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Distributed Privacy-Preserving Data Aggregation
Against Dishonest Nodes in Network Systems
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Abstract—Privacy-preserving data aggregation (DA) in
network systems, e.g., Internet of Things (IoT), is a challenging
problem, considering the dynamic network topology, limited com-
puting capacity, energy supply of IoT devices, etc. The difficulty is
exaggerated when there exist dishonest nodes, and how to ensure
privacy, accuracy, and robustness of the DA process against dis-
honest nodes remains an open issue. Different from the widely
investigated cryptographic approaches, in this paper, we address
this challenging problem by exploiting the distributed consen-
sus technique. To mitigate the pollution from dishonest nodes,
we propose an enhanced secure consensus-based DA (E-SCDA)
algorithm that allows neighbors to detect dishonest nodes, and
derive the error bound when there are undetectable dishonest
nodes. We prove the convergence of the E-SCDA and show that
the algorithm can preserve the privacy associated to nodes’ ini-
tial states. Extensive simulations have shown that the proposed
algorithm has a high convergence accuracy and low complexity,
even when there exist dishonest nodes in the network.

Index Terms—Average consensus, data aggregation
(DA), distributed computing, network systems, privacy
preservation.

I. INTRODUCTION

DATA aggregation (DA) has many applications in net-
work systems, including Internet of Things (IoT),

mobile social networks, crowdsensing, smart metering sys-
tems, etc., [1]–[9]. In network systems, DA should be carried
out in a distributed way. For instance, in a smart metering
system, smart meters collect real-time electricity usages and
the aggregated usage in an area that is used by the utility
company for various control purposes. In these applications,
data are often privacy-sensitive [7]. Achieving accurate DA
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while preserving privacy is essential but challenging, due to
the dynamics in network topology, limited node computing
capacity, communication errors, losses, delays, etc.

To achieve privacy-preserving DA in network systems,
typical solutions often rely on various cryptographic tech-
niques, which require either secure communication channels,
pre-established shared secret/keys, a trusted authority, or the
combination of them. The computation complexity of them
is high, so applying encryption/decryption for data exchange
can be very expensive, not desirable for large-scale IoT net-
works. Without solely relying on cryptography techniques,
distributed privacy-preserving DA can be achieved using
privacy-preserving average consensus algorithms.

Several privacy preserving average consensus algorithms
have been proposed in [10]–[17]. The basic idea is adding ran-
dom noises to the traditional average consensus algorithm to
preserve the privacy, and then carefully design the noise adding
process, such that the average consensus is achieved. For
example, Huang et al. [14] used independent and exponentially
decaying Laplacian noises to the consensus process. The algo-
rithm can ensure differential privacy while cannot guarantee
the average consensus (DA may not converge to the average).
The algorithm was optimized by Nozari et al. [10]. With a
linear Laplacian-based consensus algorithm, it guarantees that
the average consensus can be achieved almost surely with dif-
ferential privacy preservation. Manitara and Hadjicostis [11]
first added correlated noises to the consensus process, and [15]
proved that using exponentially decaying and zero-sum cor-
related normal noises can ensure the average consensus in
the mean-square sense. Recently, [22] proved that an exactly
average consensus can be achieved definitely while the pri-
vacy is preserved, if the added correlated noises are bounded,
decaying, and zero-sum.

However, these existing solutions depend on the assump-
tion that all the nodes will follow the rules designed in the
algorithms and there are no selfish/dishonest nodes in net-
work systems. In fact, if some nodes in network systems are
selfish or even dishonest, they may manipulate their data to
better protect their own privacy and interest, while the aggrega-
tion results will be polluted by the manipulation. Considering
these selfish and dishonest nodes, the performance of many
existing privacy-preserving DA solutions will be degraded and
even lose efficiency. This motivates us to investigate the dis-
tributed privacy-preserving DA against the dishonest nodes
in network systems. The main contributions are summarized
as follows.

2327-4662 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1093-4865
https://orcid.org/0000-0003-1332-0815
https://orcid.org/0000-0002-6771-8258


HE et al.: DISTRIBUTED PRIVACY-PRESERVING DA AGAINST DISHONEST NODES IN NETWORK SYSTEMS 1463

1) To the best of our knowledge, this is the first work
to investigate the distributed privacy-preserving DA for
network systems with dishonest nodes.

2) We propose the neighbor nodes monitoring and dimen-
sion expansion mechanisms, and use them to design
an enhanced secure consensus-based DA (E-SCDA)
algorithm to achieve accurate and privacy-preserving
DA.

3) We prove the convergence of the proposed E-SCDA
algorithm, and derive the error bound between
the achieved consensus and the average, and show
that the privacy of nodes’ initial states can be preserved
by the proposed algorithm.

The remainder of this paper is organized as follows. After the
related work in Section II, System model and problem formu-
lation are presented in Section III. E-SCDA is proposed and
analyzed in Section IV. Simulation is presented in Section V
followed by concluding remarks and further research issues in
Section VI.

