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a b s t r a c t

Average consensus algorithms have attracted considerable attention in recent years. Communication
impairments make the network suffer from random link failures. In this paper, for networks with
heterogeneous random link failures, we investigate the convergence time of the average consensus
problem and consider the impacts of event-triggered communication on the consensus performances.
We introduce (α, γ )-convergence time to evaluate how fast the algorithm converges in probability γ

to the value at most α away from the average. And we derive the dynamical range of the consensus
parameter that guarantees the convergence, together with the upper and lower bounds of the closed-
form expression for (α, γ )-convergence time. Then, the impact of the event-trigger communication on
the convergence accuracy is analyzed, and an upper bound of finite (α, γ )-convergence time is further
derived, which can be employed to calculate the triggering parameters with guaranteed convergence
time. Finally, extensive simulations are conducted to verify the results.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Distributed algorithms to achieve average consensus in net-
orks have been widely investigated (Carli & Zampieri, 2014;
ranceschelli & Gasparri, 2019; Olfati-Saber & Murray, 2004; Ren,
eard, & Atkins, 2007; Schenato & Fiorentin, 2011; Xiao & Boyd,
004; Xie & Lin, 2017; Xie & Wang, 2007). For average consensus
n static (i.e., time-invariant, fixed) digraphs, Olfati-Saber and
urray (2004) and Xiao and Boyd (2004) justified that a balanced
nd strongly connected topology was necessary and sufficient
o guarantee convergence. Weight-balanced digraphs are essen-
ial in distributed averaging. In Rikos, Charalambous, and Had-
icostis (2014), Rikos et al. proposed distributed algorithms over
tatic topologies to solve the weight balancing problem when the
eights were arbitrary non-negative real numbers. Given a gen-
ral strongly connected digraph, Gharesifard and Cortés (2012)
onsidered how to find corresponding weight-balanced digraphs,
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and proposed two algorithms to achieve this goal by selecting the
out-edge weights to balance the in-degrees and out-degrees.

Randomized designed network communication protocol, in-
terferences in wireless sensor networks and ad hoc networks,
imperfect fading channels, and etc., make the topology (con-
nectivity) vary with time. In these scenarios, it is desirable to
quantify the effects of randomness on the performance of average
consensus algorithms. To the best of our knowledge, the first
work on the average consensus over random networks is Hatano
and Mesbahi (2005), with several works followed in different
settings (Aysal, Yildiz, Sarwate, & Scaglione, 2009; Boyd, Ghosh,
Prabhakar, & Shah, 2006; Fagnani & Zampieri, 2007; Patter-
son, Bamieh, & El Abbadi, 2010; Pereira & Pagès-Zamora, 2010;
Tahbaz-Salehi & Jadbabaie, 2008, 2009). In Boyd et al. (2006),
Boyd et al. analyzed the averaging problem for an arbitrary
network graph with pairwise gossip constraints, and derived the
upper and lower bounds of the ϵ-averaging time, which was
depended on the second largest eigenvalue of a doubly stochastic
matrix. Pereira and Pagès-Zamora (2010) investigated the almost
sure convergence in the mean square sense for wireless sensor
networks with random asymmetric topologies, and analyzed the
mean square error (MSE) of the state in probabilistic term from
two different cases: links with equal and different probabilities of
connection. Aysal et al. (2009) studied an asynchronous broad-
casted gossiping algorithm to calculate the (possibly weighted)
average of the initial measurements of the nodes in the network,
and showed that the broadcast gossip algorithm converges almost

https://doi.org/10.1016/j.automatica.2021.109496
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urely to a consensus value, which was in expectation equal to the
esired average of initial measurements. Patterson et al. (2010)
efined the convergence in terms of the variance of deviation
rom the average, and derived the expressions for the mean
quare convergence rate in the asymptotic limits of a small failure
robability for large networks. In Fagnani and Zampieri (2007),
agnani and Zanpieri relaxed the requirement on symmetric
ommunication graph and focused on the probability consensus
nalysis of random protocols with homogeneous link failures.
hey derived conditions to achieve probability consensus, and
nalyzed the mean square performance of the normalized dis-
ance from the consensus. Tahbaz-Salehi and Jadbabaie (2009)
onsidered the convergence of consensus algorithms when the
nderlying graphs of the network were generated by an ergodic
nd stationary random process. They proved that the consensus
lgorithms converge almost surely, if and only if, the expected
raph of the network contains a directed spanning tree.
Event-triggered communication mechanism offers an oppor-

unity for improving efficiency while maintaining system per-
ormance (see, e.g., Dimarogonas, Frazzoli, & Johansson, 2012;
ing, Wang, Shen, & Wei, 2015; Seyboth, Dimarogonas, & Johans-
on, 2013; Yi, Yang, Wu, & Johansson, 2019 and the references
herein), and a recent overview on event-triggered consensus and
ontrol of multi-agent systems can be referred to in Nowzari,
arcia, and Cortés (2019). For networks of a single integrator
gent with or without communication delays, and networks of
ouble-integrator agents, Seyboth et al. (2013) presented a con-
rol strategy for multi-agent coordination with event-based
roadcasting. Ding et al. (2015) focused on the event-triggered
onsensus control problem for a class of discrete-time stochastic
ulti-agent systems with state-dependent noises. In Yi et al.

