
2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3004573, IEEE Internet of
Things Journal

1

Stability Analysis of Vehicle Platooning with
Limited Communication Range and Random

Packet Losses
Chengcheng Zhao, Member, IEEE, Lin Cai, Fellow, IEEE, and Peng Cheng, Member, IEEE

Abstract—Control performance of vehicle platooning relies on
the information flow topology and quality of wireless communi-
cations. In this paper, we investigate the constant-time-headway-
spacing-policy-based vehicle platooning problem, where multi-
ple predecessors’ information is used by the following vehicles
and communication impairments, i.e., limited communication
range and random packet losses, are considered. In this paper,
first, when the leading vehicle moves at a constant speed, we
obtain the sufficient and necessary conditions on sampling time,
control gains, and internal lag, to ensure the stability of the
vehicle platoon based on matrix polynomials’ stability for ideal
communications. Secondly, for time-independent homogeneous
random packet losses, we provide the upper bound for the
loss rate to maintain convergence in expectation by matrix
eigenvalue perturbation theory when no input is set for lossy
information. We also provide sufficient conditions to guarantee
mean-square convergence for heterogeneous time-independent
random packet loss and show the convergence time for any
given accuracy and probability. Third, when historically latest
information is used for input, the sufficient and necessary con-
ditions are provided to ensure the internal stability and string
stability by Markov jump linear system theory. Furthermore,
we discuss the controller design when no feasible solution exists
to guarantee the string stability. Extensive numerical results
validate our analysis.

Index Terms—Vehicle Platooning, Longitudinal Control, Ran-
dom Packet Losses, Internal Stability, String Stability.

I. INTRODUCTION

Autonomous driving technologies enable vehicles to drive
by themselves without human supervision, which is an impor-
tant part of intelligent transportation systems [1]. However,
if each autonomous car just senses the surroundings and
then makes decisions individually, road congestion cannot be
alleviated. Thus, it is necessary to apply cooperated automat-
ed driving technologies to further enhance the intelligence
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of transportation systems. Especially, vehicle platooning is
a typical application of cooperated automated driving tech-
nologies and also one of the most promising internet-of-
vehicles (IoV) applications [2], [3]. It is to form a road train
by a group of vehicles without physical couplings, where
a shorter inter-vehicle distance is maintained by automation
and wireless communication technologies [4]. Studies have
shown that the aerodynamic drag of a car can be reduced by
following at least one predecessor [5]. The smaller air drag
of the “follower” vehicles thus effectively brings down their
fuel consumption and also leads to the reduction of carbon
emissions in the transportation system. More importantly, ve-
hicle platooning helps increase road traffic throughput, which
is a promising technology to alleviate traffic congestions.

Platoon control includes longitudinal and lateral control.
Longitudinal control is to regulate longitudinal motions and
lateral one focuses on tracking the center of the lane ac-
curately. In this paper, we consider longitudinal control,
which includes the spacing policy, the distributed controller,
the communication mechanism, and performance evaluation.
Different spacing policies have been developed such as the
constant distance spacing (CDS) policy and the constant time
headway spacing (CTHS) policy. Compared to CDS policy,
CTHS policy improves the scalability and stability of the ve-
hicle platoon with different information flow topologies (IFT-
s), e.g., one-look-ahead, leader-following, leader-predecessor
following, multiple-look-ahead, multiple predecessors and
followers. For performance evaluation, internal stability char-
acterizes the platoon stability without disturbances, and string
stability identifies error amplification of the following vehi-
cles from predecessors’ external disturbances.

Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) wireless communication technologies facilitate the
application and development of Cooperative Adaptive Cruise
Control (CACC) [6]. Compared to Adaptive Cruise Control
(ACC) only using the information of on-board sensors (such
as radar-based sensors), CACC can achieve a shorter inter-
vehicle distance and better robustness against disturbances
by V2V communication. However, the quality of wireless
communication is affected by many impairments, such as
channel fading, shadowing, and interference, and thus packet
losses are inevitable in vehicular networks [7]. As a result,
it is necessary and meaningful to investigate their effects on
vehicle platooning, which provides guidelines on the design
of effective platooning strategies.
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On the other hand, much attention has been paid to vehicle
platooning with a leader-predecessor IFT, i.e., each following
car combines the information from the leading vehicle and
one immediate predecessor for local control [8]–[10]. Howev-
er, this leader-predecessor IFT may be unrealistic especially
when the size of the platoon is large given that each vehicle
has a limited communication range. Furthermore, if each car
knows a higher percentage of global network information,
all cars may achieve faster consensus on acceleration and
speed. It has been shown that we can decrease the headway
time by using multiple predecessors’ information in the local
controller [11]. It means that the inter-vehicle distance can be
reduced by using the information of more predecessors. At
the same time, it is meaningful to jointly design the network
and the controller for safety applications and cooperative
driving. In summary, it is of vital importance to investigate
the performance of the vehicle platoon where each car uses
the information of multiple predecessors, which motivates
us to analyze how non-ideal communications and internal
vehicle dynamics interact with each other and how the
macroscopic platoon performance is influenced.

Stability conditions for vehicle platoons in imperfect com-
munications have received attention in recent years. In partic-
ular, for the leader-predecessor following and one-look-ahead
IFTs, how communication delays and random packet losses
affect the performance has been studied. However, for vehicle
platoons with a more general IFT such as the two-predecessor
following, limited communication range, and bidirectional
networks, the stability, scalability, and robustness of the pla-
toon system were only investigated based on the assumption
that communication networks are perfect. It remains open
to analyze how limited communication range-based network
and imperfect communications interact with each other and
how they affect control performance of the vehicle platoon.
To fill this gap, in this paper, we study a vehicle platoon
where each vehicle has a limited communication range and
adopts a CTHS policy in an imperfect communication envi-
ronment. The main contributions of this work are summarized
as follows.
• We analyze control performance of vehicle platoons

where the vehicles have limited communication range
and there are random packet losses. It is formulated as
the discrete-time vehicle platoon using multiple prede-
cessors’ information under random packet losses.

• We obtain sufficient and necessary conditions on the
information flow, sampling time, control gains, and
internal lag, to guarantee internal stability, by using
matrix polynomials for ideal communications.

• We provide an upper bound for time-independent pack-
et loss rate to guarantee convergence in expectation
by matrix perturbation theory and obtain a sufficient
condition for the mean-square convergence. Moreover,
sufficient and necessary conditions are also shown on
time-dependent random packet loss rate by Markov
jump linear system theory under which the internal
stability is ensured.

• We analyze string stability of the considered vehicle pla-

toon model with random packet losses by H∞ Markov
jump linear systems. It is characterized as the feasibility
of an optimization problem to avoid the amplification of
the spacing error in vehicle platooning.

The remainder of this paper is organized as follows.
Related work is summarized in Section II. The preliminaries
and problem formulation are provided in Section III. We
analyze internal stability in Section IV and string stability
in Section V. Section VI verifies the main results through
numerical studies. We also discuss the controller design,
system modeling, and performance optimization in Section
VII. Conclusions and future work are presented in Section
VIII.

II. RELATED WORK

Vehicle platooning with packet losses is a hot research
topic. Seiler et al. investigated how packet losses affect on the
discrete-time vehicle following control using linear matrix in-
equalities, where each vehicle only uses its one predecessor’s
information for longitudinal control [12]. They also applied
their networked control H∞ theory to the leader-predecessor
IFT based vehicle platooning, where a bursty packet loss
process is considered [13]. Teo et al. explored a discrete-time
platoon model with a leader-predecessor-following IFT and
packet dropouts, and proposed a mitigation scheme through
estimating the leader vehicle’s state [14]. A state estimation
based method is developed to make CACC gracefully switch
to ACC and guarantee the string stability for persistent packet
losses [15]. Considering the constant spacing strategy and
the leader-predecessor-following-IFT-based platooning with
random packet losses and limited communication capacity,
Guo et al. designed a strategy to guarantee mean square
exponential string stability [8]. For a heterogeneous vehicle
platoon with inter-vehicle communication losses, an extended
dwell-time structure and an adaptive switch controller are
designed to guarantee the system stability in [9]. Acciani
et al. studied a CACC-based vehicle platoon with a one-
look-ahead IFT and proposed an H-infinity-based controller
to guarantee the stability in expectation [10].