II. RELATED WORK

Great efforts have been devoted to investigating privacy-
preserving DA for sensor networks [2]–[5], [24]–[26], smart
grid [6]–[9], [29], [30], and cloud computing [31]–[33].

Privacy-preserving DA has been addressed using differ-
ent cryptographic techniques. For example, secure multi-
party computation was used to collaboratively compute the
aggregation with privacy preservation in [8]. Considering a
dishonest-but-nonintrusive adversary, a modulo addition-based
encryption scheme was adopted in [29] to design differential
privacy-preserving aggregation for smart metering systems.
In [2], two schemes were proposed using the Shamir secret
sharing and secret splitting technique for privacy-preserving
additive aggregations. Meanwhile, cryptographic schemes can
also be combined with differential privacy techniques for sen-
sitive DAs. Dwork et al. [27] designed a distributed random
noise generation protocol aiming at a distributed implementa-
tion of privacy-preserving statistical databases. Shi et al. [28]
proposed a novel solution where a trusted aggregator can
obtain desired statistics over participants’ data, without com-
promising each individual’s privacy. These protocols rely on
a verifiable secret sharing scheme so secure channels and a
fixed topology are required for the key allocation. Moreover,
cryptographic techniques often have high computation
complexity.

Recently, how to preserve privacy in dynamical systems has
been investigated using advanced signal processing and mod-
ern control solutions, e.g., using private filters [23], or private
consensus [12]–[15]. The idea is to add noise to the data to
protect the privacy. For example, [23] designed the private
filters for dynamical systems by adding white Gaussian pertur-
bations. An independent and exponentially decaying Laplacian
noises are used to the consensus computation such that con-
sensus can be achieved with privacy preserved [14]; however,
this algorithm does not guarantee the exact average consen-
sus convergence. PPAC algorithm was proposed in [15], in
which an average consensus is achieved in expectation, i.e., the

mean square convergence is provable. In [22], we have shown
that adding bounded, exponentially decaying and zero-sum
noises can guarantee an exactly average consensus, and intro-
duced the consensus-based privacy-preserving DA algorithm
followed by the convergence and privacy analysis. Inspired by
these works, this paper designs a privacy-preserving average
consensus algorithm which guarantees the accurate privacy-
preserving DA, and more importantly, we consider more
complex but realistic scenarios where dishonest nodes exist
in networks.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a network system where nodes are self-
organized into several clusters (e.g., using a clustering algo-
rithm [18]). We focus on one connected cluster with n nodes.
We need to aggregate the data from the nodes in the cluster,
while the data of each node should not be revealed to any other
nodes (including the aggregator). The aggregator can poll any
node to acquire the aggregated data.

To construct an overlay network, two nodes can select each
other as neighbors to exchange data with a logical link (a
single-hop or multihop communication path) between them.
We then model the overlay network as an undirected graph,
G = (V, E), where V is the set of nodes and E is the set of
logical links (edges). Define Ni the neighbor set of node i,
where j ∈ Ni iff (j, i) ∈ E. The logic links are negotiated
in a distributed way, and thus node i knows its neighbor set
Ni, but does not know the full topology of the overlay net-
work. However, we suppose that the whole network topology
is available to the aggregator.1 Let xi(0) be the initial state of
node i, which is privacy-sensitive. N+ is the set of positive
integers. Let ‖x‖∞ = max{|xi|}.

In network systems, the initial state usually denotes each
node’s sensitive information (e.g., age, location, income, etc.),
which may compromise the privacy. But the aggregated data
only reflects the statistics of all nodes’ states (e.g., their aver-
age, sum, and variance), which will not release the privacy
of each individual node directly if the number of the nodes
in the network is sufficiently large. Consider the example that
the smart meters collect real-time electricity usages and the
usage in an area is aggregated by the utility company for var-
ious control purposes. In this example, the electricity usage of
each user is the privacy information, while the total usage in
an area is not. Thus, this paper focuses on the preservation of
the privacy of nodes’ initial states.

B. Problem Formulation

In this paper, we study how to obtain the additive aggre-
gation, i.e.,

∑n
i=1 xi(0). The main design objectives are listed

below. First, the aggregation goal should be achieved in a fully
distributed way. Second, due to the privacy concerns, the initial

1It is a reasonable assumption in the targeted application scenario, such as
in the smart grid system, that customers are willing to tell their communication
topology but keep their realtime power usage secret to the power control center
due to the privacy concern.
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state of each node should not be known to others (includ-
ing its neighbors and the aggregator), while the aggregation
should be accurate. Third, the computation and communication
cost should be minimized. Lastly, there are dishonest nodes
in the system, and thus distributed safeguard mechanisms are
needed to fast detect the suspicious behaviors and bound the
error in the aggregation caused by the undetectable dishonest
behaviors. From [22], the sum can be obtained by multiplying
the average of the initial states by n, where the number of
nodes, n, is known. If dishonest nodes do not exist, a privacy-
preserving average consensus algorithm can be used to achieve
the first three objectives. Thus, this paper is aiming to solve
the problem focusing on the last design objective.