2019), an event-triggered consensus protocol for first-order
ontinuous-time multi-agent systems with input saturation was
onsidered, and there was no requirement of any prior knowledge
n the global network parameters. It should be pointed out
hat most of the existing works focus on the event-triggered
onsensus mechanism design for networks with deterministic
inks, where the randomness of links is neglected. We fill this gap
y studying the convergence time problem of event-triggered av-
rage consensus over random networks, which is more practical
iven the random behavior of communication links, particularly
n the wireless domain. When considering the event-triggered
verage consensus for a network with random link failures, the
ollowing open issues should be addressed carefully. Topologies
f networks with random link failures are relatively sparser, and
he introduction of the event-triggered communication will make
he topology even sparser, is it feasible to introduce the event-
riggered communication to those kinds of networks? If so, how
o quantify the impact of the event-triggered communication
n the consensus performances, and how to design the trigger-
ng function such that both the convergence and convergence
ccuracy can be guaranteed?
In this paper, inspired by Fagnani and Zampieri (2007) and

ahbaz-Salehi and Jadbabaie (2009), we investigate the average
onsensus over random networks with heterogeneous random
ink failures, and focus on the analysis of convergence efficiency.
e define a new notion of (α, γ )-convergence time, rather than

the ϵ-averaging time in Aysal et al. (2009) and Boyd et al. (2006),
to evaluate how fast the algorithm converges in probability γ to
he value at most α away from the average. The random network
e considered is a special case of those proposed in Fagnani and
ampieri (2007) and Tahbaz-Salehi and Jadbabaie (2009), and we
ry to derive an explicit result on the convergence time. More-
ver, Fagnani and Zampieri (2007) assumed the link probabilities
n the network to be homogeneous. Also, the prearranged net-

ork we considered is different from Pereira and Pagès-Zamora

2

(2010). We assume it to be connected undirected or strongly
connected directed, while the one in Pereira and Pagès-Zamora
(2010) was assumed to be fully connected, which may not al-
ways be satisfied in practice, especially for large-scale networks.
Furthermore, inspired by the existing event-triggered mechanism
for continuous-time cases in Seyboth et al. (2013), we further
study the event-triggered scenario to qualify the performance and
reveal the impact of the event-triggered mechanism.

The main contributions are listed as follows: (1) We provide
the average consensus model in networks with heterogeneous
random link failures, analyze the condition on consensus param-
eter for convergence, and derive the analytical expression of the
lower and upper bounds of (α, γ )-convergence time. (2) We con-
sider the impacts of event-triggered mechanism to the average
consensus with heterogeneous random link failures, derive the
upper bound of the steady mean square convergence error, and
the expression of the finite upper bound (α, γ )-convergence time.

The remainder of this paper is organized as follows. Section 2
introduces the basic notations and concepts. The problem formu-
lation is introduced in Section 3. Section 4 presents the analysis
of the convergence and the performance-based design of the
triggering parameters. Simulation results and concluding remarks
are given in Section 5 and Section 6, respectively.

2. Preliminaries

2.1. Notation

Let 1n and 0n be the vector consisting of n ones and zeros,
respectively. For a matrix A ∈ Rn×n, its transpose and spec-
tral radius are denoted by AT and ρ(A), respectively, while its
Euclidean-norm is denoted by ∥A∥ =

√
λmax(ATA), where λmax(A)

is the maximum eigenvalue of A. We use notation diag(ai) to
denote a diagonal matrix with ai being its (i, i)th entry. Matrix
A is row stochastic if it is non-negative and satisfies A1n =

1n. Moreover, A is doubly stochastic if both A and AT are row
stochastic. For a given vector x ∈ Rn, its cardinality and Euclidean
norm are denoted by |x| and ∥x∥, respectively. Symbols Pr{·}
and E[·] denote the probability and expectation, respectively. The
conditional expectation of X given Y is denoted by E

[
X |Y

]
. In is

the identity matrix with dimension n × n. For any real number
r , its ceiling and floor functions are denoted as ⌈r⌉ and ⌊r⌋,
respectively. Matrix Πn is denoted by 1n1T

n/n.

2.2. Graph theory

The information flow communicated among nodes of a fixed
network can be modeled by a digraph G = (V , E), where V =

{1, 2, . . . ,N} is the nonempty set of N nodes, and E =
{
(j, i) :

i, j ∈ V
}
denotes the directed edge set. A directed edge (j, i) ∈ E

means that node i can obtain information from node j. Let A =

[Aij] be the adjacency matrix of network G. If (j, i) ∈ E , one has
Aij = 1; otherwise Aij = 0. For i ̸= j, if (j, i) ∈ E implies (i, j) ∈ E ,
the graph is said to be undirected, and it is directed, otherwise.
A directed path in a digraph is an ordered sequence of nodes so
that any two consecutive vertices in the sequence are an edge
of the digraph. A digraph is strongly connected if, for any distinct
nodes i and j, there exists a directed path that connects them. The
in-degree and out-degree of node i are defined as di =

∑N
j=1 Aij

and doi =
∑N

j=1 Aji, respectively. A digraph is balanced if the in-
degree and out-degree are equal for all nodes. The in-neighbor
set of node i is denoted as Ni =

{
j ∈ V , j ̸= i, (j, i) ∈ E

}
.

