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Abstract—The Additive Increase and Multiplicative Decrease we study the practical stability of the AIMD/RED system, and
(AIMD) congestion control algorithm of TCP protocol deployed  derive its theoretical bounds. The definitions of boundedne
in the end systems and the Random Early Detection (RED) queue 4 gtapility are listed below, which follow those in [1718].

management scheme deployed in the intermediate systems con- . . . . o
tribute to Internet stability and integrity. Previous research based Definition 1: Consider the dynamic system with time de-

on the fluid-flow model analysis indicated that an AIMD/RED lays
system may not be asymptotically stable when the feedback dz
delays or the link capacity becomes large| [3]. However, as i fl,z(t),x(t — 1 (t)), -, z(t — 7 (t)))

long as the system operates near its desired equilibrium, small t

oscillations are acceptable and the network performance is still wherexeR", f: IXR"xXR"x---x R™ — R™ is continuous.
satisfactory. Deriving the bounds of these oscillations for the et = sup,_;  7(t). The solutions of the system are said
heterogeneous AIMD/RED system with time delays is non-trivial. {5 pe

In this paper, we study the practical stability of the AIMD/RED . i

system with heterogeneous flows and feedback delays, and obtain ¢ Uniformly boundedf there exists a constant for every

theoretical bounds of the AIMD flow window size and the RED a € (0, ¢), there isB = B(a) > 0, such that for any
queue length, as functions of number of flows, link capacity, RED §(t)eC[to — 7, to], R"], [|2(t,t0,§)|| < B for all t > tg
queue parameters, and AIMD parameters. Numerical results when||¢] < a.

with Matlab and simulation results with NS-2 are given to . . . .

validate the correctness of the theorems and demonstrate the 1he trivial solution of the above system is said to be
tightness of the derived bounds. The analytical and simulation o stableif for every e>0 and tpeR,, there exists some
results provide important insights on which system parameters §=0(to, €)>0 such that for any(t)eC|[to — T, to], R"],
contribute to higher oscillations of the system and how to set 1€]|<3 implies ||z (t, to, €)|<e for all ¢ > to;

tem parameters to ensure tem efficiency with bounded b ] .
?élsay anzl {OSS. e sure sys ciency Wi un « asymptotically stableif the system is stable and for

Index Terms—Practical stability, bounds estimate, heteroge- every to€R,, there exists some=n(ty)>0 such that
neous AIMD/RED system, time delay system. im0 ||2(t, o, €)||=0 whenever||&||<n;

« practically stableif given (A, A) with 0 < A < A, we

|. INTRODUCTION have, for any¢(t)eC|[to — 7,to], R"], ||€]| < X implies

Internet stability depends on the Transmission Controt Pro ||z (¢, to,&)|| < A, ¢t > to for somet eR,.
tocol (TCP), which is voluntarily deployed in the end system It has been pointed out that an AIMD/RED system may not
based on the Additive Increase and Multiplicative Decrease asymptotically stable when the delay or the link capacity
(AIMD) congestion control mechanism. On the other handéecomes large [3]. However, even if the system as a whole
the active queue management (AQM) algorithms, such @snot asymptotically stable, as long as the end systems do
Random Early Detection or Random Early Discard (REDhot overshoot the available bandwidth too severely, theabive
have been developed and deployed in the intermediate systaystem efficiency can still be very high, and the packet loss
to fairly distribute network congestion signals to all ooifgy rate and queuing delay can still be well bounded. In other
flows, which further improve TCP and network performancevords, if the system oscillates sufficiently close to theirdels
AIMD and RED both contribute to the overwhelming suceperating point, its performance is still acceptable. €fme,
cess of the Internet. With the rapid advances in optical aitdis critical to investigate that, does the AIMD/RED system
wireless communications, the Internet is becoming a moaéwvays operate in the area close to the desired equilibrium
diverse network with higher data rate, a larger number efate, and what are the theoretical bounds? To answer these
flows, supporting heterogeneous applications. It is imgydrt questions, studying system practical stability and boustise
to understand whether an AIMD/RED system can be stablay, which is also the focus of this paper.
scalable, and efficient for future more diversified Internet With clearly defined bounds, a system is considered practi-
Different from many previous work [1], [2]) [3], [4], [14] cally stable. The bounds can be used as a guideline to set up
on the sufficient conditions for the asymptotic stability ofhe AIMD/RED system parameters to enhance system perfor-
AIMD/RED or other network control systems, in this papemance. The boundedness issue for some TCP-like congestion