We first introduce the general privacy-preserving average
consensus. To preserve privacy, each node will add a noise
to its current state for each time of communication, i.e., each
node will broadcast

x+
i (k) = xi(k) + θi(k), i ∈ V (1)

to its neighbor nodes, where xi(k) is the state of node i at
iteration k, and θi is the noise to be added for privacy preser-
vation. θi is a continuous random variable, and node i can
set the distribution independently. The averaging process is
updated by

xi(k + 1) = wiix
+
i (k) +

∑

j∈Ni

wijx
+
j (k), i ∈ V; i ∈ V (2)

where wij’s are the Metropolis weights [20]

wij =
⎧
⎨

⎩

1
/[

1 + max
{|Ni|,

∣
∣Nj
∣
∣
}]

, j ∈ Ni

1 −∑l∈Ni
wil, i = j

0, otherwise.
(3)

These weights can be obtained in a distributed manner. The
matrix form of (2) is given by

x(k + 1) = W(x(k) + θ(k)) (4)

where x, θ ∈ Rn, W ∈ Rn×n, satisfying x = [x1, x2, . . . , xn]T

and θ = [θ1, θ2, . . . , θn]T , and W = [wij]n×n. Equation (4)
is named as the general privacy-preserving average consensus
algorithm.

If θ(k) = 0, the exact average consensus is achieved
exponentially since W is doubly stochastic [19]–[21], i.e.,

lim
k→∞ xi(k) = x̄, i ∈ V (5)

exponentially fast, where x̄ = (1/n)
∑

i∈V xi(0). However, to
preserve privacy, the noise cannot be zero. To achieve the
exact average consensus, θ(k) must be carefully designed. As
proved in [22] that adding bounded, exponentially decaying,
and zero-sum correlated noises can guarantee an exact aver-
age consensus definitely by (4). Unfortunately, dishonest nodes
may add the noise freely, and thus can break the convergence
and degrade the performance easily if without any safeguard
mechanism. For example, a dishonest node can always select
a positive noise at each iteration such that the consensus can-
not be achieved. How to guarantee the accurate and private
average consensus when there are dishonest nodes in network
systems is an open issue. To solve it, we design the algorithm
with the detailed theoretical analysis in the following section.

IV. DA AGAINST DISHONEST NODES

In this section, we design an E-SCDA algorithm to deal
with malfunctioning, selfish, or dishonest nodes whose data
may pollute the aggregation.

The challenge is that we need to preserve privacy while
monitoring whether or not nodes are misbehaving. We use two
key designs to address this difficult problem. First, using the
idea of dimension expansion, the initial state of each node
can be divided into two parts and they will be sent with
added noises to two neighbor sets. This procedure introduces
additional noises to the initial state for privacy preserva-
tion. Second, we design guidelines for nodes to monitor
their neighbors to identify any misconduct. To achieve it, we
design a monitoring process as a safeguard mechanism, which
constrains the dishonest nodes for ensuring the accuracy of
aggregation. The detailed procedure is described below.

A. Dimension Expansion

First, the initial state of each node i is divided into two
parts, given by

x1
i (0) = 1

2
xi(0) + ϑi (6)

and

x2
i (0) = 1

2
xi(0) − ϑi (7)

respectively, where ϑi is a random variable selected from
[−(α/2)ρ, (α/2)ρ], and 0 < ρ < 1. Clearly, we have
xi(0) = x1

i (0) + x2
i (0). The aggregator divides the graph

G = (V, E) into two undirected and connected subgraphs,
denoted by G1 = (V, E1) and G2 = (V, E2), respectively,
where E1, E2 ⊂ E (E1 ∩ E2 = ∅ and E1 ∪ E2 = E cannot
be true). Define the neighbor node set Nν

i of node i, where
j ∈ Nν

i iff (j, i) ∈ Eν and ν = 1, 2. For ν = 1, 2, the aggrega-
tor will let each node know the information of Nν

i , and then
nodes will calculate the corresponding weights wν

ij, j ∈ Nν
i ,

using (3). Then, each node will transmit x1+
i (k) and x2+

i (k)
to its neighbor nodes who are in N1

i and N2
i , respectively, for

iteratively average updating, where

xν+
i (k) = xν

i (k) + θν
i (k), ν = 1, 2 (8)

for i ∈ V . Let x̂i(0) be the estimation of xi(0) by the aggregator
for i ∈ V . It is assumed that |x̂i(0) − xi(0)| ≤ Ex, where Ex

is the estimation or prediction error bound of the initial state
and is assumed to be only known by the neighbors or the
aggregator. Define two information sets, Iν

i (k), of every node i
for ν = 1, 2 as

Iν
i (k) =

{
ν, dν

i , dν
j , x̂i(0), Ex, xν+

i (k), xν+
j (k) : j ∈ Nν

i

}

for k = 0 or k ∈ N+, where dν
i (dν

j ) is the number of neighbor
nodes in Nν

i (Nν
j ), which is used in the information monitoring

process described below.
The monitoring process is to detect and constrain the dis-

honest nodes. Assume that the aggregator can randomly select
some nodes, namely selected nodes, in each cluster to monitor
their neighbor nodes, where the selected nodes are assumed to
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Fig. 1. Example for illustration, where node i is the selected node.