The platoon with a general IFT is also an important topic in
recent years. The stability of the vehicle platoon was analyzed
by the frequency domain method in [16]. In that model, each
vehicle has a limited communication range and broadcasts
its spacing error information to neighbors. Zheng et al.
investigated the scalability and robustness for the platoon
with the constant spacing policy and general IFTs [17]. Li
et al. proposed an eigenvalue-based method to investigate
the stability and scalability of the vehicle platoon, where a
general IFT and the constant spacing strategy were consid-
ered [18]. Stüdli et al. investigated the cyclic interconnections
for vehicle platoons and provided conditions for the string
stability by frequency-domain methods [19]. The stability
margin of the vehicle platoon with general undirected IFTs
and the constant spacing policy was also studied in [17].
Many efforts have also been made to problems of platoon
control with general IFTs [20], [21]. Bian et al. studied the
vehicle platoon with the constant time headway policy where
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multiple predecessors’ information is utilized for the short
inter-vehicle distance control [22].

Considering communication delays and communication-
based safety enhancement, many have been made to con-
troller synthesis and dynamic analysis of vehicle platoons
to avoid vehicle collisions. For example, Considering the
constant spacing policy, Liu et al. investigated the effects of
time-invariant delays on string stability of vehicle platooning
and proposed a simple method to avoid the instability caused
by communication delays through clock jitter [23]. Peters
et al. analyzed the effects of uniform delays on the system
performance for different communication strategies [24].
Lots of works have been also done regarding the platoon with
other simple information structures. For instance, Bernardo
et al. proposed a consensus-based control strategy for the
platoon and investigated the effect of time-varying delays on
the internal stability, where the leader vehicle’s information is
available to all other vehicles [25]–[27]. Jin et al. and Zhang
et al. investigated the effects of communication delays on
the stability of heterogeneous ad-hoc platoon and proposed
strategies to guarantee string stability [28]–[31]. Meanwhile,
to enhance the safety of a leader-predecessor-following IFT
based vehicle platooning with unreliable communications,
strategy design and analysis have also been investigated
recently [32], [33]. For example, considering vehicle pla-
toons with packet losses, Bergenhem et al. considered the
problem of coordinating emergency brake, where a machine-
learning-based parameters estimation method was proposed
and quantitative analysis was provided through simulations
[34]. Moreover, Wu et al. applied Kalman Filter to deal with
communication delays and designed an adaptive acceleration
for the vehicle platoon [35].

Notice that for the case when each vehicle has a limited
communication range, how the random packet losses affect
the platoon control especially control convergence time and
how to design system parameters to enhance vehicle platoon-
ing stability speed are still open problems.

III. PRELIMINARIES AND PROBLEM FORMULATION

Notation: Let R and N denote the set of rational num-
bers and the set of integer numbers, respectively. We use
A = [Aij ] ∈ Rn×m to stand for a n×m-dimension matrix,
and Aij is the (i, j)-position element. Let A> denote the
transpose of matrix A. Let x = [x1 x2 · · · xn]> ∈ Rn
indicate a n-dimension column vector, while its transpose is
x>. We denote the positive definite matrix A ∈ Rn×n as
A � 0. The determinant of the square matrix A is denoted
by det(A). We use In and 1n = [1 · · · 1]> ∈ Rn to indicate
a n-dimension identity matrix and a n-dimension vector,
respectively. We use ⊗ to denote the Kronecker product
symbol, E(·) takes the expectation, and Pr{·} denotes the
probability. If N is equipped with counting measure, then
`p(N) consists of all sequences {x(k) ∈ R : k ∈ N} such that

‖{x(k)}‖`p =
∞∑
k=0

|x(k)|p <∞, and the norm is denoted by

(
∞∑
k=0

|x(k)|p)1/p. A continuous function α : [0, c) → [0,∞)

is said to be of class K if it is strictly increasing and
α(0) = 0.

A. Network Model

There are n+1 ≥ 2 vehicles in a platoon, and each vehicle
has one unique ID, i.e., i = 0, 1, · · · , n, where i = 0 is
the ID of the leader vehicle. All vehicles are homogeneous,
i.e., they have the same dynamic parameters and hardware
devices, meaning that they have the same communication
range and receiver sensitivity. The topology of the commu-
nication network composed of the following vehicles without
the leader is modeled by the graph G = (V, E), where V is
the set of {1, 2, · · · , n} vehicles and E ⊂ V × V is the edge
set. If vehicle i uses vehicle j’s information, then we have
(i, j) ∈ E . In this paper, we consider the case where vehicles
have a limited communication range and they use information
from r predecessors to produce local control input when
i ∈ [r, n]. For 1 ≤ i < r, vehicle i communicates with
its i predecessors. Let A = [Aij ] ∈ Rn×n be the adjacency
matrix of graph G = (V, E), where Aij = 1 if and only if
(iff) (i, j) ∈ E and Aij = 0 otherwise. Note that self-loop is
not considered, which means that Aii = 0 for all i in V . The
in-degree matrix D = [Dij ] ∈ Rn×n is a diagonal matrix

with Dii =
n∑
j=1

Aij for all i, j in V . The Laplacian matrix

L is defined by L = D − A. Let J ∈ Rn×n be a diagonal
matrix with Jii = 1 if vehicle i uses the leader’s information
and Jii = 0 otherwise.

B. Vehicle Dynamic Model
We use mi and qi to designate the mass and the position of

vehicle i, i ∈ V , respectively. According to Newton’s second
law and the vehicle’s engine dynamics [36], the dynamic
model of vehicle i is

miq̈i = miξi −Kiq̇
2
i − cmi, ξ̇i = − ξi

τi(ξ̇i)
+

µi

miτi(ξ̇i)
, (1)

where Kiq̇
2
i characterizes the air resistance force, miξi

represents the vehicle’s engine force, and cmi is a constant
for the mechanical drag. Moreover, τi(ξ̇i) denotes the engine
time constant when vehicle i moves at a speed ξ̇i, and µi is
the throttle input to the engine. Suppose that the parameters in
(1) are priori knowledge. By adopting the control law below

µi = miui +Kiq̇
2
i + cmi + 2τi(ξ̇i)Kdiq̇iq̈i,

we have
...
q i = − 1

τi
q̈i + 1

τi
ui, where τi = τi(ξ̇i) is constant

when τi(ξ̇i) is small enough [37]. Let vi(t) and ai(t) denote
the velocity and the acceleration of vehicle i at time t,
respectively. The dynamics of vehicle i can be written as

q̇i(t) = vi(t),

v̇i(t) = ai(t),

ȧi(t) = − 1

τ
ai(t) +

1

τ
ui(t),

where ui(t) is the control input and τ = τi = τj , ∀i, j ∈ V .
Let si(t) = [qi(t) vi(t) ai(t)]

>, and one obtains

ṡi(t) =

0 1 0
0 0 1
0 0 −1

τ

 si(t) +

0
0
1
τ

ui(t), ∀i ∈ V. (2)
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We then discretize the vehicle dynamics in (2). Let η be the
sampling time and therefore, there holds

si(k + 1) =

1 η η2

2
0 1 η
0 0 1− η

τ

 si(k) +

 0
0
η
τ
.

ui(k). (3)

where si(k) and ui(k) are state and input at time slot k,
respectively.

C. Distributed Controller

CTHS policy is used to maintain a small relative dis-
tance between neighboring vehicles. The desirable distance
di,i−1(k) between vehicle i and its predecessor i− 1 is

di,i−1(k) = d+ hvi(k),∀i ∈ V, (4)

where h > 0 is the constant headway time and d is a
constant distance. The actual distance between vehicle i and
its predecessor i− 1 is di(k) = qi−1(k)− qi(k)− l, where l
is the length of vehicle i. Note that for simplicity, we assume
that all vehicles have the same length, and our approach can
be easily extended to consider heterogeneous length. Then,
the spacing error between vehicle i ≥ 1 and its predecessor
i− 1 is calculated by

eqi(k) = di(k)− di,i−1(k),

= qi−1(k)− qi(k)− l − (d+ hvi(k)).
(5)

Since l and d are the same and can be omitted when we
consider the relative position, the relative velocity, and the
relative acceleration to characterize the system dynamic. For
any pair of vehicles i and j in the communication network,
the desired spacing distance is denoted by

di,j(k) =

i∑
η=j+1

hvη(k), j < i. (6)

Note that for system (3), if we aim to make the relative
distance between neighboring vehicles be monotonically in-
creasing with the following vehicle’s velocity or be some
constant distance, the equilibrium point will not be zero.
Inspired by [17] and [22], we study the case where each
vehicle uses spacing errors, velocity errors, and acceleration
errors with respect to its communication neighbors to produce
the control input. For each vehicle i ≥ 1, the control input
ui(k) can be denoted as

ui(k) =

n∑
j=1

Aij(κq(qj(k)− qi(k)− di,j(k))

+ κv(vj(k)− vi(k)) + κa(aj(k)− ai(k)))

+ Jii(κq(q0(k)− qi(k)− di,0(k))

+ κv(v0(k)− vi(t)) + κa(a0(k)− ai(k))),

(7)

where κq , κv , and κd are the corresponding control gain
parameters.