control algorithms has been studiedin [6], [7], [8] by appty L
Lyapunov-like method. Shakkottai and Srikant justified the S @
use of the deterministic model for Internet congestion icmnt —
in [9], and in [5], the upper bound on the transmission rate
for two types of TCP-like traffic were given. However, to the
best of our knowledge, the theoretical bounds of congestion
window size and bottleneck queue length of heterogeneous
AIMD/RED systems considering feedback delays have not Fig. 1. Heterogeneous AIMD/RED System
been reported in the literature. Because of the heterotyeofei
the Internet, understanding the stability properties amahis where K, > 0. When go.; < miny, dVZit(t) = 2 the window
of the AIMD/RED system with heterogeneous flows is criticajze of AIMD flows will keep increasing and will not converge
for future network planning and design. to any value. Thus, in the following, we will discuss the
Using the fluid-flow model of the heterogeneougiapility of this model wheng,.,> ming,. Without loss of
AIMD/RED system, instead of applying the LyapunoVyenerality, letq(t) = goet(t) — ming,. In addition, since
like method, we derive upper and lower bounds of congestighe queue behaves the same as a Drop-Tail queue gpgce
window size and queue length by directly studying thgyceedsnax,, we choosenax;, to be sufficiently large such
inherent properties of the AIMD/RED system. The derivefhath(maXth — ming,) = 1.
theoretical bounds provide important insights on whicheys Taking time delays into consideration, a heterogeneous

parameters contribute to high oscillations of the systemh aR;mp/RED system shared by two classes of flows can be
how to choose system parameters to ensure system efficiepfyyeled as

with bounded delay and loss. The theorems given in the

AIMD Flow 1 (@, B)
AIMD Flow 11 : (a,, f3,)

paper can also help to predict the system performance M: a 2(1-p) Wl(t)WI(t*R(t))Kp (t — R(t)),
the future Internet with higher capacity and more flows with @t R(t) 1+051  R(t — R(t))
different flow parameters.
t 2(1—=02) Wrr(t)Wrr(t—R(t

The remainder of the paper is organized as follows. c.Cf. CZ( ):;Qt - (1 %) H(R)t Ijq( ; ( ))qu(t—R(t)),
introduces the fluid model of the heterogeneous AIMD/RED (t) +62 (t=R(1))
system. Sec. Il derives .the upper and lower bounds of NWi(t)  NoWps(t)
the AIMD/RED system with feedback delays. In Sec. IV,  gq4(1) R(t) + Ri) C, q>0,
numerical results with Ma_tlab and sim_ulation results using ;= T NiWi(t)  NoWip(t) o+ B
NS-2 are presented to validate the derived bounds, followed { R(t) R(t) -C}7, g=0.
by concluding remarks in Sec. V. 1)

II. A FLUID-FLOW MODEL OF HETEROGENEOUS where{a} " = max{a, 0}, >0, 5€(0,1); W; is the ensemble
AIMD/RED SYSTEM WITH TIME DELAYS average of AIMD congestion window size (in the unit of pack-

A stochastic model of TCP/RED was developed using fluitz-ts) of flow of class, i=1, IT; q is the ensemble average of

L . ; . ueue lengthR(t) is the round-trip time withR(t) = <2 47,
flow and stochastic differential equations in [10]. We exiten . . . ¢ P
the fluid-flow model for genera? AIMDY ﬁ)[ c]ongestion (secs) where” is the link capacity (packets/sec) aiijl is the

. . B deterministic round-trip delay(t) € [0, 1] is the probability
f‘.)m:.OI' th;VTv;defW siz€ |sk|ntcr|eased bzypa.cketrt] ber rour?:j-. of a packet being marked or dropped. It should be noted that, i
fip time ( .) 'l NO packel 1SS occurs, ONEIWISE, It 1Sy,q f,iq modelg andW are positive and bounded quantities;
reduced tog times its current value. The general AIMD; Wi€[l, Winae] and g€[0, guax] Where guae and W,
congestion.control h_as t_)een proposed to support ht:‘\teroggﬁ’oteZ buf:fer I;iazxe and maximzl?r); window gll;)é respeg]t?Cely.
neous applications with different tolerance on flow thrqugth With ever-increasing link capacity and appropriate conges