overhear the information transmitted to the nodes they monitor
[which guarantees that the information xν+

l (k), xν+
j (k) : l ∈ Nν

j
can be listened by the selected node i]. So long as Ni ⊇ Nν

j for
ν = 1 or ν = 2, node i can hear all the broadcast information
of node in Nν

j . This is easy to be realized in real networks,
and an example is given in Fig. 1. As shown in the figure, for
the wireless network with the transmission range of R, node i
can receive the information of nodes in N2

j , and it cannot over-
hear the communications from nodes in N1

j (e.g., nodes 1 and
2). Furthermore, even if node i can hear all the communica-
tions between j and its neighbor nodes, so long as node i does
not have I1

j (k), it cannot derive x1
j (0). Therefore, we do not

require any cryptography when nodes send their messages to
their neighbors to protect privacy, which is indeed an important
advantage of our solution.

Then, the aggregator just needs to send the information of
ν, dν

l , dν
j , and Nν

j (the topology information only) to the selected
node only, and it can guarantee that the selected nodes have
the knowledge of Iν

j (k) for ν = 1 or ν = 2. We thus assume
that one of the information sets Iν

j (k) (it should be noticed that
not both here) is available to one selected node i for ν = 1
or ν = 2. That is, node i can have the full knowledge of the
information used for one part of state update of node j, and
how node j updates this part at each iteration, i.e., the xν

j (k) is
available to node i for k ∈ N+, where ν = 1 or ν = 2. The
details of the monitoring checking process are given as follows.

B. Neighbor Monitoring

The aggregator can request a neighbor node to monitor a
node at a random time instant. Once receiving such a request, a
neighbor node i of node j checks the following three conditions
based on the available information set, Iν

j (k), for ν = 1 or
ν = 2 and k = 0 or k ∈ N+.

c1: |θν
j (k)| ≤ (1/2)αρk, where θν

j (k) is calculated by

θν
j (k) = xν+

j (k) −
⎡

⎢
⎣wν

jjx
ν
j + (k − 1) +

∑

l∈Nν
j

wν
jlx

ν+
l (k − 1)

⎤

⎥
⎦

(9)

and wν
jl is calculated from (3) for k ∈ N+.

c2: |x+
j (0) − x̂j(0)| ≤ Ex + (1/2)αρ.

c3: |(x+
j (0)/2) − xν+

j (0)| ≤ (5/4)αρ.
If conditions c1, c2, and c3 hold, then node j is credible.

Otherwise, node j will be viewed as a dishonest node which
will be reported to the aggregator, and then node j will be
isolated so that its data will not pollute the aggregation.

In the above process, c1 is used to guarantee that the update
in each iteration is an averaging process and the added noise
is exponentially decaying, c2 ensures that the initial states of
dishonest nodes are bounded by the estimation error, which
constrains the initial state selection of each dishonest node,
and c3 is utilized to ensure that two parts dividing the initial
states of nodes follow the rules of (6) and (7). Note that based
on (6) and (7), one node has
∣
∣
∣
∣
∣

x+
j (0)

2
− xν+

j (0)

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣

xj(0)

2
+ θj(0)

2
− xj(0)

2
± ϑj − θν

j (0)

)∣
∣
∣
∣

≤
∣
∣
∣
∣
θj(0)

2
± ϑj − θν

j (0)

)∣
∣
∣
∣ ≤

5

4
αρ

i.e., they can satisfy c3. The aggregator only knows the global
topology information but does not know the states of nodes,
which can preserve the state privacy to the aggregator. If the
aggregator checks c1–c3 himself, the communication costs will
be high as the aggregator needs to collect much more addi-
tional information from nodes through longer routing paths of
these data.

C. E-SCDA Algorithm

Given the monitoring process, we need to ensure that
the dishonest node who arbitrarily selects the values of its
noise process can be detectable. We then have the E-SCDA
algorithm as in Algorithm 1.

In the above algorithm, the Max_Iteration_Number in step 7
is given initially. We can simply let Max_Iteration _Number
equal n2, which is sufficiently large to guarantee an accurate
aggregation. Also, we can set |xi(k) − xj(k)| ≤ ε for ∀j ∈ Ni,
where ε is a small positive constant, as the condition to terminate
the iteration. For E-SCDA, the two neighbor sets of each node
are the input, and the output is the nodes updated states. Clearly,
if a node follows steps 9–12, c1–c3 can be satisfied obviously,
and thus the honest nodes can pass the monitoring process.

D. Convergence, Accuracy, and Privacy Analysis

We first analyze the constraint on dishonest nodes using
E-SCDA. Then, we reveal the maximum pollution from the
dishonest nodes under the constraints. Last, we provide the
privacy analysis of E-SCDA.

