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ABSTRACT Localizing mobile nodes in underwater networks is a highly challenging endeavor due to range
errors caused by the mobility and uncertainty of sound speed. We propose a novel localization approach,
which incorporates time alignment and range bending compensation to meet this challenge. Given the
lengthy and varied propagation delays to different anchor nodes, we use a Kalman filter to align different
time instants and locations as a mobile node receives timestamps from different anchors during a localization
period. Based on Snell’s law, the ray tracing theory is applied to compensate for sound speed variations. These
two steps minimize the errors caused by mobility and sound speed uncertainty. A penalty convex–concave
procedure approach is also applied to accurately solve a nonconvex optimization problem to minimize
localization errors. Deep sea trial results show that the final localization error for the mobile node is only
1.44 m (with the differential GPS as the true-value reference), marking a substantial improvement over
existing state-of-the-art solutions.

INDEX TERMS Underwater network localization, mobile node, time alignment, ray tracing.

I. INTRODUCTION
Underwater wireless sensor networks (UWSN) with mobile
nodes have garnered a great deal of research interest given
their many potential applications in the marine science and
technology field [1]. Various types of underwater unmanned
vehicles (UUVs), such as AUVs and gliders, may serve as
UWSNmobile nodes [2]. They can be equipped with acoustic
modems and detection sensors such as multi-beam sonar,
biosensors, or chemical sensors for various tasks. Accurate
localization of these devices is essential to ensure the accu-
racy of the data they gather.

As opposed to terrestrial WSNs, global positioning
system (GPS) signals fade rapidly in water and are not suit-
able for UWSN localization [3]. The received signal strength
indicator (RSSI) ranging method widely applied to terrestrial
WSN localization is also ill-suited to UWSNs due to the
complexity of the underwater acoustic channel and the high
cost of pre-sampling on-site [4]. UWSN localization often
relies on measuring the distances between nodes using the
time difference of arrival (TDoA) or time of arrival (ToA).

A target node can be localized by triangulation or tri-
lateration after measuring the distances to anchor nodes
repeatedly.

Distance measurement for mobile nodes in UWSNs is
essential [5], but is hindered by three main challenges:

First, as opposed to the constant RF signal propagation
speed in air, sound speed in water varies with temperature,
salinity, and water pressure forming highly nonlinear sound
speed profiles [6]. Early research on UWSN localization
was typically conducted under the assumption that acoustic
signals propagate at a nominal speed of 1500 m/s, which may
introduce severe estimation errors [7]. The average sound
speed may instead be treated as an unknown parameter to
be solved together with the locations [8]. This approach
assumes a constant average acoustic velocities for all nodes
in the network. For UWSNs with different depths or different
horizontal distances, however, the acoustic velocity between
a pair of nodes may deviate from the average speed.

Second, unlike the terrestrial WSNs in which the sig-
nal propagates along a straight line, acoustic rays bend in
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UWSNs; this may also introduce severe range estimation
error if not appropriately addressed [7].

Third, during a message exchange period, a mobile node
may move to different locations when receiving signals from
different anchors. For low-speed mobile nodes such as drift-
ing targets, a time window can be used to bound such move-
ment and avoid significant errors [8]. For mobile nodes such
as AUVs, it is very difficult to achieve both precision and
efficiency in localization due to the speed of their movement.
Yi et al. [9], [10] proposed the use of mobile node inertial
navigation for compensation, but not all mobile nodes can be
equipped with accurate inertial navigation.

Previous researchers have addressed the above challenges
with a joint solution for localization and synchroniza-
tion (JSL) [11]. JSL performs tracking compensation for the
sound ray curve using the Fermat’s principle for UWSN
localization, and an interactivemultiplemodel (IMM) filter to
reduce the localization error caused by the mobility. JSL can
handle sporadical location outliers; when a burst of outliers
appear, the IMM filter diverges. The inherent multipath char-
acteristics of underwater acoustic channels may introduce
bursty range estimation outliers, which cannot be handled
well by JSL. Thus, how to accurately localize mobile nodes
in UWSN remains an open and challenging problem.

In this study, we addressed the above three challenges using
the time alignment (TA) and ray tracing (RT) techniques to
achieve a localization accuracy for mobile nodes in UWSNs.
Given the transmission time delay between the mobile node
and anchor nodes in a UWSN, we first attempt to eliminate
the model error caused by the different locations of mobile
node as they receive the timestamps from different neigh-
boring anchor nodes within one localization period. Based
on timestamps exchanged between the mobile and anchor
nodes, the proposed localization algorithm uses a Kalman
filter to align the distances between different neighboring
nodes and themobile node for accurate time delay estimation.
We also attempt to correct the range estimation error caused
by ray bending. We apply a ray tracing technique based on
Snell’s law to remove the ray bending error and to renew
the Kalman filter, then run a special initialization method to
initialize and feedback the Kalman filter. We then formulate
the localization problem with unknown varying sound speed
as a nonconvex localization optimization problem which can
be solved via the penalty convex-concave procedure (PCCP).
We conducted a shallow water test in Qiandao Lake and a
deep sea trial in the South China Sea to find that the final
mobile node root-mean-square (RMS) localization error of
our algorithm is only 1.44 m (with differential GPS as the
true-value reference). Throughout these tests, the proposed
approach outperformed other state-of-the-art methods under
real-world conditions.

