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Abstract—Plug-in  Hybrid Electrical Vehicles (PHEV) are to include other elastic loads to provide automatic demand
promising to improve energy efficiency and environment friend-  response to protect the power grid and improve its efficiency
liness. However, without proper control, their charging will cause The main contributions of this paper are three-fold. First,

harmful impact on the power distribution grid, including load . . . . o
congestion and voltage drop. Instead of using centralized opti- & décentralized algorithm is introduced, which can effityen

mization which may need accurate predictions on key parame- avoid bus congestion and large voltage drop in the distabut

ters, in this paper, a new decentralized random access framework grid with charging PHEVs. The smart agents schedule the
is introduced to schedule the PHEV charging. The proposed pPHEV charging independently based on the received informa-
distributed solution does not need accurate predictions and tion of the current grid status from a control center. Second

can be executed online. Simulation on a semi-urban residential | h f f lorith d derive th
medium voltage grid shows that our algorithm can effectively W€ analyze the periormance or our algorithm and derive the

provide demand response to protect the distribution grid from System capacity. Finally, extensive simulation with reatad
bus congestion and voltage drop, and also improve its efficiency. from National House Hold Travel Survey 2009 [11] and the

Most importantly, this algorithm is simple to deploy. RELOAD database [12] from national energy modeling system
Index Terms—Decentralized/Randomized PHEV charging, De- are conducted to evaluate the performance of the proposed
mand Response, Distribution Grid, Smart Grid algorithm on a typical resident area distribution grid [5].

The rest of the paper is organized as follows. A detailed
discussion of related work is given in Section Il. Sectioh II
provides the modeling of current load and PHEV charging

Plug-in hybrid electric vehicle (PHEV) becomes increasrofiles, and introduces the grid architecture. Then thélpro
ingly popular. The energy department of USA estimates thigt formulated in Section IV. A general description of the
more than one million PHEVs will be sold by the end oproposed framework is given in Section V. Then we introduce
2015. In addition to its environment friendliness, the a@op the detailed algorithm design in Section VI. The performeanc
of a large number of PHEVs will exert great pressure on thg the proposed algorithm is analyzed in Section VII. Per-
current power grid due to its high power demand [2]. As formance evaluation by simulation is given in Section VIII,
result, appropriate actions are needed to eliminate arsilfes followed by concluding remarks and future research issnes i
harmful impact, which sparks numerous research efforts. Section IX.

The previous work mainly focused on the grid constraints
at the transport and high-voltage distribution grid [1]].[2
Recent research started to pay attention to the distrigiil.

The two most common problems in the distribution grid are J. Tayloret. al demonstrated that a high PHEV penetration
bus congestion and voltage drop. As discussed in the relatate would result in loads exceeding current bus capacity
work section, existing approaches mainly focus on ceatdli through simulation based on a real data model [3]. In [4], the
optimization technologies which need accurate predisteomd authors used load flow analysis to show the impact of PHEV
may be difficult to solve within a short time period given an the distribution grid. J. Aet. al investigated the impact of
large grid size. In the low voltage grid, some centralizgtiti PHEV charging on medium voltage grid, considering the bus
weight control algorithms were proposed, but they may n&dad congestion, and voltage drop problems [5].

be easily extended to the whole distribution grid with adarg To solve the problems listed above in the distribution grid,
population and high PHEV penetration. O. Sundstromet. al proposed a centralized approach aiming

According to our literature survey, there still lacks of d@o reach minimum charging cost using an optimization tech-
distributed scheduling approach for supporting a high PHEWIlogy. Their model concerns both bus congestion and weltag
penetration rate and considering the common grid consstairdrop problems in the medium voltage grid [6], [7]. Richandso
In this paper, we propose a framework to regulate PHE&t. al formulated and solved an optimization problem to
charging by considering the bus load congestion and voltagmximize the energy delivered to all electrical vehicle¥gE
drop problems in the distribution grid. Different from thewithin a certain period of time [27]. Transformer overloatla
existing algorithms, our algorithm is decentralized with &oltage drop of a low-voltage transmission grid are conside
low complexity. No complex optimization problem needs tassuming the charging rate of each EV can be adjusted
be solved. And it does not rely on any accurate predictiamontinuously. M. D. Galugt. al proposed a hierarchic PHEV
on load or PHEV arrival time and can be executed in readcheduling algorithm based on model predictive control and
time. In addition, our approach takes the delay constraifits game theory in [22], aiming to avoid transformer overload. |
PHEV charging into consideration. Finally, it can be extad [26], the PHEV charging process can respond to frequency

|. INTRODUCTION

II. RELATED WORK
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points may reach a high congestion level while the far away
Fig. 1. Grid Architecture [3] ones may encounter the voltage drop problém.

