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Abstract—The Additive Increase and Multiplicative Decrease
(AIMD) congestion control algorithm of TCP protocol deployed
in the end systems and the Random Early Detection (RED) queue
management scheme deployed in the intermediate systems con-
tribute to Internet stability and integrity. Previous research based
on the fluid-flow model analysis indicated that an AIMD/RED
system may not be asymptotically stable when the feedback
delays or the link capacity becomes large [3]. However, as
long as the system operates near its desired equilibrium, small
oscillations are acceptable and the network performance is still
satisfactory. Deriving the bounds of these oscillations for the
heterogeneous AIMD/RED system with time delays is non-trivial.
In this paper, we study the practical stability of the AIMD/RED
system with heterogeneous flows and feedback delays, and obtain
theoretical bounds of the AIMD flow window size and the RED
queue length, as functions of number of flows, link capacity, RED
queue parameters, and AIMD parameters. Numerical results
with Matlab and simulation results with NS-2 are given to
validate the correctness of the theorems and demonstrate the
tightness of the derived bounds. The analytical and simulation
results provide important insights on which system parameters
contribute to higher oscillations of the system and how to set
system parameters to ensure system efficiency with bounded
delay and loss.

Index Terms—Practical stability, bounds estimate, heteroge-
neous AIMD/RED system, time delay system.

I. I NTRODUCTION

Internet stability depends on the Transmission Control Pro-
tocol (TCP), which is voluntarily deployed in the end system
based on the Additive Increase and Multiplicative Decrease
(AIMD) congestion control mechanism. On the other hand,
the active queue management (AQM) algorithms, such as
Random Early Detection or Random Early Discard (RED),
have been developed and deployed in the intermediate systems
to fairly distribute network congestion signals to all on-going
flows, which further improve TCP and network performance.
AIMD and RED both contribute to the overwhelming suc-
cess of the Internet. With the rapid advances in optical and
wireless communications, the Internet is becoming a more
diverse network with higher data rate, a larger number of
flows, supporting heterogeneous applications. It is important
to understand whether an AIMD/RED system can be stable,
scalable, and efficient for future more diversified Internet.

Different from many previous work [1], [2], [3], [4], [14]
on the sufficient conditions for the asymptotic stability of
AIMD/RED or other network control systems, in this paper,

we study the practical stability of the AIMD/RED system, and
derive its theoretical bounds. The definitions of boundedness
and stability are listed below, which follow those in [17], [18].

Definition 1: Consider the dynamic system with time de-
lays

dx

dt
= f(t, x(t), x(t − τ1(t)), · · · , x(t − τm(t)))

wherex∈Rn, f : I×Rn×Rn×· · ·×Rn → Rn is continuous.
Let τ = supi=1,..,m τi(t). The solutions of the system are said
to be

• uniformly boundedif there exists a constantc, for every
a ∈ (0, c), there isB = B(a) > 0, such that for any
ξ(t)∈C[[t0 − τ, t0], R

n], ‖x(t, t0, ξ)‖ ≤ B for all t ≥ t0
when‖ξ‖ ≤ a.

The trivial solution of the above system is said to be
• stable if for every ǫ>0 and t0∈R+, there exists some

δ=δ(t0, ǫ)>0 such that for anyξ(t)∈C[[t0 − τ, t0], R
n],

‖ξ‖<δ implies ‖x(t, t0, ξ)‖<ǫ for all t ≥ t0;
• asymptotically stableif the system is stable and for

every t0∈R+, there exists someη=η(t0)>0 such that
limt→∞ ‖x(t, t0, ξ)‖=0 whenever‖ξ‖<η;

• practically stableif given (λ, A) with 0 < λ < A, we
have, for anyξ(t)∈C[[t0 − τ, t0], R

n], ‖ξ‖ < λ implies
‖x(t, t0, ξ)‖ < A, t ≥ t0 for somet0∈R+.