The rest of this paper is organized as follows. The system
model is presented in Section II. In Section III, we describe
the proposed localization algorithm including its general
architecture and detailed implementation. Field test results
(both shallow water and deep sea) are presented in Section V,

followed by concluding remarks and a discussion on future
research directions in Section VI.

II. SYSTEM MODEL
Consider a synchronized UWSN with Na anchor nodes
which have known locations, as well as mobile nodes with
unknown locations in a three-dimensional underwater space.
No three anchor nodes are collinear. Without loss of general-
ity, we focus on localizing only one mobile node in a given
time period. Denote ui =

{
uxi uyi uzi

}
, i ∈ {1, 2, · · ·Na} as

the position of the i-th anchor node, and v =
{
vx vy vz

}
as

the position of the mobile node. Assume that the mobile node
is equipped with a pressure sensor, so vz can be obtained from
the pressure reading. The goal of this work is to estimate vx
and vy.

FIGURE 1. Localization scenario.

As shown in Fig. 1, we rely on one-way packet broad-
casting from the neighboring anchor nodes to the mobile
node. Assume that there are L messages being sent from the
neighboring anchor node Ai to the mobile node B during the
localization procedure.

For the k-th packet transmission, anchor node Ai broad-
casts its localization message at time Tik . Node B receives
this localization message at time Rik and obtains vzk at Rik
from the pressure sensor. Therefore, after the k-th message is
broadcasting, node B has obtained the localization informa-
tion

{
Tik ,Rik , uxi, uyi, uzi, vzk

}
. The measured transmission

time and distance for the k-th message from the neighboring
anchor node Ai to node B can then be calculated as follows.

tik = Rik − Tik , (1)

and

rik = f (C (z), tik), (2)

where C(z) is the acoustic velocity, which is a function of the
depth. Using a realistic function, C(z), instead of a constant
velocity can help to improve the localization accuracy.

The distance between the mobile node and its neighboring
anchor node can also be expressed as the norm of the coor-
dinate difference between two nodes based on the geometric
relationship:

rik = ‖vk − ui‖, k = 1, 2, . . . ,Na. (3)
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The localization problem can be modeled as the following
optimization problem.

vk = arg min
vk∈R3

Na∑
i=1

(f (C (z), tik)− ‖vk − ui‖)2 (4)

We attempt to localize the mobile node by solving Eq. (4)
using the anchor locations, timestamp information, depth
sensor information, and acoustic velocity profile.

III. LOCALIZATION ALGORITHM
A. OVERVIEW
In this section, we propose a novel localization algorithm for
UWSN mobile nodes, called ‘‘TA-PCCP-RT’’. ‘‘TA’’ repre-
sents time alignment; a Kalman filter is used to align the
different time instants at which the mobile node receives
messages from different anchor nodes. ‘‘PCCP’’ represents
the penalty convex-concave procedure, which is used to solve
the localization optimization problem. ‘‘RT’’ represents the
ray tracing technique based on Snell’s law, which is used to
remove the ray bending error.

FIGURE 2. Flow chart of TA-PCCP-RC.

The TA-PCCP-RT localization algorithm works in three
stages, as shown in Fig. 2. The first stage involves data
collection and time delay calculation using Eq. (1). In this
stage, the anchor nodes broadcast their locations and transmit
timestamps after receiving a localization request from the
mobile mode. The mobile node stores the information of the
anchor nodes and records the receiving time and its depth
when receiving any message from a neighbouring anchor
node. The location of the previous cycle is also calculated
in the current message exchange cycle. Node localization
is possible when messages from more than two neighbor-
ing anchor nodes have been collected properly. Generally
speaking, localization accuracy can be improved substan-
tially when messages from four or more neighboring anchor
nodes have been collected properly. Here, ‘‘properly’’ means
that the received messages have not suffered from multipath
interference.

The second stage involves TA-aided localization. The dis-
tance between different anchor nodes and the mobile node
are different. Even if the anchor nodes transmit at the same

time, their respective messages will reach the mobile node at
different time points. The mobile node moves across different
locations when receiving these messages. Time alignment is
necessary to use these messages to localize the mobile node
in a given instant; the output of the first stage (TA) thus serves
as the input in the second stage. There are three steps in
this stage. First, the time delays are aligned by a Kalman
filter; second, ray tracing is employed to compensate for
sound ray refraction to obtain accurate distance information;
and finally, PCCP is deployed for localization computation.
We also calculate the time delay using the locations from the
last step (ray tracing) for enhanced accuracy. This inversely
calculated time delay can be used to correct the state of the
Kalman filter and improve the accuracy of the subsequent
prediction.

The last stage involves feedback and output. The steps
of the second and third stages are described in detail
below.