Let xi(0) be the true initial state of a dishonest node i.
Assume that the dishonest node i uses x̃i(0) instead of xi(0)

in the calculation of x+
i (0) and xν+

i (0), i.e., x̃i(0) is the false
initial state satisfying |x̃i(0) − x+

i (0)| ≤ (1/2)αρ, and x̃ν
i (0) is

one part of the false initial state, satisfying |x̃ν
i (0)− xν+

i (0)| ≤
(1/2)αρ for ν = 1, 2. We have the following theorem.

Theorem 1: Given the monitoring process using c1–c3, for
each dishonest node i to be undetectable, it should have

|x̃i(0) − xi(0)| ≤ 2Ex + αρ (12)

and
∣
∣
∣
∣x̃

ν
i (0) − x̃i(0)

2

∣
∣
∣
∣ ≤ 2αρ, ν = 1, 2. (13)

The proof of Theorem 1 is given in Appendix A. This the-
orem implies that the dishonest nodes cannot arbitrarily select
false initial states since they are bounded by (12) and (13).
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Algorithm 1 E-SCDA Algorithm

1: Generate random vectors θi(0), ϑi, θ
1
i (0) and θ2

i (0) where all the
elements are randomly selected from [ − α

2 ρ, α
2 ρ].

2: Set x1
i (0) and x2

i (0) using (6) and (7), respectively.
3: Set x+

i (0) and xν+
i (0) using (1) and (8), respectively, and transmit

them to the corresponding neighbors, while x+
i (0) is transmitted

to nodes in N1
i ∪ N2

i .
4: If node i is selected by the aggregator to monitor neighbor node j,

it will obtain the information ν, dν
l , dν

j , Nν
j from the aggregator

for ν = 1 or ν = 2 and l ∈ Nν
j .

5: Set δν
i (0) = θν

i (0).
6: Set k=1.
7: while k < Max_Iteration_Number do
8: When node i is a selected node, it uses the received xν

j (k − 1)

and the information set Iνj (k − 1) to monitor whether node j’s
behavior satisfies c1–c3. If not, report to the aggregator to
isolate node j from the cluster.

9: Update xν
i (k) by using the following equation,

xν
i (k) = wν

iix
ν
i + (k − 1) +

∑

l∈Nν
i

wν
ilx

ν+
l (k − 1).

10: Set xi(k) = x1
i (k) + x2

i (k).
11: Select δν

i (k) randomly according to
∣
∣δν

i (k)
∣
∣ ≤ α

2
ρk+1 (10)

for k ≥ 1 and ν = 1, 2.
12: Set θν

i (k) by

θν
i (k) = δν

i (k) − δν
i (k − 1) (11)

13: Set xν+
i (k) using (8) and transmit xν+

i (k) and ν to the
corresponding neighbors.

14: Set k=k+1.
15: end while

Then, the following theorem proves the convergence of
E-SCDA and the accuracy of the aggregation.

Theorem 2: Suppose that the number of the dishonest nodes
in a cluster is d. With the E-SCDA algorithm

lim
k→∞ xi(k) = C, i ∈ V (14)

and

|C − x̄| ≤
d
[
5αρ + 2Ex + αρ

(1−ρ)

]

n
(15)

where C is a constant.
The proof of Theorem 2 is given in Appendix B. From

this theorem, we have that E-SCDA achieves consensus, and
the error between the consensus and the average is bounded
by (15). Clearly, if the number of the dishonest nodes is larger,
the error may become larger. Specifically, if there is no dis-
honest node, i.e., d = 0, from (15) the error bound is 0. This
implies that an average consensus is achieved by E-SCDA.
When the number of dishonest nodes is fixed, the accuracy
of the aggregation depends on the parameters, α, ρ and Ex.
Setting a small αρ can enhance the accuracy of the aggre-
gation, while reducing the privacy of xi(0). Increasing the
accuracy of Ex can also enhance the aggregation accuracy.

With E-SCDA, dishonest nodes cannot know who are
monitoring them and when, since the selected nodes for
monitoring are chosen by the aggregator randomly. Hence,

to be undetectable, the noise process used for the dishonest
nodes should satisfies c1–c3, and thus the error due to their
pollution can be bounded.

Then, for the node who is monitoring node i, since it has the
full information used for partial state update [i.e., xν

i (k), where
ν = 1 or ν = 2], it may infer the corresponding initial state
[i.e., x1

i (0) or x2
i (0) only]. However, since there is a random

noise ϑν
i in each part of the initial state, the monitoring node

still cannot infer the exact value of xi(0).
Before given the detailed privacy analysis, we define the

optimal estimation as follows.
Definition 1: Let Xj be the set of the possible values of

xj(0) and Iout
i be the information outputs of node j. Then, the

optimal estimation of xj(0) is defined by

x̂∗
j = arg max

x̂j∈Xj

f
(
Iout

j | x̂j

)
, i ∈ V

where f (·) is the PDF of the information outputs.
In the above definition, since the Iout

j is random, x̂∗
j is a

random variable. We use the disclosure probability that the
initial state xj(0) can be successfully estimated by its neigh-
bor nodes using the optimal estimation in a given estimation
accuracy ε (a small positive constant), to denote the degree
of the privacy protection. When a node makes the inference,
it usually sets a conservative Xj to ensure that the real state
xj(0) is in the set of Xj [i.e., xj(0) ∈ Xj]. We then assume that
||xj(0) − Xj||∞ ≥ αρ. If this is not true, the attack node esti-
mates xj(0) directly without using the information outputs so
that the noise adding process is useless for privacy protection.
Especially, when there is no previous knowledge of Xj, we set
Xj = R. We assume each privacy attacker cannot collude with
other nodes to attack. Then, we have the following theorem.