The Laplacian matrix of a graph is defined as L = D − A, where
D = diag(di) is the in-degree matrix. For a connected graph, 0
is the simple eigenvalue of L with the associated eigenvector 1N ,
and the eigenvalues of matrix L can be ordered in the ascending
form as 0 =

⏐⏐λ (L)
⏐⏐ <

⏐⏐λ (L)
⏐⏐ ≤ · · · ≤

⏐⏐λ (L)
⏐⏐.
1 2 N



Z. Chen, L. Cai and C. Zhao Automatica 127 (2021) 109496

3

d
f

3
u

G
t
r
k
(

A

w
r
(

δ

H
δ
d
d∑
o
a

x

w
n
L
(

x

w

3

s
k
s
i

x

e
s
c

f

w
i
b

k

3

d

D
d
(

L
0

P

t
t

. Problem formulation

The average consensus in networks with heterogeneous ran-
om link failures and the event-triggered communication are
ormulated in this section.

.1. Average consensus over networks with heterogeneous link fail-
res

We consider the average consensus in a prearranged network
= (V , E) with heterogeneous random link failures, where

he adjacency and Laplacian matrices are denoted as A and L,
espectively. The random network caused by link failures at time
(k = 0, 1, 2, . . .) is denoted as G(k) =

(
V , E(k)

)
, and the

i, j)-entry of its adjacency matrix A(k) is written as

ij(k) = Aijδij(k), (1)

here δij(k) = 0 denotes the link failure from node j to i at k. In
andom network G(k), let 0 < pij ≤ 1 be the link probability of
j, i) ∈ E , and one has

ij(k) =

{
1, with pij,
0, with 1 − pij.

(2)

ere, we assume that for all k, l = 0, 1, 2, . . . and k ̸= l, δij(k),
ij(l) are independent and identically distributed (i.i.d.). The in-
egree and Laplacian matrices of G(k) are denoted by D(k) =

iag
(
di(k)

)
and L(k) = D(k) − A(k), respectively, where di(k) =

N
j=1 Aij(k). Moreover, the expected network Ḡ is defined as the

ne associated with the expected adjacency matrix Ā = E
[
A(k)

]
nd Laplacian matrix L̄ = E

[
L(k)

]
.

The update of state xi(k) for node i is designed as

i(k + 1) = xi(k) − µ
∑
j∈V

Aij(k)
(
xi(k) − xj(k)

)
, (3)

here µ > 0 is the parameter to weight the disagreement among
eighboring nodes and its design will be presented in Section 4.1.
et x(k) =

[
x1(k), . . . , xN (k)

]T, one can obtain the matrix form of
3) as

(k + 1) =
(
IN − µL(k)

)
x(k) ≜ W (k)x(k), (4)

here W (k) = IN − µL(k).

.2. Event-triggered communication over random networks

For node i (i ∈ V ), we use x̂i(k) to denote the latest broadcasted
tate, and kil to denote its lth triggering instant. Assume that for
∈ [kil, k

i
l+1), x̂i(k) = x̂i(kil) and node i keeps its in-neighbor’s

tate xj(k
j
l) as x̂j(k) before a new information reception. Then, (3)

s changed into

i(k + 1) = xi(k) − µ
∑
j∈V

Aij(k)
(
x̂i(k) − x̂j(k)

)
. (5)

Let ei(k) = x̂i(k) − xi(k) be the difference between the latest
broadcasted and current state of node i. Motivated by Seyboth
t al. (2013), the distributed triggering function fi

(
ei(k)

)
is de-

igned with one exponentially decreasing threshold βk and one
onstant offset c , shown as

i
(
ei(k)

)
= |ei(k)| − (c + βk), (6)

here c > 0 and β > 0 are triggering parameters to be designed
n Section 4.2. Specifically, the event times for node i are defined
y

i
l+1 = min

{
k ≥ kil

⏐⏐⏐fi(ei(k)) ≥ 0
}
.

3

.3. Some definitions

Let xave = ΠNx(0) be the initial average vector of N nodes. The
efinition of convergence to the average is given as follows.

efinition 1 (Convergence Boyd et al., 2006). A sequence of ran-
om vectors

{
x(k) (k = 0, 1, 2, . . .)

}
converges to the average xave,

i) in expectation, if limk→∞E
[
x(k)

]
= xave; (ii) in mean square, if

E
[
∥x(k)∥2

]
< ∞, E

[
∥xave∥2

]
< ∞, and limk→∞E

[
∥x(k)−xave∥2

]
=

0.

It should be mentioned that (3) and (5) are randomized be-
cause of the link failures and/or event-triggered communications.
Then x(k) might not converge exactly to the initial average xave,
but to a neighborhood of it (Fagnani & Zampieri, 2007). This is
captured by the notion of convergence in (α, γ )-probability, and
the earliest time for achieving α accuracy with γ probability is
defined as (α, γ )-convergence time.

Definition 2 (Convergence in (α, γ )-probability Ding et al., 2015).
One consensus protocol achieves convergence in (α, γ )-
probability, if for any γ ∈ [0, 1] and α ∈ R ≥ 0, the se-
quence of random vectors

{
x(k) (k = 0, 1, 2, . . .)