It has been pointed out that an AIMD/RED system may not
be asymptotically stable when the delay or the link capacity
becomes large [3]. However, even if the system as a whole
is not asymptotically stable, as long as the end systems do
not overshoot the available bandwidth too severely, the overall
system efficiency can still be very high, and the packet loss
rate and queuing delay can still be well bounded. In other
words, if the system oscillates sufficiently close to the desired
operating point, its performance is still acceptable. Therefore,
it is critical to investigate that, does the AIMD/RED system
always operate in the area close to the desired equilibrium
state, and what are the theoretical bounds? To answer these
questions, studying system practical stability and boundsis the
key, which is also the focus of this paper.

With clearly defined bounds, a system is considered practi-
cally stable. The bounds can be used as a guideline to set up
the AIMD/RED system parameters to enhance system perfor-
mance. The boundedness issue for some TCP-like congestion



control algorithms has been studied in [6], [7], [8] by applying
Lyapunov-like method. Shakkottai and Srikant justified the
use of the deterministic model for Internet congestion control
in [9], and in [5], the upper bound on the transmission rate
for two types of TCP-like traffic were given. However, to the
best of our knowledge, the theoretical bounds of congestion
window size and bottleneck queue length of heterogeneous
AIMD/RED systems considering feedback delays have not
been reported in the literature. Because of the heterogeneity of
the Internet, understanding the stability properties and bounds
of the AIMD/RED system with heterogeneous flows is critical
for future network planning and design.

Using the fluid-flow model of the heterogeneous
AIMD/RED system, instead of applying the Lyapunov-
like method, we derive upper and lower bounds of congestion
window size and queue length by directly studying the
inherent properties of the AIMD/RED system. The derived
theoretical bounds provide important insights on which system
parameters contribute to high oscillations of the system and
how to choose system parameters to ensure system efficiency
with bounded delay and loss. The theorems given in the
paper can also help to predict the system performance for
the future Internet with higher capacity and more flows with
different flow parameters.

The remainder of the paper is organized as follows. Sec. II
introduces the fluid model of the heterogeneous AIMD/RED
system. Sec. III derives the upper and lower bounds of
the AIMD/RED system with feedback delays. In Sec. IV,
numerical results with Matlab and simulation results using
NS-2 are presented to validate the derived bounds, followed
by concluding remarks in Sec. V.

II. A FLUID-FLOW MODEL OF HETEROGENEOUS

AIMD/RED SYSTEM WITH TIME DELAYS

A stochastic model of TCP/RED was developed using fluid-
flow and stochastic differential equations in [10]. We extend
the fluid-flow model for general AIMD(α, β) congestion
control: the window size is increased byα packet per round-
trip time (RTT ) if no packet loss occurs; otherwise, it is
reduced toβ times its current value. The general AIMD
congestion control has been proposed to support heteroge-
neous applications with different tolerance on flow throughput
variations [11], [12], [13], [14]. TCP is a special case of AIMD
with α = 1 andβ = 0.5.

We consider the case when there are two classes of flows
with parameters (α1, β1), (α2, β2), time-invariant traffic loads
N1, N2, respectively, as depicted in Fig. 1. We assume that
all the flows have the same round-trip time. The model in
this section can be extended to any certain number of flows
in multiple classes with heterogeneous AIMD parameters and
feedback delays.

With a RED queue, the packet dropping or marking proba-
bility, p, is determined by the average queue lengthqact:

p =







0 0 ≤ qact ≤ minth

Kp(qact − minth) minth < qact ≤ maxth

1 qact > maxth

Sender
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Fig. 1. Heterogeneous AIMD/RED System

whereKp > 0. Whenqact≤minth, dW (t)
dt = α

R , the window
size of AIMD flows will keep increasing and will not converge
to any value. Thus, in the following, we will discuss the
stability of this model whenqact>minth. Without loss of
generality, let q(t) = qact(t) − minth. In addition, since
the queue behaves the same as a Drop-Tail queue onceqact

exceedsmaxth, we choosemaxth to be sufficiently large such
that Kp(maxth −minth) = 1.