B. LOCALIZATION PROCEDURE
1) STEP1, TIME DELAY ALIGNMENT
As shown in Fig. 1, as opposed to localizing a static node
in UWSNs, there is a model error caused by the different
locations of the mobile node when it receives timestamps
from different anchor nodes within one localization period.
This error could be easily eliminated if the velocity of the
mobile node is known. In reality, the mobile node may not
be equipped with an INS. In this study, we were able to
rely only on the locations of anchor nodes and the times-
tamps for receipt and transmission, so we used a Kalman
filter to achieve time alignment. The Kalman filter can also
eliminate severe time delay errors and filter out noise. The
filter performs well if the object model is accurate and the
statistics of parameters are relatively stable; it also works well
in real-time and requires relatively little storage. Kalmanfilter
performs well if the object model is accurate and the statistics
of parameters are relatively stable, and it is simple to work in
real time and requires a small storage only.

The Kalman filter works in a two-step process: the pre-
diction step and the correction step [12]. In the first step,
the filter produces estimates of the current state variables.
In the second step, the filter uses the measurements to modify
the prediction model.

The movement velocity of a buoy node, one of the
most common types of mobile nodes in a UWN, is usu-
ally less than 1 m/s. Given maneuver-based movement,
the speed of a mobile AUV nodes typically ranges from
1 to 4 m/s. We selected the Constant Acceleration (CA)
model and directly established the basic equation for filtering
accordingly [13].

Time is discretized. We use subscript k to refer to time
instant tk . We denote by Tk =

[
tk , ṫk , ẗk

]
the estimator at tk ,

8k,k−1 the state transition model from tk−1 to tk , 0k−1 the
control-input model, wk−1 the time delay noise sequences,
and Hk as the measurement model, respectively.
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The iterative procedure of the Kalman filter is given as
follows [13]. One-step state prediction is given by:

∧

Tk/k−1 = 8k,k−1
∧

Tk−1. (5)

The mean square error of one-step prediction is calculated as
follows:

Pk/k−1 = 8k,k−1Pk−18T
k,k−1 + 0k−1Qk−10

T
k−1. (6)

Filtering gain

Kk = Pk/k−1HT
k (HkPk/k−1HT

k + Rk )−1. (7)

State estimation
∧

Tk =
∧

Tk/k−1 +Kk (Zk −Hk
∧

Tk/k−1). (8)

The estimated mean square error can be derived as follows:

Pk = (I−KkHk )Pk/k−1(I−KkHk )T +KkRkKT
k (9)

where Hk =
[
1 0 0

]
, 8k,k−1 =

 1 T T 2/2
0 1 T
0 0 1

, and

0k−1 =
[
T 3/6 T 2/2 T

]T .
The state equation for time delay filtering is

Tk = 8k,k−1Tk−1 + 0k−1wk−1, (10)

where wk−1 are the time delay noise sequence.
The measurement for time delay filtering is

zk = HkTk + vk , (11)

where zk is the measured value of the time delay from the tar-
get to the transponder, and vk is the sequence of the time delay
measurement noise. Time delay can be accurately normalized
to the same sampling time to compensate for the localization
error introduced by target movement using Eq. (10).
Setting the initial values is an important issue in Kalman

filter design. This may result in significant initial localization
errors or outliers in UWSN, however, given the complicated
underwater acoustic channels and node mobility. Although a
certain level of fault tolerance is allowed by the Kalman filter
as the filter converges gradually after a period of time, any
error in the initial value negatively impacts the initial filtering
effect. A larger error indicates poor initial filtering effect and
less accurate estimated value [14].
Another approach is to obtain the time delay data within

a specific duration before applying the Kalman filter [15].
This involves assigning the average value of the time delays
of various branches to t0, then using time delay data in this
period to estimate the matrix of the initial covariance P0. This
requires information exchange over a very long time period
for initial value selection, making the cost too high for any
UWNwith a low data transmission rate and long propagation
delay.
As a departure from the literature, in this work, we deter-

mine the initial filtering value by judging the quality of time
delay measurements. Considering the sparse characteristics

of the UWSN, it is difficult to find a node surrounded by
many anchor nodes. In the references involving real UWSN
tests [8], [10], [16], [17], the number of the neighboring
anchor nodes is typically between four and five while the
distance and propagation delay between nodes varies sub-
stantially, unlike land WSNs. The four anchor nodes with the
closest timestamps are always selected for localization, which
reduces the difference in received signals arising from dis-
tance variations when the information packets from multiple
anchor nodes are received.
The anchor nodes are divided into two sets, Na1 and Na2,

during the initial filtering value selection procedure. SetNa1
contains the four anchor nodes with the closest time delay as
detected by the mobile node to be localized; Na2 is the set
containing remaining anchor nodes.
The time delay filter of the anchor nodes inNa1 is recorded

as tjk (j = 1, 2, 3, 4). The range of Na1 can be calculated
using the constant sound speed:

rjk = Ctjk (j = 1, 2, 3, 4) . (12)

Three different locations of the node, vkj (j = 1, 2, 3), can
be preliminarily determined by Eq. (4) with three different
combinations fromNa1. The standard deviation of these three
locations σk can be calculated accordingly.