D. Communication Mechanism with Random Packet Losses
Let pij(k) be the probability that the packet transmission

on communication link (i, j) at the k-th time interval is
lost. We use ϑij(k) to characterize the availability of the
communication link (i, j). As a result, ϑij(k) is a binary
random variable with the distribution given by

Pr{ϑij(k) = 1} = 1− pij(k),Pr{ϑij(k) = 0} = pij(k). (8)

During the k-th time interval for all k ∈ N, from (8), the
information received by vehicle i from vehicle j is

q̄ij((k + 1)) = ϑij(k)q̄ij((k − 1)) + (1− ϑij(k))qj(k),

v̄ij((k + 1)) = ϑij(k)v̄ij((k − 1)) + (1− ϑij(k))vj(k),

āij((k + 1)) = ϑij(k)āij((k − 1)) + (1− ϑij(k))aj(k),

(9)

where q̄ij((k+1)), v̄ij((k+1)), and āij((k+1)) are available
position, available velocity, and available acceleration of ve-
hicle j through communication link (i, j) ∈ E , respectively.
In this paper, we consider both time-independent and the
time-dependent packet loss rate model on all communication
links. In the time-independent model, we suppose that the
constant homogeneous packet loss rate p and heterogeneous
packet loss rate pij . For the time-dependent model, the
Markov chain packet loss rate model is formulated.

Remark 3.1: There are many factors that cause a packet
transmission failure in vehicular networks, e.g., collisions,
channel errors, and packet dropping due to the end of the
common control channel [38]. As a result, the packet loss
probability is time-varying. But we can still use a random
process to govern the packet delivery characteristics of the
network, which has been commonly used in the literature
[13], [39]. For example, the packet losses occur in bursts
in wireless networks, which is analyzed by the Gilbert-
Elliott model of fading channels [39]. This random packet
loss/delivery model has also been widely used in the design
and analysis of networked control systems [13]. This paper
applies the simple model of randomly distributed packet
losses. As a result, the resulting theoretical conclusion of the
effect of packet losses on the control performance can be of
the explicit form, which can further facilitate future research
on more general cases.

E. Problem of Interests

To ensure the performance of a large-scale vehicle platoon,
it is crucial to solve the following problems.
• When the communication network is ideal, what is the

sufficient and necessary condition on the sampling time,
control gains, and IFTs to guarantee the internal stability
of the platoon system?

• When there are random packet losses, how can we char-
acterize the communication impairments on the internal
stability?

• How will the random packet losses affect the string
stability of the platoon system? How can we mitigate
its side effects if the string stability cannot be achieved
by the system?

IV. INTERNAL STABILITY ANALYSIS

To address the above problems, in this section, we first
investigate the internal stability of the considered vehicle
platoon with ideal communication networks. Then, we inves-
tigate the effect of time-independent packet loss rate on the
internal stability by matrix perturbation and random matrix
eigenvalue analysis. We also model the time-dependent ran-
dom packet losses as a Markov chain process and analyze the
internal stability through Markov jump linear system theory.
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A. Cases without Packet Losses
To make the analysis more formal and tractable, we first

make the following variable transformation. Let q̂i(k), v̂i(k),
and âi(k) be

q̂i(k) = qi(k)− q0(k)− di,0(k),

v̂i(k) = vi(k)− v0(k),

âi(k) = ai(k)− a0(k),

ûi(k) = ui(k)− u0(k),

where di,0(k) is the desirable distance between vehicle i and
the leader vehicle. By (3), one obtains

q̂i(k + 1) = q̂i(k) + ηv̂i(k) +
η2

2
âi(k)−

i∑
j=1

hηâj(k)

−
i∑

j=1

hηa0(k),

v̂i(k + 1) = v̂i(k) + ηâi(k),

âi(k + 1) = (1− η

τ
)âi(k) +

η

τ
ûi(k).

(10)

Let q̂(k) = [q̂>1 (k) · · · q̂>n (k)]>, v̂>(k) =
[v̂>1 (k) · · · v̂>n (k)]>, and â(k) = [â>1 (k) · · · â>n (k)]>.
Considering the vehicle platoon with vehicle dynamics in
(3), control input (7), v0(k) = c, and a0(k) = 0 in an ideal
communication network, from (10)q̂(k + 1)
v̂(k + 1)
â(k + 1)

 =

In ηIn
η2

2
In − ηH

0 In ηIn
0 0 (1− η

τ
)In

q̂(k)
v̂(k)
â(k)

+

 0n
0n
η
τ
In

u(k),

(11)

where H ∈ Rn×n is a lower triangular matrix with all entries
in/below the main diagonal equal to h. From (7) and (10)

ui(k) =

n∑
j=1

Aij(κq(q̂j(k)− q̂i(k)) + κv(v̂j(k)− v̂i(k))

+ κa(âj(k)− âi(k))

+ Jii(−κq q̂i(k)− κv v̂i(k)− κaâi(k)).

Let xo(k) =
[
q̂(k)> v̂(k)> â(k)>

]> ∈ R3n. Hence, the
compact form of the input can be written as

u(k) = −κq(L+ J)q̂(k)− κv(L+ J)v̂(k)− κa(L+ J)â(k)

= −κqLJ q̂(k)− κvLJ v̂(k)− κaLJ â(k)

=
[
−κqLJ −κvLJ −κaLJ

]
xo(k),

(12)

where LJ = L+J . Then, combining (11) and (12), we obtain
the following closed-loop system

xo(k + 1) =

In ηIn
η2

2
In − ηH

0 In τIn
0 0 (1− η

τ
)In

xo(k)

+

 0n
0n
η
τ
In

 [−κqLJ −κvLJ −κaLJ
]
xo(k)

= Wxo(k),
(13)

where

W =

 In ηIn
η2

2
In − ηH

0 In ηIn
− η
τ
κqLJ − η

τ
κvLJ (1− η

τ
)In − η

τ
κaLJ

 .

Then, we provide the following lemma to guarantee the
stability of the platoon system (13).

Lemma 4.1: The platoon system (13) can achieve asymp-
totic stability iff

max(|W |) < 1. (14)

From Theorem 1.4 in [40], we have the following lemma,
which plays a crucial role to analyze the internal stability of
the platoon system.

Lemma 4.2: Given real numbers ι0, ι1, and ι2, iff

|ι2 + ι0| < 1 + ι1, |ι2 − 3ι0| < 3− ι1, ι20 + ι1 − ι0ι2 < 1,

all roots of the third-degree polynomial equation in (15) lie
in the open disk |λ| < 1,

λ3 + ι2λ
2 + ι1λ+ ι0 = 0. (15)

By analyzing the structure of the matrix W and combining
with Lemma 4.1 and Lemma 4.2, we establish the sufficient
and necessary conditions on the system parameters to ensure
the internal stability of the platoon system.

Theorem 4.3: Suppose that the leading vehicle moves at a
constant speed. For any initial states, each vehicle i, i > 0 in
the platoon system (13) can achieve stable states, i.e., ai =
a0, vi = v0, qi − qi−1 = di,i−1(k), iff

2η2κqhri − 2η2κvri + 4η(κari + 1)− 5τ < 0

η3κqri + 2τ > 0

η3κqri − 2η2κqhri + 2η2κvri − 4ηκari − 4η + 8τ > 0

2η2κqhri − 2η2κvri + 4η(κari + 1)− 5τ < 0

η3κqri + 2τ > 0

η3κqri − 2η2κqhri + 2η2κvri − 4ηκari − 4η + 8τ > 0

(2τ + 2η + 2ηκari − 2η2κvri + η3κqri + 2η2κqhri)

× (8τ − 2η2κvri + η3κqri + 2η2κqhri)

+ 2τ(η3κqri − 2η2κqhri + 2η2κvri − 4ηκari − 4η + 6τ)

− 4τ2 < 0.
(16)

Proof: We postpone the proof to Appendix A.
Remark 4.4: Note that the above sufficient and necessary

conditions for a discrete-time platoon system with multiple
predecessors are different from that one for a continuous-time
system as the sampling time η is shown. Here, we provide
the relationship between the sampling time η, internal lag
τ , the headway time constant h, control gains, and IFTs to
guarantee the inter-vehicle distance can be unified through
platooning control in (7). Moreover, how to guarantee the
feasibility of the condition in (16) can be complex and
difficult to obtain theoretically since multiple variables and
nonlinear inequalities there. However, this problem can be
solved numerically. Furthermore, the conditions provide a
convenient tool to quickly determine whether the given
system parameter settings are acceptable or not. If not, the
conditions provide important insights on the tuning of these
parameters to ensure internal stability.
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B. Cases with Time-Independent Packet Losses

In this part, we first consider homogeneous time-
independent packet losses rates , i.e., pij(k) = p for all
(i, j) ∈ E and k. Then, we provide a sufficient conditions
on p to guarantee convergence in expectation. For the more
general time-independent packet loss rate, we investigate
the effect of random packet losses through the mean-square
convergence (MSC). Meanwhile, we here assume that once
the broadcast packet is lost, the car in the platoon system
will have no input part for that lossy link.