Taking time delays into consideration, a heterogeneous
AIMD/RED system shared by two classes of flows can be
modeled as

dWI(t)

dt
=

α1

R(t)
−

2(1−β1)

1 + β1

WI(t)WI(t−R(t))

R(t − R(t))
Kpq(t − R(t)),

dWII(t)

dt
=

α2

R(t)
−

2(1−β2)

1+β2

WII(t)WII(t−R(t))

R(t−R(t))
Kpq(t−R(t)),

dq(t)

dt
=















N1WI(t)

R(t)
+

N2WII(t)

R(t)
− C, q > 0,

{
N1WI(t)

R(t)
+

N2WII(t)

R(t)
− C}+, q = 0.

(1)
where{a}+=max{a, 0}, α>0, β∈(0, 1); Wi is the ensemble
average of AIMD congestion window size (in the unit of pack-
ets) of flow of classi, i=I, II; q is the ensemble average of
queue length;R(t) is the round-trip time withR(t) = q(t)

C +Tp

(secs) whereC is the link capacity (packets/sec) andTp is the
deterministic round-trip delay;p(t) ∈ [0, 1] is the probability
of a packet being marked or dropped. It should be noted that, in
the fluid model,q andW are positive and bounded quantities;
i.e., Wi∈[1, Wmax] and q∈[0, qmax] where qmax and Wmax

denote buffer size and maximum window size, respectively.
With ever-increasing link capacity and appropriate conges-

tion control mechanisms, variation of queuing delays becomes
negligible compared to the round-trip delays [2], [4]. We thus
ignore the effect of the delay jitter on the round-trip time and
assume that the round-trip time of each flow is a constant,
R(t)=R. It is shown in [2] thatWi(t)Wi(t−R) in (1) can be
approximated byW 2

i (t) for i = I, II when the window size
is much larger than one.

For the heterogeneous system (1), the equilibrium point
(W ∗

I ,W ∗

II , q
∗

0) is given by

W ∗

I =
GCR

N1G+N2
,W ∗

II=
CR

N1G+N2
, q∗0=

α1(1+β1)

2(1−β1)W ∗2
I Kp

,

whereG=
√

α1(1+β1)(1−β2)
α2(1−β1)(1+β2)

.



Remarks:At the equilibrium, the total arrival rate equals the
total link capacity, so the link bandwidth is fully utilized. If the
total window size is larger thanN1W

∗

I + N2W
∗

II , the queue
will build up, which results in a longer queuing delay; if the
total window size is less thanN1W

∗

I + N2W
∗

II , the network
load is smaller than its capacity, i.e., the network resources
are not fully utilized. In conclusion, the equilibrium point is
the most desired operating point of the system.

III. PRACTICAL STABILITY AND BOUNDS OF

HETEROGENEOUSAIMD/RED SYSTEM WITH TIME

DELAYS

It was demonstrated in [3] that an AIMD/RED system
becomesasymptoticallyunstable with the increase of round-
trip delays of the system. Using the fluid model, sufficient
conditions for the asymptotic stability of the AIMD/RED
system with feedback delays were derived in [14]. In this
paper, we show that even though the system may become
asymptotically unstable because of the effects of time delays,
its window size and queue length are still bounded, and in
most cases, the upper bounds are close to their equilibria.

In this section, we study the delayed heterogeneous
AIMD/RED system as defined by (1). As mentioned, variation
of queuing delays becomes relatively small to propagation
delays because of the ever-increasing link capacity and ap-
propriate congestion control mechanisms. It is revealed in[16]
that the variable nature ofRTT due to queuing delay variation
helps to stabilize the TCP/RED system. In light of this, we
derive upper and lower bounds of the AIMD/RED system
assumingRTT to be constant. These results will be good
approximations even ifRTT is slightly time-varying.