If there are two neighboring σk no larger than a preset
thresholdDTp, the time delay calculated from the timestamps
directly serves as the initial value of the time delay filter for
anchor nodes in Na1:

Tjk =
[
tjk , (tjk − tj(k−1))

/
T , 0

]
, (13)

Pk = 1/
3

4∑
j=1

(
tjk − tk0

)2
, (14)

tk0 = 1/
4

4∑
j=1

tkj, j = 1, 2, 3, 4. (15)

The target node location, vk , can simultaneously be calcu-
lated by according to the time delay of Na1 by ray tracing.

The locations, vk and vk−1, can then be calculated by the
ray tracing techniques with the SVP, time delay and coor-
dinates from Na1. Then, t̃mk , t̃m(k−1), the propagation time
delay from the mobile node to the anchor nodes inNa2, is re-
calculated by ray tracing techniques with vk , vk−1, using the
anchor nodes coordinates and SVP. This time delay serves
as the initial time delay filtering value corresponding to the
anchor nodes in Na2:

Tmk =
[̃
tmk , (̃tmk − t̃m(k−1))

/
T , 0

]
. (16)

This specific Kalman filter initial value selection
Algorithm 1 is deployed for anchor nodes newly detected in
the subsequent localization procedure. The initial time delay
filer value is determined in the same manner as anchor nodes
in Na2.
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Algorithm 1 Kalman Filter Initialization
Input: time delay, average sound velocity C , sound

speed profile C(z), coordinate of anchor nodes,
position error threshold DT p

Output: Tik , Pk
Flag = true;
while Flag do

if Nanchor l 4 then
Counter = 0; continue;

end
else

Select the 4 anchor nodes with the closest time
delay to constitute Na1, and the rest anchor
nodes constitute Na2;
Calculate the range rjk by (12);
Solve vkj by (4);
Calculate σk ;
if σk ≤ DTp then

Counter = Counter + 1;
end
else

Counter = 0;
end
if Counter = 2 then

For set Na1, set the initial value Tjk , Pk , tk0
as (13)-(15);
Calculate the location vk , vk−1 by
information from Na1;
For set Na2, re-calculate the time delay
t̃mk , t̃m(k−1);
set the initial value Tmk as (16);
Flag = false;
Break;

end
end

end
return Tik , Pk ;

2) STEP 2, RANGE CALCULATION WITH RAY TRACING
Denote the sound velocity vertical section function as C(z),
where z is the depth with the acoustic source as the reference
point. The function of the grazing angle changing with depth
is a (z|α0), where α0 is the initial grazing angle of the sound
ray starting from the transmitter.

Denote the depths of the transmitting node and receiv-
ing node by z0 and z1, respectively. The horizontal distance
between the acoustic source to the target is:

x=

z1∫
z0

dz
tan (α (z|a0))

=cosα0

z1∫
z0

dz√
(C0/C (z))2 − cos2 (α0)

.

(17)

If the depth of the working water area is Z , the sound veloc-
ity profile function of the area is C(z). As shown in Fig. 3,

FIGURE 3. Ray tracing algorithm.

the depth range is divided into N connected water layers
comprised of z1, z2, . . . , zN . The acoustic ray is assumed to
propagate in a constant gradient manner in each layer. The
acoustic ray propagation between different layers follows the
Snell’s law,which can be expressed as follows:

cosαl
Cl
=

cosα0
C0
= p, (18)

where αl is the grazing angle, Cl is the acoustic velocity, and
α0 andC0 are the values corresponding to outgoing sound ray
location.

If the initial grazing angle α0 and the vertical layering dis-
tribution of the acoustic velocity C(z) are known, the grazing
angle of the sound ray at any depth can be obtained according
to the Snell’s law, and thus the acoustic wave’s propagation
direction at any depth can be obtained. Different α can be
obtained from different initial grazing angles; these values
correspond to different sound ray traces.

Assume that the (l + 1)th layer is located between
depth zl and zl+1, with grazing angle distribution of αl and
αl+1, and horizontal propagation distance of xl+1. The sound
ray is a circular arc with a curvature of Fl , and the gradient is
approximately constant in each layer. The acoustic velocity
gradient in layer l is defined as gl :

gl =
Cl+1 − Cl
zl+1 − zl

. (19)

The curvature is given by

Fl =
−1
pgl

. (20)

The horizontal propagation distance and propagation time
delay in each layer are, respectively,

xl = Fl (sinαl − sinαl−1) =

∣∣∣∣ C0

cosα0gl
(sinαl − sinαl−1)

∣∣∣∣,
(21)

and

tl =
(αl−1 − αl)

pg2l1zl
ln
(

Cl
Cl−1

)
. (22)

The final horizontal range and propagation time delay of
the acoustic transmitting path are

x =
∑

xl, (23)
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and

t =
∑

tl . (24)

Once the propagation time and SVP are known, the bisec-
tion method can be applied to search the grazing angle and
accurately calculate the distance of the acoustic transmitting
path.

