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Abstract—The introduction of mobile elements in wireless
sensor networks creates a new dimension to reduce and balance
the energy consumption for resource-constrained sensor nodes;
however, it also introduces extra latency in the data collection
process due to the limited mobility of mobile elements. Therefore,
how to arrange and schedule the movement of mobile elements
throughout the sensing field is of ultimate importance. In this
paper, the online scenario where data collection requests arrive
progressively is investigated, and the data collection process is
modeled as an M/G/1/c–NJN queuing system, where NJN
stands for nearest-job-next, a simple and intuitive service dis-
cipline. Based on this model, the performance of data collection
is evaluated through both theoretical analysis and extensive
simulation. The NJN discipline is further extended by considering
the possibility of requests combination (NJNC). The simulation
results validate our analytical models and give more insights
when comparing with the first-come-first-serve (FCFS) discipline.
In contrast to the conventional wisdom of the starvation problem,
we reveal that NJN and NJNC have a better performance than
FCFS, in both the average and more importantly the worst cases,
which gives the much needed assurance to adopt NJN and NJNC
in the design of more sophisticated data collection schemes for
mobile elements in wireless ad hoc sensor networks, as well as
many other similar scheduling application scenarios.

Keywords-Wireless ad hoc sensor networks, queue-based mod-
eling, mobile elements, service disciplines, nearest-job-next

I. INTRODUCTION

Many applications in wireless sensor networks are data

collection oriented [1], [2]. Data collection in sensor networks

typically relies on the wireless communication between sensor

nodes and the sink node, which may excessively consume the

limited energy of sensor nodes due to super-linear path loss

exponents. Sensor nodes near the sink also tend to deplete

their energy much faster than other nodes due to the data

aggregation towards the sink, which leads to a very unbalanced

energy consumption in the entire network. In addition, these

approaches are based on a fully connected network, which

might require dense deployment and introduce extra costs.

Another approach to data collection utilizes the often-

available, controlled mobility of certain devices, referred to

as mobile elements in this paper [3], [4]. By utilizing mobile

elements, not only more energy can be conserved and balanced

on sensor nodes, but also the communications and networking

become possible in very sparse networks with the “store-

carry-forward” approach. For example, the seabed crawler

deployed in NEPTUNE Canada can cruise through several

experimentation sites, “talk” to experiment devices through

very-short-range, high-data-rate underwater optical communi-

cation technologies, and bring the data back to the junction

boxes [6]. Another example of mobile element is the Seaeye

Sabertooth [7], a battery-powered autonomous underwater

vehicle (AUV), which travels in deep water environments to

collect data from deployed equipments through short-range,

underwater radio communications, and uploads the data to the

control center at the docking station. Other examples of the

mobility-assisted data collection include the the smart buoy

equipped with Seatext from WFS [8], the RQ-7 Shadow 200

unmanned aerial vehicle (UAV) used by the United States

Army [9], and so on.

Although mobile elements create a new dimension for data

collection, they also introduce some new challenges: first, the

data collection latency may be large due to the relatively

low travel speed of mobile elements [10], which must be

considered for applications with certain requirements on the

timely delivery of sensory data; second, with a large latency,

sensory data might be lost if the buffers of certain sensor

nodes are overflowed, which is not acceptable for data integrity

sensitive applications; finally, mobile elements themselves are

battery-powered as well in most cases (e.g., the traveling

distance of Sabertooth is about 20–50 Km with a fully charged

battery), so the data collection must be accomplished before

mobile elements deplete their own energy.

A lot of efforts have attempted to address these challenges

by finding the optimal data collection path for mobile ele-

ments, given the assumption that the locations of requesting

sensor nodes are known in advance [11], [17]. However, in a

more practical scenario, we need to determine how the mobile

element should carry out the data collection task without such

a priori information, i.e., sensor nodes initiate the requests for

data collection only when they have enough data to report,

and the mobile element obtains the knowledge about when

and where to collect data only upon the reception of such

requests. There are some existing efforts aiming to design

data collection schemes in this online scenario [13], however,

a critical issue with them is how to evaluate whether the

proposed schemes are “efficient” or not, since no optimal

solution is available as the benchmark in this case.

In this paper, we answer this question by theoretically

analyzing the performance of data collection when some

simple and intuitive disciplines are adopted through a queue-

based modeling approach, which offers important guidelines

in designing more sophisticated online data collection schemes

for mobile elements. We first show that data collection requests

in the online scenario can be represented by a Poisson arrival

process, and with the travel distance (and time) distribution

between any two sensor nodes in the sensing field, the sys-

tem can be modeled as an M/G/1/c–NJN queue which



accommodates at most c requests at the same time, and the

mobile element (server) selects the next to-be-served request

(client) according to the nearest-job-next (NJN) discipline.