Notice that the AIMD/RED system defined by (1) are
described by delayed differential equations. Its initial condi-
tions are given by1 ≤ Wi(t) ≤ W ∗

i for i = I, II, and
0 ≤ q(t) ≤ q∗0 on the intervalt ∈ [−R, 0].

In (1), we takeW̄ (t) = N1·WI(t) + N2·WII(t), M1 =
(1−β1)
1+β1

, M2 = (1−β2)
1+β2

, r1 = M1/N1, andr2 = M2/N2, then

˙̄W = (N1α1 + N2α2)/R
− 2[r1·(N1WI)

2(t)+r2·(N2WII)
2(t)] · Kpq(t − R)/R.

(2)
Notice thatWi(t) ≥ 0 for i = I, II and takermin =

min(r1, r2), rmax = max(r1, r2), the following inequality
can be obtained:

−2rmax
W̄ 2(t)

R
≤

˙̄W (t) − N!α1+N2α2

R

Kpq(t−R)
≤ −rmin

W̄ 2(t)

R
.

(3)
Also, we have

q̇(t) =

{

W̄ (t)/R − C, q > 0,
{W̄ (t)/R − C}+, q = 0.

(4)

Thus, with the new variable pair(W̄ (t), q(t)), the original
heterogeneous AIMD/RED system (1) can be rewritten by (2)
and (4). We will study the properties of(W̄ (t), q(t)) in the
following to show the practical stability and derive the bounds
of the system.

Remarks:Our focus in the analysis below is̄W (t), the total
window size att. This is becausēW (t) indicates the entire
throughput of the heterogeneous AIMD/RED system, which
is more useful than the throughput of each individual flow.

A. Upper Bound on Window Size

Theorem 1:Let UB > 0 be the largest real root of

UB
2 · [UB −R·C − (N1α1 + N2α2)]

2 =
4(N1α1 + N2α2)

2

rmin · Kp
,

thenW̄ (t) ≤ UB for t ≥ 0.
Proof: With (2), ˙̄W (t) ≤ (N1α1 + N2α2)/R for t ≥ 0.

For τ > 0, take integration on both sides fromt − τ to t:

W̄ (t) − W̄ (t − τ) ≤ (N1α1 + N2α2) · τ/R. (5)

We show thatUB > 0 in the theorem is an upper bound of
W̄ (t) for t ≥ 0, i.e., if W̄ (t) = UB for somet = t1 ≥ 0, then
˙̄W (t1) ≤ 0.

Integrating on both sides of (4) fromt1−a · R to t1−R for
a > 1 gives

∫ t1−R

t1−aR

q̇(s)ds ≥
1

R

∫ t1−R

t1−aR

W̄ (s)ds − (a − 1)R·C.

Note that (5) impliesW̄ (t1 − τ) ≥ UB −a·(N1α1 +N2α2)
whenτ ∈ [R, aR]. Thus,

q(t1−R) ≥ [UB −a·(N1α1 +N2α2)] · (a−1)−R·C · (a−1),
(6)

sinceq(t) ≥ 0.
Takingf(a) = (a−1) · [UB−a·(N1α1+N2α2)−R·C] and

computing the maximum value off(a) by letting f ′(a) = 0
gives

f(a) = [UB − R·C − (N1α1 + N2α2)]
2/[4(N1α1 + N2α2)],

(7)
with a = [UB − R·C + (N1α1 + N2α2)]/[2(N1α1 + N2α2)]
andf ′′(a) < 0.

Therefore, it follows from (3), (6) and (7) that,̄̇W (t1) ≤ 0
if UB satisfies

UB
2 · [UB −R·C − (N1α1 + N2α2)]

2 =
4(N1α1 + N2α2)

2

rmin · Kp
,

(8)
which impliesW̄ (t) ≤ UB for t ≥ 0.