Let x(k) be the system state vector at time k and we
provide one basic convergence definition as follows.

Definition 4.5: The system achieves convergence in ex-
pectation if for any initial state x(0), lim

k→∞
E(x(k)) = 0.

The system achieves MSC if for any initial state x(0),
lim
k→∞

E(‖x(k)‖2) = 0.
Then, let

∆ =

 0n 0n 0n
0n 0n 0n

η
τ
κqLJ

η
τ
κvLJ

η
τ
κaLJ

 (17)

and W̃ = W + p∆. We use σ(W ) = {λ1, · · · , λ3n} and
σ(W̃ ) = {λ̃1, · · · , λ̃3n} to denote the set of eigenvalues of
matrix W and that of W̃ , respectively, where |λ1| ≤ |λ2| ≤
|λ3n| and |λ̃1| ≤ |λ̃2| ≤ |λ̃3n|. Then, from [41], one obtains
the definition of the optimal matching distance

md(σ(W ), σ(W̃ )) = min
π

max
i

(|λ̃π(i) − λi|),

where π is taken over all permutations of {1, · · · , 3n}.
Geometrically, the optimal matching distance is the radius of
the smallest circle among circles that center at λ1, · · · , λn
respectively and cover σ(W̃ ). From [42], we have the fol-
lowing lemma.

Lemma 4.6: For any square matrices W and W̃ ,

md(σ(W ), σ(W̃ ))

≤ 4(‖W‖∞ + ‖W̃‖∞)1−1/3n‖W − W̃‖1/3n∞ .

As a result, we can conclude the following result to ensure
that all vehicles can track their predecessors with the same
inter-vehicle distance.

Theorem 4.7: Suppose that the platoon system (13) is
stable when there is no packet loss over all communication
links, i.e., (16) holds. When each link has a packet loss rate
p and 1 + η + η(n − 1)h + |η2/2 − ηh| ≥ 2rη(κq + κv +
κa)/τ+|1−η/τ |, the platoon system can achieve the internal
stability in expectation if

p <
1

4
(1− |λ3n|)(2rη(κq + κv + κa)/τ)−1/3n

× (2(1 + η + η(n− 1)h+ |η2/2− ηh|))1/3n−1.
(18)

Proof: We postpone the proof to Appendix B.
Remark 4.8: Given homogeneous packet loss rate p on all

communication links, Theorem 4.7 provides a conservative
method to design the lower bound on p to ensure the internal
stability in expectation of the platoon. Since the eigenvalue
perturbation is a complex problem to solve, we only provide

sufficient conditions on convergence in expectation and MSC.
Internal stability in expectation means that for any initial
positions, velocities, and accelerations of the following cars,
the road train can be formed in expectation with the inter-
vehicle distance satisfying (4). The mean-square convergence
is another metric of the internal stability on average, which
can provide a lower bound on the probability of the final
state converging to the stable state with any given accuracy.
However, these are only guarantees on average, which means
that the final state may deviate from the expected one once
the covariance does not go to zero with time. Markov jump
linear system theory can be used to ensure the convergence of
covariance. It also should be pointed out that the assumption
on homogeneous packet loss rate p on all communication
links is rather simplified, but the obtained results of the
sufficient condition to guarantee the platoon stability are
explicit. Moreover, when the worst-case packet loss rates are
the same on different communication links, our conclusion
can provide a simple and effective way to determine the
stability of the platoon system. Furthermore, we provide
thorough analysis for more realistic scenarios where the
packet loss rates on different links are different.

In the following part, we consider the mean-square con-
vergence of the platoon system with more general random
packet losses, where packet loss rates on different links can
be spatially correlated but temporally independent.

Lemma 4.9: Supposing the communication errors are in-
dependently and identically distributed (iid) over time, the
platoon system (13) achieves MSC if

E(ρ(W̃ )) < 1, (19)

where ρ(·) takes the spectral radius of a matrix.
Proof: We postpone the proof to Appendix C.

Based on the above lemma, we provide a conclusion on
the effect of random packet losses on the convergence time
of the platoon control process below.

Theorem 4.10: When the communication errors is iid over
time, if ‖y(0)‖ 6= 0 and Pr{‖y(K)‖ < ε} = δ, then
the convergence time K of the platoon system (13) can be
characterized by

K > log(
ε(1− δ)
‖y(0)‖ )/ log(E(ρ(W̃ ))). (20)

Proof: We postpone the proof to Appendix D.
Remark 4.11: Lemma 4.9 provides a general sufficient

condition to ensure strong stability, i.e., mean-square con-
vergence, for the iid packet losses. It can provide guidance
for communication design. More importantly, Theorem 4.10
means that given any convergence accuracy ε > 0 and
probability δ ≥ 0, we can obtain the lower bound on
the convergence time for the control process under random
packet losses. We provide an effective way to characterize
the impact of packet losses on the convergence time of the
platoon control process. Note that to ensure convergence
in expectation and MSC, we only need to analyze the
system matrix variance and the expectation of its spectral
radius. Furthermore, the obtained results of Lemmas 4.9 and
Theorem 4.10 are applicable to iid communication errors,
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which means that our solution is feasible to heterogeneous
packet drop rates on different communication links. However,
it is assumed that the controller has no related input if the
packet is lost. In practice, it is desirable to use the latest
received information for control. How to extend Lemma 4.9
using historical information in control will be addressed in
the following subsection.

C. Cases with Time-Dependent Packet Losses

In this part, we consider that once the packet is lost, the
latest received information will be used for control. Since
the system model is time-dependent and W cannot be found,
the previous analytical tool is not applicable. To solve this
problem, we first characterize the random packet losses in the
communication network as a Markov Decision Process and
then obtain the Markov jump linear system expression for the
platoon system. We then derive the sufficient and necessary
condition on the packet loss rate to guarantee the internal
stability of the vehicle platoon system.

1) Markov Decision Process: For the platoon system with
a multiple predecessors IFT, the communication network has
r(r−1)/2+r(n−r−1) randomly connected links. Suppose
that the leading vehicle’s information can be transmitted
reliably as it is more important in the platoon process. Note
that the following approach can be extended to remove this
assumption. Let m = r(r−1)/2 + r(n− r−2), all links are
ordered as {1, 2, · · · ,m}. Then, the state of the connectivity
of the communication network at time k is characterized by
a diagonal matrix θ(k) ∈ Rm×m. As a result, there are
2m possible states {S1, S2, · · · , S2m} that θ(k) could be,
which is a m × m dimension diagonal matrix with each
element {Sj}ii describing the connectivity of the i-th link.
The possible state set is denoted by K. Let P ∈ R2m×2m

be the transition probability matrix that characterize the
transition among different states, which is a row stochastic
matrix. If we have pij = p for all (i, j) ∈ E , the transition
probability matrix is row stochastic and all rows are the
same, i.e., Pr{θ(k + 1) = Sj |θ(k)} = Pr{θ(k + 1) =

Sj} = pm−c(Sj)(1 − p)c(Sj), where c(Sj) =
m∑
i=1

{Sj}ii is

the counting function of obtaining the number of ones in the
diagonal of matrix Sj .

2) Markov Jump Linear System Modeling and Analysis:
We consider that in each time period k, each car is able
to obtain its own position, velocity, and acceleration de-
terministically, i.e., qi(k) since these measurements can be
transmitted through the car’s internal wired network. As a
result, one obtains

ui(k) =

n∑
j=1

Aij(κq(q̄ij(k)− qi(k) +

i∑
η=j+1

κqhv̄iη(k))

+ κv(v̄ij(k)− vi(k)) + κa(āij(k)− ai(k)))

+ Jii(κq(q0(k)− qi(k)− di,0(k)) + κv(v0(k)− vi(t))
+ κa(a0(k)− ai(k))).