}
converges to

a ball centered at xave with radius α and probability at least γ ,
i.e., limk→∞ Pr

{
∥x(k) − xave∥ ≤ α

}
≥ γ holds.

Definition 3 ((α, γ )-convergence Time). For a sequence of random
vectors {x(k) (k = 0, 1, 2, . . .)}, given any γ ∈ [0, 1] and α ∈ R ≥

0, suppose that ∥x(0) − xave∥ ̸= 0, its (α, γ )-convergence time Tk
is defined as

Tk = inf
{
k : Pr

{
∥x(k) − xave∥
∥x(0) − xave∥

≤ α

}
≥ γ

}
,

indicating the least iterations needed for x(k) to be α close to xave
with probability at least γ .

4. Main results

In this section, we will illustrate the results of convergence
analysis and the triggering parameter design for average consen-
sus over networks with heterogeneous random link failures.

4.1. Convergence analysis

We first make some assumptions and provide a lemma.

Assumption 1. The prearranged network G is undirected con-
nected. For a pair of communicating nodes i and j, they suffer the
same link failures, i.e., δij(k) = δji(k) and pij = pji. Therefore, W (k)
and W̄ = E

[
W (k)

]
are symmetric.

Assumption 2. All W (k) (k = 0, 1, 2, . . .) are i.i.d. Therefore,
E
[
W (k)W (l)

]
= W̄ 2 (k ̸= l) holds.

emma 1 (Boyd et al., 2006). Let X be a random variable such that
≤ X ≤ B, then for any 0 < α < B, one has

r
{
X ≥ α

}
≥

E[X] − α

B − α
.

Let x̃(k) = x(k) − xave be the difference between x(k) and
he initial average xave. Under Assumption 1, W (k) is symmetric,
hen W (k)1N = 1N and 1T

NW (k) = 1T
N hold. Hence, one has

ΠNx(k) = xave. Then the evolution of x̃(k) can be written as

x̃(k + 1) =
(
W (k) − ΠN

)(
x̃(k) + ΠNx(k)

)
= M(k)x̃(k) =

k∏
M(k − l)x̃(0),

(7)
l=0
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here M(k) = W (k)−ΠN . Let M̄ be E[M(k)]. Under Assumption 2,
one has E

[
x̃(k)

]
= M̄kx̃(0).

The results on convergence and convergence time are given in
Lemma 2 and Theorem 1, respectively.

Lemma 2 (Fagnani & Zampieri, 2007; Tahbaz-Salehi & Jadbabaie,
2009). Under Assumptions 1–2, if ρ(M̄) < 1, then average consensus
protocol (4) over prearranged network G achieves its convergence in
expectation.

Theorem 1. For average consensus protocol (4) over prearranged
network G under Assumptions 1–2, then, (i) ρ(CW ) < 1 guarantees
ts convergence in mean square; (ii) if ρ(CW ) < 1 and ρ(M̄) < 1,
he finite (α, γ )-convergence time Tk is upper bounded by

ku =

⌈
log

(
α2(1 − γ )

)
log ρ(CW )

⌉
, (8)

and there exists an x(0) such that Tk is lower bounded by

Tkl =

⌊
log(1 − γ + γα2)

2 log ρ(M̄)

⌋
, (9)

where CW = E[MT(k)M(k)].

Proof. We first give the convergence analysis of (4) in mean
square. From (7), one has

E
[
x̃T(k)x̃(k)

⏐⏐x(k − 1)
]

= E
[
x̃T(k − 1)MT(k − 1)M(k − 1)x̃(k − 1)

]
= x̃T(k − 1)E

[
MT(k − 1)M(k − 1)

]
x̃(k − 1)

≤ ρ(CW )x̃T(k − 1)x̃(k − 1),

(10)

where CW = E
[
MT(k)M(k)

]
. With repeatedly conditioning and by

using (10), one finally obtains

E
[
x̃T(k)x̃(k)

]
≤ ρk(CW )x̃T(0)x̃(0). (11)

Thus if ρ(CW ) < 1, one has lim
k→∞

E
[
∥x̃(k)∥2

]
= 0. Hence, the

convergence of (4) in mean square is achieved.
For the upper bound of (α, γ )-convergence time, according to

Markov’s inequality, for any non-zero ∥x̃(0)∥, from (11), one has

Pr
{

∥x̃(k)∥
∥x̃(0)∥

≥ α

}
≤

E
[
∥x̃(k)∥2

]
α2∥x̃(0)∥2 ≤

ρk(CW )
α2 .

hen the upper bounded (α, γ )-convergence time Tku is derived
by finding the ceil of the solution to ρk(CW ) = (1 − γ )α2, shown
as (8). Then, for k ≥ Tku, we have Pr

{
∥x(k)−xave∥

∥x̃(0)∥ ≤ α

}
≥ γ .