A challenge with the analysis of the NJN discipline is the

state-dependent service time, which will be explained later.

Furthermore, by considering the fact that multiple requests

can be combined and served together by the mobile element

if there exists a collection site within the communication

ranges of their corresponding sensor nodes, we extend the

NJN discipline to NJN-with-combination (NJNC) to explore

how much performance gain can be achieved by considering

the possible requests combination. We obtain the analytical

results on the system measures of these models to evaluate

the resultant data collection efficiency.

To the best of our knowledge, this is the first time that

NJN and NJNC are explored analytically in wireless sensor

networks with mobile elements, and the approach can be

extended to other dynamically-prioritized scenarios as well.

Our results show that even though NJN may be unfair for

farther-away requests temporarily, its average performance

outperforms FCFS greatly and more importantly, its worst-case

performance is still better than FCFS, especially with NJNC.

These results give the much needed assurance to adopt NJN

and NJNC in the design of online data collection schemes.

The remainder of this paper is organized as follows. Sec-

tion II briefly reviews the literature on the mobility-assisted

data collection. In Section III, we outline the problem setting

and list the assumptions and definitions used in this paper. We

present the analytical models of NJN and NJNC in Section IV

and Section V, respectively. The analytical and simulation

results are given and compared in Section VI for model

validation and further insights. In Section VII, we discuss the

possible approaches to further extending and improving the

work. Finally, we conclude this paper in Section VIII.

II. RELATED WORK

Recently, a lot of efforts have been made on exploring

the mobility-assisted data collection in wireless sensor net-

works [17], [18]. Many of them aimed to design the optimal

data collection scheme when mobile elements (MEs) know all

service requests in advance. E.g., in [11], Ryo et al. formulated

the problem as a label-covering problem based on an TSP tour

that visits all sensor nodes, which is proved to be NP-hard.

A path selection algorithm for the ME was proposed in [12],

which starts with a connected dominating set of the network,

then gets a minimum spanning tree based on it, and finally

generates a Hamiltonian circuit for the ME. The case where

multiple MEs exist in the network was considered in [19].

Xing et al. jointly considered the ME travel tour and the data

transmission routes in [24]. In contrast, the online case of the

mobility-assisted data collection is much less explored, even

though it is more practical in reality [13].

Comparatively speaking, the online case is more challeng-

ing, since the ME needs to determine which data collection

request to serve next among the requests received, without

knowing the requests to arrive in the near future. The most in-

tuitive service discipline is first-come-first-serve FCFS, whose

performance is analytically evaluated in [5]. With FCFS, due to

the randomness of service requests, the ME may unnecessarily

travel back-and-forth to serve requests, which is undesirable

if a tight requirement on the data collection latency exists.

Another intuitive service discipline is to serve the spatially-

nearby requests first, or nearest-job-next (NJN), in order to

reduce the distance that the ME has to travel and the time it

has to spend on. In the literature and practical systems, NJN

and its variants are much less explored, due to the concerns

discussed below.

NJN is very similar to the traditional shortest-job-next (SJN)

service discipline, which has been known to be optimal for

minimizing the expected response time [14]. The efficiency of

SJN and their similarity inspire us to explore the performance

of data collection when NJN is adopted. However, two extra

issues need to be considered. First, for SJN, the service time

for each job has to be accurately estimated upon its arrival and

remain fixed before its departure in the system, but as shown

later, the service time with NJN for data collection in wireless

sensor networks is jointly determined by the location of the

requesting sensor node and that of the serving ME, which

cannot be determined in advance until the job is about to be

served. This makes not only the existing analytical results on

SJN not applicable [15], but also the analysis of NJN much

harder due to the dynamic priority of a particular request.

Second, SJN is known to lead to the starvation problem for

large jobs, which limits its practical implementation. Thus

whether NJN suffers from the similar problem for mobility-

assisted data collection is the another question we need to

answer.

Another existing service discipline similar to NJN is the

shortest seek time first (SSTF) in disk scheduling [16]. Al-

though the service time with SSTF also changes with regard

to the read/write head’s position, the disk tracks are treated

in a one dimensional space, while the sensing field of NJN

is a two dimensional space. Clearly, this difference makes the

analysis on NJN much harder.

To the best of our knowledge, this is the first work on

the analysis of NJN and NJNC with dynamic priority and

non-predetermined service time, and also the first work to

demonstrate their practicality in the mobility-assisted data

collection for wireless sensor networks.