(21)

Let ˆ̄qij(k) = q̄ij(k)−q0(k)−d̄j,0(k), ˆ̄vij(k) = v̄ij(k)−v0(k),
ˆ̄aij(k) = āij(k)−a0(k), and ˆ̄uij(k) = ūij(k)−u0(k), where

d̄j,0(k) =
j∑

η=1
hvη(k) = dj,0(k). Then there holds,

ui(k) ==

n∑
j=1

Aij(κq(ˆ̄qij(k)− q̂i(k) +

i−1∑
η=j+1

h(−ˆ̄viη(k) + v̂η(k)))

+ κv(ˆ̄vij(k)− v̂i(k)) + κa(ˆ̄aij(k)− âi(k)))

− Jii(κq q̂i(k) + κv v̂i(t) + κaâi(k))
(22)

where ˆ̄vi(k) = vi(k) is used when the communication
information may be lost at time slot k.

Then, we denote the virtual state of the information
available through the random communication link at time
k by ˆ̄q(k) ∈ Rm, ˆ̄v(k) ∈ Rm, ˆ̄a(k) ∈ Rm. Hence, we have

ˆ̄q(k) = θ(k)Bq̂(k) + (I − θ(k))ˆ̄q(k − 1),

ˆ̄v(k) = θ(k)Bv̂(k) + (I − θ(k))ˆ̄v(k − 1),

ˆ̄a(k) = θ(k)Bâ(k) + (I − θ(k))ˆ̄a(k − 1),

where B ∈ Rm×n with Bij = 1 iff vehicle j is the
origin of link i, and Bij = 0 otherwise. Because the
leader vehicle moves at a constant speed and all variables
are relative to the leader, the communicated information
between the leader and the corresponding following ones
can be omitted in the formulation. Then the platoon system
dynamics can be described by (25). Let C ∈ Rn×m be the
matrix corresponding communicated information on links to
the information received node. If vehicle i is receiver of link
j, we have Cij = 1, and Cij = 0 otherwise. For r = 2,
n = 4, we give the example of B and C as follows

B =


1 0 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 1 0 0

 , C =

0 0 0 0 0
1 0 0 0 0
0 1 1 0 0
0 0 0 1 1

 .
To characterize the control input part related to
i−1∑

η=j+1

h(−ˆ̄viη(k)+ v̂η(k)), we define the matrix Ĉ ∈ Rn×m,

i.e.,

Ĉ =



0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 1 0 0 0 0 0 · · · 0
0 0 2 1 0 0 0 · · · 0
0 0 0 0 3 2 1 · · · 0
...

...
...

...
...

...
...

. . .
...

 .

Based on (22), we have the input in the compact form as

u(k) =
[
κqC κvC − κqhĈ κaC

]
xc(k)

+
[
−κqDJ −κvDJ + κqhS −κaDJ

]
xo(k),

(23)

where DJ = D + J and xc(k) =[
ˆ̄q>(k) ˆ̄v>(k) ˆ̄a>(k)

]> ∈ R3m. We denote the system
state as x(k) =

[
xo>(k) xc>(k − 1)

]> ∈ R3(n+m). Then,
one obtains

xc(k) = Oxo(k) + Ōxc(k − 1), (25)
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Γθ(k) =


In ηIn

η2

2
In − ηH 0 0 0

0 In ηIn 0 0 0

−κqDJ −κvDJ (1− η
τ

)In − κaDJ κqC κvC − κqhĈ κaC
θ(k)B 0 0 Im − θ(k) 0 0

0 θ(k)B 0 0 Im − θ(k) 0
0 0 θ(k)B 0 0 Im − θ(k)

 . (24)

where O =

[
θ(k)B 0 0

0 θ(k)B 0
0 0 θ(k)B

]
∈ R3m×3n and

Ō =

[
Im − θ(k) 0 0

0 Im − θ(k) 0
0 0 Im − θ(k)

]
∈ R3m×3m.

Combining (11), (23), and (25), one obtains the Markov
jump linear system as

x(k + 1) = Γθ(k)x(k), (26)

where Γθ(k) ∈ R3(n+m)×3(n+m) satisfies (24). By the stabil-
ity of the above Markov jump linear system, we provide the
following theorem to guarantee the internal stability of the
vehicle platoon system.

Theorem 4.12: The vehicle platoon system with random
packet drops, i.e., (26), can achieve mean-square stability iff

max{|eig{(P ⊗I(3(m+n))2)blkdiag({Γ>Si⊗ΓSi}i)}|} < 1, (27)

where blkdiag({Γ>Si ⊗ ΓSi}i) denotes the block diagonal
matrix created by aligning the input matrices Γ>Si ⊗ ΓSi for
all i = 1, 2, · · · , 2m along the diagonal.

Proof: We postpone the proof to Appendix E.
Remark 4.13: Note that mean-square stability is different

from MSC, i.e., the covariance matrix E(x(k)x′(k)) of the
system state will converge, meaning that the stability of
the platoon system can always be achieved under random
packet losses. Our model and results are also applicable for
communication links with time-dependent packet loss rates.
But in that case, the dimension of the system matrix grows
drastically with the number of communication links, and it
will cause high complexity to evaluate the platoon system
stability. How to solve this problem remains a future research
issue.

V. STRING STABILITY ANALYSIS

Suppose that the leading vehicle’s information can be
received by its followers with higher reliability where packet
loss effects can be neglected. We consider that the lead-
er vehicle faces a bounded disturbance, which means that
‖u0(k)‖ ≤ cu and ‖a0(0)‖ ≤ ca, where cu ≥ 0 and au ≥ 0
are constants. As a result, we have that a0(k) ≡ 0 does not
hold for all k. According to (10), we haveq̂(k + 1)

v̂(k + 1)
â(k + 1)

 =

In ηIn
η2

2
In − ηH

0 In τIn
0 0 (1− η

τ
)In

q̂(k)
v̂(k)
â(k)


+

 0
0
η
τ
In

u(k) +

−ηH0
0

 1na0(k).

(28)

To investigate the string stability, we need to focus on spacing
errors, velocity errors, and acceleration errors. Let xi(k) =
[q̂>i (k) v̂>i (k) â>i (k)]> for all i ∈ {0, 1, · · · , n} and x̄i(k) =
0 be the constant equilibrium solution for system (28) for

a0(k) ≡ 0. Then, we can have the following definition, i.e.,
discrete `p-string stability by referring to [43]–[45].

Definition 5.1: The platoon system (28) is `p-string stable
if there exists a K function α and constants c > 0, cω > 0,
κω > 0 such that for any initial disturbance eq1(0) and new
disturbance a0(t) satisfying

|eq1(0)| < c and ‖a0(k)‖`∞ < cω,

the solution eqi(k), ∀i ∈ V , exists for all k ≥ 0 and satisfies

‖eqi(k)‖`p ≤ α(|eq1(0)|) + κωcω.

Based on the above definition, we will utilize H∞ Norm
Markov jump linear system to characterize the string stability
of the platoon system under packet drops and disturbances.
For each vehicle i, we have the following Markov jump linear
system model

S1

 x(k + 1) = Γθ(k)x(k) + Ēa0(k),
yi(k) = Cyix(k),
zi(k) = Czix(k),

(29)

where zi(k) = eqi(k) = q̂i(k) − q̂i−1(k), Ē =
[(ηH1n)> 0] ∈ R3(n+m), and Czi ∈ R1×3(n+m) is a row
vector with i-th element being 1, the i− 1-th element being
−1, and all other elements being zero. Note that yi(k) is the
output measurement obtained by node i. Then, we provide
the H∞ norm of system (29) from input ui−1(k) to output
zi(k) as

‖S1‖2∞ = sup
ui−1(k)6=0

‖zi‖22
‖a0‖22

, (30)

where ‖zi‖22 =
∞∑
k=0

E(z2i (k)) and ‖a0‖22 =
∞∑
k=0

E(a20(k)).

The following lemma is provided to ensure the stability of
the Markov jump linear system based Lemma 2.7 in [46].

Lemma 5.2: The vehicle platooning system (29) is stable
and satisfies the norm constraints ‖S1‖2∞ < γ iff there exist
matrices GiSj = G>iSj ∈ R3(n+m)×3(n+m) � 0 such that[

ΓSj Ē
Czi 0

]> [
GipSj Ē
Czi I

] [
ΓSj Ē
Czi 0

]
−
[
GiSj 0

0 γI

]
≺ 0, (31)

where GipSj =
∑N
l=1 pilGiSl for all Sj ∈ K.

Then, we have the following theorem to guarantee the
string stability of the platoon system.

Theorem 5.3: If the following optimization problem has
feasible solutions,

min
GiSj ,∀Sj∈K,i∈V

γ

s.t. (31), ∀i ∈ V,
(32)

the platooning system with random packet drops can achieve
`p-string stability.