and voltage deviations detected locally. [24] uses stdithad3- Distribution Grid Load
programming to minimize the power losses of the distributio The total load profile for the medium voltage grid used is
grid. Sortomme et al discussed a method to reduce compom [14] which is based on the hourly residential load csrve
tation time of minimizing the impacts of PHEV charging orof an average household from the RELOAD database [12] and
the distribution system’s losses in [25]. In [9], each housgaterpolated using the approach described in [8]. The ourl
is assigned an upper bound for power consumption. Aftgata is interpolated into the load curve which consists4d
reaching this bound, a centralized controller will shut dowminutes of a day.
some devices according to a predefined priority. In [10], a The load curve consists of 2 different types of residential
dynamic upper bound for all the houses based on the ryeds, including both critical loads and elastic loadsti€al
that the original peak demand without PHEV charging i®ads refer to those that cannot be delayed, such as for
maintained. cooking and lighting. Elastic loads can be delayed, like for
The centralized control used in the previous work may neboling/heating. In this paper, we assume all the loadspixce
be easily extended to a large-scale distribution grid withh PHEV charging to be critical loads for simplicity. In other
PHEV penetration, as perfect prediction information may nevords, only PHEV charging is controllable and delayable,
be available, and the computation time to obtain the contr@lthough, if needed, other elastic loads can also take part i
actions by solving complex optimization problems may bgie demand response process using the proposed framework.
long. Also, some users may not want their applications being
controlled by others due to privacy reasons. These issues . .
motivate us to design a distributed algorithm which does not PHEV Charging Modeling
need accurate prediction on users’ behavior and future loadlo obtain the PHEV charging profile, we need to know the
information [18]. How to design such a distributed algarith driving habits, PHEV types and etc. We use the data from
that can be executed online to solve common distributiod giNational Household Travel Survey (NHTS) 2009 under the

problems is still an open issue. assumption that PHEV owners’ preferences to vehicle types
and their driving behaviors will be similar to the conventd
1. SYSTEM MODEL vehicle owners’. From the NHTS report, vehicles can be

classified into Auto, Sport Utility Vehicle (SUV), Pick-up

In this section, the topology of the distribution grid, th@dl 1,5 and van. Their key parameters including the estichate
profile and PHEV charging patterns are introduced. The PH arket share are shown in Table |.

charging profile is modeled based on the data from NationalIn this paper, the Monte Carlo method is used to simulate

House Hold Travel Survey 2009 using a stochastic approatfﬁne daily driving distance for each PHEV by using the driving

data from [19], so the state of charge (SOC) of each vehicle
A. Medium Voltage Grid in Our Case Study can be determined when they arrive home based on the battery

Fig. 1 shows a typical residential area distribution grid iR"ofile and the maximum driving range of that PHEV. Similar
Portugal [5], corresponding to a semi-urbaf kV medium t© [10], we further assume that _the_ arriving a_lnd departune ti
voltage grid in a residential area. The triangular shapekign Of PHEVS follows a normal distribution with the mean of
figure represent the Medium Voltage to Low Voltage (MV/LV)PPM and 7am respectively and a standard deviation of 1hr,

transformers. Each transformer senteeighborhoods includ- "eSPectively. As our focus is to deal with the impact of PHEV
ing 10 people on averagé. charging during peak time on a residential distributiordgri

peak hours are included in the charging period.

1our algorithm can be scalable to support more people. Howdver
simulation time of the bench-mark algorithm using exhaustigarch will 2Note that the load used in [5] is different from that in thigopralthough
be much longer. the same grid topology is used.



In addition to the driving patterns, charging power from, [2]JA. Control Center
[20], [23] is also used to build the PHEV charging model. In
this paper, the charging power oft kW, 2 kW and6 kW are
chosen with probability).45, 0.45 and 0.1, respectively.