By the continuity property ofUB
2 · [UB −R·C − (N1α1 +

N2α2)]
2 and the fact that the RHS of (8) is always greater than

zero, we can conclude that there exists at least one real root
for (8) and the largest root must be greater thanR·C+(N1α1+
N2α2). Therefore, the upper boundUB itself will increase
with the increment ofR·C and (N1α1 + N2α2). In addition,
the oscillation of the window size from its equilibrium value
will increase with the increment ofN1α1 + N2α2 and the
decrement ofKp.

It is also noted that the upper bound derived in Theorem 1
is global for the timet, i.e., the window sizeW̄ (t) will not
go aboveUB for any t > t1. If we assume, instead, that there



existst′1 > t1 and∆W > 0, such thatW̄ (t′1) = UB + ∆W ,
there must be someτ ′ ∈ (0, t′1 − t1) such thatW̄ (t′1 − τ ′) =

UB and ˙̄W (t′1 − τ ′) > 0. However, similar to the proof of
Theorem 1, we havė̄W (t′1−τ ′) ≤ 0, which is a contradiction.
Therefore, the window size is upper bounded byUB for all
t ≥ 0.

B. Lower Bound on Window Size and Upper Bound on Queue
Length

In the previous subsection, we proved that the AIMD
window sizeW̄ (t) is bounded byUB , which is defined by
(8). In this subsection, we show that the window size is lower
bounded while the queue length is upper bounded.

Theorem 2:Let LB1 := (N1α1+N2α2

2·rmax

)1/2, then W̄ (t) ≥
LB1 for t ≥ 0.

Proof: Showing thatLB1 > 0 is the lower bound of
W̄ (t) for t ≥ 0, we should prove that if̄W (t) = LB1 at time
t = t2 ≥ 0, then ˙̄W (t2) ≥ 0.

Since the dropping/marking probabilityp(t) = Kp · q ≤ 1
for all t, then

˙̄W (t2) ≥
N1α1 + N2α2

R
− 2 · rmax

W̄ 2(t)

R
Kpq(t − R)

≥
N1α1 + N2α2

R
− 2 · rmax

W̄ 2(t)

R
.

Therefore, ˙̄W (t2) ≥ 0 when W̄ (t) = LB1 with LB1 defined
in the theorem, which implies̄W (t) ≥ LB1 for t ≥ 0.

Notice thatLB1 in Theorem 2 is the lower bound of̄W (t)
for all t ≥ 0, which is a global bound. To show this, similar
analysis to the upper bound of window sizeUB can be applied
to check that the window sizēW (t) will not go below LB1

for any t > t2. However, the value ofLB1 is actually small
because of the loose approximation ofKp · q and the fact that
(αi, βi) pair are all small real numbers fori=1, 2. Therefore,
the global lower bound does not provide much information
about the system performance. Since window size oscillates
around its equilibrium in the steady state, the amplitude of
the oscillation is more important than the global lower bound.
Next, we derive the upper bound of queue length and local
lower bound of the window size after the first time it reaches
the peak value att1. The local lower bound is more useful for
understanding the performance of the AIMD/RED system.

Theorem 3:DefineT1 andUQ as

T1 :=
UB − R·C

rmin · RC2 · Kp · (q∗0+∆q) −
N1α1 + N2α2

R

,

UQ:= inf
∆q>0

{(q∗0 + ∆q) + (
UB

R
− C) · (T1 + R)},

whereUB is defined in Theorem 1. LetLB2 > 0 satisfy

L2
B2 · Kp · UQ =

N1α1 + N2α2

2rmax
, (9)

thenq(t) ≤ UQ for t ≥ 0 andW̄ (t) ≥ LB2 for t ≥ t1.

Proof: We first derive the upper bound ofq(t) for t ≥ 0.
Suppose that̄W (t) reaches its peak value at momentt = t1. To
get a loose upper bound ofq(t), we introduce the comparison
theorem [18]. Instead of following system (2) and (4), we
consider its comparison system:q̇(t) = UB/R − C, and
W̄ (t) ≡ UB for t∈[t1, t′1]. Notice that the solutions of the
comparison system are larger than those of the original system,
so the bounds derived in the following are also the bounds for
system (2) and (4).