3) STEP 3, LOCALIZATION USING PCCP
It is difficult to obtain the global optimal solution directly
because the localization objective function of Eq. (4) is non-
convex,so we focus on obtaining an approximate solution.
In 2004, Cheung et al. [18] proposed a semidefinite relaxation
method to obtain an accurate approximate global solution.
In 2008, in response to a series of issues regarding the least-
square solution proposed in 2004, Beck [19] converted the
SR least-square structure into generalized trust region sub-
problems to solve the basic localization equation. In 2016,
Darya andWu-Sheng [20] discovered that such problems can
be solved by the PCCP approach. Localization accuracy can
be improved significantly by PCCP compared to SR least-
square. A full convergence analysis of PCCP can be found in
our references [21].

We apply the PCCP method here to solve the localization
problem. PCCP combines convex optimization and local opti-
mization by converting a nonconvex optimization problem
into an approximate optimization problem. The solution for
the approximate convex optimization serves as the initial
value of the local optimization algorithm for solving the
original nonconvex problem.

The objective function F(vk ) in Eq. (4) can be expressed
as follows

F(vk ) = NavkT vk − 2vkT
Na∑
i=1

uik

− 2
Na∑
i=1

f (C(z), tik ) ‖vk − uik‖

= f (vk )− g(vk ), (25)

where

f (vk ) = NavkT vk − 2vkT
Na∑
i=1

uik , (26)

and

g(vk ) = 2
Na∑
i=1

f (C(z), tik ) ‖vk − uik‖ . (27)

where f (vk ) and g(vk ) are convex functions. The localiza-
tion problem in Eq. (4) is expressed as a target function of a
standard difference of convex (DC) form F(x) = f (x)−g(x).
The PCCP method can be used to solve such problems via
affine approximation g(x) at the initial value x(q):

ĝ(x, x(q)) = g(x(q))+∇g(x(q))T (x− x(q)). (28)

F(x) = f (x)−g(x) becomes a convex function, then affine
approximation is performed for the constraint conditions. The
DC structural optimization problem is approximated as a con-
vex optimization problem for obtaining the local minimum
x(q+1). Circulative iteration is performed for x(q) = x(q+1)

until the target function falls below the threshold.
The error bound of the range estimation, which depends

on the time delay estimation error and the sound speed error,
is δik . The constraints are:{

‖vk − uik‖ ≤ f (C(z), tik )+ δik ,
f (C(z), tik )− δik ≤ ‖vk − uik‖.

(29)

After the affine approximation for both the objective func-
tion g(x) and the constraints, and adding the constraint vari-
able and penalty function, the localization problem can be
formulated as a PCCP problem:

min
vk ,hik ,ĥik

vkT vk − 2vkT (
1
Na

Na∑
i=1

uik

+
1
Na

Na∑
i=1

f (C(z),∂
∥∥∥vk (l) − uik∥∥∥)

+ gk (q)
Na∑
i=1

(hik + ĥik )

s. t. :
∥∥∥vk (q) − uik∥∥∥− f (C(z), tik )− δik ≤ hik ,
−

∥∥∥vk (q) − uik∥∥∥− ∂∥∥∥vk (q) − uik∥∥∥T (vk − vk (q))
+ f (C(z), tik )− δik ≤ ĥik ,

hik ≥ 0, ĥik ≥ 0, ∀i = 1, 2, . . . ,Na. (30)

Algorithm 2 yields the solution to the PCCP problem.

4) STEP 4, INVERSE COMPUTATION OF TIME DELAY
The inverse time delay computation uses the relatively accu-
rate mobile node location obtained in Step 3 and the inverse
ray-tracing time delay solution to correct the state of the
Kalman filter, which further enhances the accuracy of the sub-
sequent prediction. The bisection method and Snell’s law are
applicable when the positions of the mobile node and anchor
nodes are known. The time delay obtained from Eq. (24) is
the propagation time delay of the inverse sound ray tracing
solution when the horizontal distance obtained from Eq. (23)
is equal to the horizontal distance obtained from the actual
coordinates.

C. FEEDBACK AND OUTPUT
In addition to the direct path signal, the underwater acoustic
channel (UWAC) consists of groups of non-direct paths [22].
The multipath environment comprises large time delay and
small time delay paths. If the delay difference from the direct
path is below the system resolution, the paths are small time
delay paths; otherwise, they are large time delay paths. Large
time delay paths typically do not influence the processing
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Algorithm 2 PCCP Localization
Input: Node location uik , time delays tik , sound velocity

profile C(z), initial value of location vk (0),
maximum number of iterations lmax, initial
penalty factor gk (0), maximum penalty factor
gk max, growth coefficient of penalty factor µ,
constraint boundary δik , threshold DTpccp

Output: vk
while Flag do

Calculate the range rik =
∫
z

dz
tan(α(z|a0))

by ray tracing

using tik and sound velocity profile C(z);
if q ≤ qmax then

Establish a convex optimization function by
using (30);
Obtain the variable vk (q), hik (q), ĥ

(q)
ik ;

Update the penalty factor;
Update the location vk = vk (q);
if q ≥ 1 and

∥∥vk (q) − vk (q−1)∥∥ ≤ DTpccp then
Break;

end
q = q+ 1;

end
end
Return vk ;

of the direct path. The amplitude of the direct path sig-
nal commonly is not the highest among the multiple paths.
The multipath characteristics cause estimation errors ranging
from several ms to several hundreds of ms [23]. They can
substantially degrade the overall ranging accuracy and thus
the localization performance; they may additionally lead to
Kalman filter divergence [24]. Large measurement errors in
the filter also affect the subsequent data. In fact, errors in the
filter output data may be more severe than those in the source
data, particularly when the underwater acoustic channel is
subjected to significant interference or sudden changes.

