cavalier about
theories: If a tool seems promising, we learn to use it; if it
works, we continue to use it; if not, we find another. In
the olfactory system we find that the language of basins
and attractors helps us to assemble and simulate many
aspects of patterned neural activity. The methods provide
insights for further research, evidence that other parts of
the cerebrum may operate in closely related ways (Free-
man & van Dijk, submitted), and ways to test this hypoth-
esis. What more can one ask of theory?

Babloyantz points out that ours isn't the first physiolog-
ical account to postulate chaotic activity based on EEG
recordings. She provides a useful list of references to
recent work on the dimensional analysis of putative chaos
in human scalp EEG recordings, to which we add work by
Nicolis (1985b) and Nicolis and Tsuda (1985) on chaotic
dynamics of information processing by the brain. (Perkel,
by the way, asked whether chaos is unique to olfaction.
Babloyantz and others have clearly demonstrated that it is

not.) These and related studies have established that low
dimensions appear in analyses of records from subjects in
deep sleep and in certain forms of epilepsy. But in these
studies the estimated dimensions of waking EEGs are so
high that the distinction between chaos and noise or a mix
of the two becomes blurred (see commentary by Thorn).
A further difficulty with these studies is that the single
channel of the scalp EEG is undefined with respect to the
numbers of functional entities (and therefore of dimen-
sions) that contribute to the record (as distinct from our
deliberate restriction to activity from a single entity); and
the scalp EEG is subject to much stronger spatial and
temporal smoothing than pial recordings, leading to ar-
tifactual reduction in the apparent dimension. So, al-
though our research is not the first to postulate chaotic
activity based on EEG recordings, we do believe our
work makes important new contributions by eliminating
some of these difficulties.

Contrary to Babloyantz's assertion, our main point is
not that brain activity conforms to the dynamics of chaos,
but that the brain organizes its own space-time patterns
of function and thereby its own structure. We postulate
that it generates chaotic activity as an essential precursor
to the emergence of ordered states. Far from being
misleading, we think that our statement that "chaos is a
controlled noise" is appropriate. The patterns of activity
we observe in the bulb have commonality of waveform
over cortical regions comprising hundreds of millions of
neurons, with phase gradients and spectral distributions
(both temporal and spatial) that are held within narrow
limits; amplitudes (root mean square) that are regulated
precisely in accordance with motivational state; and,
above all, the maintenance of sustained basal activity
without recurring spatial patterns. The generator of this
activity is exceedingly robust, a neural mechanism that
we can readily believe has been present in vertebrates for
over four hundred million years. The activity looks like
"noise," serves (we believe) purposes met by unstruc-
tured or pseudorandom activity, and is turned on and off
rapidly and reliably with respiration in a controlled man-
ner. We agree with Babloyantz that to understand our
target article properly readers will have to seek out and
study "more technical publications" as cited here and
elsewhere, and we hope that the paper will motivate
some of them to do so.

As to our view of the underlying physiology, Perkel
questions why we propose that strengthening of excitato-
ry synapses, but not of inhibitory ones, occurs with
learning. We base our hypothesis on measurements of
changes in the waveform of averaged evoked potentials
when animals are trained to respond to electrical stimuli
(Emery & Freeman 1969), and on determinations of the
parameter changes that are necessary and sufficient to
replicate these pattern changes in the solutions of differ-
ential equations that model the neural dynamics (Free-
man 1979b). Interestingly, several theoretical advantages
accrue from the experimental result that only the excit-
atory synapses change. One is the exquisite sensitivity of
the olfactory system, arising from the form of the sigmoid
curve under recurrent excitation. Another is the pattern
stabilization and figure completion that results from
strengthened excitatory connections (Babloyantz & Kacz-
marek 1981). Yet another is the exploitation of the Hebb
(1949) rule, which is the basis for learning under rein-
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forcement in our model; it is difficult to see how this rule
might be implemented toward formation of a nerve-cell
assembly if the synapses to be strengthened were inhib-
itory. The findings of Wilson, Sullivan, and Leon (1985)
are fully consistent with our model; we have shown
elsewhere (Gonzalez-Estrada & Freeman 1980) that ob-
served suppression of mitral cell discharge can be the
manifestation of profound excitatory action onto those
same cells, given the proper system parameters. Here,
indeed, is an opportunity for theory to come forward and
explain the paradoxical and counterintuitive.