L > ‘ ) )
variations [11], [12], [13], [14]. TCP is a special case oD tion control mechanisms, variation of queuing delays bezom

with « =1 and g = 0.5. S ! )
- ys [2 .
We consider the case when there are two classes of ﬂar\)veghgmle compared to the round-trip delays [2], [4]. Wash

. o . . ighore the effect of the delay jitter on the round-trip timeda
with parametersd, ), (a2, 42), time-invariant traffic loads a??sume that the round—tripyti]me of each flow is 21 constant
N1, N, respectively, as depicted in F_@ _1. We assume thﬁ(t):R. It is shown in [2] thatiV, (£)W;(t—R) in can be
all the flows have the same round-trip time. The model 'Qgproximated byW2(t) for i — I, IT when the window size

'3 - &

this section can be extended to any certain number of flow
IS much larger than one.

in multiple cl with heterogen AIMD parameters an .
ultiple classes with heterogeneous parameters a dFor the heterogeneous systeim (1), the equilibrium point

feedback delays. . Tire ws o
With a RED queue, the packet dropping or marking probngI Wi 45) is given by
GCR . CR . au(l4p)

bility, p, is determined by the average queue length: Whe W — B
0 0 < oot < ming, " NiG+Ny” T N GH+N, qo_2(1—ﬁ1)W}“2Kp’

p = Kp(qact - mlnth) mingp < Gact S maxgp WhereG: a1(1+ﬁ1)(1762)
1 Qact > MaXgp as(1=P1)(14B2)




RemarksAt the equilibrium, the total arrival rate equals the RemarksOur focus in the analysis below 1% (¢), the total
total link capacity, so the link bandwidth is fully utilizetf the ~window size att. This is becauséV (t) indicates the entire
total window size is larger thatV; W} + NoW/,, the queue throughput of the heterogeneous AIMD/RED system, which
will build up, which results in a longer queuing delay; if thés more useful than the throughput of each individual flow.
total window size is less thatv; W} + NoW7};, the network .
load is smaller than its capacity,li.e., the1r11etwork resmlrcA' Upper Bound on Window Size
are not fully utilized. In conclusion, the equilibrium poiis ~ Theorem 1:Let Up > 0 be the largest real root of

the most desired operating point of the system. AN N 2
UB2 . [UB — RC — (NlOll —+ JVQOZQ)]2 = ( 1 * 2042) ,
IIl. PRACTICAL STABILITY AND BOUNDS OF Tmin - Kp
HETEROGENEOUSAll\/[I)DE/LIiESD SYSTEM WITH TIME thenW(t) < Up for t > 0.

Proof: With (2), W (t) < (Nyay + Noaz)/R for t > 0.
It was demonstrated in [3] that an AIMD/RED systenkor + > 0, take integration on both sides from- 7 to ¢:
becomesasymptoticallyunstable with the increase of round- B B
trip delays of the system. Using the fluid model, sufficient W(t) = W(t—r7) < (Niay + Naaz) - 7/R. ©)
conditions for the asymptotic stability of the AIMD/RED \ne show that/ > 0 in the theorem is an upper bound of
system with feedback delays were derived [in [14]. In thiﬁ/(t) for t > 0, i.e., if W(t) = Up for somet = ¢; > 0, then
paper, we show that even though the system may becowﬁtl) < 0._ -
asymptotically unstable because of the effects of timeydela Integ?ating on both sides df|(4) from —a - R to t,— R for
its window size and queue length are still bounded, and (iln> 1 gives
most cases, the upper bounds are close to their equilibria. . | R
In this section, we study the delayed heterogeneous [ . T
AIMD/RED system as defined by](1). As mentioned, variation /tl_aRQ(s)dS = R R W(s)ds = (a = 1JR-C.
of queuing delays becomes relatively small to propagation N
delays because of the ever-increasing link capacity and ap\ot€ that/(5) impliesV'(t, —7) = Up —a-(N1a1 + Noaz)
propriate congestion control mechanisms. It is revealdd6h whent € [R, aR]. Thus,
that the variable nature dt1"1" due to queuing delay variation (¢, — R) > [Up —a-(Nya1 + Naas)] - (a—1) = R-C - (a—1),
helps to stabilize the TCP/RED system. In light of this, we (6)
derive upper and lower bounds of the AIMD/RED systeminceq(t) > 0.
assumingRT'T" to be constant. These results will be good Taking f(a) = (a—1)-[Up —a-(Nyioyq + Naay) — R-C] and
approximations even if?7'T" is slightly time-varying. computing the maximum value ¢f(a) by letting f'(a) = 0
Notice that the AIMD/RED system defined by (1) argjives
described by delayed differential equations. Its initiahdi-
tions are given byl < Wi(t) < W7 for i = I, II, and f(a) =[Up = R-C — (N1a1 + N2as)]*/[A(N1o1 + Naaw)],
0 < ¢(t) < ¢ on the intervalt € [-R, 0]. . ()
In (1), we takeW (t) = Ny-Wi(t) + No-Wis(t), My = With a = [Up — R-C' + (N1on + Naa)]/[2(N1en + Naas)]
(1*51), My = (1752)' r1 = My /Ny, andry = My /N>, then and f(a) < 0.