In this study, we designed a judgment method for feed-
back and output to replace the direct output feedback of the
Kalman filter. It is a two-step process. First, the quality of the
input data (time delays before theKalman filter) and the filter-
ing output data is judged.When the latest input data is of high
quality while the preorder input data has poor quality, there
are significant differences between the localization results by
the time delayswith andwithout the filter; the latest input data
should be used and the current Kalman filter output should be
discarded (i.e., the Kalman filter should be restarted). Data
quality is judged in the same way as that data are selected
when determining the initial filter parameters.

Second, the high-accuracy node position information is
gathered and the ray tracing inverse solution time delay is
substituted for the inverse computation time delay. As dis-
cussed above, this time delay value replaces the direct output
of Kalman filter to feedback in order to correct the Kalman

filter state and enhance the accuracy of the subsequent
prediction.

We believe the TA-PCCP-RT localization algorithm can
significantly improve the localization accuracy for UWSN
mobile nodes. Our field test results validate its performance,
as discussed below.

IV. BOUND DISCUSSION
This section discusses our derivation of the upper and lower
bounds for the localization algorithm. The total error is con-
sists of systematic error and random error. Systematic error in
the estimator of vk is caused by the ray bending and the time
delay misalignment due to the node’s mobility. The random
error is mainly caused by the time delay estimation. Here,
we denote εrms as the total error, σr as the random error, εt as
the systematic error caused by the nodemobility, and εc as the
systematic error caused by the ray bending. We consider the
upper bound of vk to have both systematic error and random
error.

ε2rms = σ
2
r + ε

2
t + ε

2
c (31)

Equation (4) can be rewritten as follows:

rik2 = ‖vk − ui‖2, k = 1, 2, . . . ,Na. (32)

rikdrik = (vk − ui)T dvk , k = 1, 2, . . . ,Na. (33)

dvk = AB (34)

where,

A =


(vk − u1)T

(vk − u2)T
...

(vk − uNa)T


−1

B =


r1kdr1k
r2kdr2k
...

rNakdrNak


Then the covariance matrix of vk is

Dvk = ADBAT (35)

where, DB is the covariance matrix of B,

DB = diag{σ 2
r , σ

2
r , . . . , σ

2
r }

The random error σ 2
r are diagonal elements of the covariance

matrix Dvk .
For any pair of nodes, we can define the variable equivalent

sound speed c̄ as the range divided by the traveling time. For
any given sound speed profile and node pair, then:

rik = f (C (z), tik) = c̄ik tik (36)

here, c̄ can be calculated by ray tracing.
In most UWSNs localization scenarios, 1500m/s is

assumed to be the sound speed if the compensation for the
ray bending is omitted.

drik = (c̄ik − 1500)tik = 1cik tik ≤ max
i
{|1cik |}tik (37)
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Plugging Eq. (37) into Eq. (34)yields the following:

εc ≤ |A||B| ≤ |A|B1

B1 = [r1k t1k , r2k t2k , . . . , rNak tNak ]Tmax
i,j
{|1cik |} (38)

For the systematic error caused by the time delay misalign-
ment, In the k th localization period, we assume that anchor
node i and j are the nearest and farthest anchor node to the
mobile node respectively, the mobile node locates at position
vik and vjk when the signal from anchor node i and j arrived
respectively. Taking the vik as the reference, the range error
drjk for anchor node j caused by mobility is no greater than
the range between vik and vjk, we denote it as 1rk ,

drik ≤ 1rk , i = 1, 2, . . . ,Na (39)

Plugging Eq. (39) into Eq. (34)yields:

εt ≤ |A||B| ≤ |A|B2

B2 = [r1k , r2k , . . . , rNak ]T1rk (40)

We can determine the upper bound of vk by plugging
Eqs. (35), (38) and (40) into Eq. (31).

The best scenario for vk estimation is one in which there
is neither ray bending nor the time delay misalignment, but
only random error. In this scenario, the sound speed C(z) can
be regarded as a constant C , the localization problem Eq. (4)
can be replaced with Eq. (41), and we can determine the
lower bound of Eq. (41) by deriving the Cramer-Rao lower
bound (CRLB) for vk.

vk = arg min
vk∈R3

Na∑
i=1

(Ctik − ‖vk − ui‖)2 (41)

V. FIELD TEST EVALUATION
In order to investigate the localization accuracy of the pro-
posed algorithm, we conducted two field experiments: a shal-
lowwater experiment and a deep sea experiment. Our method
yielded different results between the sets of experiments due
to differences in source data and propagation channel quality.
We used MATLAB and the CVX toolbox [25] to process the
data.