Perkel also raises what he refers to as the "serious
problem" of how the system can read out the identity of a
familiar odorant when static and invariant representa-
tions do not exist in the bulb or elsewhere in the olfactory
system as the basis for osmic memory. We have proposed
elsewhere (Freeman & Skarda 1985) that the coherent,
phase-locked activity generated by mitral cells, falling
onto the prepyriform cortex after spatial and temporal
reorganization in the olfactory tract, causes further bifur-
cation in that structure, initiating the process of response
selection. But Perkel's question is important, because we
do not yet know how that is done. For us, the really
serious issue is not that the event is a transitory bundle of
energy rather than a fixed state; it is that of developing a
model based on distributed dynamic networks that can
explain how a dynamic state (which need not have gone to
completion) can lead to state changes in the rest of the
nervous system leading to a response. One advantage of a
connectionist model is that it doesn't require the fixed
states that symbolic processing requires, and it allows us
to conceive of new forms of interaction among subsystems
like those found in the brain.

Corner & Noest's chief challenge to our target article
concerns the issue of projection of afferent activity from
the receptors to the bulb. As they see it, each odorant
stimulus activates a set of receptors that in turn activates
its odorant-specific pattern in the bulb, with "magnifica-
tion of preexisting differences in the spatial distribution of
afferent signals. . . . What, then, needs to be 'learned'
about such signals? . . . Nothing else, surely, than . . .
behavioral significance." Corner & Noest fail to grasp that
the major task for learning to identify an odor is the
formation of a nerve-cell assembly by the pair-wise
strengthening of synapses between co-activated mitral
cells (Hebb 1949). This task reflects the necessity for
establishing an equivalence over all receptors (and the
mitral cells to which they transmit) that are sensitive to a
particular odor in an invariant manner. This is the key
problem that Lashley (1942) posed in terms of stimulus
equivalence. The formation of the nerve-cell assembly, in
accordance with the postulate proposed by Hebb, takes
place only under reinforcement and involves the release
of norepinephrine into the bulb (Gray, Freeman & Skin-
ner 1986). As we discussed in our target article, the EEG
spatial patterns are as closely related statistically to the
CR (conditional response) as to the CS (conditional stim-
ulus). In answer to Corner & Noest's specific query, there
were nine distinctive patterns for each of the four subjects
that learned the discriminations, including discriminable
spatial patterns that had the same odorant as CS but with
different "meaning" (that is, that elicited a different CR)
at different stages in the training program.

Finally, Corner & Noest mention several issues that,
although not relevant to the main points raised in our
target article, are of special interest to physiologists, so
we'll address them here. First, we think that the re-
semblance Corner & Noest point out between the classi-
cal brainstem mechanisms for cortical arousal, on the one
hand, and the energizing effect of receptor input to the
olfactory bulb, on the other, is not to be taken seriously.
The nonspecific arousal process is mediated by ascending
reticular axons operating on and through the thalamic
reticular nuclei, whereas specific sensory activity is car-
ried by distinctive sensory pathways through modality-
specific thalamic nuclei. The "dual" input to the bulb is
carried by one and the same pathway; receptor axons
carry action potentials that bear specific information by
depolarizing the apical dendrites of selected mitral cells.
Massive depolarization of the whole system brings about
a bifurcation that leads to response selection. This is not
the "preparation" of the bulb by the prior action of a
parallel ascending pathway; it is a result of the concomi-
tant induction of an instability of the system receiving the
input. Moreover, the time and distance scales of these
phenomena are significantly different. Reticular activa-
tion is broadcast to all parts of the nervous system by
ascending and descending projections, irrespective of the
modality of the arousing stimulus, and the aroused state
tends to last for seconds to minutes with gradual abate-
ment. The transition in the olfactory system is localized to
the bulb and cortex, and it terminates during exhalation
in a fraction of a second. Finally, the arousal response is
centrifugally induced in the olfactory system as well as in
other sensory cortices, whereas the formation of the burst
is dependent on the centripetal sensory input and re-
quires that the bulb already be in the aroused state.

