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Abstract
With the growing intelligence needed on the 

Internet of Vehicles (IoV), seamless edge com-
puting services for the sixth generation (6G) 
vehicle-to-everything (V2X) applications require 
three-dimensional (3D) and ubiquitous network-
ing coverage to realize the intensive computing 
tasks and data offloading. In the high mobility and 
fast-changing vehicular environment, the 6G V2X 
networks supporting vehicular edge computing  
(VEC)  need to be more flexible, smart, and adap-
tive. In this article, an intelligent unmanned aerial 
vehicle (UAV)-assisted VEC system is envisioned 
to satisfy 6G V2X requirements and provide 3D 
and adaptive service coverage. We indicate that 
in 6G IoV networks, given the fast-changing and 
large-scale networks, effectively coordinating and 
managing massive UAVs incur several problems, 
which are complex to solve by conventional 
optimization tools. In this regard, leveraging the 
big data feature of historical information, artifi-
cial-intelligence-based solutions are anticipated 
to facilitate fast, automatic, and efficient UAV 
deployment to support 6G V2X applications. 
An illustrative case study is provided to demon-
strate the effectiveness of the proposed intelligent 
UAV-assisted VEC architecture. We also outline 
future research directions to realize the vision of 
UAV-assisted VEC for 6G IoV networks.

Background and Motivations
Future 6G vehicle-to-everything (V2X) applications 
(e.g., intent sharing, interactive gaming, and coordi-
nated driving [1]) are anticipated to support safer, 
more diverse, and efficient autonomous transpor-
tation [2]. The success of these applications relies 
on the processing and fusion of massive data from 
sensors distributed in vehicles, and on roads and 
other infrastructures to guarantee precise envi-
ronment perception. The computation and per-
ception ability of the individual vehicle continues 
to increase. However, it leads to a low price-per-
formance ratio of an intelligent vehicle due to the 
high price of the powerful CPUs or high-precision 
sensors. Even ignoring the price-performance ratio, 
the local perception still limits the performance 
of 6G V2X applications. Furthermore, the power 
consumption for perception and computation will 
also shorten the vehicle’s travel mileage. The com-

putation resource-hungry applications pose a sig-
nificant challenge to the resource-limited vehicular 
terminals.

To go beyond the limits of an individual vehi-
cle’s ability, as a critical technology of 6G wireless 
networking, vehicular edge computing (VEC) has 
gained enormous popularity, aiming to provide 
vigorous computing, storage, and intelligence ser-
vices by leveraging distributed devices’ power 
with reasonable communication cost [3]. Com-
pared to the traditional cloud-based computing 
paradigm, the physical proximity between the 
computing and information sources promises sev-
eral benefits, including low latency, high energy 
efficiency, reliable privacy protection, reduced 
bandwidth consumption, strong context aware-
ness, and so on. VEC relies on advanced wireless 
technologies to quickly distribute computing tasks 
and corresponding sensor data from vehicles to 
network edges (vehicles, roadside units, etc.) to 
enable intelligent V2X applications for the 6G 
Internet of Vehicles (IoV).

There are two de facto standards for V2X: ded-
icated short-range communications (DSRC) based 
on IEEE 802.11p and cellular V2X (C-V2X) [4, 5]. 
DSRC was first released in 2010 and has been 
extensively tested. Driven by the existing cellular 
systems’ coverage, C-V2X has put forth pilot appli-
cations with longer transmission distance, broad-
er radio coverage, steadier channel, and dense 
deployment. The current fifth generation (5G) 
C-V2X and its next generation are expected to 
support large data offload to edge nodes by new 
frequency bands (e.g., millimeter-wave). 

Offloading solutions, including task segmen-
tation, offloading edge selection, task migration, 
and data security, have been widely researched in 
recent years [3]. It is worth noting that edge com-
puting offloading heavily relies on the coverage 
and capacity of ubiquitous base stations. Howev-
er, these works usually assume that the commu-
nication resource for edge offloading is sufficient, 
which is ideal, especially in vehicular networks. 

Directly deploying dense base stations can 
release the overloading problem of VEC. How-
ever, it is both costly and inefficient because the 
service demand in IoV varies with time (rush hour 
vs. off-peak hour) and location (downtown vs. 
suburb) dramatically. As a result, in many cases, it 
is difficult to satisfy the requirements during rush 
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hours, while deploying more base stations may 
lead to low utilization in off -peak times.