Note that W̄ is symmetric under Assumption 1, then M̄ = W̄−

N has N real eigenvalues. If ρ(M̄) < 1, the N real eigenvalues
f M̄ can be written in the ascending order, i.e., 0 = λ1(M̄) <

2(M̄) ≤ · · · ≤ λN (M̄) = ρ(M̄) < 1, with the corresponding
rthonormal eigenvectors denoted as 1N , ν2, . . . , νN . Thus, if the
nitial state is chosen as (Boyd et al., 2006)

(0) =
1N
√
N

+ νN , (12)

e have x̃(0) = νN since ΠNνN = 0N . Then E
[
x̃(k)

]
= λk

N (M̄)νN
holds. By using Jensen’s inequality, one has

E
[
∥x̃(k)∥2

2

]
=E

[ N∑
i=1

x̃i(k)2
]

≥

N∑
i=1

E
[
x̃i(k)

]2
=E

[
x̃(k)

]TE[
x̃(k)

]
= ρ2k(M̄).

(13)

Note that if W (k) and x(0) are independent, and E
[
x̃(k)

]
= M̄kx̃(0)

holds under Assumption 2, then one has

E
[
∥x̃(k)∥2] < E

[
∥x̃(0)∥2]

= 1
4

due to ρ(M̄) < 1. According to Lemma 1, for any α < 1, one can
calculate that

Pr
{

∥x̃(k)∥
∥x̃(0)∥

≥ α

}
≥

ρ2k(M̄) − α2

1 − α2 .

Let ρ2k(M̄)−α2

1−α2 = 1− γ , the lower bound of (α, γ )-convergence

time is shown as (9), and it follows that for k ≤ Tkl, Pr
{

∥x̃(k)∥
∥x̃(0)∥ ≤

α

}
≤ γ holds. This concludes the proof. □

Inspired by Fagnani and Zampieri (2007), Pereira and Pagès-
Zamora (2010), and Xiao and Boyd (2004), for (4) over random
networks with heterogeneous link failures, we will illustrate the
design for consensus parameter µ, together with the relationship
between ρ(CW ) and ρ(M̄).

Lemma 3. Under Assumptions 1–2, if µ is designed as

0 < µ ≤
2

λN (L) + λ2(L)
, (14)

hen, (i) ρ(M̄) = 1 − µλ2(L̄) < 1, the convergence of (4) in
xpectation is achieved; (ii) ρ(CW ) ≤ ρ(M̄) < 1, indicating that
onvergence in expectation guarantees convergence in mean square.

roof. The proof to Lemma 3 can be found in Appendix A.

emark 1. In (14), since for a connected network G, one has
dmax ≥ λN (L)+λ2(L). Then if µ is selected as 0 < µ < 1

dmax
(Bullo,

2019; Garin & Schenato, 2010), our results in Lemma 3 hold. Also,
under Assumption 1, W (k) (k = 0, 1, 2, . . .) and W̄ are doubly
stochastic.

Next, we extend our results to balanced directed networks by
relaxing Assumption 1.

Assumption 3. The prearranged network G is a strongly con-
nected digraph. For a random network G(k), ∀i ∈ V and ∀k =

0, 1, 2, . . .,
∑N

j=1 Aijpij =
∑N

j=1 Ajipji and
∑N

j=1 Aijδij(k) =
∑N

j=1
Ajiδji(k) hold.

Lemma 4. Under Assumptions 2–3, for average consensus protocol
(4), we have, (i) ρ(M̄) < 1 and ρ(CW ) < 1 guarantee the
average consensus in expectation and mean square, respectively; (ii)
its (α, γ )-convergence time Tk is upper bounded by (8); (iii) if W̄
is further symmetric, there exists an initial vector x(0) such that
(α, γ )-convergence time Tk is lower bounded by (9).

Proof. The proof to Lemma 4 can be found in Appendix B.

4.2. Performance-based triggering parameters design

In this section, we will extend the analysis on convergence
time of (4) over random networks to the event-triggered case,
and the main results on the design of the triggering parameters
are given in Theorem 2.

Theorem 2. Consider random network G(k) with random links (1)
over any connected prearranged network G, for event-triggered aver-
age consensus protocol (5), with triggering function designed as (6),
if ρ(CW ) < 1 and 0 < β ≤ ρ

1
2 (CW ) hold, then, (i) the steady-state

convergence error is upper-bounded by R(c, L̄) =
µc

√
Nρ

1
2 (CL)

1−ρ
1
2 (CW )

; (ii) its

convergence in
(
α, 1 −

R(c,L̄)
α

)
probability is achieved if R(c, L̄) < α;

iii) if triggering parameter c is designed as

< c <
α(1 − γ )

(
1 − ρ

1
2 (CW )

)
∥x̃(0)∥

√ 1 , (15)

µ Nρ 2 (CL)
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ts finite (α, γ )-convergence time is upper bound by

e
ku =

⌈ W (y)

ln ρ
1
2 (CW )

−
1
ζ

⌉
, (16)

here CL = E[LT(k)L(k)], CW = E[MT(k)M(k)], ζ =
µ

√
Nρ

1
2 (CL)

∥x̃(0)∥ρ
1
2 (CW )

,

=
(
1 − γ −

R(c,L̄)
α∥x̃(0)∥

)
αρ

1
2ζ (CW )
ζ

ln ρ
1
2 (CW ), and W (y) is the solution

o kek = y.

Proof. Since ei(k) = xi(k) − x̂i(k), (5) can be rewritten as

(k + 1) = W (k)x(k) + µL(k)e(k), (17)

here e(k) =
[
e1(k), . . . , eN (k)

]T. Under Assumptions 1 and 3, one
has

x̃(k) =

k−1∏
l=0

M(k − 1 − l)x̃(0)

+ µ

k−1∑
l=0

l−1∏
i=0

M(k − 1 − i)L(k − 1 − l)e(k − 1 − l).