Second, we are in fact unable to explain alpha suppres-
sion in arousal or the enhancement of hippocampal theta
in certain states involving orienting, but these phe-
nomena lie outside the scope of our data and models. Our
models do not generate activity in the alpha and high
theta ranges (roughly 5 to 15 Hz) without impermissible
parameter settings, but neither does the olfactory
system.

Third, it is not the case, as stated by Corner & Noest,
that gamma EEG waves "have gone undetected" in the
neocortex. Systematic studies as well as anecdotal reports
abound attesting to the presence of "40 Hz" activity, as it
is commonly called, in many areas of the neocortex (e.g.,
Chatrian, Bickford & Uihlein 1960; Sheer 1976). In our
opinion Corner & Noest underestimate the strength of
the signal degradation imposed on neocortical EEG po-
tentials by the spatial dispersion of the generating cells in
directions perpendicular to the pia. The three cortical
structures with the most striking alignment of their gen-
erating cells in this respect are the bulb, the prepyriform
cortex, and the hippocampus, and these three have EEG
amplitudes that easily exceed the amplitudes of neocor-
tical EEGs by 10- to 20-fold. Moreover, the relatively low
amplitudes of that activity, especially at the scalp, are
confounded by electromyographic (EMG) potentials that
badly obscure gamma activity (40 to 90 Hz). Hence the
gamma activity is known to exist, but it is poorly docu-
mented and has largely been ignored.

Fourth, we agree with Corner & Noest that "the basic
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notion of widely synchronized neuronal carrier waves
. . . is by no means excluded by differences among brain
regions displaying the precise [frequency] characteristics
of these (chaotic) waves," but we do not consider as
"major" the challenge to account for the observed fre-
quencies and amplitudes of olfactory EEG activity or to
show their theoretical advantages. We have demon-
strated repeatedly that the gamma range is the charac-
teristic frequency band for neurons with passive mem-
brane time constants on the order of 5 msec, and that the
amplitudes are the result of the cytoarchitecture of the
laminar structures. These are as they are because of the
properties of the neurons that comprise the areas and
generate the waves, not because these properties crit-
ically influence olfactory information processing. We sus-
pect that neocortical cell assemblies tend much more
strongly to chaotic activity, which renders them all the
less accessible to our present understanding; but we do
not consider it incumbent on us at this time to explain
why this is so, or to show what advantages might accrue to
vision or audition thereby. We have attempted to under-
stand and explain paleocortical dynamics and to speculate
a bit about the neocortex, not to propose a general theory
of the EEG.

Mathematics: The uses and abuses of chaos. Chaos and
its possible role in pattern recognition figured promi-
nently in our target article. We suggested that in the
brain chaos is necessary for learning new odors. Not all
the commentators agreed with this, but as Garfinkel
noted, the view that chaos plays a functional role is
"something of an about face" for a phenomenon that has
traditionally been viewed as highly undesirable. We are
especially encouraged by the examples he cites that
indicate chaos is not merely tolerated but essential for
optimal performance of systems in search of their own
goals or states of minimal energy. These uses for chaos
translate readily into the maintenance of background
activity while avoiding hypersynchrony, as in epilepsy;
the flexibility and adaptiveness of behavior in the face of
unpredictable environments; and the speed of operation
of brains in entering and leaving states sequentially. We
suggested that flexibility in responding to the changing
olfactory environment is provided by the chaotic basal
state, and that chaos doesn't merely provide noise in the
manner of a Boltzmann machine to avoid local minima in a
convergence process, but that it allows a relatively high
energy state to be maintained between signal episodes, so
that the neural system does not have to be dragged out of
or dropped into a deep energy well with each bifurcation.
It can flip lightly and quickly with each sample and flip
back again. Furthermore, because the same mechanism
generates both chaos and carrier, the "noise" is shut off
when the "signal" goes on and vice versa. The signal is
detected between the noise periods and not in them, so
that the "signal/noise ratio" concept is not applicable
here.