III. PRELIMINARIES

We consider the scenario where a single mobile element

(ME) travels around in the sensing field to collect data from

sensor nodes with short-range wireless communication tech-

nologies. Sensor nodes gather sensory data about the sensing

field, and when they have enough data to report, they send the

data collection requests to the ME by adopting some existing

lightweight but efficient ME-tracking protocols [20]. Note that

usually tracking protocols rely on the multi-hop forwarding

among sensor nodes. Thus instead of using these protocols to

carry the sensory data to the ME directly, which usually are of

much larger size, e.g., in a camera sensor network [21], here



only the requests for data collection is forwarded to reduce

the communication overhead of sensor nodes. We assume that

the time from a sensor node sending out its request to the

ME receiving the request is negligible when compared with

the data collection latency (our work can be easily extended

to accommodate the cases where this assumption has to be

relaxed, as being discussed in Section VII).

The ME maintains a service queue for the received requests,

and serve them with its service discipline. Our approach is

to model the network as a queuing system, and theoretically

analyze the performance of data collection with different

service disciplines, i.e., M/G/1/c–NJN and M/G/1/c–

NJNC.

For a specific application, certain constraints on the maximal

acceptable data collection latency exist, either because of the

requirement on the timely delivery of sensory data or the

possible buffer overflow problem of sensor nodes. Thus a finite

capacity queuing model is a better choice to capture the system

behavior when compared with the regular M/G/1 queue.

Definition 1: Requesting nodes are the sensor nodes that

have initiated the data collection requests and whose requests

are currently waiting in the ME’s service queue.

The first service discipline we explore is the nearest-job-

next (NJN) discipline, i.e., on finishing the service of the

current data collection request, the ME selects the spatially

nearest requesting sensor node in its service queue according

to the current location, and travels to the node to collect data.

Furthermore, it is possible for the ME to collect data from

multiple sensor nodes at a single collection site, provided that

the collection site is within the communication ranges of all

these nodes. Based on this observation, we extend the NJN

discipline to NJN-with-combination (NJNC), with which other

requests in the queue can be combined with the nearest one

and served together when possible. Analytical results for the

system with NJNC are also derived to quantitatively evaluate

how much performance gain can be achieved by considering

the possible requests combination.

For clarity, we list and briefly explain here the assumptions

and definitions used in this paper.

• We consider a unit square sensing field in which sensor

nodes are uniformly deployed at random;

• v: the ME’s travel speed (normalized w.r.t. the side length

of the field);

• r: the wireless communication range (normalized w.r.t.

the side length) between the ME and sensor nodes;

• c: the maximal number of requests that the ME can

accommodate at the same time;

• S: the service time of requests, or Si for the to-be-served

request selected when there are i data collection requests

in the ME’s service queue;

• L: the size of the queuing system, i.e., the total number

of requests that are waiting for or under the service;

• I: the idle period of the queuing system;

• B: the busy period of the queuing system;

• π = {π0, π1, ..., πc−1}: the system size probabilities at

the departure time of requests;

• w = {w0, w1, ..., wc}: the system size probabilities at the

arrival time of requests;

• u = {u0, u1, ..., uc}: the steady-state system size proba-

bilities of the queuing system.

IV. DATA COLLECTION WITH NJN

We explore the case where the ME serves data collec-

tion requests with the NJN discipline in this section. More

specifically, by considering the arrival and departure processes

of data collection requests, we first model the system as a

non-preemptive M/G/1/c–NJN queuing system, and then

obtain the analytical results on the system measures, which

offer important insights on evaluating the data collection

performance.

A. M/G/1/c–NJN Queue Modeling

The client arrival and departure processes have a fundamen-

tal impact on any queuing models, so we characterize them

respectively first in the following.

We assume a Poisson arrival process of the data collection

requests to the ME, i.e., the inter-arrival time of the requests

is exponentially distributed. This assumption holds since that

first, the number of sensor nodes in the sensing field is

relatively large, and second, the probability for a sensor node

to initiate a data collection request is relatively small in a

certain time slot. Theoretically, if the client population size

of a queuing system is relatively large and the probability by

which clients arrive at the queue is relatively small at any

given time, the arrival process can be adequately modeled as

a Poisson process [23]. This assumption is further verified in

Section VI-A.

Because the data propagation speed in sensor networks

is about several hundred meters per second [24], which is

much faster than the ME’s travel speed. We assume the

data transmission latency is negligible (which will be further

discussed in Section VII), and consider the service time for

each request as the time from the service completion of the

current request to the time when the ME moves to the sensor

node that initiated the request chosen by the ME to serve next,

or the to-be-served request.

