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Abstract—Federated Learning (FL) deployed in the edge net-
work environment is a promising approach for combining the
separated training results based on the isolated local data sensed
by various Internet of Things (IoT) devices. However, the limited
computing resources for training of various application models
in each edge server and the communication burden among edge
server and numerous IoT devices greatly impact the realization
of IoT intelligence. In this paper, we propose transform-domain
FL schemes based on Discrete Cosine Transform (DCT-FA)
and Discrete Wavelet Transform (DWT-FA) to achieve better
training efficiency and reduce the communication burden for
IoT devices. Furthermore, when the amount of training data
is limited, we propose to combine time-domain features and
frequency-domain features in FL. (CDCT-FA) that turns out
to achieve much higher test accuracy. From the experimental
results, the transform-domain FL schemes are shown to be
promising given the different constraints and requirements of
various IoT intelligence applications.

Index Terms—Federated Learning, Transform Domain Fea-
tures, IoT intelligence applications.

I. INTRODUCTION

To support smart building, intelligent transportation, ubig-
uitous e-healthcare, and smart home [1], massive Internet
of Things (IoT) devices such as sensors, wearable devices,
and mobile devices are growing in both power and popu-
larity. Numerous data collected by various IoT devices are
key to unlock the potential of artificial intelligence in our
daily lives [2] [3]. However, 10T devices often have limited
resources and energy supply. To fully unleash the potential of
the data sensed by IoT devices, more computation resources
are needed for data processing and learning. However, the
conventional approach to send data to remote cloud involves
high volume transmissions which can be costly and lead to
long delay. Furthermore, privacy can also be a major concern
when transporting sensitive data across public networks [4].

Therefore, storing and processing data locally with the
assistance of edge servers is more desirable [5] [6]. However,
it is a challenge to achieve high processing accuracy by
individual edge server given the limitations of local data
sets. Federated learning (FL) provides a framework to train
models in distributed fashion [7] to address the challenge by
involving both local processing in edge servers and remote
coordination in cloud data center [8]. Efforts have been
focused on designing advanced FL algorithms to achieve better
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learning performance including privacy preservation [9] [10]
and learning efficiency [11].

There are however significant challenges for FL. First,
since each IoT device collects its own local data, statistical
heterogeneity is a common issue among the collected data
from IoT devices located in different regions with different
environments. FL also involves a multitude of edge servers
with diverse coverage availability and hardware, such as
storage, computational, and communication capabilities. A
FL process relies on local models trained by edge servers,
consideration of the heterogeneity among edge servers leads
to quite different local objective functions corresponding to
different local optimums. As a result of these, the local model
trained on each edge server may be biased, and in effect
the heterogeneity may cause significant local training drifts.
Moreover, efforts in the local training can be neutralized in
the conventional strategy based on averaging the trained local
models which makes the global model very hard to converge.
In addition, the exchange of updated models between the edge
servers and the central cloud server implies that the time
required to tune the global model depends not only on the
number of training iterations but also on the delay induced by
transmitting the model updates at each FL iteration. Each edge
server needs to wait till receiving the global model update
and then resumes the training for the next iteration. Here,
the communication procedure can be a bottleneck affecting
the training time of global models. Clearly, reduction of the
communication time will greatly improve the efficiency of
the entire training procedure. The work presented in this
paper is motivated by the points made above, where we
focus our investigation on a FL approach to address issues
concerning statistical heterogeneity of the model, reduction of
communication cost, and ensuring processing accuracy given
limited time and computing resources at edges.

Specifically, we propose to explore the training based on
the data samples in their transformed domains which may
reduce the communication burden of IoT devices and in some
cases enhance the reliability and accuracy of federated learned
models. The proposed transform-domain FL algorithms in-
clude 1-dimensional and 2-dimensional discrete cosine trans-
form with different preserve rates (DCT-FA), discrete wavelet
transform with different decomposition levels (DWT-FA), and
the scheme combines the time-domain features and frequency-
domain features (CDCT-FA). Both DCT-FA and DWT-FA are
shown to reduce the computation burden in edge servers and
communication cost without sacrificing the application model
accuracy due to their leading ability to compact the most
important information of the raw data samples into fewer
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features. In addition, we examine a transform-domain scheme,
CDCT-FA, which takes both the advantage of time-domain
and frequency-domain features that is shown to achieve con-
siderably improved processing accuracy, especially when the
data set is of limited volume. We have conducted extensive
simulations to evaluate the performance of the transform-
domain FL schemes. Our numerical results show that the
proposed transform-domain FL algorithms are superior to
the popular FL algorithms, in both overall training time and
learning accuracy.