Most of the objections to our use of chaos were based on
proposed alternative models that don't require chaotic
activity. The commentaries of Grossberg, Levine, and
Rosenfeld, Touretzky & the Boltzmann Group belong to
this category. By way of preface, however, we want to
make our general position on chaos clear. We are the first

to admit that we have no proof that chaos is essential to
pattern recognition, whether biological or artificial, or
that nonzero equilibria under noise might not serve as
well. We believe, however, that we have shown that
chaos exists in the olfactory system, and that our sug-
gestions as to its roles are plausible and useful; certainly
chaos should not be averaged out, discarded, or ignored.
Although our understanding of chaos is rudimentary in
comparison with our needs, the most effective way to
proceed is by close cooperation between theorists and
experimentalists, as exemplified by our exchanges with
Garfinkel, especially in the analysis of spatially dis-
tributed systems of coupled oscillators. Now, on to some
of the objections.

In the past two decades Grossberg and his associates
have consistently produced imaginative, detailed, yet
comprehensive models expressing the formal bases of
learned behavior generated by nervous systems. We
note, however, that Grossberg's "Gedanken" experi-
ments have been designed primarily to explain phe-
nomena deriving from psychophysics; the relationship to
neurophysiology occurs through his use of neural "meta-
phors," such as the cellular dipole representing local
inhibitory feedback, the first-order decay process repre-
senting passive membrane, shunting inhibition, and the
modifiable synapse. We view these terms as metaphorical
because, in using them, Grossberg normalizes his state
variables to dimensionlessness in time and space. In
principle, of course, he could retain the conversion fac-
tors and return to the metric of the relevant nervous
system, but in practice he does not because his avowed
interest lies in general principles and not in specific
examples. It is accordingly necessary for experimentalists
to supply the conversion factors in order to test his
theories, to the extent that they are intended to explain
the brain.

Grossberg's claim, based on his work on olfactory
coding and its explanation by his adaptive resonance
model (1976; 1981) and recently incorporated in his ART
1, is that chaos is unnecessary in his model. What are we
to make of this claim in relation to our data? A comparison
of ART 1 with our KII model shows that both consist of
excitatory and inhibitory neurons formed into three or
more serial layers with massively parallel axonal connec-
tions between them. The initial layer in both models is
comprised of the sensory transducer neurons; Gross-
berg's layer SI purports to embody our olfactory bulb,
and his layer S2 the prepyriform cortex. His element for
arousal from mismatch or attentional biasing may corre-
spond topologically to the anterior olfactory nucleus,
because this is a key site for centrifugal brainstem control
of the bulb. Within each layer there is local negative
(inhibitory) feedback, and there is extensive feedback
between layers SI and S2. Both systems have the ability
to modify synaptic weights under reinforcement during
learning. Both invoke the sigmoid curve as the static
nonlinearity that dominates the dynamics.

However, despite these superficial resemblances the
differences between the two systems are so great that
direct comparisons tend to be nonproductive and mis-
leading. In ART 1 the most important modifiable syn-
apses are at the input from layer SI to layer S2, equivalent
to that between the lateral olfactory tract and the pre-
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pyriform pyramidal cell, and from S2 to SI equivalent to
that between the medial olfactory tract and the granule
cell (not the mitral cell, as Grossberg's model states). In
ART 1 the input pattern is sustained and maintained for
matching purposes at the input synapse to SI, equivalent
to the primary olfactory nerve synapsing on mitral cells.
In our Kill set the input is ignored after bifurcation.
Moreover, this synapse is the site of dynamic range
compression and signal normalization (presynaptic inhi-
bition); none of these synapses change in relation to
associative learning in Kill, though they are subject to
posttetanic and long-term potentiation. Shunting inhibi-
tion in ART 1 is multiplicative; recurrent inhibition in
Kill is additive. In ART 1 local inhibitory feedback serves
primarily for contrast enhancement. In the Kill set it
serves primarily for generating the carrier frequency of
bulbar output. In Grossberg dynamics, the state variables
tend to fixed values (equilibrium attractors). Long-range
excitatory connections are not prominent in ART 1; the
distance of excitatory transmission is kept below that of
inhibitory transmission. In the Kill set long-range excit-
atory connections in both the bulb and cortex are crucial
for the formation of Hebb-type nerve-cell assemblies,
because it is here that the synapses are modified in
associative learning. In ART 1 the Hebb rule is applied to
modification at the input level by virtue of feedback of
spatially detailed and precisely timed information from
S2 to SI. This cannot occur in the Kill set, because it
models the feedback from the prepyriform cortex to the
bulb, and this has such marked spatial divergence and
temporal dispersion in both forward and feedback direc-
tions that no such transmission of detailed information is
feasible. The pathways act as strong low-pass filters and
remove it.