Due to the fact that the last collection site is also the starting

point of the travel when the ME serves the next request, the

service time of each request seems not to be stochastically

independent. However, denote the sequence of service times

as {t1, t2, t3, ...}, and if we examine only at every second

variable of the original process, it is clear that {t1, t3, t5, ...}
are independent of each other, and the distribution-ergodic

property of this sub-process can be easily observed [25]. The

same is true for sub-process {t2, t4, t6, ...}. The distribution-

ergodic property still holds if we combine these two sub-

processes since their asymptotic behaviors do not change after

the combination, which means that if we can find the time

distribution when the ME travels between consecutive to-be-

served sensor nodes, we can adopt it as the service time

distribution for the queuing system over a period of time, i.e.,

FS(x) = lim
h→∞

h∑

i=0

1

h
· Pr{ti ≤ x}. (1)



Following the results in [26], the distance density function

of two random locations in a unit square is

fD(d) =





2d(π − 4d + d2) 0 ≤ d ≤ 1
2d[2 sin−1(1/d)

−2 sin−1
√

1 − 1/d2

+4
√

d2 − 1 − d2 − 2] 1 ≤ d ≤
√

2
0 otherwise,

(2)

with distribution function FD(d) =
∫ d

0
fD(x)dx.

Based on (2), and with the constant travel speed v of the

ME, the travel time distribution between two uniformly and

randomly distributed sensor nodes in the sensing field is thus

FT (t) = Pr{D ≤ vt}, and fT (t) = ∂FT (t)/∂t.
However, the actual service time in our scenario is more

complicated due to the greedy nature of NJN: the service time

of the to-be-served request tends to be shorter if more requests

are waiting in the system. Furthermore, the service time of

data collection requests is determined by both the location of

the requesting sensor node and that of the ME just before its

service. This state-dependent service time makes the existing

results on the traditional shortest-job-next (SJN) discipline,

which requires that the service times of clients are both known

and fixed upon their arrival to the queue [15], not applicable

in our scenario, and brings extra challenges for the analysis. In

the next, we explore the service time distribution of requests

with NJN by assuming a given system size first.

B. Service Time Distribution with a Given System Size

Assume l > 0 requests are available when the ME just

accomplishes the service of the current request, and is about to

select the next request to serve. Considering the randomness of

both the current location of the ME and the requesting sensor

nodes, the distances from these l requesting nodes to the ME

can be viewed as l i.i.d. random variables with distribution

fD(d), so the probability distribution of the distance between

the ME and the nearest requesting node is

FD,l(d) =

l−1∑

i=0

(
l

i

)
(1 − FD(d))iFD(d)l−i

= 1 − (1 − FD(d))l, (3)

with probability density function fD,l(d) = ∂FD,l(d)/∂d. The

conditional service time distribution of the nearest request with

a given system size is thus fSl
(t) = v · fD,l(vt).

C. System Size Probabilities at the Departure Time

Assume the steady-state is achievable, we can observe a

discrete-time Markov chain of the system size at the departure

time of requests, which is similar to the case with the FCFS

discipline [5] (Fig. 1). However, since the service time is

now dependent on the current system size, the chain becomes

heterogeneous in its transition probabilities, as shown in Fig. 2.

With the conditional service time distribution obtained

above, we can define and obtain the probability of i new

request arrivals during the time serving a request selected from

l currently available ones as

kl
i =

∫ √
2/v

0

e−λt(λt)i

i!
fSl

(t)dt, (4)

0 1 ii−1 i+1k0

k kk

k1 1k k1
kkk0

1

0 0

2 2
k3

k1

Fig. 1: State transition diagram at departure time with FCFS.

0 1 ii−1 i+1k0

k k

k1 1k k1
kkk0 0 0

2 2
k3

k1

k1

1

1 i+1i−1 i

0

0 i−1

i−1

i i+1

i

Fig. 2: State transition diagram at departure time with NJN.

where λ is the arrival rate of data collection requests. Note

that for FCFS shown in Fig. 1,

ki =

∫ √
2/v

0

e−λt(λt)i

i!
fT (t)dt, (5)

The state transition matrix of the finite capacity queue with

NJN at the departure time of requests is then

P =




k0
0 k0

1 · · · k0
c−1 1 − ∑c−1

i=0
k0

i

k1
0 k1

1 · · · k1
c−1 1 − ∑c−1

i=0
k1

i

0 k2
0 · · · k2

c−2 1 −
∑c−2

i=0
k2

i

0 0 · · · k3
c−3 1 − ∑c−3

i=0
k3

i

· · · · · · · · · · · · · · ·
0 0 · · · kc

0 1 − kc
0




. (6)

and

πP = π. (7)

Thus π can be calculated by considering another fact that∑c−1

i=0
πi = 1.