Theorem 3: With the E-SCDA algorithm, the disclosure
probability under a given estimation accuracy ε, denoted by
Pr{|x̂∗

j − xj(0)| ≤ ε}, satisfies

Pr
{∣
∣
∣x̂∗

j − xj(0)

∣
∣
∣ ≤ ε

}
≤ 3

max

=0

max
z∈[−2αρ,2αρ]

∫ z+ε

z−ε

f
(y) dy

where f ν
1 (y) (ν = 1 or 2), f2(y) and f3(y) are the PDFs of

2(θν
j (0)±ϑj), θ1

j (0)+θ2
j (0) and 2ϑj, respectively, f0(y) = f 1

1 (y)
and f1(y) = f 2

1 (y).
The proof of Theorem 3 is given in Appendix C. Therefore,

E-SCDA can preserve privacy while enabling the capability of
detecting dishonest nodes, and further bound the error due to
the undetectable dishonest behavior.

V. PERFORMANCE EVALUATION

In this section, simulations are conducted to evaluate the
performance of the proposed algorithm E-SCDA.

A. Simulation Setup

In the simulation, there are 100 nodes randomly deployed
over a 1000 × 1000 m2 square area, where the communication
range of each node is 300 m. We set α = 5 and ρ = 0.4.
Define the maximum difference between nodes’ states by

V(x(k)) = max
i,j∈V

∣
∣xi(k) − xj(k)

∣
∣.

Clearly, a consensus is achieved if V(x) = 0.
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(a) (b)

(c) (d)

Fig. 2. Performance of E-SCDA. (a) Average consensus. (b) Sum of noises.
(c) Different α. (d) Different ρ.

B. Evaluation of E-SCDA

We evaluate the performance of the E-SCDA algorithm.
There are 5% dishonest nodes, and the elements in θi(k) used
for dishonest node i are randomly selected from [0, αρk], and
Ex = 2. It is observed from Fig. 2(a) that all states exponen-
tially converge to a constant state, i.e., a consensus is achieved,
while it may not be equal to the true average due to the
pollution introduced by the dishonest nodes.

As shown in Fig. 2(b), the sum of θ(k) used for the dishon-
est nodes does not converge to 0, where node 1 is dishonest.
This is the main reason why the consensus is not fully accu-
rate. The gap between the consensus achieved by E-SCDA and
the average consensus is small, which is bounded by (15), e.g.,
the gap is lower than 0.1 in Fig. 2(b).

We also vary the values of α and ρ to study the conver-
gence of E-SCDA. The results are shown in Fig. 2(c) and (d),
respectively. It is observed that the convergence rate is affected
slightly when α changes as the maximum difference is still less
than 10−4 within 20 iterations. With a larger ρ, e.g., ρ = 0.8
in Fig. 2(d), the convergence rate may decrease, as the dis-
honest nodes have a higher freedom to introduce undetectable
pollution. Since the privacy and accuracy depend on αρ, we
can set a large α and a small ρ to ensure a fast convergence
rate while guaranteeing the accuracy.

Second, we compare our algorithm with PPAC [15]. The
mean and variance of the normal distribution noises used in
PPAC are set to 0 and αρ, respectively, and the decaying fac-
tor ϕ = ρ. For a fair comparison, we use the same noise
distribution for honest nodes in E-SCDA, and the noises will
be regenerated when they exceed the decaying bound. The
comparison is shown in Fig. 3. It is observed that E-SCDA
and PPAC have similar convergence speed while PPAC can-
not fully converge, especially when α and ρ are large. This
is because unlike E-SCDA, the dishonest nodes use the nor-
mal distribution random variables as the added noises and set

(a) (b)

Fig. 3. Comparisons between algorithms. (a) and (b) E-SCDA and PPAC.

ϕ = 1 for PPAC, i.e., PPAC is more vulnerable. We also
compare our algorithm with that proposed in [22]. A very
similar result as shown in Fig. 3 was obtained. The main
reason is that both of the existing algorithms add decay-
ing and zero-sum noises to the traditional average consensus
process but do not consider the presents of the dishonest
nodes.

VI. CONCLUSION

In this paper, we have investigated the distributed privacy-
preserving DA against dishonest nodes in network systems
using the average consensus technique. Considering the sce-
nario that dishonest nodes may pollute the aggregation, we
designed the E-SCDA algorithm that adopts a neighbor mon-
itoring process to detect misbehaving nodes, and derived
the error bounds due to undetectable dishonest behaviors.
Simulation results have shown that the proposed algorithm has
a fast convergence rate and high accuracy, and they are robust
against network dynamics and dishonest nodes. To the best of
our knowledge, this is the first privacy-preserving DA solu-
tion to have such robustness and ensure bounded error with
the presence of dishonest nodes.