Let CL and M l
k be E

[
LT(k)L(k)

]
and

∏l−1
i=0 E

[
∥M(k−1− i)∥

]
E
[
∥L(k−

1 − l)∥
]
E
[
∥e(k − 1 − l)∥

]
, respectively. Noting that triggering

condition fi(k) = |ei(k)| − (c + βk) ≥ 0 enforces E
[
∥e(k)∥

]
≤

√
N(c + βk), one has

E
[
∥x̃(k)∥

]
≤

k−1∏
l=0

E
[
∥M(k − 1 − l)∥

]
∥x̃(0)∥ + µ

k−1∑
l=0

M l
k

≤ ρ
k
2 (CW )∥x̃(0)∥ + µ

√
Nρ

1
2 (CL)

k−1∑
l=0

ρ
l
2 (CW )(c + βk−1−l)

= ρ
k
2 (CW )∥x̃(0)∥ + µc

√
Nρ

1
2 (CL)

1 − ρ
k
2 (CW )

1 − ρ
1
2 (CW )

+ µ
√
Nρ

1
2 (CL)

k−1∑
l=0

ρ
l
2 (CW )βk−1−l.

(18)

If the threshold β in (6) is chosen as 0 < β ≤ ρ
1
2 (CW ), (18) can

e further rewritten as

E
[
∥x̃(k)∥

]
≤ρ

k
2 (CW )∥x̃(0)∥ + µc

√
Nρ

1
2 (CL)

1 − ρ
k
2 (CW )

1 − ρ
1
2 (CW )

+ µ
√
Nρ

1
2 (CL)kρ

k−1
2 (CW ).

(19)

y taking limits to E[∥x̃(k)∥] as k → ∞, if ρ(CW ) < 1 holds, one
can obtain

lim
k→∞

E
[
∥x̃(k)∥

]
≤

µc
√
Nρ

1
2 (CL)

1 − ρ
1
2 (CW )

+ lim
k→∞

µ
√
Nρ

1
2 (CL)k(

ρ−
1
2 (CW )

)k+1

=
µc

√
Nρ

1
2 (CL)

1 − ρ
1
2 (CW )

= R(c, L̄).

sing Markov’s inequality to (19) yields

lim
k→∞

Pr
{
∥x̃(k)∥ ≥ α

}
≤ lim

k→∞

ρ
k
2 (CW )
α

{
∥x̃(0)∥ −

µc
√
Nρ

1
2 (CL)

1 − ρ
1
2 (CW )

+
µ

√
Nρ

1
2 (CL)k

ρ
1
2 (CW )

}
+

µc
√
Nρ

1
2 (CL)( 1 ) =

R(c, L̄)
α

,

α 1 − ρ 2 (CW )

5

where the last equality holds since ρ(CW ) < 1. Therefore, if
R(c, L̄) < α, the convergence of (5) in (α, 1 −

R(c,L̄)
α

)-probability
is achieved.

For the finite (α, γ )-convergence time analysis, one has

Pr
{

∥x̃(k)∥
∥x̃(0)∥

≥ α

}
≤

E
[
∥x̃(k)∥

]
α∥x̃(0)∥

≤
ρ

k
2 (CW )
α

(
1 −

µc
√
Nρ

1
2 (CL)(

1 − ρ
1
2 (CW )

)
∥x̃(0)∥

+
µ

√
Nρ

1
2 (CL)k

∥x̃(0)∥ρ
1
2 (CW )

)
+

R(c, L̄)
α∥x̃(0)∥

≤
ρ

k
2 (CW )
α

(
1 +

µ
√
Nρ

1
2 (CL)k

∥x̃(0)∥ρ
1
2 (CW )

)
+

R(c, L̄)
α∥x̃(0)∥

=
ζ

αρ
1
2ζ (CW )

ρ
1
2 (k+

1
ζ
)(CW )(k +

1
ζ
) +

R(c, L̄)
α∥x̃(0)∥

,

(20)

here ζ =
µ

√
Nρ

1
2 (CL)

∥x̃(0)∥ρ
1
2 (CW )

. In (20), if R(c, L̄) < α(1−γ )∥x̃(0)∥ further

holds, indicating that c satisfies (15), then the upper bound of the
finite (α, γ )-convergence time of (5) can be derived by setting the
right-side term in the last equality as 1 − γ . Denoting

(
1 − γ −

R(c,L̄)
α∥x̃(0)∥

)
αρ

1
2ζ (CW )
ζ

as z, one then has(
k +

1
ζ

)(
ρ

1
2 (CW )

)k+ 1
ζ = z. (21)

As a result, one can calculate

k =
W (y)

ln ρ
1
2 (CW )

−
1
ζ

,

where y = z ln ρ
1
2 (CW ), and W (y) is the Lambert function that is

he solution to kek = y. Hence, the finite (α, γ )-convergence time
of (5) is upper bounded by (16). This concludes the proof.

Remark 2. The triggering parameter c in (6) determines how fre-
quently the triggering events happen during the final iterations. A
larger c results in a lower communication rate, indicating a higher
communication efficiency, but the convergence error R(c, L̄) will
get increased. Therefore, in (16), to guarantee a finite (α, γ )-
convergence time, the triggering parameter c should be chosen
carefully such that (15) holds.