Remark 5.4: From the above analysis, we note that the
`p-string stability can ensure that the length of the vehicle
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platoon will not amplify by the disturbance. Although we
only consider the case that leading vehicle has disturbances,
the above results can be easily extended to more general
disturbing cases. Note that the major problem faced by the
above solution to evaluate the string stability of the platoon
system is computational complexity. Since the number of
states in the Markov decision process is 2m, which means
that for each car i, there will be 2m variable matrices in (32).
Hence, it can be costly to solve the feasibility of the problem
(32). We also need to point out that whether the modeling of
a Markov jump linear system is effective depends on its weak
controllability. Nevertheless, Theorem 5.3 can be applied as
a useful tool to verify whether a platoon control system can
maintain string stability.

VI. SIMULATION RESULTS

A. Internal Stability without Packet Losses

Here, we consider a vehicle platoon where parameters are
given as S1 of Table I, where two predecessors’ messages
are used by each follower. The initial positions, velocities,
and accelerations are selected from qi(0) = 30 ∗ (n − i) +
10 ∗ rand m for all i ∈ V and 0, v0(0) = 30m/s, vi(0) =
25 + 5 ∗ rand for all 1 ≤ i ≤ n, a0(0) = 0m/s2, ai(0) =
2 + rand m/s2 for all 1 ≤ i ≤ n, where rand is a function
to produce a number from the interval [0, 1] uniformly. From
Fig. 1, we observe that the stability can be achieved by all
the following vehicles when the leading vehicle moves at a
constant speed.

TABLE I
PARAMETERS OF DIFFERENT SCENARIO

P n r η h d τ κq κv κa
S1 5 2 0.015 0.4 8 0.01 −0.45 1 −0.40
S2 5 2 0.015 0.4 8 0.01 0.45 1 −0.2
S3 25 15 0.015 0.4 8 0.1 0.45 1 0.2
S4 4 2 0.005 0.4 8 0.1 0.45 1 0.2
S5 5 3 0.005 0.4 8 0.1 0.45 1 0.2

0 200 400 600 800 1000
0

200

400

600

(a) Positions of all vehicles

0 200 400 600 800 1000
20

25

30

35

(b) Spacing errors variations

Fig. 1. All spacing errors converge to the same value hv0 + d

B. Internal Stability with Packet Losses

In this part, we investigate how random packet losses affect
the control performance of the vehicle platoon for two cases,
i.e., without/with using historical information.

1) Cases without Using Historical Information: We con-
sider the scenario with parameters as S2 of Table I and the
initial positions, velocities, and accelerations are produced in
the same way as before. We consider that p is from 0 to
0.96 with stepsize 0.04. For each p, we run the platooning
process for 1000 times and then set the terminating error
threshold as ε = 0.01 for ‖e(k) − ē(k)‖, ‖v(k) − v̄(k)‖,
and ‖a(k) − ā(k)‖, where ē(k), v̄(k), and ā(k) are vectors
with all elements equal to the average of vector e(k), v(k),
a(k). Then, we obtain the mean convergence time (MCT)
for different packet drop probabilities. It is observed from
Fig. 2(b) that the maximum absolute value of all eigenvalues
of the expected random system matrix increase with the
packet loss rate of p, which illustrates our convergence in
expectation result. From Fig. 2(a), we observe that when the
probability of packet losses becomes larger, MCT increases at
the same time. We also find that under homogeneous packet
drop rate, internal stability can always be achieved but MCT
for any given accuracy will increase with p. Note that each
following vehicle is anticipated to receive two predecessors’
messages. When p is small (e.g., < 0.3), the chance that both
messages are lost is small. Given the leader remains moving
at a constant velocity, the MCT performance is not affected
significantly when p is small. The impact of p on platooning
performance is more significant when the leader changes its
velocity frequently.
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(a) Mean convergence time
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Fig. 2. Homogeneous packet drop probability p

Then, by changing one parameter at a time and simulating
1000 times for each parameter, we draw curves of E(ρ(W̃ ))
with packet loss rate p in Fig. 3. It can be observed that
with the growth of the packet loss rate, E(ρ(W̃ )) increases,
meaning that MCT decreases when p increases. Moreover,
the increase of n, κa, and h will lead to a larger value of
E(ρ(W̃ )).

Let Ẽ be the set of all communication links in the platoon
system including the leading vehicle. We also investigate
how heterogeneous packet loss rates affect the control per-
formance of the platoon system, where three cases are
considered, i.e., correlated1:

∑
(i,j)∈Ẽ pij = 1; correlated2:∑

(i,j)∈Ẽ(1 − pij) = 1; independent: The packet loss rate
on each link is produced randomly from uniform distribution
between 0 and 1. We draw 1000 samples of E(ρ(W̃ )) and
ρ(E(W̃ )) in Fig. 4. It is observed that the spatial channel
correlation will have different impact on MCT.

We also consider a large size vehicle platoon whose
parameters are set as S3 of Table I, and let p = 0.6. It can
be observed from Fig. 5(a) that all inter-vehicle distances
converge to d + hv0 without any collisions, meaning that
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Fig. 3. The expectation of the spectral radius of matrix W̃ vs the packet loss rate for different scenarios
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Fig. 4. Comparison among different time-independent cases

stability can be achieved with a homogeneous packet loss
probability of p = 0.6, thanks to a high value of r. However,
with packet losses, the curves of accelerations have drastic
fluctuations shown in Fig. 5(b), which need to be avoided in
practical scenarios.
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Fig. 5. All spacing errors converge to the same value hv0 + d

2) Cases Using Historical Information: We first inves-
tigate how the packet drop will affect the stability of the
platoon system when all information is transmitted through
communication networks. When the packet of vehicle i is
lost, its position will be updated by using historical position,
velocity, and acceleration. Since the computation complexity
of the stability condition (27) is generally O((3 ∗ (m+ n) ∗
2m)3), it is difficult to conduct extensive numerical result
for large scale networks. Thus, we only consider the vehicle
platoon with 4 cars and each car uses two predecessors’
information for control, and the leading vehicle’s information
has no packet loss, which means that m = 3. We set the

parameters as S4 of Table I. The probability of the packet
loss at each communication link is set from p = 0 to 1
with a stepsize of 0.02. The distribution of eigenvalues of
system matrix in (27) is shown in Fig. 6(a) and the positions
of all the following vehicles are plotted in Fig. 6(b) when
p = 0.9. From Fig. 6(a), as long as the packet loss rate
is always independent and less that one, all absolute values
of the eigenvalues (27) are strictly less than one, meaning
that the mean-square stability can be maintained. Note that
the convergence rate of the platoon system characterized by
maximum eigenvalue has a tendency to decrease with the
packet loss rate, but in some cases the convergence rate can
also decrease with the growth of the packet loss rate. Fig. 6(b)
shows that all vehicles will keep tracking its predecessor
with a constant spacing after a period of control and, which
illustrates the effectiveness of our theoretical results.
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Fig. 6. Using historical information

Then, how the leading vehicle’s speed change affects the
control performance is investigated for S2 of Table I. We
set the terminating error threshold as ε = 0.03. The packet
delivery loss rate is set as 0.9. We change the speed of the
leading vehicle from iteration 10 to 190 with a stepsize of
20 and changing size is set from −14 to 4 with a stepsize of
2. We consider two initialization settings, i.e., large relative
distance (LD) qi(0) = 30 ∗ (n− i) + 10 ∗ rand m and small
relative distance (SD) qi(0) = 10 ∗ (n − i) + 10 ∗ rand m.
For initial iterations, each node i will only use the jth pre-
decessor’s information if all the 1th - (j−1)th predecessors’
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information is updated. We show the effect of the velocity
change of the leading vehicle on the control performance of
the platoon system in Fig. 7. Fig. 7(a) shows the variation of
spacing errors with iterations when the speed change duration
of the leading vehicle is 180 and the speed change size
is −14. We observe that the internal stability can still be
guaranteed when the leading vehicle changes its speed. Given
the error threshold of 0.03, for each pair of speed changing
size and duration, we simulate for 100 times. Then, we obtain
MCT for the platoon system, which is shown in Fig. 7(b). It
illustrates that the stability of the platoon system can always
be achieved even when the leading vehicle changes its speed.
The larger the speed change size (may be positive or negative
directions) and duration are, the larger MCT is.
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(a) Spacing error variation

2400

0 200

2600

-5

2800

100-10
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(b) MCT for different changes

Fig. 7. the control performance of vehicle platooning when speed change
of the leading vehicle