From these and related anatomical and physiological
measurements we conclude that function in the olfactory
system cannot depend on precise timing and precise
topographic mapping. Its algorithms must be reliable in
the face of continual smoothing of activity by temporal
dispersion under axonal transmission and by spatiotem-
poral integration in dendrites. This is one of several
reasons that we insist repeatedly that behaviorally rele-
vant neural information is to be found in the average
activity of ensembles (as manifested in the EEG) and not
in the activity of single neurons, once the first stage of
carriage by sensory neurons has been passed.

In addition, although Grossberg has often stated that
his models hold good for both the single neuron and for
the ensemble, we maintain that this cannot be so, be-
cause the static sigmoid nonlinearity that dominates the
dynamics of both ART 1 and the Kill model holds only for
the ensemble and not for the single neuron. He has also
claimed that his results hold for both steady-state and
oscillatory solutions (equilibrium and limit-cycle attrac-
tors). In our view he has not adequately demonstrated the
pattern-recognition dynamics of the oscillatory standing-
wave type of system to substantiate this claim.

From these considerations it should be apparent that
although we and Grossberg appear to be thinking and
writing about the same nervous system, in actuality we
are skew, almost entirely disjunct, because of the dif-
ferences between our methods, values, and data bases.
Of course, Grossberg's assertion would be valid if we had
claimed that chaos was required for all pattern-recogni-

tion devices. Such a claim, however, would be foolish.
We readily acknowledge the validity of his claims about
equilibrium solutions for ART 1, but we want to point out
that his dynamics have not yet been developed suffi-
ciently to simulate the actual performance of our Kill
model. Until he is able to expand his "minimal anatom-
ies" to include and fully exploit modifiable excitatory
crosscoupling within SI and within S2, and to establish
the proofs of performance of this system with periodic
attractors, as he has for the fixed points of ART 1, we
cannot concede that he has a counterexample. His model
is not in the same domain. We conclude that Grossberg's
cautionary note that chaos is inessential in ART 1 is
important to consider, but that we must await further
development of his ART models that explicitly exhibit the
anatomy and dynamics we observe in the brain before we
can be bound by his logic. And should his models prove to
be less flexible than he might desire, we recommend a
small dose of chaos.

In a related vein, we accept Levine's point that some
connectionist models have the capacity to respond to
novel as well as to familiar input, so that input can be
rapidly identified as novel and the learning process can
begin. Such a process is embodied in Grossberg's ART 1
model and in work cited by Levine. Our difficulty, as
discussed in our response to Grossberg above, is that our
analysis indicates the olfactory system is not capable of
performing the operations required for match and mis-
match detection, at least in the manner carried out by
ART 1. This is because the feedback pathway from the
putative layer S2 (the prepyriform cortex) to layer SI (the
olfactory bulb) is incapable of sustaining transmission of
information with the requisite specificity of timing and
spatial resolution. That is, we see no realistic way that
fibers in the medial olfactory tract can return an organized
pattern from the prepyriform cortex to the bulb and
"match,' "correlate," or "compare" it with a pattern in
the bulb that is sustained by input from the receptors.
Furthermore, our recordings tell us that after bifurcation
the bulbar activity pattern reflects the generalization to a
stereotypic form affected by a class of inputs based on
experience rather than current individual inputs. We
therefore contend that although Levine and Grossberg
are on the track of devices that may far outperform the
simpler connectionist models currently in vogue, these
do not help to explain the dynamics of those parts of the
nervous system with which we are familiar. If their
models can be made to do what brains can do, or even to
outperform them, then they need not trouble with chaos.
If they cannot, then, like theorists of the past several
decades, they might consider returning to the nervous
system for some more insights and ideas. This is what von
Neumann (1958) did in his quest for mastery of the newly
conceived programmable digital computer.