Since there ar@07 MV/LV transformers in the target grid
and each transformer sevel@ people, the population size is
2070. From the data of Major Travel Indicators of 2009 [11]
the vehicle ownership ratio i84.4%. Therefore, the number
of vehicles is1540.

The control center in the grid will monitor two kinds

of information: load and voltage drop. All the information

can be obtained from sensors distributed in the grid. In this

paper, we assume that an existing smart grid communication

infrastructure is available to connect the control cergensors

and smart agents, and the communication delay and packet

losses are negligible [16], [17], [21]. We assume that tha da

from all the sensors are updated in real-time. The influefice o

grid information update delay on system performance will be
IV. PROBLEM FORMULATION discussed in Section VIII.

We consider a discrete-time system,, time is divided into From both the historical data and grid topology information
slots with a constant duration. We also set the slot duratitiie control center is able to determine which buses are more
small enough that the number of PHEVS accessing or leavilikely to experience the congestion or voltage drop prolslem
the tagged distribution grid per slot is typically no largean These are called critical buses, which constitute the cstrge
one. The objective of the problem is to maximize the tot&lus setS. and voltage drop bus sé&t,.
number of PHEVs that can be charged under the given systenwhen a PHEV is plugged in, the smart agent which makes
capacity by optimizing the charging scheduling vectors scheduling decisions for the PHEV will request a data sehfro

the control center including parameters relevant to thicati

X(#) =[X(), Xo(t), ., Xn (1)), VE=1,2,...T, (1) buses. The data set contains the loading rate of the most easy
where X (t) € {0,1}, Vk = 1,2,..,N, N is the total to-congest bus affected by that PHEV (denotedygs and a
number of PHEVs and’ is the total time slots. voltage ratioy,.

The scheduling needs to consider three constraints. FirstAt time slott, the loading rate of busis defined as follows
each PHEV cannot wait longer than the maximum tolerab(& simplify the notation, we dropin the following equations):

delay. Second, the load of each bus cannot exceeds its tapaci current load of bus i

Third, the voltage drop of any bus cannot be larger than the (1) = , iowed load of bus i (6)
maximum allowed voltage drop at any time. This problem can maximum aflowed load of bus |
be formulated as follows: Then ~,. is obtained by choosing the maximum rate of the
bus from S, which is the most vulnerable to the congestion
max N @ problem:
subject to: w(k) < wp(k), 3) Ve = max (i), 1€ Se. @)
JilX(8), Ljyse () < 1, Vi=1,2,.., M, (4)  Similarly v, is obtained from all affected buses:
Jo(X (1), Lhse(t)) < Vins, Vi=1,2,..,M,  (5) i) = current voltage drop of bus i @©
where M is the number of buses in the distribution grie{;%) maximum tolerable voltage drop of bus i
is the total waiting time of PHEW; w,, (k) is the maximum _ . .
Yo = max, (1), @€ S,. 9)

tolerable delay time of PHEW; V,,,; is the maximum allowed

voltage drop of bus; L;,,. is the base load on bus f; isthe  For example, from [5], for charging load under all the
mapping function that calculates the loading rate fromfadl t pjv/Ly transformers, bus A in Fig. 1 suffers the severest
load; f, is the mapping function that calculates the V°|tagé'ongestion problem and bus 1 may experience the largest
drop from gll the_load. S .. _voltage drop. If a PHEV at locatioh is plugged in, the smart
Since it is an integer optimization problem, which is difygent atl will request the grid information from the control
ficult to obtain the optimal solution in polynomial time, andtenter which will puty.(A) as~. and-, (1) as-, into a data

constraints (4) and (5) are not linear, in this paper, we &m §at and then deliver it to the smart agent.
obtain a sub-optimal solution in a distributed and realetim peanwhile. the control center will keep monitoring the

manner and compare its performance with the best resuiss of the whole power grid and send instructions to the

using exhaustive search in simulation. smart agents to adjust some control parameters which will
affect their scheduling decisions if necessary. We wiltdss
V. PROPOSEDFRAMEWORK these parameters and actions in Section VI.

The proposed framework includes three entities: a control
center covering one or more medium voltage grids, one smart
agent per house, and PHEVs. It is important to note that
although our proposed framework is used for PHEV charging, The smart agents (or the smart meters) can schedule PHEVs
other elastic load such as washing machine, water heatr, aharging. The scheduling decisions are made based on the
air conditioner may also be applicable under this framewodata sets received from the control center and the algosithm
to provide demand response. described in Section VI.