&ﬁl 1 Therefore, it follows from|(3),/ (6) and (7) thalﬁ/(tl) <0
W = (Nia; + Naas)/R if Up satisfies
_ 2[7"1~(N1W1)2(t)+T2'(N2WII)2(t)] qu(t—R)/R 4(N1061 +N20¢2)2

(2) Up?-[Up— R-C — (N1 + Noaw)]? = :
Notice thatW;(t) > 0 for i = I, IT and taker,,;, = 8)

min(ry, 72), Tmaz = max(ri, r2), the following inequality \ynich impliesti’ () < Uy for ¢ > 0. g
can be obtained: = 2>

Tmin Kp

W2(t)  W(t)— W W2(t) By the continuity property ot/z? - [Up — R-C — (Nyoy +
~2Tmaz R = K,q(—R) = Tlmin T Naaz)]? and the fact that the RHS 0f|(8) is always greater than
: (3) zero, we can conclude that there exists at least one real root
Also, we have for (8) and the largest root must be greater tfa6'+ ( Ny +
= Nyas). Therefore, the upper bounts itself will increase
q(t) = { T{}[%Et()téfR _C(’}}Jr Z i 8’ (4) with the increment ofR-C and (N;a; + Naas). In addition,

the oscillation of the window size from its equilibrium velu
Thus, with the new variable paifiV (t), q(t)), the original will increase with the increment oN;a; + Naas and the
heterogeneous AIMD/RED system (1) can be rewritten by (Blecrement ofi,,.

and [(4). We will study the properties ¢V (t), q(t)) in the It is also noted that the upper bound derived in Thedrem 1
following to show the practical stability and derive the bda is global for the timet, i.e., the window sizé¥ (t) will not

of the system. go aboveUp for anyt > t¢;. If we assume, instead, that there



existst] > t; and AW > 0, such thatWW (¢}) = Ug + AW, Proof: We first derive the upper bound gft) for ¢t > 0.
there must be some’ € (0, t; —t;) such thatiW(t; —7') = Suppose thai/(t) reaches its peak value at moment ¢,. To
Up and W (t), — 1) > 0. However, similar to the proof of geta loose upper bound ¢ft), we introduce the comparison
Theorem 1, we haveV/ (| —7') < 0, which is a contradiction. theorem [18]. Instead of following system (2) and (4), we

Therefore, the window size is upper bounded by for all ~consider its comparison systenj(t) = Ugp/R — C, and
t>0. W (t) = Ug for telty, t}]. Notice that the solutions of the

comparison system are larger than those of the originaésyst
B. Lower Bound on Window Size and Upper Bound on Quesie the bounds derived in the following are also the bounds for
Length system[(2) and (4).
In the previous subsection, we proved that the AIMD Assume thatW.(t) does not decrease for some time'after
window size W (t) is bounded byUz, which is defined by 1, @nd thusq(t) increases at the rate dfp/R — C. t; is
(8). In this subsection, we show that the window size is low&h0sen such thaf(t}) = ¢* + Aq with Ag > 0, then W (¢)

bounded while the queue length is upper bounded. decreases 1ironff1 while q(t). keeps increasing till; such that
Theorem 2:Let Lp; = (nglJrNgaz)l/Q' then W (t) > G(t2) =0 (W(t2) = RC) with ty >t} + R. Thereforeg(tz)
L, for t > 0. Tma is the local maximum value af(¢). It should be noticed that