Moreover, with viaducts, bridges, and tunnels, 
the modern road layout shows a three-dimension-
al (3D) structure. Thus, the service requests are 
from 3D spaces instead of 2D areas. The current 
cellular networks were mainly designed to pro-
vide services under 2D networking circumstanc-
es. With new high-frequency wireless technology 
emerging, the base stations should be deployed 
closer to ground devices to mitigate signal loss 
and multi-path fading. It is hard to provide seam-
less and steady 3D coverage for VEC under the 
V2X environment solely depending on the fixed 
deployment scheme for base stations. 

Due to limited communication rate and the 
inherent large latency of current satellite net-
works, UAVs are regarded as effective tools to 
provide 3D coverage outside terrestrial cellular 
networks in 6G [6]. However, these works mainly 
focus on trajectory planning and resource alloca-
tion in the general 6G scenarios. As a special 6G 
scenario, VEC with high dynamic network topolo-
gy and traffi  c load requires a specifi c architecture 
to  provide more fl exible infrastructure, ultra-high 
throughput, 3D radio coverage, and seamless off -
loading capability. In this article, we introduce an 
intelligent unmanned aerial vehicle (UAV)-assisted 
vehicular edge computing system. By involving 
UAVs and artifi cial intelligence (AI), a fl exible and 
intelligent V2X network is promising for enabling 
3D edge computing service for vehicles with 
dynamic network topology, intensive computing 
off loading demands, and massive generated data.

The UAV-Assisted NetWork 
Architecture

Given the capability of 3D coverage and adapt-
ability to changing demands, the UAV)-assisted 
VEC architecture is envisioned as shown in Fig. 1.

Equipped with communication transceivers, 
UAVs can support ubiquitous broadband wire-
less communications free from restrictions on 
road layout and obstacles [7, 8]. For example, 
the rotary-wing or hybrid fi xed-/rotary-wing UAV 
can hover over a fixed location to provide con-
tinuous cellular coverage, and the high maneu-
verability makes them able to deploy BSs at the 
desired locations with high precision, or fly in a 
designated trajectory while carrying BSs [9]. The 
flying ability allows UAVs to be able to provide 
3D multi-angle aerial interfaces for vehicles. Fur-
thermore, by adjusting altitude and positions, a 
UAV can communicate with vehicles using LoS 
links with a high chance of success.

On the other hand, to support diff erent lifetime 
service demands, the network should be fl exible 
to adjust the service capacity of different areas 
according to the real-time traffi  c. With high mobil-
ity, UAVs can be scheduled to desired positions 
according to time- and location-varying edge off -
loading demands to guarantee relatively enough 
communication resources for vehicular applica-
tions, especially for the edge off loading requests 
from delay-sensitive vehicular applications.  

As shown in Fig. 1, multiple UAVs are connect-
ed to the cloud center, and they can coopera-
tively serve overloaded or poor coverage areas 
to support VEC. In general, edge nodes for vehi-
cles should have stronger computation capacities, 
larger storage, or free storage and computation 
resources. Thus, the optimal target edge nodes 
for vehicle’s edge offloading usually are 1) pro-
fessional edge infrastructures and 2) other vehi-
cles. Through vehicle-to-infrastructure (V2I) and 
vehicle-to-vehicle (V2V) communications, we can 
realize the edge off loading from vehicle to vehicle 
and professional edge infrastructures, which are 
called V2V and V2I computing off load:

UAV-Assisted V2I Computing Offload: To 
support high-resolution perception and other 

Figure 1. UAV-assisted network architecture for 6G vehicular edge computing.
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enhanced V2X applications, vehicles need to 
offload intensive computing tasks and massive 
sensed data to edge infrastructure with high 
computation and storage capacity. The edge 
infrastructure is usually equipped with high-per-
formance computing entities, such as a central 
processing unit (CPU), a graphics processing unit 
(GPU), a network processing unit (NPU), and a 
tensor processing unit (TPU), to provide edge 
computing services for vehicles. By the V2I com-
puting offload, vehicles can use the roadside and 
sky units’ power to speed up the computing tasks. 
The infrastructure may also leverage the data 
from other sources (vehicles, clouds, etc.) to fur-
ther improve AI algorithms’ training and learning 
performance.