A. SHALLOW WATER EXPERIMENT
The shallow water test was conducted in Qiandao Lake,
China, at a depth of about 50 m. Four anchor nodes were laid
at the bottom of the lake to form a square with side length
of about 400 m. The mobile node to be localized was an
AUV. All nodes were synchronized. The anchor nodes were
laid about 15 m above the lake bottom and the mobile node
was free to move at a depth of 2 m below the water surface.
The method established by [26] was used to determine the
positions of the anchor nodes in advance. The settings are
given in Table 1. The AUV was equipped with an inertial
navigation system; the inertial navigation results were used
to measure the localization accuracy.

Fig. 4 shows the acoustic velocity profile we measured
on-site, which ranged from 1449 m/s to 1507 m/s. After the

TABLE 1. Coordinates of anchor nodes in the lake experiment (reference
to anchor A).

FIGURE 4. The sound velocity profile of the lake experiment.

reception of the localization request issued by the mobile
node, the anchor nodes sent localization messages at an inter-
val of 5 s. The mobile node extracted the timestamps after
receiving the broadcast messages of the anchor nodes and
calculated the bi-directional information interaction propaga-
tion time as shown in Fig. 5. The stars labeled ‘r-’ in Fig. 5
represent the propagation time directly calculated from the
timestamp; a1 to a4 represent the first to fourth anchor nodes,
respectively. The points labeled ‘f-’ represent the propagation
time delay output by the proposed method. The proposed
method not only eliminated major error points but also output
smoother time delays compared to the original time delays,
as shown in Fig. 5(b), which is an enlarged view of the
rectangular area in Fig. 5 (a).

To display the localization results more clearly, the blue
points in Fig. 6 were drawn to represent the difference
in propagation time calculated directly from the times-
tamps while the red points represent the difference in
propagation time delay output by the proposed method.
The majority of errors arising from small multipath char-
acteristics were eliminated after applying the proposed
method.

When there was no acoustic velocity compensation during
data processing, the acoustic velocity was set to the empir-
ical value (1500 m/s) and substituted into the formula for
computation. Figure 7 shows the localization trajectory of the
mobile node in this scenario. The four small black squares
in Fig. 7 (a) represent the laid anchor nodes, green points
and blue points are the localization results of the JSL method
and PCCP algorithm, respectively, and red points are the
positions of the final mobile node output by the TA-PCCP
with ray tracing. Figure 7 (b) shows an enlarged view of the
rectangular area of Fig.7 (a). Table 2 lists the mobile node
localization results obtained by various processing methods.
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FIGURE 5. Delay calculated from timestamps of the lake experiment
(‘r’: raw data; ‘f’: final data after processing). (a) Delay. (b) Large view
of (a).

As shown in Fig. 7,time alignment effectively eliminated
the timestamp measurement errors arising from multipath
effects. As shown in Table 2, the localization errors of PCCP
decreased from 31.09 m to 10.93 m. The acoustic velocity
compensation process decreased the localization errors of
PCCP to 29.03 m.The localization results deviate from the
actual position in the absence of ray tracing after acoustic
velocity compensation in the data processed with TA. After
acoustic velocity correction, the final localization RMS error
of PCCP decreased to 1.46 m. The Qiandao Lake test site is
a small area with a low water depth (50 m) characterized by
severe multipath characteristics. To this effect, the acoustic
velocity correction did not exert much effect on the data
not processed with time alignment. The acoustic velocity
correction, however, significantly improved the localization
accuracy after time alignment.

As shown in Fig. 7 (a),most of JSL data are consistent
with the INS-reference, which indicates that a majority of the
coarse data is filtered by IMM filter. However, there are still
two serious deviations with the INS-reference in Fig. 7 (a),
the detail of one deviations was shown in Fig. 7 (b). And As
shown in Fig. 7 and Fig. 5 they are caused by the continuous
time-delay estimation error due to the severe multipaths,
which leads to the failure of IMM filter. The final RMS
error of JSL is 5.17m, which is much bigger than that of
TA-PCCP-RT. The experiment in the shallow water shows
that TA-PCCP-RT has a better performance than JSL even
when the trial data has a poor quality.

FIGURE 6. Time delay difference of the lake experiment. (a) Anchor 1.
(b) Anchor 2. (c) Anchor 3. (d) Anchor 4.

B. DEEP SEA EXPERIMENT
We conducted our deep sea test in the South China Sea at a
test area about 3720 m deep. We placed four anchor nodes in
a square configuration about 3000 m in length and laid the
mobile node at the sea bottom. The anchor nodes were fixed
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FIGURE 7. Localization results in the lake experiment. (a) Localization
results. (b) Large view of (a).

TABLE 2. Localization errors in the lake experiment.

TABLE 3. Coordinates of anchor nodes in the deep sea experiment
(reference to anchor A).

about 100 m above the sea bottom. Method in [26] was used
to determine the positions of the anchor nodes in advance.
The settings are given in Table 3.

The mobile nodes to be positioned were installed in an iron
cage which was moved across the back side of the test vessel
with a winch, as shown in Fig. 8, with a water entry depth of
10 m. The GPS we used has a wide area differential signal
with < 1 m accuracy.

We observed a three-dimensional positional deviation 1X
from the center of the GPS antenna to the center of the
transducer of the mobile nodes to be localized, as shown

FIGURE 8. Installation and laying of the mobile node in the deep sea
experiment.