Smart Agents



All the houses adopting our algorithms will receive incen- PHEV to be -
tive from the electricity company depending on the contri- scheduled Stop charging
butions they make. (How to determine the contribution and v
design an incentive mechanism is left for future research.) \

It is worth to notice that the user can always let the smart T T N
agent charge the PHEV without waiting, in this case the » from control center
PHEV becomes critical load and the user will not receive
compensation from the power company.

C. PHEV Liemelies Y Charging until

In this paper, we assume that the PHEVs are plugged them;‘xlt"lfrable finish
in as soon as they arrive home. The departure time can =
either be set by the user or by the smart agent according
to the historical data. Then the smart agent can calculae th with St .

. . . - art/Continue
maximum tolerable delay timeu(,) for PHEV charging based Calculate p; | probability | charging for a
on the total parking time (the time between the departure and b1 certain period
arrival, denoted byw,), state of charge (SOC) and charging with probability 1- p;
power (P.). Specificallyw,, = w;—(1—-SOC)Pg/P., where w
Pg is the battery capacity. Here we use a linear battery model i
which is the same as the model used in [2], [9], [15]. In a real (a) Schedule PHEV charging
system, the PHEV charging behavior can be more complicated. i
Our algorithm is still applicable so long as the smart agent Receive data set No further
knows how much time is needed to charge the PHEV and the Fesiin GOl @SiEr e
total parking time of the PHEV. N

To satisfy users’ requirements, the smart agent should
guarantee that the total delay is always less than the maximu
tolerable delay time. In addition, to maintain fairnessmso Any charging

charging PHEVs may terminate charging in the middle to
yield the charging opportunity to other waiting ones. Theadgm
agents will also assign a higher priority to those PHEVs Wwhic
have waited for a longer time.

PHEV?

Calculate p, and
VI. RANDOM ACCESSALGORITHM DESIGN suspend charging

The design objective of our algorithm can be summarized as with probability p.
follows. First of all, to avoid bus congestion and voltagepr
problems in the distribution power grid, (4) and (5) should
be satisfied. Second, fairness should be maintained ambngfig 2. Flow chart for smart agent
the PHEVs. Third, users’ preferences should be taken into
consideration. Fourth, (3) should be satisfied so that @&l th
PHEVs can be fully charged before their departure. Finally,
this algorithm should not rely on future load prediction asd
simple enough to be executed online.

The flow chart of our proposed algorithm is presented
Fig. 2. Fig. 2 (a) describes how the smart agent schedu
P.HEV charging based on the rec_el\_/ed information, Wh”gtased on a back-off algorithm: with probabiljty, this PHEV
Fig. 2 (b) shows the process of providing demand response o L . o - .

ST ) ; . will start charging immediately; with probability — pq, it

protect the distribution grid. We will cover the design dista . . .
. ) | : ; " will be delayed byt; and then try again. If any of the ratios
in the following subsections. To meet the first design object . : >
. ) i is even higher than the corresponding threshold two (t62), t

when a PHEV is plugged in, the smart agent will calculate am . o :

e . charging probabilityp; is set to zero unless the PHEV reaches

the access probabilities based on the data set received from ; . - . .
ﬁs maximum tolerable delay time. In addition, in each time

(b) Demand Response

The access probability is calculated as follows. If both of
the received ratiosy. and ~, are below the corresponding

threshold one (ts1), the PHEV will start charging with prob-
i’;\slh'[y one; otherwise, if any of these ratios is higher than
15 corresponding tsl1, the charging of the PHEV is restiicte

the cqntrol cente_r_ and choose the minimum one to decide tsgt, the control center will broadcast the ratio when itiger
charging probability.

Specifically, fromy., and-,, the access probability; (7.) than the corresponding ts2, to notify all the relevant smart
P Y Ve, AT T, TE brob 1\Te), ggents until this ratio falls below ts2 again. These smazhtsg
and p1(vy,) can be obtained using the algorithm describe . . . .
. ) . upon receiving the notification, will suspend the charging
below respectively. Themp, is set to be the minimum one

. . . PHEVs with a probabilityp, to protect the distribution grid.
to decide the charging probability of the PHEV. By stopping charging PHEVs every time slot based on a

p1 = min{p1 (7ve), p1(w)}- (10) probability, a fast demand response can be achieved.