The rest of this paper is organized as follows. Related works
are provided in Section II. Section III illustrates the system
model and formulates the federated training problem. The
proposed transform-domain FL algorithms are elaborated in
Section IV. The theoretical analysis is provided in Section V.
Simulation results are presented in Section VI to illustrate
the training efficiency with different settings, followed by the
concluding remarks in Section VIL.

II. RELATED WORKS

Although task offloading, workload scheduling, and service
migration for IoT systems have been heavily investigated,
IoT intelligence is still in its infancy stage. Pushing the Al
frontiers to the individual IoT devices is promising to fully
unleash the potential of the zillion bytes of data generated by
billions of IoT devices per year. However, IoT intelligence
is obtained from the heterogeneous local data sets with the
federated setting in the training procedure of IoT devices.
Real-world data samples collected by individual IoT devices
contain a mixture of many effects, and how to deal with the
cross device differences in real-world partitioned data sets for
efficient federated training is an important open question.

To tackle the issues of communication cost and delay of
FL, it was proposed that clients perform multiple local model
updates before communicating with the central server [12].
One of the most popular FL techniques is the Federated
Averaging (FedAvg) algorithm [13]. For homogeneous clients,
FedAvg coincides with the parallel stochastic gradient descent
(SGD) analyzed in [14], and its asymptotic convergence has
been proven [15]. Empirically, the FedAvg is found working
well when the local data sets are independently identically
distributed (IID) and local SGD updates are averaged because
because in this case the local gradient provides an unbiased
estimate of the global gradient [16].

However, a client may differ from its peers in multiple
aspects [17] [7] and statistical heterogeneity is common with
data being non-identically distributed (non-I1ID) among clients.
Many authors have proposed non-IID objective models to
address the data variation [18] [19] [20] [7] [21], where the Fe-
dAvg is shown to provide substantially degraded performance
due to data heterogeneity because with non-IID local data
sets the local stochastic gradient becomes a biased estimate
of the global gradient. Reference [22] was among the first
to observed the challenges facing FedAvg when dealing with
heterogeneous local data. Several authors [8] [23] [18] applied
the bounded gradients and analyze how it affects the training
drift due to the use of non-IID local data. Analysis of the

© 2022 IEEE. Personal use is permitted, but regublication/redistribution requires IEEE permission. See https://www.ieee.or?é)ublications/rights/index.html for more information.
TORIA. Downloaded on January 26,2023 at 04:39:33 UTC from

Authorized licensed use limited to: UNIVERSITY OF VI

FedAvg that quantifies how data heterogeneity degrades the
convergence rate in this scenario can be found in [19] [20]
[21].

To improve the performance of FL with data heterogeneity,
FedProx proposed in [7] can be viewed as a generalization
and re-parametrization of FedAvg by adding a proximal term
to local objective functions. Another promising direction to
address the challenge arising from data heterogeneity is to
apply variance reduction techniques into FL [24]. SCAFFOLD
was proposed to use variance reduction to correct the client-
drift in its local updates [21]. By adapting an arbitrary cen-
tralized optimization algorithm to the cross-device FL setting,
MIME is proposed to use a combination of control-variates
and momentum at each client-update step to ensure that each
local update mimics that of the centralized method running on
i.i.d. data [25].

To reduce the communication cost within each training
round and make the collaboration more flexible among dy-
namic client environment, a line of works assumed that
the server can arbitrarily sample a set of clients to collect
responses accordingly in every communication round [26] [20]
[7] [21]. This stochastic client selection is desirable in many
practical scenarios as it can reduce the communication cost in
each training round and handle the problem of arbitrary device
availability [27].