FIGURE 9. Location transformation of the GPS reference in the deep sea
experiment.

FIGURE 10. The sound velocity profile of the deep sea experiment.

in Fig. 9. By (42), the GPS antenna location of the test vessel
XG was converted into the GPS location information of the
transducer of the mobile nodes to be localized XM , as well as
the heading/attitude information. The locations of the mobile
node as-calculated according to network localization and the
GPS position were compared to determine the localization
accuracy.

XM = XG +9LS1X, (42)

where 9LS is the rotation matrix from the vessel coordinate
to the GPS coordinate, given by Eq. (43) shown at the top of
the next page.

where ϕ′ = arcsin(sinϕ/cos κ), A is the heading of vessel,
ϕ is the pitch of vessel, and κ is the roll of vessel.

Figure 10 shows the acoustic velocity profile measured
at the testing site. The sound velocity profile conformed to
the typical distribution characteristics of deep-sea acoustic
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9LS =

 cos κ cosA cos κ sinA sin κ
− cosϕ′ sinA− sinϕ′ sin κ cosA cosϕ′ cosA− sinϕ′ sin κ sinA sinϕ′ cos κ
sinϕ′ sinA− cosϕ′ sin κ cosA − sinϕ′ cosA− cosϕ′ sin κ sinA cosϕ′ cos κ

 (43)

FIGURE 11. Delay between the mobile node and anchor nodes in the
deep sea experiment (‘r’: raw data; ‘f’: final data after processing).
(a) Delay. (b) Large view of (a).

velocity with a sound channel axis located at about 1000 m.
The acoustic velocity ranged from 1484 m/s to 1536 m/s.

The anchor node sent localization packets at an interval
of 10 s. The mobile node extracted the timestamps after
receiving the packets from the anchor nodes and calculated
the propagation delays, as shown in Fig. 11. The points in the
figure represent the propagation time calculated directly from
the timestamp and the curve represents the propagation time
delay output by the proposed method. Unlike the lake exper-
iment, the original time delay was of high quality without
significant errors arising from multipath interference. There
were a fewmissing points due to communication link failures.

Figure 12 shows the final localization results of the mobile
node, where black points represent the location reference
gained by GPS, blue points represent the location of the
mobile node calculated by JSL, and red points represent
the location of the mobile node calculated by PCCP with
time alignment and sound velocity compensation. As shown
in Fig. 12(a), both stes of localization results are close to
the reference. Fig. 12(b) shows an enlarged image of the
rectangular area in Fig. 12(a), where the TA-PCCP-RT results
are much closer to the GPS reference than the JSL results.

FIGURE 12. Localization results of the mobile node in the deep sea
experiment. (a) Localization results. (b) Large view of (a).

FIGURE 13. Localization error comparison between JSL and PCCP in the
deep sea experiment.

Fig. 13 and Table 4 shows the final RMS errors obtained
via different processing methods. The errors arising from
acoustic velocity were significantly greater than those from
unaligned timestamps in the absence of acoustic velocity
correction. The anchor nodes were laid at the sea bottom
while the mobile nodes were operated near the sea surface,
as described above; the depth between the mobile and anchor
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TABLE 4. Localization errors of various processing methods in deep sea
experiment.

nodes spanned about 3600m, so acoustic velocity errors were
a major source of error. In addition, the raw time delay were
of high quality, so timestamp alignment did not significantly
affect the localization accuracy. Sound ray tracing reduced
the localization error of PCCP from 37.73 m to 2.38 m.
As shown in Table 4, the localization error for JSL

and TA-PCCP-RT are 2.98 m and 1.44 m respectively,
the TA-PCCP-RT shows a significant improvement in
accuracy. Unlike the shallow water experiment results, JSL
did not deviate from the INS-reference in the deep water
experiment as there were few outliers in the time-delay
estimation.

VI. CONCLUSION
Localization for mobile nodes is a challenging issue inher-
ent to UWSNs. Range errors lead to significant localization
errors due to fluctuations in sound transmission speed. Errors
originate in two main sources: different locations of the
mobile node as it receives timestamps from different anchor
nodes in the same localization period, and ray bending. This
paper presented a new mobile node localization framework
which includes Kalman filter based time alignment, sound
ray tracing, and nonconvex optimization tools. The proposed
method includes aligning the timestamps from various neigh-
boring anchor nodes via a Kalman filter followed by a special
initialization; a feedback controller then rapidly initiates the
Kalman filter and inhibits divergence. Sound ray tracing
has been used to determine the accurate distance between
the neighboring anchor nodes and the mobile nodes, and
to shorten the propagation time between nodes based on
distance.

We solved the nonconvex optimization network localiza-
tion problem using PCCP, and found that the combination
of time alignment and sound ray tracing yields favorable
PCCP solutions. Shallow water experiments revealed that
TAPCCP-RT outperforms JSL in the case of severemultipath.
Deep sea experimental results (3700 m depth, with differen-
tial GPS as true-value reference) showed final TA-PCCP-RT
localization errors of 1.44 m only and JSL results of 2.98 m,;
in other words, the localization errors of TA-PCCP-RT are
48.3% of that of JSL.
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