To provide an equal chance for each PHEV, every smdmased on the historical data. Here we assume that an ineentiv
agent will acquire the data sets from the control centerraganechanism is used so all the users set an approptigte
after the PHEV has been charged for a period of time amadcording to their real needs. The parametgris used to
then decide whether to let it continue charging or to suspeddtermine the weight of the waiting time on the charging
it based on the updated probability calculated again froen tprobability. The value for3. can be defined as follows: let
received ratios. This will provide an opportunity for othep;(v.e) = p, k1 = 1 andé; = 0 in (11), and we have:
waiting PHEVSs to start charging. All the waiting PHEVS Willp; (veg) = e~ ®@e2—ve) e — h = 3. = Inp + are (Ve — Ve1 ).
obtain a higher priority to charge with a larger waiting time To fully utilize PHEV's delay time,p should be less than
A suitable charging period is selected to protect the batter 1; otherwise, every PHEV will get a high probability to start

However, when a PHEV reaches its maximum tolerable deharging before it can be delayed to its maximum tolerable
lay time, the smart agent will let it start charging immeediat delay time even when., is high. According to our simulation,
to meet the design objective four. p can be set betweel3 and 0.6 empirically.

In the following part, we describe how to design the accesswWhen . is greater than ts2, demand response mechanism
probability p; and the suspending probabilipy considering will take place. The probability to suspend a charging PHEV
bus congestion and voltage drop in the distribution grid.  is denoted ags(v.). Similarly, p»(7.) is also designed as an

exponential function:

A. Bus Load Congestion

Obviously, the access probabilipy (v.) should be close to
1 if the ratio~,. only exceeds tsl slightly and it must decrease
fast whenry,. approaches ts2. Therefong,(v.) is designed as
an exponential function;

koere(e=D) L 50 if w < wp,
p2(7e) ={ ’ ’ (13)

0, if w=wn,

wherexs is another global parameter set by the control center
to adjust demand response spekds used to represent users’
ke~ e(eve) HBew/wm 4§ if w < wyy, preferences, similar té;. Both §; andd, can be set by the
p1(ve) = ) o w user or learnt by the smart agent. Of course, they will be
’ m&ll) included into the incentive mechanism aimed to determine
wherew is the current waited time of the tagged PHE), USErs’ contributions. . _ _
represents its maximum tolerable delay; is the value of ~ 1he parametek. determines the increasing speedofy.)
threshold one for bus congestion, the paraméteis used to When 7. is above ts2. If we leps(vez) = & and py(1) =
reflect user’s preference, and the global parameteis used 1+ Wheree is a very small positive number, thed. can be

by the control center for global adjustment if needed. expressed as:
In the above d_esigry_pl(%) Qecreases exponentially when Ao = Ine _ (14)
~. increases, which will restrict the number of PHEVs start Ve — 1

charging when the bus congestion level is high. Since the

smirtbz_algent I\INIIr: use _thel Islrgesg(i) t% calculate ;he aCCeSSgrid again aftert; slots. Whether its charging request will be
probability, all the critical buses can be protected. approved depends on the ratio at that time.
The global parametet; can be set by the control center

through notification messages and it is the same for all the
smart agents. By decreasirg, the probability to start charg- B. \oltage Drop
ing is decreased, so the demand caused by PHEV charging is

reduced wheny, is between ts1 and ts2, and vice versa. By The influence of a charging PHEV on the voltage of a bus
default, ; is set tol. is related to the location of that PHEV. For example, in Fig. 1

The paramete, determines how fast; (v.) will decrease the voltage drop of bus 1 is related to every charging PHEV

when the current loading rate. approaches threshold twoconnected to the buses from the feeder point Fo bus 1. With
for bus congestion (with value.;). Considering the design the same (?harglng pOwer, the closer the PHEV is to bus 1.’ the
objective, we defing; (v.1) = 1 and pi (ve) =  whenw < higher the influence it will be. Therefore, the PHEV at looati

w,, wheree is a very small positive number. Them, can be L ha§ a higher effect on the voltage drop of bus 1 than that at
expressed as follows: Ioca_tlon Y. Consequently, we add a weight of locatign,to
design the access probability function:

If a PHEV is delayed or suspended, it will try to access the

Ine
= —. 12 ,
@ Vel — Ve2 ( ) ( ) B %6_041)("‘/ﬂ—l/vl)"rﬁvw/wm + 63’ if w < W,
On the other hand, this PHEV charging request may alsop1 )= 1, if w=wn,
be delayed with probability — p;. If w,,, —w > t,,, then the (15)

delay timet, is randomly selected frorfo, ¢,,,], wheret,, is wherexs, a,, 3, andd; are set similar to<;, a., 8. andd;

the upper bound for the delay; otherwisg,is set asv,,, —w. respectively. In practice, it is difficult to define an optima
From (11), PHEVs with the waiting time closer ¢g,, have as it needs perfect grid information. It can be approximated

a higher probability to access the grid. This will maintagiay the ratio of the distance between the PHEV and the feeding

and fairness among all the PHEVs. The maximum toleraly@int over the distance between the considered criticabbds

waiting timew,,, can be set by the user or by the smart agetite feeding point. We will further discuss it in Section VIII



Similarly, the suspending probability»(v,) can be de-  Besides, once the loading rate exceeds ts2, the probability
signed as follows: to suspend charging PHEVs should be less than a pre-defined
fade™ 0D L5y i w < w threshold p, so that only a small humber of PHEVs are
p2(70) :{ 4@ Lo ms (16) suspendedp; is set by the control center based on the
0, if w=wn, estimated number of charging PHEVs in the system.

where Kdy A, and §, are set similar toks, Ao an_d 0o  pe > po(ves + Ay + Dyy) — re(vertAm+Dim—1) (20)
respectively. Therefore, PHEVs closer to the feeding point
have a smaller suspending probability for providing demarfifter manipulation, we can obtain another bound #oj.
response. 1
From the descriptions above, PHEVs are scheduled and Vea < )\fclnpt +1— A, — Dy, (21)
.Cl.tirrge?grgj terl]g|Isat;|tt)léteesciigr:?)rg)rj1eeg[i\?§(ijsnrzep;.red|ct|0n S rm(ade{jFrom (18), (19) and (21), we can obtain the upper bounds
Finally, since the smart agent will choose the chargin%jf ver andves.
probability calculated from the received data set based on
(10) to charge the connected PHEYV, all the distribution grid. Control Center Without Real-time Grid Information

components affected by that PHEV are protected. However, there is always a time interval between the infor-
mation update from sensors to the control center in practice
To analyze the performance of the proposed algorithm in a
In this section, the capacity of the proposed algorithm anore practical situation, we assume the grid information is
bus congestion is analyzed using a probabilistic metho@. Thpdated every seconds, and the maximum PHEV arrival rate
performance analysis on voltage drop is similar and omittetbes not exceed during the followingt seconds.
due to the space limitation. To simplify the analysis, we The expected number of new PHEVs bus A can support
assume the maximum tolerable delay of any PHEYV is infinityithout exceeding ts2 is:
and the global control parametets, ko are set to one. Since b
Poisson process is an acceptable model if the occurrenees ar my { e %J,
uniformly and independently distributed on an intervaliofe, £
the PHEV arriving process is assumed as a Poisson procebere I is the average loading rate increase caused by one
with an average arrival rate of. PHEV. We further consider the following three situations.
In the first part, we will analyze the performance of the (1)~. is below tsl1. All the arrival PHEVs will start charging
proposed algorithm with real-time grid information, anenh with probability 1. The probability that the number of airg
we will consider the situation when real-time grid inforioat PHEVSs does not exceed, duringt is:
is not available. mi gy k
P(n<m1):zﬂ. (23)

= ]
A. Control Center with Real-time Grid Information k=0 k!