The other large-scale assault on our target article from
connectionists came from Rosenfeld et al. who presented
clear-cut arguments strongly defending their views and
practices without effectively, we think, eroding our
claims or responding to our findings or our speculations
concerning the significance of their models for cognitive
science. We recognize and have repeatedly stated that all
models are abstractions, that the value of each model
depends on how well the selection of detail to be included
or excluded helps the modeler to attain a stated goal, and
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that judicious selection is more to be valued than mere
fidelity to some "view" of how an aspect of the brain being
modeled actually works. That "view" in itself being a
hypothesis and therefore a model of sorts, we think that
Rosenfeld et al. have invited us into a cul-de-sac with
their allegation that we are confused. Furthermore, we
believe that they have short-changed themselves in their
efforts to "contribute to the emergence of a new tax-
onomy" of connectionist models by their apparent refusal
to add some more cages to their zoo for models with
dynamic attractors. To be sure, we have no evidence for
the computational superiority of dynamic attractors in
mathematical form, nor do we have bench-mark studies
comparing the speed, accuracy, capacity, stability, and so
on of two or more models having point versus chaotic
attractors that perform some common task. We are not
aware that benchmark studies exist as yet for com-
parative evaluation of different species of point models.
But it is not true that we have no "evidence that could
support [our] claim" for the value of dynamic attractors.
The bulk of our target article presents evidence that the
olfactory system works with dynamic attractors; we cited
additional evidence that suggests the rest of the cerebrum
may do so as well. This type of evidence is considered by
some connectionists to be relevant to artificial intel-
ligence (AI), considering that the performance of the
brain still outclasses those of AI models.

Rosenfeld et al. ask us, "Which of the characteristics of
chaos are necessary to the role it plays in generating new
attractors, and which are irrelevant?" Our answer is that
the following characteristics are necessary. We have
stated that in order for the Hebb rule to operate, the
neurons involved in the learning process must be active
during the CS-induced activity under reinforcement of
the UCS (unconditional stimulus), but that the activity
must not conform to the attractor of a known odor.
Hence, if the intensity of the activity must be high and its
pattern should not conform to any previous spatial pat-
tern of activity, then the pattern must appear to be
random - i.e., chaotic — and must cover the entire bulb.
On the other hand, the following aspects are irrelevant.
The time series looks random. We find that its spectrum
is broad in comparison to the spectrum of bursts with
known odorants, and there is more low temporal frequen-
cy energy.

Rosenfeld et al. write of a "forced reset action" existing
in the dynamics of the bulb during exhalation, that is
analogous to the action of turning their devices "off." This
is a significant mischaracterization of the dynamics of our
model. During inhalation there is a forced choice leading
to capture of the system at a "single (albeit dynamic) state
that is computationally equivalent to the corner of a
hypercube" (hypertorus?), which in our model is due to
an obligatory side effect of the input surge; but during
exhalation there is relaxation to the basal state, not forced
reset. Furthermore, there is no reset to the "center of the
hypercube," even if the center could be computed within
a reasonable time; instead, in our model the entire hyper-
cube vanishes. It is re-created with each new inhalation
causing bifurcation; this is the essence of self-organ-
ization.