D. General Service Time Distribution

We have derived the conditional service time distribution in

Section IV-B, and just obtained the system size probabilities

at departure times. Combining them together, we can obtain

the general service time distribution of requests as

FS(t) = π0 ·
∫ t

0

fS1
(x)dx +

c−1∑

l=1

πl ·
∫ t

0

fSl
(x)dx, (8)

and fS(t) = ∂FS(t)/∂t. The expected service time of the

system can be calculated by

E[S] =

∫ √
2/v

0

t · fS(t)dt. (9)

E. Steady-State System Size Probabilities

It is proved in [28] that with an infinite system capacity,

the departure time system size probabilities of the standard

M/G/1 queue are the same as those in the steady state.

However, this conclusion does not hold in the finite capacity

case, since we only have c states for the departure time system

size (0, 1, ..., c − 1), while c + 1 states (0, 1, 2, ..., c) have

to be considered for the steady state distribution. With the

level crossing methods [29], we can observe the fact that the

distribution of system sizes just prior to the arrival time is

identical to the departure time probabilities as long as arrivals



occur individually, which holds for the Poisson arrival, thus

πi = Pr{new request finds i in queue|request joins}
= wi/(1 − wc) (0 ≤ i ≤ c − 1), (10)

so

wi = (1 − wc)πi (i = 0, 1, ..., c − 1). (11)

To obtain wc, we can equate the arrival rate with the departure

rate of the system,

λ(1 − wc) = (1 − w0)/E[S]

wc = 1 − (1 − w0)/(λ · E[S]). (12)

Thus w can be calculated based on (11) and (12). Further-

more, with the PASTA property of the Poisson arrival process,

u = w, therefore the steady state system size distribution is

derived. The expectation of the steady state system size can

be calculated as E[L] =
∑c

i=0
i ·ui, and a new request arrives

to find a fully occupied system and thus get dropped with

probability wc. Note that certain existing hybrid data collection

protocols (i.e., using multiple homogeneous or heterogeneous

MEs) could be a good approach to addressing these dropped

requests if they are indeed needed [12].

F. Expectation and Stochastic Bound of the Response Time

The ultimate metric to evaluate the data collection per-

formance is the response time R of requests, i.e., from the

time the request is received to the time it is served. With the

expected system size and by Little’s Law

E[R] =
E[L]

λ(1 − wc)
. (13)

However, similar to the case with the traditional SJN

discipline, people may concern about the possible starvation

problem when NJN is adopted.

We argue that although NJN may suffer similar problem,

its severity would be much less significant, for the reason

that, first, the service time of requests with NJN cannot be

arbitrarily large, and is bounded by the maximum travel time

of the ME, i.e.,
√

2/v to cross the sensing field; second, the

service time of a given request changes as the ME travels in

the network, and the probability that it keeps at a large value

during a long time period is small.

However, the expected response time alone is not enough

to verify the above reasoning, and direct analysis on the

response time distribution with NJN is non-trivial (convolution

theorem could be a choice, but cannot guarantee the existence

of a closed-form solution). Thus, we tackle the distribution

of the system’s busy period in the following, which is a

stochastic upper bound of the response time. Our approach

is to approximate the distribution of the busy period based on

the analytical results of its statistical moments.

Note that the idle period distribution of the system is

FI(t) = 1 − e−λt, and denote Ti,j as the time takes the

system from entering state i till it entering state j, so T0,0

is the busy cycle of the system. By definition and with some

simple arrangement, we have

E[Ti,0] =

{
E[I] + E[S1] +

∑c
j=1

E[Tj,0]k
1
j i = 0

E[Si] +
∑c

j=1
E[Tj,0]k

i
j−i+1 i ≥ 1.

(14)

Thus E[T0,0] can be calculated, and the second-order mo-

ment of T0,0 can be obtained with a similar approach

E[T 2
i,0] =





∑c
j=1

E[(I + S1 + Tj,0)
2]k1

j

+E[(I + S1)
2]k1

0 i = 0∑c
j=1

E[(S1 + Tj,0)
2]k1

j

+E[S2
1 ]k1

0 i = 1∑c
j=1

E[(Si + Tj,0)
2]ki

j−i+1 i ≥ 2

Therefore, the first and second-order moments of the ME’s

busy period B can be calculated as

E[B] = E[T0,0] − E[I] (15)

E[B2] = E[T 2
0,0] − E[I2] − 2E[B]E[I]. (16)

Observing the fact that the busy period of the system is

actually the sum of the service times of several continuously

served requests, we can adopt the Gamma distribution to

approximate that of the busy period as

fB(t) = tη−1 e−t/θ

θηΓ(η)
(t > 0), (17)

where η = 1/(E[B2]/E[B]2 − 1) and θ = E[B]/η. The

accuracy of this approximation is verified in Section VI-B.