Assume thatW̄ (t) does not decrease for some time after
t1, and thusq(t) increases at the rate ofUB/R − C. t′1 is
chosen such thatq(t′1) = q∗ + ∆q with ∆q > 0, thenW̄ (t)
decreases fromt′1 while q(t) keeps increasing tillt2 such that
q̇(t2) = 0 (W̄ (t2) = RC) with t2 ≥ t′1 + R. Therefore,q(t2)
is the local maximum value ofq(t). It should be noticed that
this estimate ofq(t) might be greater than the real maximum
value ofq(t) sinceW̄ (t) may not stay at its peak value after
t1, andq(t) will still increase aftert1, but with the rate less
thanUB/R − C.

From the above analysis, fort ∈ [t′1, t2], q̇(t) ≤
UB

R
− C,

which implies

q(t2) ≤ q(t′1) + (
UB

R
− C) · (t2 − t′1)

= (q∗0 + ∆q) + (
UB

R
− C) · (t2 − t′1).

(10)

To estimate the length of the interval[t′1, t2], for t ∈ [t′1 +
R, t2], it follows from the analysis above that

W̄ (t) ≥ W̄ (t2) = RC,

q(t − R) ≥ q(t′1) = q∗0 + ∆q,

for some∆q > 0.
Thus,

˙̄W (t) ≤
N1α1 + N2α2

R
− rmin ·

(RC)2

R
· Kp · (q∗0 + ∆q),

(11)
for t ∈ [t′1 + R, t2].

On the other hand,
∫ t2

t′
1
+R

˙̄W (s)ds = W̄ (t2) − W̄ (t′1 + R) ≥ RC − UB . (12)

It follows from (11) and (12) that,

RC−UB ≤ [(N1α1 + N2α2)/R−rmin·RC2·Kp·(q
∗

0+∆q)]
· (t2 − t′1 − R),

i.e.,

t2−t′1−R ≤
UB − RC

rminRC2Kp(q∗0+∆q) − (N1α1 + N2α2)/R
.

With the definition ofT1 in Theorem 3, we havet2 − t′1 ≤
T1 + R. Therefore, it follows from (10) that

q(t) ≤ inf
∆q>0

{(q∗0 + ∆q) + (
UB

R
− C) · (T1 + R)}, (13)

i.e., q(t) ≤ UQ for t ≥ 0, which indicates thatUQ is the
upper bound of the RED queue length. Since the packet loss



in a RED queue is proportional to the queue length, the derived
queue length upper bound also reflects the maximum packet
loss rate.

We finally show thatLB2 > 0 is a lower bound ofW̄ (t)
for t ≥ t1, i.e., if W̄ (t) = LB2 at time t = t3 > t1, then
˙̄W (t3) ≥ 0.

With (3) and (13),

˙̄W (t3) ≥
N1α1 + N2α2

R
− 2rmax ·

L2
B2

R
· Kp · UQ.

Thus, ˙̄W (t3) ≥ 0 if LB2 is chosen to satisfy (9). Therefore,
LB2 is the lower bound ofW̄ (t) for t ≥ t1.

Therefore, the heterogeneous AIMD/RED system is practi-
cally stable with the bounds derived in Theorems 1 and 3.

The approach in this section can also be extended to obtain
the theoretical bounds for AIMD/RED systems when they are
shared by more than two classes of flows. Details are omitted
here due to space limit.

IV. PERFORMANCE EVALUATION

In this section, numerical results with Matlab and simulation
results with NS-2 are given to validate the theorems and
evaluate the system performance with different parameters.
It should be noted that, in the fluid model,q and W are
ensemble averages with positive and bounded quantities. In
ergodic systems, ensemble average equals time average. If
the AIMD window size oscillates between2βW/(1 + β) and
2W/(1+β) in a round, the average duration of a round equals
2(1−β)WR/((1+β)α). The ensemble average of the window
size in the fluid model can be used to predict its time average
over a round in a real system.