For the scenario S5 of Table I, we also examine how
different historical information affects the control perfor-
mance of the platoon system. The initialization is set as
qi(0) = 10 ∗ (n + 1 − i) + (n + 1 − i)2 for 0 ≤ i ≤ n,
ai(0) = 3 + i, vi(0) = 29 + i for all i ∈ V and the
terminating error threshold is set as ε = 0.03. For initial
iterations, once the predecessor’s information is received, it
will be used and no information will be used, otherwise.
We use MCT, the mean maximum spacing error, and the
mean minimum spacing error to characterize the control
performance of the platoon system. Fig. 8 plots the results for
the scenario where the leading vehicle moves at a constant
speed v0 = 30m/s and that where the leading vehicle has
disturbances (u0(k) = k for all 10 ≤ k ≤ 100), respec-
tively. We compare three cases: case0) not using historical
information; case1) using the latest historical information;
case2) using the one historical information before the latest
one. When the leading vehicle moves at a constant speed,
we observe from Fig. 8(a) that MCT increases slightly when
using historical information and when the packet loss rate less
than 0.6, MCT of case0 decreases with the packet loss rate.
This is because that when r = 3, the probability that at least
one packet is received from some predecessor is high and
when the leader moves at a constant speed, the perturbation
of p may decrease MCT when no historical information is
used. When p is large, then using historical information is
beneficial to decrease MCT. From Fig. 8(b), the minimum
spacing error grows when historical information is used. It
is because historical information may deviate from the true
one. When the disturbance occurs in the leading vehicle,
we find that MCT increases for all three cases and using
no historical information can cause more time to ensure

the stability of the platoon, which is shown in Fig. 8(c).
Furthermore, without using historical information, the length
of the platoon indicated by max-case0 shown in Fig. 8(d) can
increase greatly with a large p, which means that the string
stability cannot be ensured.

C. String Stability with Packet Losses

Consider that the probability of packet losses is from 0.01
to 1 and we set the disturbance on the acceleration of the
leading vehicle as 1/(k)−1/4∗rand. Consider that the platoon
system has 4 vehicles. First, using the Schur Complement,
we obtain an LMI condition according to Lemma 4.3. To
guarantee ‖S1‖2∞ = inf γ, there exist a positive definite
matrix GiSj ∈ R3(n+m)×3(n+m) and γ such thatGiSj 0 Γ>SjGipSj C>zi

• γI Ē>GipSj 0
• • GipSj 0
• • • I

 � 0,∀j ∈ K.

whose dimension is (6(n + m) + 2) × (6(n + m) + 2). We
find that the above LMI is infeasible. Through numerical
simulations, by setting p = 0.5, we find that each inter-
vehicle distance will converge to a stable value from Fig.
9. It is illustrated that LMI is infeasible since ‖S1‖2∞ =

sup
ui−1(k)6=0

‖zi‖22
‖a0‖22

does not converge. However, the string sta-

bility can still be maintained since |ei(k)| < |ei−1(k)| for all
k. Then, we extend the scale of the platoon system as n = 25,
r = 5 with the same packet loss rate p = 0.5, without
changing other parameters. From Fig. 10(a) and Fig. 10(b),
one notices that the string stability can still be maintained by
the platoon system when independent and identical packet
loss happens on all communication links, while all vehicles
can maintain to be stable when the disturbance happens
in the leading vehicle. Note that when all ei(k) for all
i ∈ V converge to zero, the platoon system achieve the stable
state. We use the variance of the maximum relative spacing
error D(e(k)) = max(e(k))−min(e(k)) to characterize the
convergence time. Changing the packet loss rate from 0 to
0.9 with stepsize 0.1, we investigate how the random packet
losses affect the convergence time for the platoon system. To
make sure that all spacing errors converge to zero, we set
a0(k) = 1/(k)−1/4 × rand for k < 3000, and a0(k) = 0
otherwise. As shown in Fig. 10(c), when packet loss rate p
becomes larger, the maximum relative spacing error changes
from 20m for p = 0 to 70m for p = 0.9. It takes almost 1000
iterations to make the maximum relative spacing error less
than 10m for p = 0.9. Moreover, the larger packet loss rate
will incur vehicle collision if there are no collision avoidance
strategies, which is illustrated in Fig. 10(d).

VII. DISCUSSIONS

A. Controller Design
It is desirable to investigate the controller design problem

for the platoon system when the string stability cannot be
maintained. Here, we provide a method to design controller
by Markov jump linear system theory. Considering that
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Fig. 8. Comparison among case0, case1, and case2
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once packet drops happen and the string stability cannot be
preserved, we will trigger other communication mechanism
and channel to the control performance. We first consider the
centralized controller design problem. The vehicle platooning
system with new control input is denoted as

S2

 x(k + 1) = Γθ(k)x(k) + B̃u(k) + Ea0(k),
yi(k) = Cyix(k),
zi(k) = Czix(k),

(33)

where B̃ = [0n; 0n; ητ In; 0m; 0m; 0m]>. Let y(k) =
[y1(k), y2(k), · · · , yn(k)]>. Then, we denote the controller
as the following form

C1

{
xc(k + 1) = Acθ(k)xc(k) +Bcθ(k)y(k),
u(k) = Ccθ(k)xc(k) +Dcθ(k)y(k),

(34)

where Acθ(k), Bcθ(k), Ccθ(k), Dcθ(k) are of compatible
dimensions. The goal is to determine these matrices such that
the string stability of the platoon system can be preserved.
Connecting the controller (34) and (33), we thus obtain the
following system

S3

{
x̄(k + 1) = Āθ(k)x̄(k) + Ēa0(k),
zi(k) = C̄zix̄(k),

(35)

where the indicated matrices are Āθ(k) =[
Γθ(k) + B̃Dcθ(k)Cy B̃Ccθ(k)

Bcθ(k)Cy Acθ(k)

]
and Ē = [E; 0dim(xc)]

with dim(xc) taking the dimension of vector xc(k). Then,
we have the following `p string stability condition.

Lemma 7.1: The vehicle platooning system (35) is stable
and satisfies the norm constraints ‖S3‖2∞ < γ̄ iff there exist
matrices ḠiSj = Ḡ>iSj � 0 such that

[
ĀSj Ē

C̄zi 0

]> [
ḠipSj Ē

C̄zi I

] [
ĀSj Ē

C̄zi 0

]
−
[
ḠiSj 0

0 γ̄I

]
≺ 0, (36)

for all θi(k), where ḠipSj =
∑N
j=1 pijḠiSj for all Sj ∈ K.

Then, the controller design problem become the following
optimization problem,

min
γ̄, ḠiSj ,∀Sj∈K,i∈V

‖S3‖2∞

s.t. (36),∀i ∈ V,∀Sj ∈ K.

The LMI toolbox in Matlab can be used to solve the above
optimization problem. However, its high computational prob-
lem caused by the growth of the number of communication
links is still the main difficulty.

Remark 7.2: When the number of states is 2m, the number
of the total decision variables is 2m3(n+m)(3(n+m)+1)/2
and the number of rows of the LMIs is (6(n + m) + 2)2m

for one vehicle string stability criterion. To deal with the
challenge in solving large-scale LMI problems using interior-
point methods, first-order methods (like proximal descent,
projected gradient descent, and ADMM) and second-order
algorithms have been investigated. In [47], a Newton-PCG al-
gorithm has been proposed to solve large and sparse LMI fea-
sibility problems, which converges in linear time and memory
when the parameter matrices share a Cholesky factorization
sparsity pattern. However, the obtained LMI feasibility based
condition still faces the scalability problem when the number
of communication links grows in the platoon system. But
if the platoon system has a reasonably small number of
communication links such as 2m ≤ n, the complexity is
still polynomial of the platoon size n and thus tolerable. One
possible way is to view each vehicle and its predecessors
whose information is used as a subsystem, where the number
of communication links in each subsystem is small enough
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to obtain the solution for the given condition. By ensuring
the stability of each subsystem, we can eventually ensure the
stability of the whole platoon system.

B. Modeling and Performance Optimization

The discretization of the car may incur the inaccuracy
to the whole platoon system. It is more desirable to model
the communication intervals as k̄ = bηk/φc, where φ is a
constant number characterizing the proportion between the
communication interval and sampling time and b·c is the
flooring operator. After receiving the information from neigh-
boring cars, each car will use that information to conduct
local control by updating its local state in the input part.
As long as η is small enough, the discrete-time system can
model the practical continuous-time system accurately and
the communication interval does not need to be the same as η.
Note that more parameters are shown in the platoon system,
which means that the analysis can be more complex and
difficult. However, we can view it as an event-based control
system, where the event is based on a constant time interval,
which is left as our future works.