V. DATA COLLECTION WITH NJNC

We have theoretically analyzed the system measures when

NJN is adopted in the previous section. In this section, we

extend the NJN discipline by taking the wireless communica-

tion properties into account: with wireless communications,

the ME can collect data from several requesting nodes at

the same collection site, provided that the site is within the

communication ranges of these nodes. We consider this NJNC

discipline in the following, with which the ME still selects the

nearest requesting node to serve, except that if there are other

requesting nodes within distance r from the nearest one, the

ME will combine these requests and serve them together.

The combination, if happens, can effectively reduce the

system size, and thus shorten the response time of requests.

It can also alleviate the possible starvation problem, since

intuitively, starvation is less likely to happen with a smaller

system size. We mainly deal with two questions in this section:

how likely the combination can happen, and if it happens,

how many requests can be combined; to what degree the

combination can improve the data collection performance.

A. Combination Probability

For the requests combination to happen, the collection site

must be covered by the communication ranges of at least

another requesting node, besides the nearest one. Same as

before, assume l requests are currently available when the ME

selects the next request, the probability that Xl requesting

nodes, including the nearest one, can be combined together

and served from one collection site is

Pr{Xl = x} =

(
l − 1

x − 1

)
FD(r)x−1(1 − FD(r))l−x. (18)

Thus the expected number of combined requests is

E[Xl] =

l∑

i=1

i · Pr{Xl = x}, (19)
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Fig. 3: State transition diagram at departure time with NJNC

(only those for state i are shown for clarity).

and the probability for the combination to happen is

Pr{Xl > 0} = 1 − (1 − FD(r))l−1. (20)

Intuitively, requests combination improves the system per-

formance by effectively reducing the system size. Based on

a similar queuing model as that for NJN, i.e., M/G/1/c–

NJNC for NJNC, we present quantitative analytical results

of its impact on the system performance in the following.

B. System Size Probabilities at the Departure Time

The ME still selects the nearest request in its queue to

serve with NJNC, so given the system size, the service time

distribution is identical to that of NJN. Following a similar idea

of the embedded Markov chain, we can derive its departure

time system size probabilities.

The difference between the heterogeneous Markov chains

of NJNC and NJN is that, it is now possible to have multiple

departures after one service period, as shown in Fig. 3. With

the current system size l, denote an,l as the probability of

n arrivals during the service of the nearest requests selected

from l requests with possible requests combination. Since the

combination does not affect the arrival process, we have

an,l = kl
n. (21)

Denote dm,l as the probability of m departures after serving

the nearest requests selected from l requests with possible

requests combination, which means m− 1 requests have been

served together with the nearest one, so

dm,l = Pr{Xl = m} =

(
l − 1

m − 1

)
FD(r)m−1(1−FD(r))l−m.

(22)

Thus the state transition probabilities of the embedded

Markov chain for NJNC are

P
′ = [p′ij ] = [

i∑

m=1

dm,i · aj−i+m,i], (23)

and π
′
P

′ = π
′, where π

′ is the departure time system size

distribution with NJNC. Hence, the general service time distri-

bution, steady state system size probabilities, and the expected

response time can be calculated with similar approaches as

those for the NJN discipline, except that with possible requests

combination, the effective arrival rate of requests is

λe = (w′
0 +

c−1∑

i=1

w′
i(1 − FD(r)))λ, (24)

where w is the arrival time system size distribution with

NJNC, and 1−FD(r) is the probability that the newly arrived

request cannot be combined with the next to-be-served request

at its arrival time.

The analysis on the system’s busy period is much more

complicated with NJNC, due to the possibility of multiple

departures after one service. However, the idea of deriving

its moments for the stochastic upper bound as that in the NJN

case still holds, and corresponding results can be obtained,

which are not shown here due to the space limit.

VI. PERFORMANCE EVALUATION

We evaluate our modeling and analytical results on the

performance of data collection with NJN and NJNC disciplines

in this section, and we also show the corresponding results

with FCFS in certain cases for comparison. Note that we have

already explored the case of FCFS-with-combination (FCFSC)

in [5], whose results are not shown here due to the space limit.

We consider a 100 × 100 m2 square sensing field with 100
uniformly and randomly distributed sensor nodes, and based

on the parameters from real systems [24], the travel speed of

ME is 1 m/s. The communication range r is 20 m by default

unless otherwise specified.

To deal with the inconvenience of the piecewise distance

density function in (2), we approximate it by a high-order

polynomial function using least squares fitting

f̃D(d) = 0.2802d10 − 2.0964d9 + 2.2349d8

+24.3629d7 − 106.8231d6 + 194.4928d5

−182.8093d4 + 91.8223d3 − 29.3663d2

+8.2843d − 0.0402. (25)

The norm of the residuals for the poly-fitting is 0.0749, which

shows the approximation is quite accurate, and thus we adopt

the approximated polynomial function for easy calculation.