5. Simulations

The correctness of our analysis is illustrated by extensive
simulations. All figures are drawn from the results of the average
over r = 103 runs. Simulation parameters are set as: N = 9,
γ = 0.9, and α = 10−3. During each simulation, we randomly
choose pij ∈ [0.5, 0.8]. The topologies of the prearranged network
G and a sample case of random network G(k) with heterogeneous
link failures are shown in Fig. 1.

The initial state vector x(0) and parameter µ are chosen ac-
cording to (12) and (14), respectively. During the simulation, As-
sumption 1 is satisfied. The convergence of E[xi(k)] and E

[
∥x̃(k)∥

]
are shown in Fig. 2(a) and (b), respectively, where x̃α,γ (k) denotes
the iteration of x̃(k) with α accuracy and γ probability, while x̃(k),
x̃u(k) and x̃l(k) denote the iteration of the simulated, theoretical
upper and lower bounds of E

[
∥x̃(k)∥

]
, respectively. It can be seen

from Fig. 2 that, (i) convergence of average consensus protocol
(4) in expectation and mean square are achieved; (ii) theoretical
results for the upper and lower bounds in (8), (9) can be used to

estimate tightly the convergence time of protocol (4).
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Fig. 1. Topology of an undirected network with N = 9, where solid circles
and dashed lines indicate nodes and the undirected communication edges,
respectively.

Fig. 2. Iterations of E
[
xi(k)

]
and E

[
∥x̃(k)∥

]
.

Fig. 3. Comparison on convergence accuracy with Pereira and Pagès-Zamora
(2010).

For average consensus with random link failures, Pereira and
agès-Zamora (2010) have derived the upper bound of the asymp-
otic MSE shown as its (27) with the adjacency matrix
onstructed as its (1). Also, the prearranged network G is fully
connected. Fig. 3 shows the comparison on convergence accuracy
between (Pereira & Pagès-Zamora, 2010) and the one proposed in
this paper. It can be seen from Fig. 3 that, our analysis can achieve
a high convergence accuracy while the one in Pereira and Pagès-
Zamora (2010) can only converge to 0.034. It means that the
upper bound of MSE

(
x(k)

)
in Pereira and Pagès-Zamora (2010) is

less tight than our results since Pereira and Pagès-Zamora (2010)
consider network with asymmetric link probabilities.

We define the average network communication rate at it-
eration k as η(k) =

∑N
i=1 ηi(k)/N (Wu, Jia, Johansson, & Shi,

2013), where ηi(k) is 1 or 0, indicating whether or not there
is a communication event for node i at iteration time k. Fig. 4
shows the impact of event-triggered communication to conver-
gence accuracy and communication rate η(k). From Fig. 4, by
properly choosing triggering parameters c and β , we have, i) the
event-triggered average consensus protocol has non-zero steady-
state convergence error; ii) convergence in (α, γ )-probability is
achieved, with a larger finite (α, γ )-convergence time than that
of the time-triggered one; iii) the average broadcasted events for
each node of the event-triggered mechanism is far less than the
6

Fig. 4. Effects of the event-triggered communication with c = 10−5 and β =

0.95ρ0.5(CW ).

one of the time-triggered one. Therefore, with triggering parame-
ters being properly designed, the event-triggered communication
mechanism is effective in the energy efficiency of a network with
heterogeneous random link failures.

6. Conclusions

In this paper, we have investigated the convergence time of
the average consensus with heterogeneous random link failures,
together with the analysis of the impact of event-triggered com-
munication on convergence performance. We have derived the
conditions on convergence in expectation and mean square, and
the closed-form expression of the lower- and upper-bounds of
the (α, γ )-convergence time. We also have analyzed the impact
of the event-trigger communication on the convergence error
and (α, γ )-convergence time. Finally, some numerical simulations
have verified the effectiveness of the results.
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Appendix A. Proof to Lemma 3

Proof. We first show that (14) guarantees ρ(M̄) < 1. When the
prearranged network G is undirected connected, under
Assumption 1, the expected network Ḡ is connected and W̄ is
symmetric. Therefore, 1N is the eigenvector of L̄ and M̄ with
eigenvalues 0 and 1, respectively. The rest of the N − 1 nonzero
real eigenvalues of matrix M̄ can be written as 1−µλN (L̄), . . . , 1−

λ2(L̄). Since 0 < pij ≤ 1, one has λi(L̄) ≤ λi(L) (i = 2, . . . ,N).
ence if µ is selected as (14), µ < 2

λN (L) ≤
2

λN (L̄)
holds, and then

ρ(M̄) < 1 is guaranteed.
In (14), if 0 < µ ≤

1
λN (L) , i.e., µλN (L) ≤ 1, then one has

ρ(M̄) = 1 − µλ2(L̄). Otherwise when µ is selected such that
1

λN (L) < µ ≤
2

λN (L)+λ2(L)
, then one has µλN (L) > 1. Since λN (L̄) ≤

N (L), then if µλN (L̄) ≤ 1 holds, one also has ρ(M̄) = 1 − µλ2(L̄).
or the case when µλN (L̄) ≥ 1, one has