According to the assumption that real-time grid informatio(2) . is between .; andv.,. The probability for each arriving
is available and the slot duration is sufficiently small icGen PHEV to start charging is
IV, the number of charging PHEVs will increase or decrease N —ae(e—ver) (24)
at most by one in each slot. Let us consider a certain critical mi)=e '
bus A, assume that the maximum loading rate increase caus@e probability that the number of arriving PHEVs is lesstha
by one PHEV on bus A isA,,. From (11), the maximum or equal tom, is
probability that the loading rate will exceed ts2 caused hy o m
arrival PHEV is Z /\t (25)

P1(Vea — Apy) = e~ e(Ver=Am—ve1) a7)

VIlI. PERFORMANCEANALYSIS

(22)

The probability that the number of PHEVs starting charging

Since demand response will start Whert> v, this probabil- is less thanny, given the number of arriving PHEV is larger

ity should be smaller than a threshalgd, wherep, is defined

- thanmy, is
by the control center. Let; (v — A,,) < pe, we can obtain m
the minimum value of the gap between andv..: =X e A R -
Py = E GO E et =p)tTt). (26)
1 k! ‘ i
Vea — Vel Z _71npe + A771 (18) k=mi+1 i=0
(07

C

. ) . . The probability that the total new charging PHEVS’ number
Define D,,, the maximum loading rate increase caused bes not exceedh, is

the variation of the base load in one slot. Since the charging
probability equalsd) when~. > v., to prevent the loading P(n<my)=P,+ PF. 27)
rate from exceeding one, the gap betwegnand one should

be greater tham,, plus A,,. Then we have (3) . is larger than or equal te.,. In this case, all the arriving
m m-

PHEVs will not start charging, so their arrivals will not et
Vo <1—D,, — Ay (19) the bus load.



From (23) and (27) we can obtain the probability to exceec
Veo fOr any 7. < veo. Similarly, the number of new PHEVsS

- . X . ; 161 : ., — — — baseloading rate
this bus can support without exceeding the bus capacity is : - = loading rate w/ ES
141 loading rate w/ RA 4
1 — Ve : O R loading rate w/o control
m2 B \; Ic ’ (28) 12 )
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Substitutingm; by m4 in (23), (25), (26), (27), we obtain the
probability that the loading rate does not exceed one.

Given A and that the probability to exceed ts2 and one
should belowp. andp, respectively, we can obtain the upper
bound for ts1 and ts2 by using a reversed process. We om 3
the details due to the space limitation. al A s

It is worth to mention that,.; andv., can be set dynami- ‘ ‘ ‘ el ‘
cally through broadcasting instructions from the contestter SO vo
to all the users according to the changing PHEV arriving rate
in different time periods. (a) Loading rate variation

On the other hand, givem.,, v.s, pe, ps, We can obtain the ‘ ‘ ‘ ‘
maximum arrival rate\ that the distribution grid can support
using the proposed algorithm, which is the capacity of the
system.
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o o o _ _ (b) Zoom-in of (a)
The objective of this _S|mulat|0n is to verlf)_/ the impact oéth Fig. 3. Loading rate of bus A with 742 PHEVS
proposed control algorithm on bus congestion, and busgelta
drop. The simulation is mainly based on real data with ¢~
approximated maximum average arriving rate36f PHEVs
per minute. The maximum tolerable probabilities to excee
threshold two and bus loading rate one/maximum allowe : g "Eiﬂggmi
voltage drop are set ta0~2 and 10~%, respectively.p; is 4r : R Y loading rate w/o control | |
set t00.05. Whenever the ratio of a critical bus exceeds ts. : :
the specific ratio of the bus is multicasted to all releval
smart agents every time slot. The situation when the gr
information is updated everg0 seconds is also considerec
in Section VIII-C. o8r
In the following subsections, we only consider one proble| o6l
at one time under the proposed framework, and asspme
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VIIl. PERFORMANCEEVALUATION
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Loading rate

equalsp; (7.) andp; (v, ) in Section VIII-A and Section VIII-B 04r \
respectively. We compare the performance of the propos T T ‘10‘00 ST
random access (RA) algorithm with that obtained from e Time (minutes)

haustive search (ES). For exhaustive search, we choosag¢he o
with the minimum average PHEV waiting time so it can resulig. 4. Loading rate of bus A with 765 PHEVs
in the maximum number of PHEVs being supported without
violating the constraints. In the exhaustive search, warass
that PHEVs’ charging can be interrupted at any time and asimulation,v.; andv., are set to 0.96 and 0.98 respectively
frequency; therefore, ES result can also be consideredeas algcording to the analysis in Section VII.
performance upper bound. Similar to [27], we do not considerFig. 3 (a) illustrates the loading rate of bus A with 742
reactive power or grid losses as they will make the simutatid®®HEVs. To view the curves more clearly, the most critical
time much longer. On the other hand, in a real system, #®e period is zoomed in and shown in Fig. 3 (b). This can be
the smart agents use the measured data, which reflects abesidered as the capacity of the proposed algorithm becaus
reactive power and grid losses, etc., to calculate the acc#¥e loading rate reaches ts2 at the end of the charging period
probabilities, our algorithm can still be applicable. As shown in the figure, our proposed algorithm can flatten the
bus loading rate quite well while the uncontrolled loadiater

i exceeds one by abolGt%.