Proof: Showing thatLg, > 0 is the lower bound of this estimate of;(¢) might be greater than the real maximum

W (t) for t > 0, we should prove that if¥/(t) = Lz at time value ofg(t) sinceW (t) may not stay at its peak value after
t=1y >0 ?henﬁ/(tg) >0 t1, andg(t) will still increase aftert;, but with the rate less

Since the dropping/marking probabilipy(t) = K, - ¢ < 1 thanUp/R - C. U
for all ¢, then From the above analysis, forc [t], t2], (t) < fB -C,
. N N =0 which implies
W(ts) > % _9. TmazWT(t)qu<t —R) Uy
q(t2) < q(ty)+ (f —0) - (ta —t}) (10)
NlOll + NQO&Q . Wz(t) _ * A @ _ Aty — t/
> MUA02 (g5 + Aq) + (5 = O) - (t2 — 1)),

To estimate the length of the intervigl, -], for ¢ € [t} +

Therefore, W (t;) > 0 whenW(¢) = Lp with Lp, defined R, to], it follows from the analysis above that

in the theorem, which impliesV/ (t) > Lp, for ¢t > 0. ]
Notice thatLp, in Theorem 2 is the lower bound &¥ (¢) W(t) > W(ty) = RC,

for all t > 0, which is a global b_ound. To show this, similar dt—R) > qt)) =q + Aq,

analysis to the upper bound of window siZg can be applied

to check that the window siz8(¢) will not go below Lz, for someAg > 0.

for any ¢t > t,. However, the value ofz; is actually small ~ Thus,

V

because of the loose approximation/of - ¢ and the fact that . Nyag + Nyas (RC)? .
(v, B;) pair are all small real numbers foe1, 2. Therefore, Wi(t) < - r T'min * R Ky - (g + Ag),
the global lower bound does not provide much information (12)

about the system performance. Since window size oscillates ¢t € [t] + R, t2].

around its equilibrium in the steady state, the amplitude of On the other hand,

the oscillation is more important than the global lower bahun ta . ~ ~

Next, we derive the upper bound of queue length and local W(s)ds = W(tz) —W(ty + R) > RC —Ug. (12)
lower bound of the window size after the first time it reaches “#1+%

the peak value at;. The local lower bound is more useful for It follows from (11) and[(12) that,

understanding the performance of the AIMD/RED system. B < D2 g (o
Theorem 3:Define T} andU,, as RC-Up < [(Nia1+ Naag)/R—rmin-RC*-Kp-(q5+Aq)]

: (tg - tll - R)a
- Up — R-C o
1= Nioag + Noag’ o
Fmin - RO® - Ky - (a5 +0q) — —— 5= e e Up — RC
U 27" - TmmRCQKp(q(’)‘—&—Aq) — (N1a1 + NQO{Q)/R'
. * B . e .
UQZZAlgo{(qO +Ag) + (5 = 0)- (i + B)}, With the definition ofT; in Theorem 3, we have, — t <
_ _ _ _ T, + R. Therefore, it follows from[(10) that
whereUp is defined in Theorem 1. Letp, > 0 satisfy U
. * B
Nyan 4 Nocts a(t) < nf (5 + D)+ (22~ C)- (Ti + B)},  (13)
Ly Ky -Ug = ﬁ7 9) fa0 k

B i.e., q(t) < Ug for t > 0, which indicates thal/, is the
theng(t) < Ug for t > 0 andW (t) > Lp, for t > ¢;. upper bound of the RED queue length. Since the packet loss



in a RED queue is proportional to the queue length, the derivslightly larger than the numerical results. This is becathse
gueue length upper bound also reflects the maximum packemerical simulations with Matlab ignore the queuing dslay
loss rate. in RTT, which may under-estimates the window size. Itis also
We finally show thatLg, > 0 is a lower bound ofi’(t) observed from Fig. 2 that, if the number of flows and the link
fort > ¢, ie., if W(t) = Lp, at timet = t3 > t{, then capacity are increased proportionally, the upper boundeof p