1 − µλ2(L̄) ≥ 1 − µλ2(L),
1 − µλ2(L) ≥ µλN (L) − 1,

µλN (L) − 1 ≥ µλN (L̄) − 1 > 0,

nd then we can yield that ρ(M̄) = 1 − µλ (L̄).
2
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We continue to show ρ(CW ) ≤ ρ(M̄) < 1 when µ is designed
as (14). Since CW = E

[
MT(k)M(k)

]
, under Assumptions 1–2, one

has

CW = IN − ΠN − 2µL̄ + µ2CL. (A.1)

where CL = E
[
LT(k)L(k)

]
. Let L̄ij and eij be the (i, j)th entry of

matrices L̄ and CL, respectively. Then L̄ij and eij can be written as

L̄ij =

⎧⎪⎨⎪⎩
N∑
l=1

Ailpil, j = i,

− Aijpij, j ̸= i,

and

eij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
[( N∑

l=1

Ailδil(k)
)2

+

N∑
l=1,l̸=i

(
Aliδli(k)

)2]
, j = i,

− E
[
Aijδij(k)

N∑
l=1

(
Ailδil(k)

)]
− E

[
Ajiδji(k)

N∑
l=1

(
Ajlδjl(k)

)]
+ E

[ N∑
l=1,l̸=i,j

(
Aliδli(k)Aljδlj(k)

)]
, j ̸= i.

(A.2)

n (A.2), according to (2), δil(k) is equal to 1 with probability pil
nd 0 with probability 1−pil. Then E[δ2il (k)] = pil holds. Note that,
nder Assumption 2, for j ̸= l, δil(k) and δij(k) are independent,
hen one has E[δil(k)δij(k)] = pilpij. Also, A2

ij = Aij since Aij is 1 or
. As there is no self-loop in the prearranged network G, under
ssumption 1, for all i, l ∈ V and i ̸= l, Ailpil = Alipli holds. One
as

ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N∑
l=1

(
L̄ilL̄li

)
+ 2

N∑
l=1

(Ailpil) − 2
N∑
l=1

(Ailp2il), j = i,

N∑
l=1

(
L̄ilL̄lj

)
− 2Aijpij + 2Aijp2ij, j ̸= i.

(A.3)

Therefore, CL in (A.1) can be summarized into L̄2 + 2L̄ − 2B,
here B ∈ RN×N has its (i, j)th entry shown as

ij =

⎧⎪⎨⎪⎩
N∑
l=1

(Ailp2il), j = i,

− Aijp2ij, j ̸= i.

ere B can be viewed as one special Laplacian matrix of expected
etwork Ḡ with link probabilities p2ij ∈ (0, 1]. Therefore, matrix
is positive semi-definite with λ1(B) = 0. Substituting CL =

¯2 + 2L̄ − 2B into (A.1), using ΠNM̄ = M̄ΠN = ΠN under
ssumption 1, one obtains

W = M̄2
+ 2µ2L̄ − 2µ2B. (A.4)

In (A.4), we write the eigenvalues of CW , M̄ , L̄, M̄2
+2µ2L̄, and B

n ascending order. Note that (14) guarantees λN (M̄) = 1−µλ2(L̄),
nd λ1(B) = λ1(L̄) = 0 for a connected G. According to Weyl’s
nequality, one has

λN (CW ) ≤ λN (M̄2
+ 2µ2L̄) = λ2 (M̄) + 2µ2λ2(L̄),
N

7

here the last equality holds since λN (M̄2) = λ2
N (M̄). Hence, one

as

N (CW ) − λN (M̄) ≤ −µλ2(L̄)
[
1 − µ

(
λ2(L̄) + 2

)]
.

ote that, for a connected prearranged undirected network G
ith size N > 2, λN (L) ≥ 2 holds (Bullo, 2019). One has

2(L) + λN (L) ≥ λ2(L) + 2 ≥ λ2(L̄) + 2.

herefore, if µ is chosen as (14), one has µ(λ2(L̄) + 2) ≤ 1, then
N (CW ) − λN (M̄) ≤ 0 holds. When all the link probabilities pij
atisfy 0 < pij ≤ 1, the matrix L̄ − B is positive semi-definite,
hen CW has non-negative eigenvalues, and thus one has ρ(CW ) =

N (CW ). Therefore, ρ(CW ) ≤ ρ(M̄) holds with µ satisfying (14).
his completes the proof. □

ppendix B. Proof to Lemma 4

roof. Under Assumptions 2–3, one has ΠN Ā = ĀΠN and
NA(k) = A(k)ΠN , indicating that the expected network Ḡ and

andom networks G(k) for all k are weight balanced directed
raphs. Hence, W̄ and all W (k)s are symmetric. Combining with
he proof of Theorem 1, we complete the proof for (i) and (ii).

For the proof for (iii), under Assumption 3, if W̄ is further
ymmetric, M̄ has N real eigenvalues. Thus, when ρ(M̄) < 1, there
xists a x(0) satisfying (12) such that E

[
∥x̃(k)∥2

2

]
≥ νT

Nρ2k(M̄)νN ,
here νN is the eigenvector corresponding to the largest eigen-
alue of M̄ . Therefore, the lower bound of (α, γ )-convergence
ime is shown as (9). Thus, we have completed the proof. □
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