However, restricted by the road layout and 
traffic status, the ground BSs, including the mobile 
BS vehicle (MBSV), can hardly quickly fill the cov-
erage gap and provide needed VEC data offload-
ing. Using the UAV-assisted networks, a UAV with 
high altitude can expand radio coverage (equal 
to raising the antenna height). Moreover, UAVs 
can provide continuous LoS links to vehicles in 
dynamic environments by adjusting their impend-
ing location, antenna angle, transmitting power, 
and even modulation scheme.

UAV-Assisted V2V Computing Offload: 
Besides the V2I computing offload, vehicles may 
also offload computing tasks to other vehicles by 
V2V in the following cases:
1. The edge infrastructure is overloaded or not 

available at that time.
2. The idle computing capacity of neighboring 

vehicles could be obtained at a lower cost.
3. Distributed coordination or control among 

vehicles is necessary (e.g., for platooning or 
content sharing applications)s.

Differing from the V2I computing offload, the 
source and destination for offloading are mobile 
and often without LoS opportunity. In addition, 
for the distributed coordination or control case, 
any service outage may degrade users’ experi-
ence and endanger road safety. UAVs can easi-
ly track the offloading pairs or clusters to ensure 
high-quality and timely communications among 
them.

UAV-assisted communication is desirable, so 
multiple UAVs should be carefully scheduled 
and managed to support VEC with desired per-
formance and efficiency. Here, efficiency can 
be defined according to different metrics (the 
amount of offloaded data,  the throughput in a 
crowded area, the service satisfaction ratio, etc.). 
The optimal scheduling is inherently coupled with 
several mixed-integer optimization problems [10]. 
The real-time scheduling and management of the 
multiple UAVs involve traffic analysis, UAV mon-
itoring, and UAV scheduling, which are mutually 
affected. The complexity makes it hard to solve by 
conventional optimization solutions.

AI-Enabled Intelligent  
UAV-Assisted VEC System

Driven by the recent advances in algorithms, 
computing power, and big data, AI has made 
substantial breakthroughs in a wide spectrum of 
fields. By machine learning technologies, AI can 
tame problem complexity by providing pragmat-

ic but competitive performance. In addition, AI 
enables wireless devices to actively and intelli-
gently monitor their environment by learning and 
predicting the evolution of various environmental 
features and proactively take actions that maxi-
mize the chances of success for some predefined 
goal [11]. In addition, it can adjust the trade-off 
between performance and complexity during 
both the training and deployment phases accord-
ing to applications’ requirements. Hence, the 
AI-based algorithm can flexibly balance the trade-
off between prediction accuracy and training 
complexity. In dynamic vehicular networks, the 
trade-off can be adjusted according to real-time 
status inlcuding a UAV’s battery level, accuracy 
requirement, computation resource, and so on.

Several works studied the integration of UAV 
and V2X communication [12, 13]. However, few 
proposed a systemic architecture of applying AI 
to schedule multiple UAVs for VEC. AI can ben-
efit the UAV-assisted network in the following 
aspects:
•	 Pre-scheduling: UAVs can be scheduled and 

deployed in advance by AI-based request 
prediction. AI could provide a robust tool to 
analyze a time-varying and location-depen-
dent offload request and predict service load 
from given positions for the next time slot, 
next minute, and next hour. Based on predic-
tions, the assistance system can find out the 
potential overload positions in advance.

•	 Auto-deployment: Compared to traditional 
UAV deployment solutions, the AI-enabled 
solution enables fully automated deploy-
ment. Utilizing AI technology, the heteroge-
neous optimization problems include UAV 
choice, deployment topology decision, and 
route planning. Recharging management can 
be automatically executed.

•	 Large scale: Based on the powerful deduc-
tion, classification, prediction, and ranking 
ability of AI, a UAV-assisted system can be 
established in a large-scale area. The auto-
mated solution can provide ubiquitous and 
pervasive VEC offloading services for vehi-
cles in a road segment, a district, and even a 
city.
As depicted in Fig. 2, an AI-enabled intel-

ligent UAV-assisted VEC system contains two 
parts, AI-based request prediction  and AI-based 
UAV monitoring and management, which further 
enable several AI-based services for UAV-assist-
ed VEC. We adopt the cloud-based AI algorithm 
to realize global optimization and maximize the 
scheduling efficiency globally [1]. The historic 
data will be collected in the cloud and utilized to 
train the AI model. Then the AI model will also be 
deployed in the cloud to provide global predic-
tion and scheduling based on the global real-time 
data.  