There are still many open issues worth further investi-
gation. First, the overlay network should be a connected,
undirected graph. Second, in E-SCDA, the aggregator should
have the knowledge of the topology of the overlay net-
work, and how to relax these requirements requires further
investigation. A possible direction is to design an incentive
mechanism such that all nodes are willing to be honest so
as to achieve an accurate privacy-preserving aggregation at a
lower cost.

APPENDIX A
PROOF OF THEOREM 1

We first prove (12). Note that

|x̃i(0) − xi(0)| = ∣∣x̃i(0) − x+
i (0) + x+

i (0) − x̂i(0)

+ x̂i(0) − xi(0)
∣
∣

≤ ∣∣x̃i(0) − x+
i (0)

∣
∣+ ∣∣x+

i (0) − x̂i(0)
∣
∣

+ ∣
∣x̂i(0) − xi(0)

∣
∣

≤ 2Ex + αρ (16)

where we have used the conditions c2, |x̃i(0) − x+
i (0)| ≤ αρ,

and |x̂i(0) − xi(0)| ≤ Ex.
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Next, we prove (13). Note that
∣
∣
∣
∣x̃

ν
i (0) − x̃i(0)

2

∣
∣
∣
∣

=
∣
∣
∣
∣
∣
x̃ν

i (0) − xν+
i (0) + xν+

i (0) − x+
i (0)

2
+ x+

i (0)

2
− x̃i(0)

2

∣
∣
∣
∣
∣

≤ ∣∣x̃ν
i (0) − xν+

i (0)
∣
∣+
∣
∣
∣
∣
∣
xν+

i (0) − x+
i (0)

2

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

x+
i (0)

2
− x̃i(0)

2

∣
∣
∣
∣
∣

≤ 3

4
αρ +

∣
∣
∣
∣
∣
xν+

i (0) − x+
i (0)

2

∣
∣
∣
∣
∣

(17)

for ν = 1, 2 where we have used the conditions |x̃ν
i (0) −

xν+
i (0)| ≤ [(αρ)/2] and |x̃i(0) − x+

i (0)| ≤ α[(αρ)/2]. Then,
from condition c3, we have

∣
∣
∣
∣x̃

ν
i (0) − x̃i(0)

2

∣
∣
∣
∣ ≤

3

4
αρ + 5

4
αρ ≤ 2αρ

for ν = 1, 2.

APPENDIX B
PROOF OF THEOREM 2

According to c1 in the checking process, one infers that
θν

i (k) used by dishonest node i should satisfy

∣
∣θν

i (k)
∣
∣ ≤ 1

2
αρk, k ∈ N+, ν = 1, 2

which means that the added noises are exponentially decaying.
Then, one infers that there exists

lim
k→∞ xν

i (k) = Cν, i ∈ V; ν = 1, 2

where Cν is a constant vector. Then, from step 10, we have

lim
k→∞ xi(k) = lim

k→∞

(
x1

i (k) + x2
i (k)

)
= C1 + C2 = C, i ∈ V

which means that (14) holds.
Since W is still a doubly stochastic matrix, we have∑
(Wx) =∑(x) for any a vector x. Then, we have

∑(
xν(k)

) =
∑[

W
(
xν(k − 1) + θν(k − 1)

)]

=
∑(

xν(k − 1) + θν(k − 1)
)

=
∑
(

xν(0) +
k−1∑


=0

θν(
)

)

(18)

for ν = 1, 2. Note that for each cluster c, the initial state
vector used for each honest node, say i, is xν

i (0), and for each
dishonest node, say j, is x̃ν

j (0), for ν = 1, 2. And, the added
noise process for each honest node i satisfies

∑∞

=0 θν

i (
) =
0. Let Vs be the set of honest nodes and Va be the set of
dishonest nodes in each cluster. Then, taking limiting of both

sides of (18), we have

lim
k→∞

∑(
xν(k)

) =
∑
(

xν(0) +
∞∑


=0

θν(
)

)

=
∑

i∈Vs

xν
i (0) +

∑

j∈Va

x̃ν
j (0) +

∑

j∈Va

∞∑


=0

θν
j (
).

(19)

Clearly, we have limk→∞
∑

(xν(k)) = nCν and xi(0) =
x1

i (0) + x2
i (0) for honest nodes. Since the added noise pro-

cess of every dishonest node is exponentially decaying,
one infers that |∑∞


=0 θν
j (
))| ≤ ([αρ]/[2(1 − ρ)]). Then,

from (12) and (13), one follows that:
∣
∣
∣
∣
∣
∣

2∑

ν=1

∑

j∈Va

x̃ν
j (0) −

∑

j∈Va

xj(0)

∣
∣
∣
∣
∣
∣

≤
∑

j∈Va

∣
∣
∣x̃1

j (0) + x̃2
j (0) − xj(0)

∣
∣
∣

≤
∑

j∈Va

⎛

⎝
∣
∣
∣
∣x̃

1
j (0) − x̃j(0)