In this paper, our focus is on developing methods to deal
with heterogeneous data sets with a synchronous architecture
as recommended in [13]. Regarding to the training procedure
in IoT devices, we apply periodic decentralized SGD (PD-
SGD) updating to carry out the training procedure in each
IoT device with multiple local updates [28] [29] [30]. The
proposed methods are based on the observation that com-
pressed frequency-domain features are of considerable help
in mitigating the heterogeneity of the local data sets and
reducing model size as well as the cost of communication
between the central cloud and edge servers as well as the
communication cost among edge servers and IoT devices,
while providing sufficient information of the original data
necessary to maintain satisfactory convergence.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

In this section, we propose a FL framework for edge-
enabled IoT intelligence as illustrated in Fig. 1. Massive data
are collected by various IoT devices, such as temperature and
humidity sensors in smart buildings, road surveillance cameras
and carbon dioxide sensors in smart transportation, wearable
devices in smart healthcare, networking home devices in smart
homes. However, due to the limited battery life, processing
capacity, and storage space, each individual IoT device is
mainly used to collect data and conduct only simple computing
tasks. To train the AI models, numerous sensed data need to
deliver to edge servers close to the end IoT devices.

The edge server alleviates the training burden on individual
IoT devices, however, the coverage of stationary edge server
is also limited leading to the limited amount of local training
data. If massive data are sent from all edge servers to the
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Fig. 1. Federated learning framework for edge-enabled IoT intelligence.
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central cloud, it will introduce a heavy burden to the network
and more privacy concerns. To achieve good performance for
supporting Al applications, multiple edge servers cooperate
to finish the application model training procedure. We apply
the FL framework to conduct the cooperation among edge
servers. Each edge server conducts a few training steps on its
local model parameters then transports its local model to the
central cloud. The central cloud will aggregate all the locally
updated models in each round by taking a weighted average
of the local model parameters in proportion to the size of local
data sets [31] and then distributes the aggregated global model
to the edge network for further local parameter updating.

B. Federated Optimization Problem Setup

There are E edge servers denoted as {s;,i =1,2,--- ,E}.
Under the coverage of the service region of edge server s;,
there are a set of IoT devices I; collecting and delivering
data to s;. The edge servers receive the data from their
service region and maintain local data sets to train their
local model parameters. We use w to represent the global
model parameters and it is shared with all edge servers as
the initialization of each local model. We use D; to denote
the local data set for edge server s; with n; local training
samples for ¢+ = 1,2,--- , FE and the overall sample number
n= Zf\;l n;. There is no overlap among different local data
sets, i.e., D; N D; = () whenever i # j. All data samples
in the local data set D; of edge server s; construct the local
objective function f;(w). The optimization problem in a FL
objective is formulated as

N
miniumize flw) = Z %fl(w) )]
i=1

It clearly shows that the central objective function f(w)
is a convex combination of the local objective f;(w). For
the local training procedure in edge server s;, it tries to
minimize its own objective function f;(w) which will lead
to a local optimal solution. Due to the heterogeneity of the
local training data sets, different local objective functions will
be very different from each other. The local training procedure
will update the model into different directions which leading
it very hard to converge from the global view. Therefore,
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minimizing f;(w) and average the results cannot provide a
promising solution to the global objective f(w), unless the
local functions are all the same, i.e., local solutions w for
1 =1,2,---, F are all the same which is highly unlikely in
practice.

C. The Role of Features in Local Objectives

To clearly show the problem of heterogeneity, we for-
mulated the connection of the data features and the local
objective function as follows. For generality, we assume the
local objective function f;(w) is formulated by one L layer
neural network combined with softmax regression loss. The
features of the data sample are transmitted to multiple neurons
by linearly combining the link weights that connect each input
node and the neurons to obtain their pre-activation value and
compute the post-activation value by the activation function
in each neuron. Then the successive neuron layers feed the
post-activation value into one another until the output layer.