From numerical results, although random packet losses
may not affect the spacing error dynamics too much, it will
definitely severely degrade the acceleration input curve by
causing fluctuations. The larger random packet loss rate is,
the larger the fluctuations of the acceleration curve are. We
notice that random packet losses can drastically affect the
transient dynamic of the platoon. Moreover, the collision
avoidance needs to be considered to guarantee the safety of
the platoon system since a larger packet loss rate can cause
the spacing error to be less than zero.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated how random packet losses
affect the control performance of the vehicle platoon with a
multiple-predecessors IFT. Then, a systematic way is given
to analyze internal stability and string stability for different
packet loss scenarios. We first considered independently and
identically distributed random packet losses and no historical
information will be used if packet losses happen. Then, we
used the matrix perturbation method to obtain an analyti-
cal upper on the packet loss rate to guarantee all cars in
the platoon can form a queue with a velocity-based inter-
vehicle distance in expectation. We found that mean-square
convergence can be achieved if the expectation of the spectral
radius of the random system matrix is always less than 1.
Extensive numerical results show that mean convergence time
increase with the random packet losses rate. For the case,
that packet loss rates are temporally corrected or historical
information will be used when packet losses happen, we
modeled the lossy network as a Markov chain process and
obtained the sufficient and necessary condition to guarantee
that the length of the platoon can be finitely limited. The
condition is formulated as the feasibility of an LMI problem,
and the computation cost and dimension increase with the
network scale and the number of communication links.

For future work, we will further analyze the effect of ran-
dom packet losses on the stability of general IFT-based pla-
tooning. Moreover, how to solve the high computational issue
when applying Markov jump linear system theory to random
communication errors is another important direction. Other
important research issues are to deal with more accurate
system modeling, distributed collision avoidance controller
design given communication errors, and communication re-
source optimization, which reckon further investigation.
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[19] S. Stüdli, M. M. Seron, and R. H. Middleton. Vehicular platoons in
cyclic interconnections. Automatica, 94:283–293, 2018.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 12,2020 at 05:44:20 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3004573, IEEE Internet of
Things Journal

14

[20] S-E. Li, Y. Zheng, K. Li, Y. Wu, J. K. Hedrick, F. Gao, and
H. Zhang. Dynamical modeling and distributed control of connected
and automated vehicles: Challenges and opportunities. IEEE Intelligent
Transportation Systems Magazine, 9(3):46–58, 2017.

[21] F. Gao, X. Hu, S. E. Li, K. Li, and Q. Sun. Distributed adaptive sliding
mode control of vehicular platoon with uncertain interaction topology.
IEEE Transactions on Industrial Electronics, 65(8):6352–6361, 2018.

[22] Y. Bian, Y. Zheng, W. Ren, S. E. Li, J. Wang, and K. Li. Reducing
time headway for platooning of connected vehicles via V2V commu-
nication. Transportation Research Part C: Emerging Technologies,
102:87–105, 2019.

[23] X. Liu, A. Goldsmith, S. S. Mahal, and J. K. Hedrick. Effects of
communication delay on string stability in vehicle platoons. In Proc.
ITSC, pages 625–630. IEEE, 2001.

[24] A. Peters, R. Middleton, and O. Mason. Leader tracking in homoge-
neous vehicle platoons with broadcast delays. Automatica, 50(1):64–
74, 2014.

[25] M. Di Bernardo, A. Salvi, and S. Santini. Distributed consensus
strategy for platooning of vehicles in the presence of time-varying het-
erogeneous communication delays. IEEE Transactions on Intelligent
Transportation Systems, 16(1):102–112, 2014.

[26] S. Santini, A. Salvi, A. S. Valente, A. Pescapè, M. Segata, and
R. Cigno. A consensus-based approach for platooning with inter-
vehicular communications. In Proc. INFOCOM, pages 1158–1166.
IEEE, 2015.

[27] S. Santini, A. Salvi, A. Valente, A. Pescapé, M. Segata, and R. Cigno.
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APPENDIX A
PROOF OF THEOREM 4.3

Proof: To obtain the parameter range to guarantee the
system stability, we have
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And then there holds
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Based on Lemma 4.2, we obtain (16) and thus complete the
proof.

APPENDIX B
PROOF OF THEOREM 4.7

Proof: Let y(k) = [q̂(k); v̂(k); â(k)]. Since the connec-
tivity probability of all communication links is p, we have

E(LJ) = E(J) + E(D)−E(A)

= (1− p)LJ
= LJ − pLJ

(39)

Thus, from (17) and (39), it follows

E(W ) = W̃ = W + p∆. (40)

Then, we have

E(y(k)) = W̃ ky(0). (41)

Since(16) holds, one infers max(|eig(W )|) < 1, i.e., |λi| < 1
for all 1 ≤ i ≤ 3n. Meanwhile, one has

‖W‖∞ = max{1 + η + η(n− 1)h+ |η2 − ηh|,
2rη/τ(κq + κv + κa/2)

+ |1− ητ − ηκa{LJ |}ii/τ}

and

‖W̃‖∞ = max{1 + η + η(n− 1)h+ |η2 − ηh|,
2(1− p)rη/τ(κq + κv + κa/2)

+ |1− ητ − (1− p)ηκa{LJ |}ii/τ}.

Combining with 1+η+η(n−1)h+ |η2/2−ηh| ≥ 2rη(κq+
κv + κa)/τ + |1− η/τ |, we obtain

‖W‖∞ = ‖W̃‖∞ = 1 + η + η(n− 1)h+ |η2 − ηh|.

From (18), it follows

4(‖W‖∞ + ‖W̃‖∞)1−1/3n‖p∆‖1/3n∞ < 1− |λ3n|.

It means that the perturbation of p∆ can still guarantee that
the maximum magnitude of all eigenvalues of W̃ is strictly
less than 1, where the fact of Lemma 4.6 is used. As a result,
we have lim

k→∞
W̃ ky(0) = 0, i.e., lim

k→∞
E(y(k)) = 0. Hence,

we have completed the proof.

APPENDIX C
PROOF OF THEOREM 4.9

Proof: Let W̃ (j) be the random matrix of the system
matrix at iteration j produced form an independent and
identical distribution. For any initial condition y(0) ∈ R3n,
one has

‖y(k)‖ = ‖
k−1∏
j=0

W̃ (j)y(0)‖

≤ ρ(W̃ (k − 1))‖
k−2∏
j=0

W̃ (j)y(0)‖

≤
k−2∏
j=0

ρ(W̃ (j))‖y(0)‖

(42)

where lemma 7 in [48] is used. Under (42), by taking the
expectation on both sides of (42), it follows

E(‖y(k)‖) ≤ E(

k−2∏
j=0

ρ(W̃ (j)))‖y(0)‖

≤ (E(ρ(W̃ )))k‖y(0)‖.

(43)

Taking the limitation of k on both sides, we have completed
the proof.

APPENDIX D
PROOF OF THEOREM 4.10

Proof: Due to the Markov’s inequality, we have
Pr{‖y(K)‖ ≥ ε} ≤ E(‖y(K)‖)/ε given ε > 0. Combining
with Lemma 4.9, one can obtain

Pr{‖y(K)‖ < ε} = 1−Pr{‖y(K)‖ ≥ ε}
> 1−E(‖y(K)‖)/ε
> 1− (E(ρ(W̃ )))K‖y(0)‖/ε.

(44)

As Pr{‖y(K)‖ < ε} = δ and ‖y(0)‖ 6= 0, we have
K > log( ε(1−δ)‖y(0)‖ )/ log(E(ρ(W̃ ))) from (44). Thus, the proof
is completed.

APPENDIX E
PROOF OF THEOREM 4.12

Proof: To characterize the stability of the random
system, we use the expectation of the system state and
the expectation of the covariance matrix, i.e., E(x(k)) and
E(x(k)x>(k)). Meanwhile, it is defined,

ψi(k) = E(x(k)χ{θ(k)=Si}),

Qi(k) = E(x(k)x>(k)χ{θ(k)=Si}).

As a result, we have

νi(k) = E(x(k)) =

n∑
i=1

ψi(k),

Σi(k) = E(x(k)x>(k)) =

n∑
i=1

Qi(k).

Then, by using the Markov decision process of {x(k), θ(k)},
we can obtain the linear operators B : ψ(k)→ ψ(k+ 1) and
T : Q(k) → Q(k + 1). Through transforming the linear
operator as the matrix form, we can obtain the sufficient and
necessary conditions to guarantee the mean square stability
of the platoon system.
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