AI-Based Request Prediction
In VEC, the number of offload requests generat-
ed by vehicles is affected by traffic density and 
events. For some basic V2X applications, such as 
environment perception, an area with high vehicle 
density generates more offload requests. In some 
cases, the event-driven V2X applications will cre-
ate many requests when large-scale or emergent 
events occur. For instance, sudden road excep-

By machine learning 
technologies, AI can tame 
the problem complexity 
by providing pragmatic, 
yet competitive perfor-
mances. In addition, AI 
enables wireless devices 
to actively and intelligently 
monitor their environment 
by learning and predict-
ing the evolution of the 
various environmental 
features and proactively 
take actions that maximize 
the chances of success for 
some predefined goal.
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tions or traffic accidents will need more compli-
cated coordination and environment perception, 
thereafter increasing the offload service requests. 
The request prediction can be long-term or short-
term prediction.

The long-term prediction learns the request 
pattern related to slow or no change (not real-
time) parameters, then provides a basic request 
prediction across a long period of time. The 
parameters can comprise time, location, number 
of requests, and more. For example, the requests 
around a city’s CBD have distinguished patterns 
during weekday and weekend, which commonly 
consist of very different peak and off periods. The 
short-term prediction focuses on the relationship 
between the request and its context (e.g., request 
frequency, vehicle distribution, channel load, and 
emergent event) to predict the request load in the 
next time slot, second, or minute. The long-term 
prediction attempts to output a rough and macro 
request estimation, while the short-term predic-
tion tends to generate a precise and micro result. 
The conventional prediction methods usually 
require a complex model and may face results’ 
fusion problems. To obtain accurate prediction 
results with a reasonable complexity, the AI-based 
request prediction emerges.

AI provides several tools to process the time 
series data, such as recurrent neural networks 
(RNNs), spiking neural networks (SNNs), and long 
short-term memories (LSTMs). For example, as a 
particular deep learning version of RNNs, LSTMs 
inherit RNNs’ characteristic of efficiency in pro-
cessing the time-dependent data and analyzing 
dynamic temporal behaviors, and are capable of 
storing information for either long or short peri-
ods of time. Thus, LSTMs have the ability to make 
real-time long-term and short-term predictions of 
the VEC offloading requests.

AI-Based Multi-UAV Monitoring 
and Management

As mentioned above, UAVs can provide flexible 
aerial interfaces for vehicles to offload computa-
tion and data. However, to realize dynamic UAVs’ 
deployment, the following limitations should be 
considered:
•	 Cost: Although a UAV provides flexible 

deployment at a lower cost than a conven-
tional fixed BS, one communication UAV will 
still cost thousands of dollars plus the opera-
tion and maintenance costs. It is desirable to 
deploy a minimum number of UAVs accord-
ing to the current network requirements to 
save cost, especially in highly dynamic vehic-
ular networks.

•	 Battery: A UAV’s battery size and weight are 
limited, which also leads to limited service 
time. To ensure timely recharging and main-
tenance,  the system should monitor UAVs’ 
real-time states and provide state prediction 
based on future behaviors.

•	 Mobility: A UAV’s flexible deployment relies 
on its mobility to move to the destination, 
track a target, or hover around. To avoid 
conflict and manage battery, UAVs’ real-time 
mobility reactions and states are vital.
Multiple UAVs’ scheduling is a continuous 

control problem with an unlimited action space 
that requires a series of future state chains to 

make an optimal decision. Unlike simple infor-
mation collection, to increase service capacity 
with a limited number of UAVs, limited battery, 
and reasonable path planning, the system should 
make a series prediction of cost, battery states, 
and mobility states for different scheduling behav-
iors. Machine learning can be involved to realize 
intelligent monitoring and management for UAVs, 
such as RNNs, SNNs, and LSTM.

AI-Based Multi-UAV Scheduling
By leveraging the predictions of requests and a 
UAV’s mobility reactions and states, multi-UAV 
can be optimally scheduled to improve VEC’s effi-
ciency.  The scheduling typically involves the fol-
lowing functions:
•	 Topology decision: According to the 

AI-based offloading request prediction, mul-
tiple UAVs can be arranged in appropriate 
locations to provide offload assistance. An AI 
algorithm can provide a real-time intelligent 
decision on these UAVs’ topology by con-
sidering the current request load, the request 
load prediction, the current UAV location 
topology, and the state of those UAVs 
(working, low battery, or error).