A. Validation of the Queue Modeling

To validate the queuing model, we need to examine the

assumptions of both the Poisson arrival of data collection

requests and the distribution-ergodic property of their service

time. We adopt a hot-spot model to capture the data gener-

ation in the sensing field in our event-driven simulator [27].

Specifically, several hot spots (10 in our simulation) exist in

the sensing field, and the probability for an event to occur

at a certain location is inverse proportional to its distance

to the closest hot spot. When an event occurs, sensor nodes

whose sensing range covers it can detect the event and generate

sensory data of size αe−αd bits to record it, where d is the

distance between the node and the event, and α is set to 0.5
in our simulation. Sensor node sends out a data collection

request when a total volume of 1 KB data are accumulated

in its buffer. A total number of 100 data collection requests are

generated and served during each simulation, which is repeated

for 100 times. For each simulation run, we record the inter-

arrival time of the requests, with the service discipline of FCFS

and NJN respectively, and use an exponential distribution

with the same mean value to approximate it. We adopt the

Kolmogorov-Smirnov (K-S) test to verify the goodness-of-fit

of the approximation, and record the percentage of runs that

pass it. The whole process is repeated for 40 times. We also
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Fig. 4: Validation of Poisson arrival and the distribution-

ergodic property of the service of data collection requests.

record the service time of each request, and calculate their one-

lag autocorrelation to validate the distribution-ergodic property

of the service time, for both the FCFS and NJN disciplines.

Figure 4 gives the results of the K-S test and the autocor-

relation on the queuing model, where each point corresponds

to one of the 100 × 100 simulation runs. The x-value of the

point is the percentage of simulation runs that pass the K-

S test, and the y-value is the one-lag autocorrelation. Thus

we expect that, if these points are clustered around the right

bottom corner, as being observed from the validation results

in Fig. 4, the queuing model used in this paper is confirmed

sound and acceptable.

B. System Measures

We focus on the evaluation of the analytical results on

the system measures of the queuing model in the following.

Our analysis for both NJN and NJNC starts with the state-

dependent service time distribution, so we first examine the

results on the service time distribution with a given system

size for both NJN and NJNC. Two cases with a small and a

large system size of 5 and 9 are explored respectively, and the

results are shown in Fig. 5. We can see that the analysis and

simulation agree with each other nicely, and the conditional

service time becomes shorter with a larger system size, which

is consistent with the nearest-job-next nature: more queued

requests in the system brings more opportunities to have nearer

ones.

However, the ultimate performance metric of data collection

is the response time of requests, which is determined by

both the service time and system size, and a shorter service

time does not necessarily lead to a shorter response time.

Next, we move on to evaluate the results on system size. The

average system sizes with different request arrival rates λ for

FCFS, NJN, and NJNC are shown in Fig. 6. The system sizes

under all the three disciplines are small and comparable to

each other with a light traffic, since the potential for both

NJN and NJNC to take effect is quite limited in this case.

The system size for FCFS increases very quickly when λ
increases, and cannot keep stable anymore when λ exceeds

a certain threshold (0.018 in Fig. 6). In fact, the case of

λ = 0.018 in our simulation roughly corresponds to the case
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that ρ = λ · E[S] = 1 for FCFS, where ρ is the system

utilization factor, and increasing λ further will result in an

unstable system where the steady state does not exist. When

compared with FCFS, NJN can reduce the system size greatly

because it tries to serve and finish nearby requests in a shorter

time, and NJNC can further decrease the system size as a result

of possible requests combination. Note that the capability of

NJNC to further reduce the system size becomes more obvious

when λ increases, since a larger system size leads to a larger

potential to combine already queued requests. (One thing to

mention is that, not surprisingly, the resultant system size with

FCFSC falls between those with FCFS and NJN, e.g., 1.9 with

a λ of 0.018 [5].)

We then examined the general service time distribution for

both NJN and NJNC, as shown in Fig. 7, where the service

time distribution for FCFS is also shown for comparison. NJN

and NJNC can shorten the service time noticeably because of

their nature to serve nearby requests with less time, and the

service time of NJNC is slightly longer than that of NJN,

as a result of possible requests combination, which reduces

the system size more aggressively and also the possibility of

finding a nearby requesting sensor node in the future.

As mentioned above, both service time and system size

affect the response time. Since NJN has a shorter service time

and NJNC has a smaller system size, next we need to examine

their response time. The average response time for FCFS, NJN
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Fig. 8: Average response time with service disciplines of

FCFS, NJN, and NJNC, respectively.

and NJNC is shown in Fig. 8, from which we can see that when

compared with FCFS, NJN and NJNC can greatly shorten the

response time of requests, especially when λ is large. NJNC

can further reduce the response time as a result of possible

requests combination, which also becomes more obvious as λ
increases. It shows that between a shorter service time for NJN

and a smaller system size for NJNC, the system size reduction

is more dominating for the resultant response time. A smaller

system size also indicates a lower overflow probability for a

given system capacity limit.