We define each layer contains p1,ps, - - - ,pr, neurons. The
post-activation outputs of hidden layers are denoted by L
vectors hi,hsa,: -+, hy with dimension pq,po,---,pr, re-
spectively. The weights between the [-th hidden layer and the
(I + 1)-th hidden layer are denoted by a connection matrix
W, € RP*Pi+1 and the forward computation part of this
transformation between hidden layers are denoted as hjy1 =
@(Wlﬁ_lhl), where ®(-) represents the activation function and
vie{l1,---,L—1}. For (x,y) € D,, the data sample « is fed
into the neural network at the input layer, where the connection
matrix Wy € RY*P1 linearly combining the input features
and deliver the result through the activation function to the
first hidden layer formulated as hy = ®(WI z). We define
the connection matrix Wirq € RpPL*C connecting the L-th
hidden layer and the output layer, the forward computation is
formulated as

0=0o(W[ ,8(W[---&(Wjx))), )

where o € R€*! denotes the output vector in the output layer.
Then, by applying the softmax regression loss, the detailed
formulation for the local objective function is written as

C

filw) = — > log(d e”) -0, i=12,-E.

ng
(x,y)eD;
(3)

where we use w to represent all the parameters in the neural
network for simplicity. We assume that the neural network
structures are the same, then it is clearly shown that the fea-
tures in local data set determines the local objective function.
Due to the heterogeneity of the local data samples, the optimal
solution of local objective functions are quite different from
each other. Since the local training efforts update the model
parameters towards their own minimizers, the problem of the
data heterogeneity directly shows up.

j=1

D. One Round Updating in Federated Optimization

In round r we sample S” C [E] edge servers at random and
|ST| = S, the global model w™~?! is shared to the selected
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local parameter Wy , = w" ! and update the local parameters
with local step size o for k € K local iterations

"’l"

Wi = “4)

:,k—l — Qg; (wf,k—1)~

K
W] e =w" Tt - Z&zgi(ﬁ’{kq) )
The local updating in the i-th edge server applies stochas-
tic gradient directions. Let f;(w) = FE¢[fi(w;&;)], and
gi(w) V fi(w; &;) which is an unbiased gradient esti-
mation of f; with variance bounded by 2. The new global
parameters is updated with global step size oy as

w" = w" ! % S (@] —w' )

i€ST

(6)

We define the effective step-size @ = Kayag, so that the
expectation of server update in round 7 is written as

& S K
ot = “K3 Zgi("b{,k—ﬂ-

i=1 k=1

IV. TRANSFORM-DOMAIN FEDERATED LEARNING

At the beginning of the training, i.e., during the first iteration
of the loop, the central cloud initializes the model parameters
of the required application and transmits them to the edge
network. The training procedure in each edge server minimizes
the local loss function formulated by the model and the local
training data set, in that the cloud server frequently participates
in the training procedure by periodically aggregating the local
updated parameters into the global model. Below we propose
the transform-domain FL techniques to improve the training
efficiency as well as the computing and communication cost
for the local training procedure.

A. Usefulness of Frequency Features
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Fig. 2. Examples of DCT features.

Let  and y be two nonzero samples with the same
dimension. We define the cosine similarity between x and y
as
xTy

S(z,y) = — 2 Y
@) = 2l 1wl
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Note that S(x,y) is precisely the cosine of the angle between
vectors x and y, and it is a similarity measure because it
is merely the normalized inner product which quantifies the
correlation between the two samples. It is known that to a
large extent the information of the original input data are well
represented by a small number of DCT coefficients in low
frequency region [32]. Utilizing these compressed frequency
features is found to have increased cosine similarity relative
to that of the original features. For example, for the two images
in Fig. 2, the cosine similarity between the bitmap features is
0.9055. If we focus on the first 1000 frequency features out of
the entire 132300 DCT features, the cosine similarity increases
dramatically to 0.9802. This provides an intuitive compari-
son of the original features and the corresponding transfer
domain features from different traffic surveillance cameras
which are representative loT devices in practice. Since each
local objective function is determined by its local training
feature vectors, increasing feature vector similarity makes the
landscape of the local objective functions more similar to each
other. When local objective functions get more similar, the
local gradient drift is reduced along the updating trajectory,
which in turn leads to less heterogeneity among different local
objective functions. As a result, the use of DCT features is
shown to make the training procedure more efficient and hence
converge faster. Furthermore, the substantially compressed
sample features also lead to improved local training speed and
reduced communication cost due to reduced model parameter
space.