•	 Route planning: In massive VEC networks, 
a large number of UAVs are involved. The 
AI-based intelligent route or path planning 
service is crucial to guarantee timely deploy-
ment and avoid flying path conflict. In addi-
tion, the enhanced route planning service 
can support underloaded UAVs to take 
other edge computing offload requests by 
detouring to nearby areas, and thus increas-
ing overall offloading efficiency.

•	 Recharge management: Considering the 
scenario that many UAVs share the limited 
charging dock, intelligent recharge man-
agement is also vital. On one hand, by 
monitoring UAVs’ battery and location, the 
application can assign low-battery UAVs to 
the nearest unoccupied charging dock in 
time. On the other hand, to avoid charging 
dock overload with many UAVs waiting 
for charging service, the application should 
guarantee load balancing throughout all the 
changing stations and schedule recharging in 
advance.

•	 Task-shifting strategy: Due to the battery lim-
itation, long-term assistance usually requires 

Figure 2. Illustration of general procedures of an AI-enabled intelligent UAV-
assisted VEC system.
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several UAVs to relay the task cooperatively. 
Therefore, an intelligent task-shifting strategy 
is of great importance. The service should 
decide which and when UAVs take the shift-
ing to guarantee continuous UAV assistant.
AI-based multi-UAV scheduling mainly focuses 

on how to schedule limited UAVs to the poten-
tial heavy load areas. In most situations, multi-
UAV scheduling is a heterogeneous problem that 
involves several functions. For example, a recharg-
ing action requires recharge management and 
route planning at least. In addition, the problem 
is a continuous control problem with an unlimit-
ed action space. AI provides several strong tools 
to deal with the dynamic problems that classical 
centralized or distributed optimization approach-
es can hardly solve, like actor-critic, determinis-
tic policy gradient, and deep deterministic policy 
gradient (DDPG). DDPG [14] naturally combines 
accommodating the continuous space actions 
and the time-varying problem above. It contains 
two parts and four neural networks: target net-
work Q’ and critic network Q in the critic part, 
and target network U’ and actor network U in 
the actor part. The structure makes the algorithm 
more stable and easy to converge. By utilizing the 
strong tools, the multi-UAV scheduling and man-
agement can output a specifi c moving action for 

every UAV, and the action decision will be evalu-
ated and improved in the process continually.

Case Study
In this part, we discuss a simple case study of LSTM-
based request prediction and DDPG-based route 
planning as a starting point to validate AI-based 
UAV-assisted VEC. The simulation utilizes the Ten-
sorFlow r2.3 platform, which has attracted much 
attention in the AI fi eld and has high market capi-
talization. We employ realistic traffic traces and a 
road layout of Cologne, Germany [15]. We adopt 
rotary wings or hybrid fi xed-/rotary-wing UAVs with 
20 m/s average speed as an example, but the sim-
ulation results can be extended to a general speed 
situation. Assume all vehicles are active to request 
VEC service during driving. We use the service ratio 
to evaluate our UAV-assisted VEC system’s perfor-
mance, which is defined as the number of served 
requests before the deadline to the number of total 
issued requests by vehicles. The main parameters in 
our tests are listed in Table 1.

The simulation area is further divided into 
sub-areas according to fixed BS locations. After 
that, our solution is compared to the BS-only solu-
tion and the UAV-assisted systems without AI. For 
the BS-only solution, all sub-areas are uniformly 
covered by eight fi xed BSs. As for the UAV-assist-
ed solution without AI, four UAVs are launched 
and scheduled according to real-time traffi  c load 
using a greedy algorithm. In the AI-enabled sys-
tem, we adopted a 2-layer LSTM network with 80 
and 50 units, and ReLu activation to predict the 
request load and UAVs’ mobility in the next 15 
s. Then, according to the prediction results, we 
applied DDPG with 0.001 learning rate for actor, 
0.002 learning rate for critic, and 0.9 reward dis-
count to schedule the route for UAVs.