Since the Internet contains mixed traffic, we evalu-
ate the performance of AIMD/RED systems with het-
erogeneous flows. Parameters are chosen as follows:
C=10, 000 packet/sec,Kp=0.005, and R = 0.05 sec for 5
TCP flows competing with5 AIMD( 1/5, 7/8) flows. For com-
parison, we also chooseC=20, 000 packet/sec,Kp=0.005,
andR = 0.05 sec for10 TCP flows and10 AIMD( 1/5, 7/8)
flows.

For the case of5 TCP flows competing with5 AIMD( 1/5,
7/8) flows, the upper bound ofN1WI +N2WII is 508.9 pack-
ets, the lower boundLB2 is 28.28 packets, and the upper
bound of the queue length is10.2 packets. For the case of
10 TCP flows competing with10 AIMD( 1/5, 7/8) flows,
the upper bound ofN1WI + N2WII is 1016.1 packets, the
lower boundLB2 is 55.80 packets, and the upper bound of
queue length is19.6 packets. In the NS-2 simulations, since
the RED thresholdminth is set to 20 packets, the upper
bounds of total window size and queue length are enlarged
by 20 packets accordingly. For the simulation results, we
compare the theoretical bounds with both the total window
size of all flows and its time average over a round. The
correctness of our theoretical bounds and the tightness of
the upper bound of window size are demonstrated by the
numerical and simulation results, as shown in Fig. 2. The
average window sizes in the NS-2 simulation results are

slightly larger than the numerical results. This is becausethe
numerical simulations with Matlab ignore the queuing delays
in RTT , which may under-estimates the window size. It is also
observed from Fig. 2 that, if the number of flows and the link
capacity are increased proportionally, the upper bound of per-
flow window size is closer to its optimal value. With both the
number of flows and the link capacity being doubled, the upper
bound of the queue length is less than twice of the previous
bound. Therefore, the queuing delay bound is slightly reduced
because of the multiplexing gain. An interesting conclusion
is that although the increase of link capacity may cause an
AIMD/RED system to become asymptotically unstable [3], the
system queuing delay has lower bound and the upper bound
of flows window size is closer to the optimal operating point.
This result demonstrates the importance of studying practical
stability and bounds of the AIMD/RED system.

Fig. 3 shows the window trace and queue length when
20 TCP flows share the bottleneck with40 AIMD( 1/5, 7/8)
flows with Kp=0.005 and Kp=0.001, respectively. For the
case of Kp=0.005, the upper bound ofN1WI + N2WII

is 3034.4 packets and the upper bounds of queue length is
43.1 packets; while for the case ofKp=0.001, the upper bound
of N1WI + N2WII is 3042.4 packets and the upper bounds
of queue length is60.7 packets. It can be seen that a smaller
value ofKp results in a slightly larger bounds on both window
size and queue length. This observation is consistent with our
analysis in Sec. III. However, in the case of higher bandwidth,
the impact ofKp is less. Similar results with homogeneous
AIMD flows are reported in [15].

V. CONCLUSION

In this paper, we have studied the practical stability of
the heterogeneous AIMD/RED system by deriving theoretical
bounds of window size and queue length. The theorems in the
paper can provide important insights and guidelines for setting
up parameters for heterogeneous AIMD/RED systems in order
to maintain system practical stability and to fully utilize
network resources without excessive delay and loss. In contrast
to the previous pessimistic opinion that an AIMD/RED system
becomes asymptotically unstable when the link capacity is
larger, our results show that the deviation of the AIMD/RED
system from its optimal operation region is smaller with higher
link capacity. Thus, AIMD/RED should perform well in future
Internet with higher data rate links and heterogeneous flows.
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