2

∣
∣
∣
∣+
∣
∣
∣
∣x̃

2
j (0) − x̃j(0)

2

∣
∣
∣
∣

+ ∣
∣x̃j(0) − xj(0)

∣
∣

⎞

⎠

≤
∑

j∈Va

(
2αρ + 2αρ + 2Ej

x + αρ
)

≤ d(5αρ + 2Ex) (20)

and from (19), one further infers that

n
2∑

ν=1

Cν =
2∑

ν=1

⎡

⎣
∑

i∈Vs

xν
i (0) +

∑

j∈Va

x̃ν
j (0) +

∑

j∈Va

∞∑


=0

θν
j (
)

⎤

⎦

=
∑

i∈V

xi(0) +
∑

j∈Va

[
2∑

ν=1

(
x̃ν

j (0) − xν
j (0)
)

+
∞∑


=0

θν
j (
)

]

.

Since
∑

i∈V xi(0) = nx̄ and
∑2

ν=1 Cν = C, from the above
equation, it follows that:

|n(C − x̄)| =
∣
∣
∣
∣
∣
∣

∑

j∈Va

2∑

ν=1

[

x̃ν
j (0) − xν

j (0) +
∞∑


=0

θν
j (
)

]∣∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

∑

j∈Va

2∑

ν=1

(
x̃ν

j (0) − xν
j (0)

)
∣
∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣
∣

∑

j∈Va

2∑

ν=1

∞∑


=0

θν
j (
)

∣
∣
∣
∣
∣
∣

≤ d(5αρ + 2Ex) +
∑

j∈Va

2∑

ν=1

∞∑


=0

∣
∣
∣θν

j (
)

∣
∣
∣

≤ d(5αρ + 2Ex) + d
αρ

(1 − ρ)

≤ d

[

5αρ + 2Ex + αρ

(1 − ρ)

]

. (21)

Hence, it follows that:

‖C − x̄‖∞ ≤
d
[
5αρ + 2Ex + αρ

(1−ρ)

]

n
.

Therefore, we have completed the proof.
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APPENDIX C
PROOF OF THEOREM 3

Based on the different available information set, we ana-
lyze the disclosure probability considering the following three
cases, respectively.

Case 1: The information set Iν
ij(k) = {xν+

j (0), . . . , xν+
j (k)},

where ν = 1 or ν = 2, is available to node i for estimation,
i.e., node i belongs to one of the neighbor set Nν

j (not both).
In this case, it holds that

xj(0) = 2
(

xν
j (0) ± ϑj

)
. (22)

Then, by referring to [22, Th. 3.8], it is observed that the best
estimation is made from using the initial information output
only, as the later information output embeds more and larger
uncertainty to the initial state. Thus, based on the information
output xν+

j (0) and (22), we obtain

x̂∗
j = arg max

x̂j∈Xj

f
(

xν+
j (0) | x̂j

)

= 2xν+
j (0) − arg max f ν

1 (y).

Then we have

Pr
{
|x̂∗

j − xj(0)| ≤ ε
}

= max
z∈[−2αρ,2αρ]

∫ z+ε

z−ε

f ν
1 (y)dy. (23)

Case 2: Both I1
ij(k) and I2

ij(k) are available to node i for
estimation, i.e., node i belongs to both of the neighbor set Nν

j
for ν = 1, 2. In this case, except the similar estimation as in
case 1, we can still use the following fact for estimation:

xj(0) = x1+
j (0) + x2+

j (0) −
(
θ1

j (0) + θ2
j (0)

)
. (24)

Based on the above fact, it infers that

Pr
{
|x̂∗

j − xj(0)| ≤ ε
}

≤ max
z∈[−αρ,αρ]

∫ z+ε

z−ε

f2(y)dy (25)

where f2(y) is the PDF of θ1
j (0) + θ2

j (0). Therefore, in this
case, we have

Pr
{
|x̂∗

j − xj(0)| ≤ ε
}

≤ 2
max

=0

max
z∈[−2αρ,2αρ]

∫ z+ε

z−ε

f
(y)dy.

(26)

Case 3: The information set Iν
i (k), where ν = 1 or ν = 2,

is available to node i for estimation, i.e., node i is one of the
selected nodes. In this case, based on Iν

i (k), we can use (9)
to obtain θν

j (k) for k ∈ N+, and then infer θν
j (0) using the

fact that
∑∞

k=0 θν
j (k) = 0. It means that xν

j (0) is known and
available for estimation. Then, with (22), we obtain

Pr
{
|x̂∗

j − xj(0)| ≤ ε
}

≤ max
z∈[−αρ,αρ]

∫ z+ε

z−ε

f3(y)dy. (27)

Also, (26) could hold in this case since both I1
ij(k) and I2

ij(k)
may be available to a selected node.

Combine the above three cases, we conclude that

Pr
{
|x̂∗

j − xj(0)| ≤ ε
}

≤ 3
max

=0

max
z∈[−2αρ,2αρ]

∫ z+ε

z−ε

f
(y)dy

(28)

which completes the proof.
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