Figures 3 and 4 depict the average service 
ratio of the different sub-areas averaged over 
daytime and during rush hour only, respectively. 
Even though only four UAVs are deployed for 
the UAV-assisted (without AI) system, the average 
service ratio has been improved in more than six 
sub-areas. We can find that some sub-areas’ per-
formance improvements (e.g., 2, 3, and 7) are not 
obvious. The UAV-assisted (without AI) system uses 
a greedy algorithm to maximize the improvement in 
service ratio. Therefore, the sub-areas with a lower 
service ratio will be assisted by UAVs first. Com-
pared to the non-AI system, the AI-enabled system 
shows better performance during rush hours. The 
AI-enabled system provides a pre-scheduling ability. 
Thus, it can dispatch UAVs quickly, even before 
overload occurs. On the other hand, UAVs’ intel-
ligent route planning also provides more flexible 
scheduling. Especially for some sub-areas with “traf-
fi c burst” (e.g., areas 6 and 8). DDPG means multi-
UAV safer and arrive faster in the demanding areas. 
In conclusion, AI further harnesses the UAV-assisted 
system’s potential and significantly improves the 
service ratio compared to the non-AI one.

Open Issues in
UAV-Assisted VEC

In this section, we discuss some open issues for 
enabling UAV-assisted VEC.

Tailored Models for Specific Scenarios: We 
involve several possible AI application scenarios 

Figure 3. The average service ratio of 10 sub-areas over 24 hours. 
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TABLe 1. Parameters of simulation.

Simulation parameters Numerical values

Simulation area of Koln (50.936869, 50.942281) to (6.992264, 7.009435)

Frequency effi ciency 12.5 Mb/s/MHz

Bandwidth for offl oading service 20 MHz

Required data rate for VEC: 75–125 Mb/s

UAV’s average fl ying speed 20 m/s

The antenna gain of BS, vehicles and UAVs GBS, Gv, GUAV = 1

Receiver threshold –91 dBm

Transmission power Vehicles: 50 mW; UAVs: 280 mW
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including traffic prediction, UAV management 
and monitoring, and UAV scheduling. However, 
if AI applies to a specific scenario, we need an 
AI model tailored to the specific scenario. The 
research on AI algorithms and models for specifi c 
scenarios are important and challenging.

Distributed Intelligent UAV-Assisted VEC:
As the scale of the UAV-assisted system expands, 
centralized AI will face latency, data privacy, and 
confi dentiality problems. To support delay- and/or 
privacy-sensitive VEC application, distributed intelli-
gence is emerging, which pushes the AI to edges. 
How to incorporate distributed AI nodes and exploit 
the local data to make real-time global optimization 
of UAV scheduling is a crucial open issue.

Multi-UAV Coordination: In a UAV-assisted sys-
tem, multiple UAVs are scheduled by one or multiple 
scheduling centers. Ideally, the scheduled tasks can 
be fulfi lled by UAVs. However, the wireless channel 
is vulnerable to fading and interference, especially for 
the aerial interface in poor weather and/or with 3D 
road layout. Multi-UAV coordination allows UAVs 
to work as a team and relay for each other if need-
ed. To ensure reliable multi-UAV coordination, relay 
selection, scheduling maintenance, and release is a 
challenging and important topic.

Pre-Computing Offl  oad: Given the high mobil-
ity of vehicles, a promising direction is to off load 
computing among different edge nodes accord-
ing to vehicles’ driving routes. The computing can 
be directly off loaded to the edge nodes near the 
location where the vehicle can retrieve computing 
outcomes. How to split and distribute a comput-
ing task according to estimated computing delay, 
vehicles’ driving routes, and edge nodes’ (maybe 
mobile) locations needs further investigation.

Conclusion
This article introduces the potential trends and 
challenges brought by the upcoming 6G vehicular 
edge computing. To design a flexible and intel-
ligent computing offloading system to support 
seamless VEC services for 6G V2X applications, 
we present an intelligent UAV-assisted VEC sys-
tem architecture. We present a case study as a 
starting point to demonstrate the system’s eff ec-
tiveness and discuss the open issues. This article 
expects to bring more attention to the promising 
but challenging UAV-assisted VEC system, beck-
oning further research eff orts to address the many 
open issues to fully realize its potential.
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Figure 4. The average service ratio of 10 sub-areas during rush hours (5 p.m 
to 7 p.m).
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