Rosenfeld et al. have likewise failed to grasp the
significance of our remarks on "pattern completion."
There is a simple sense of "pattern completion" that can

be said to take place: the conjectured extensive spread of
activity through a nerve cell assembly (NCA) when any
subset of its neurons is excited. There is another sense
that is untenable: This is to suppose that the NCA is like
the form of the letter "A" that is filled in by mutual
excitation within the NCA following excitation of some
fraction of its parts. The NCA is formed by repeated
presentations of an odorant at sufficiently dilute con-
centration to prevent adaptation, and we suppose that the
entirety is never activated on any one presentation, nor
would that presentation be in any sense necessary, cru-
cial, or identifiable even if it did occur. Furthermore, the
successful convergence into the basin of a correct attrac-
tor, according to our model, depends on activating an
NCA but does not specify that the activation need be
complete, or even need asymptotically approach comple-
tion. The outcome may be a behavioral pattern, so that a
stimulus-response configuration may be said to go to
completion, but this does not require that an internal
dynamic activity pattern go to "completion" in some kind
of exemplary archetypal or normative state. The reg-
ularities in spatial pattern we have observed do represent
possible outcomes, but cannot be shown, we believe, to
be "completed" in the sense commonly used. We agree
that our notion of "destabilization" is a metaphor until
realized in software or hardware, and we intend to pursue
it further; but we deny that generalization over equiv-
alent stimuli, which is done by a basin and its attractor, is
the same as pattern completion.

Moreover, in response to Rosenfeld et al. we wish to
point out that we cannot deal with the concept of "sim-
ilarity" in our model for the same reason that we cannot
handle "concentration." Both of these require serial pro-
cessing of successive images or samples with comparison
over time. We emphasize again that our model deals only
with preattentive [or what Julesz (1984) terms "pop-out"]
cognition. We do not have anything useful to say about
attentive cognition, except that in our opinion it must
involve proprioceptive and reafferent information so that
successive sensory information samples can be combined
with the information about what is done to get them. We
also think it unlikely that each modality will be found to
have such neural machinery separately, so that it should
be sought after the combination of sensory input from all
modalities into gestalts. From neurological considera-
tions the most likely site of convergence is the entorhinal
cortex (Lorente de N6 1934), for which the hippocampus
may serve as a stack register for temporal integration of
serial gestalts. Much work needs to be done on multiple
coexisting NCAs, but not in the context chosen by Rosen-
feld et al. or at least not in neurobiological studies. As a
postscript, we share their aversion to blind simulation of
neural circuitry in the absence of any analytic handle on
it, which is our reason for having made such a heavy
investment in linear analysis of neural dynamics (Free-
man 1972; 1975; 1987b). We would also like to agree on
"minimal assumptions" and "essential features," if only
we knew them in advance.

Finally, while we have been occupied with adding
some neural-based variations to the kinds of models
contained in the connectionist zoo, and the connec-
tionists were busy questioning our reasons for doing so,
Thorn was taking a shot at us all. We understand Thorn's
suspicion that at present "'connectionist models' ulti-
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mately mean very little," especially those deriving from
the spinglass analogy. However, we do not understand
what he means when he says that "a neural mass exhibits
internal symmetry of a geometric type (translation, rota-
tion, etc.)." We assume that the collection of local ele-
ments comprising a mutually excitatory set is intercon-
nected by feedback connections between each pair of
elements, and that the gain coefficients representing
synaptic weights can take the form of a matrix. In the
naive state we assume that the weights are uniform or
nearly so. With learning under the Hebb rule, in which
the connections between pairs of neurons are more
strongly weighted by co-activity, the symmetry of the
matrix in our model is preserved, because each pair of
neurons is reciprocally connected. The weights in both
directions depend on the correlation of activity by the
same pair. Symmetry does not hold for the negative
feedback connections between excitatory and inhibitory
cells, but in our model these weights are fixed and can be
partialed out. Recent advances have shown that symme-
try in this sense need not be maintained in connectionist
models, and that with sufficient asymmetry limit-cycle
attractors appear. Surely this is not surprising, but these
more complicated systems are more difficult to
comprehend.