A. Bus Load Congestion Fig. 4 shows the situation when there aré5 PHEVs
According to the simulation results in [5], bus A suffersvhich is also the maximum number of PHEVs this distribution
the severest congestion problem so its loading rate is-delgrid can support using exhaustive search. Since PHEVs begin
ered to the downstream smart agents when required. In ttoscharge immediately whenever they reach their maximum



‘ distribution grid using the RA algorithm with non-real time
A information. Obviously, the controlled loading rate usithg

/ RA algorithm fluctuates more severely. The loading rate even
exceeds ts2 several times after mina@®. The reason is that
the number of arrival PHEVs varies greatly during the one-
Time (minutes) minute time interval, and many PHEVs become critical load
when reach their maximum tolerable delay time. Nevertiseles

— — — basevoltage drop
0.96 — — voltagedrop w/ ES
voltage drop w/ RA

0.955

Voltage of bus 1

0.95 Frp +or wme e e s e e s es e

Fig. 5. \oltage drop of bus 1 with grid topology information . .
the demand response mechanism suspends some charging
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ PHEVs when the loading rate is over, and keeps the loading
o ool Sjiggg';fgziffgs . rate under one all the time. The situation for voltage drop is
= voltage drop w/ RA /fsf Eooo similar and is omitted due to the space limitation.
e ,
S
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ IX. CONCLUSION
750 800 850 900 950 1000 1050 1100 .
Time (minutes) In this paper, a random access framework has been proposed
to coordinate PHEV charging to maximize the number of
Fig. 6. \oltage drop of bus 1 without grid topology informatio

PHEVs that can be supported considering bus load congestion
and voltage drop constraints. Through the simulation on a
e residential area distribution grid, it has been demorestrétat
Qur algorithm can achieve the performance with a small gap
to the best solution. Besides, it can provide demand regpons
efficiently. We also tested our algorithm when real-timedgri

tolerable delay time, the loading rate of RA algorithm e
one at the end. Through multiple simulations with differe
PHEV arriving/departure time, exhaustive search with gurf

future information can support abo@% more PHEVs than . ¢ tfon i ¢ ilabl d th Iti lv ab6lit
the proposed algorithm on average in the scenario descrigdprmation is not avaiiable, and the resuftis only a

in Section lll. In other words, the performance of the RAVOrse than the best one. In addition to regulatling PHEV
algorithm is very close to the performance upper bounfiharg'ng’ the proposed solution can also be applied to other

, o . - lastic devices.
meanwhile satisfying all the design objectives. €
fying g ) In this work, the locations of customers will lead to diffete

levels of congestions to the network and thus affect thesscce
B. Voltage Drop probabilities of their PHEVs. This may lead to a fairness
In [5], bus 1 has the largest voltage drop, so its voltag® ragproblem and requires further study together with otheripgic
is passed down to all the relevant users whenever requimedahd economic policies. In addition, the distribution gridtis
this simulation, the maximum tolerable voltage drop5¥%, paper has a radial topology, for a meshed distribution grid,
vy1 andu,, are set t).90 and0.95, respectively. things are much more complicated. However, the main idea
Figs. 5 and 6 show the zoomed in simulation results wiif the proposed algorithm is still useful to control the PHEV
and without the grid topology information, respectivehh€eT access if the critical bus is congested. These are important
maximum number of PHEVs the distribution system cafurther research issues. In practice, several other prabie
support arer30 and 727 on average, respectively. Both of thehe distribution grid should be considered, such as medium
two cases can restrict the voltage drop near ts2. Theref@e, voltage to low voltage (MV/LV) transformer overload. How
may find that the performance of the random access algorithgéh make a tradeoff between the complexity of the control

is not sensitive to the weight in (15). algorithm and the distribution grid efficiency is left fortéwe
research.
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