People may have concerns about the possible starvation

problem when NJN discipline is adopted, and to gain insights

on this problem, we have obtained a Gamma approximation

of the busy period distribution for NJN, which serves as

the stochastic upper bound of the response time of requests.

The evaluation results of this approximation, along with the

response time distribution with the FCFS discipline (obtained

according to [28]), are shown in Fig. 9, where BP and RT

stand for the busy period and response time, respectively,

and λ is 0.018. We can see that for NJN, its busy period

is even stochastically smaller than the response time obtained

by FCFS, which alleviates the concerns about the starvation

problem.

As a summary of these observations on the system mea-

sures, NJN and NJNC achieve a much better data collection
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Fig. 9: Gamma approximation of the busy period distribution

with NJN, compared with the response time distribution with

FCFS discipline.

performance than FCFS. Even facing the possible starvation

problem, the worst-case performance of NJN is still stochas-

tically better than that obtained by FCFS. Another advantage

of NJN and NJNC is that they can keep the system in a stable

state even when the arrival rate of requests is very high, while

that for FCFS is quite limited. As a result of possible requests

combination, NJNC can further improve the system perfor-

mance, especially with a heavy traffic. These observations can

assure us that NJNC is an attractive discipline to adopt when

designing more sophisticated online data collection schemes

for MEs in wireless sensor networks, especially with a tight

bound on the data collection latency.

VII. DISCUSSION AND ONGOING WORK

Our modeling and analysis are shown accurate but some

issues need to be further explored. Here we discuss some of

these issues and the directions of ongoing work.

Clearly, the assumption of a square sensing field may not

hold in practice. However, our queue-based modeling and anal-

ysis approaches are still feasible even for any general sensing

fields, provided that the distance distribution between arbitrary

locations in the field can be obtained, e.g., we have also ana-

lytically derived the random distance distributions associated

with rhombuses and hexagons [31], [32]. Furthermore, if the

sensing field is of irregular shape, which may be true in certain

cases, we can adopt the polygon-approximation approach to

approximate the field by the combination of several regular

shapes, and derive the random distance distributions within

and between them.

Another assumption we made is the time for transmitting

the data from sensors to the ME is negligible, which may

not hold if the data volume is very large. However, note that

given any sensor network deployment, the knowledge on the

data transmission rate and communication range is available,

or at least can be estimated. Based on such knowledge, we

can estimate the data volumes that can be collected if the

ME travels without any stops, and then the time that the ME

has to pause or slow down to collect the remaining data can

be calculated as well. The statistics of this additional time



can be easily considered when formulating the service time

distribution.

The request response time in this work does not include the

time since the request is sent by the sensor node to its reception

at the ME, which we assumed to be negligible. Observing the

fact that these two times are independent to each other, thus

by the convolution theorem, we can easily take the latter into

account provided that its distribution g(t) can be obtained, i.e.,

f ′
R(t) = g(t) ∗ fR(t). (26)

We have also taken the delivery of the requests from sensor

nodes to the ME into account in [30], in which the ME collects

data from sensor nodes with NJN discipline in a partitioned

network.

When multiple MEs are available, a straightforward ap-

proach is to extend the M/G/1/c model to M/G/c/c. How-

ever, in addition to the queue length and response time, we

also need to consider the load balance among the MEs as

another metric to evaluate the system performance.

This paper can serve as a starting point to further explore

mobile elements in wireless ad hoc sensor networks and sim-

ilar application scenarios with dynamic-priority scheduling,

e.g., adaptive channel assignment in cognitive radio networks.

VIII. CONCLUSIONS

In this paper, we have analytically evaluated an intuitive

service discipline, NJN, for data collection with mobile ele-

ments in wireless sensor networks, and also explored the case

where the ME follows NJN and combines requests whenever

possible, i.e., NJNC. We have modeled the system as an

M/G/1/c queue, and then with different service disciplines

(NJN and NJNC), critical system metrics have been derived.

We have verified our analytical results through extensive

simulation, and gained more insights on the starvation problem

that NJN and NJNC may suffer from. Our results have showed

that not only the average performance of NJN is much better

than that of FCFS, but also the worst-case performance of

NJN is still better than that of FCFS, even though according

to the conventional wisdom, NJN may suffer from the star-

vation problem. A possible reason is that the service time

is not arbitrary for data collection applications in wireless

sensor networks. Moreover, NJNC can further improve the

performance as a result of possible requests combination. We

have also discussed several possible extensions as ongoing and

future work.
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