W(ts) > 0. flow window size is closer to its optimal value. With both the
With (3) and [(13), number of flows and the link capacity being doubled, the upper
) Nios + Noar 12 bound of the queue length is less than twice of the previous
W(tz) > % — 2 mas - % K, - Ug. bound. Therefore, the queuing delay bound is slightly reduc

) because of the multiplexing gain. An interesting conclosio
Thus, W (t3) > 0 if L, is chosen to satisfy (9). Therefore,is that although the increase of link capacity may cause an

Lp, is the lower bound ofV (t) for ¢ > t;. m AIMD/RED system to become asymptotically unstable [3], the
Therefore, the heterogeneous AIMD/RED system is pracfystem queuing delay has lower bound and the upper bound

cally stable with the bounds derived in Theoréms 1 [and 3. of flows window size is closer to the optimal operating point.
The approach in this section can also be extended to obtditis result demonstrates the importance of studying praicti

the theoretical bounds for AIMD/RED systems when they ag$ability and bounds of the AIMD/RED system.

shared by more than two classes of flows. Details are omittedFig. 3 shows the window trace and queue length when

here due to space limit. 20 TCP flows share the bottleneck witd AIMD(1/5, 7/8)
flows with K,=0.005 and K,=0.001, respectively. For the
IV. PERFORMANCE EVALUATION case of K,=0.005, the upper bound ofV,W; + NyW;;

In this section, numerical results with Matlab and simalati is 3034.4 packets and the upper bounds of queue length is
results with NS-2 are given to validate the theorems arg.1 packets; while for the case &f,=0.001, the upper bound
evaluate the system performance with different parameteo$ NyW; + NoW;; is 3042.4 packets and the upper bounds
It should be noted that, in the fluid mode}, and W are of queue length i$0.7 packets. It can be seen that a smaller
ensemble averages with positive and bounded quantities.viiue of K, results in a slightly larger bounds on both window
ergodic systems, ensemble average equals time averagesiaé and queue length. This observation is consistent with o
the AIMD window size oscillates betweex$W/(1 + 3) and analysis in Sec. lIl. However, in the case of higher bandwidt
2W/(1+3) in a round, the average duration of a round equalbe impact of K, is less. Similar results with homogeneous
2(1-B)WR/((148)a). The ensemble average of the windowAIMD flows are reported in [15].
size in the fluid model can be used to predict its time average

over a round in a real system. . . . .
Since the Internet contains mixed traffic, we evalu- In this paper, we have studied the practical stability of

ate the performance of AIMD/RED systems with hetthe heterogeneous AIMD/RED system by deriving theoretical

erogeneous flows. Parameters are chosen as folloRgunds of window size and queue length. The theorems in the

C=10,000 packet/secK,=0.005, and R = 0.05 sec for5 Papercan provide important insights and guidelines fdirget
=10, »=0.005, = 0. .

TCP flows competing witts AIMD(1/5, 7/8) flows. For com- up parameters for heterogeneous AIMD/RED systems in order

parison, we also choos€'=20,000 packet/sec,K,=0.005 to maintain system practical stability and to fully utilize

and R = 0.05 sec for10 TCP flows andl0 AIMD(1/5, 7/8) network resources without excessive delay and loss. Irrasint
flows. ’ to the previous pessimistic opinion that an AIMD/RED system

For the case 0§ TCP flows competing witts AIMD(1/5, becomes asymptotically unstable when the link capacity is
7/8) flows, the upper bound ¥, W + N, W7, is 508.9 pack- larger, our results show that the deviation of the AIMD/RED
ets, the lower bound. . is 28.28 packets, and the upperSyStem from its optimal operation region is smaller withHag
bound of the queue length iK.2 packets. For the case oflink capacity. Thus, AIMD/RED should perform well in future
10 TCP flows competing withl0 AIMD(1/5, 7/8) flows Internet with higher data rate links and heterogeneous flows

the upper bound ofV; Wy + NoWi; is 1016.1 packets, the ACKNOWLEDGMENT
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