We are also puzzled by Thorn's statement that "such
chaotic systems have no equations." If by this he means
that the EEG cannot be simulated or fitted by a closed
function such as cosine or Bessel, we surely agree. But we
have shown that high-dimensional sets of coupled ordi-
nary differential equations (ODEs) generate activity that
is statistically indistinguishable from the EEG. Why is it
permissible to call it chaos before we find the ODEs, but
not after? We suspect that Thorn's criticisms of termi-
nology are directed more toward his fellow mathemati-
cians than toward us. Certainly there are degrees of
unpredictability and sensitivity to initial conditions, rang-
ing from a barely detectable wobble about a point or limit-
cycle trajectory to the sort of wildness that "cannot be
explicitly described. " Our ODEs simulate all of these
gradations.

We are willing to adopt whatever convention mathe-
maticians eventually agree upon. Thom offers the choice
between an oxymoron and a neologism (between "self-
organizing process" and "chreod") to label the process of
the emergence of order in a system without prior specifi-
cation from the outside. What is important to us is not the
name, which explains little, but the concept by which we
conceive of a very large number of neurons that are
coupled into a coherent mass, which, when highly in-
teractive, has degrees of freedom far lower than the
number of neurons, perhaps so few as can be counted on
the fingers of one hand or two. The finding that ODEs
modeled after the olfactory system can be made to gener-
ate olfactory seizure patterns as unpredictable as one
finds in nature is for us a liberation from the tyranny of
Fourier decomposition. We recognize the weakness of
the measures of the invariants of chaos that mathemati-
cians have thus far made available to us (see our reply to
Babloyantz), but that problem is not germane to ques-
tions of terminology. It is obvious that the whole field of
dynamical systems is uncomfortable with terminology in
transition. Perhaps it is a measure of our immersion in
reflex determinism that we have such difficulty finding

words and concepts for these common phenomena. Thom
compounds our discomfort by his final comment that
"Pavlovian conditioning . . . could be explained as a
purely dynamical effect" (if only he had stopped here) "of
resonance"! The bulk of our target article, and for that
matter of most of connectionism, is devoted to explaining
the energy-consuming dynamical character of brain func-
tion, but the term "resonance" - as in sympathetic
vibrations or a Helmholtz resonator, the passive transfer
or accumulation of energy at specific temporal frequen-
cies, the ringing of tuned oscillators - is empty at best and
misleading and obfuscating at worst. We urge that the
language of basins and attractors be used; perhaps this
will also have to be discarded at some future time when it
has also been debased by the verbal inflation that comes
with overuse, but surely by then we will have a new
vocabulary to debate with and about.

A final point needs to be made before we conclude.
Thom is too generous in characterizing our experimental
data as having "gaps"; at best, they constitute a small
clearing in a large forest. The particular experiment he
describes, in which one odorant serves as a CS for an
appetitive UCS at another stage, has shown that the two
EEG patterns differ. More to the point, when a rabbit is
conditioned aversively to respond seriatim to odorant A,
then B, C, and D, and is again conditioned to A, the
spatial pattern changes with each new odorant, but it does
not revert with reintroduction of odorant A to pattern A
on the first conditioning. It changes to a new pattern on
the repeat conditioning (Freeman & Schneider 1982).
This result is contrary to expectations based on analogy
with digital computer memory. It says something pro-
found not so much about brains as about our preconcep-
tions about the static nature of memory and our need to
believe in mnemonic invariants. One might ask, how
could the rabbit know that it was the same odorant in both
stages of conditioning if there was a different spatial
pattern in the second stage? The answer is that we have
no sure way of knowing whether the animal can retain
such information and make such judgments over the
weeks required to do the experiment, and even if it could,
which seems highly unlikely, the background and context
are changed, and these are influential in shaping the
forms of associative memories.

We do not commit Whitehead's (1960) "fallacy of mis-
placed concreteness." We do not claim an infinite storage
capacity in the bulb for osmic memories; on the contrary,
the psychophysical studies referred to in our target article
show that the retentive capacity of the olfactory analyzer,
if language is not used, is limited to about 16 odors at any
given time. But the learning ability allows the repertoire
to be modified and updated without increasing the total
content. We have not yet attempted to address the
questions of how new NCAs are overlaid or intertwined
with preexisting ones, or what happens to the old ones,
how they are deselected, and so forth. This is fertile
ground for further studies in physiology, theory, and
hardware modeling.
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