Besides the intuitive explanation, below we provide an
analytical argument concerning the usefulness of frequency-
domain features. As common practice in optimization, con-
siderable training progress is made in a small number of
initial iterations. Thus, most of the training effort is spent
in searching the local area near the solution. To conduct
a local analysis, assuming the i-th local objective function
fi is a Bi-smooth and p;-strongly convex function, w is the
current global model and w™* is the optimal global model.
From Lemma 1 (see Appendix), we have

filw) — fi(w*) = 2@ 57 IV fi(w) — v fi(w*)|?
+ Vfi(w) T (w — w*).

Then, we sum over all local objectives and take the average
on both sides. Since V f(w*) = 0, we obtain that

fw) = f(w?) > & Z 35, 1V Fi(w) = ¥ fiw™) | ()
By defining ﬂ max{B;}E |, (7) implies that

E
23(f(w) ~ F(w") = £ 3119 Ss(w) = Vi (w)]*

®)
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Based on (8) and Lemma 2, we bound the local gradients as

*levfz(w)lﬁ

i=

2 & 2 &
EZ IVfi(w)—sz'(w*)llz+EZIIVJ‘¢(w*)II2
=1 =1

IN

E
4B(f (w) — f(w™)) + % DV fi(w™)?.
i=1
©))
Utilizing the frequency features, it is possible to make the local
objectives more similar to each other. As a result, the optimal
global model gets closer to the optimal points of the local
objectives, resulting in a smaller average magnitude of the
local gradients w.r.t. w* defined by B,

1 E
— . * 2
= E;:lHsz(w M=

From the convergence analysis provided in Section V, it will
become clear that a smaller B implies a tighter upper bound of
the closeness of the model learned to the optimal model after a
given rounds of iterations. To demonstrate the idea of utilizing
frequency features to decrease the value of B, we computed B
with the MNIST data set, with 10% of the low-frequency DCT
features, achieving B = 4.7106. This compares favorably with
a B = 55.8658 when only the original features were used.

B. Discrete Cosine Transform-based Federated Averaging al-
gorithm (DCT-FA)

The discrete cosine transform (DCT) which is known to
provide compressed frequency-domain features [32] is em-
ployed as a part of our feature engineering to pre-process
the data sample at each IoT device. Assuming each data
sample has N features, i.e., x € RN*', we transform each
sample into a frequency space by defining a frequency-related
coordinate system. The number of dimensions indicates the
resolution of the spectrum and each dimension in this spectral
space represents one frequency we select. To ensure that the
[frequency-related basis vectors are orthogonal, we set the
number of the basis vectors as the same as the feature number
of time-domain samples. By designing the frequency-related
basis vectors to be orthonormal vectors, the transformation of
data sample features from the time domain into the frequency
domain is regarded as a projection of the sample on the
frequency-related basis vectors.

The frequency-related coordinate system is denoted by
U = [uy,uz,- -+ un] € RVN*N. Here we select the DCT
as such a system due to its excellent energy compaction and
compression ability [32], and in this case the kth basis vector
is given by

2 T
U = o[ [005(1;\,”) cos(%) (10)
where k=0,1,2,--- N — 1 and
1
1 k=
A {1, k=1,2,-- ,N—1
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The orthonormality of frequency basis vectors is guaranteed
where the magnitude of other basis vectors are ||ug||3 = 1
for k = 0,1,2,--- /N — 1 and the basis vectors are also
orthogonal to each other u;?ruj =0fori,j=0,1,2,--- /N—
1, and i # j.

Each basis vector u; € combines the N features in
the original sample x to generate a spectral feature which
is regarded as the projection of sample x on the frequency
domain basis vector uz"a: Let z, = u{m be the kth

frequency-domain feature, namely,

/2 (2n+1) krm
kfuk:cfak Za:ncos N —),

nO

RN><1

where k =0,1,2,--- | N — 1. This transformation procedure
is directly applied to the raw data, and can be done in IoT
devices. We now define a preserve rate p for DCT-based
feature extraction as the ratio of the number of the most
significant components in z that are to be retained to the
length of z. Since p is rather small (typical in the range
between 0.1 and 0.3), using N X p most significant components
of z as features implies a big reduction of the input space, and
hence reduced cost in training and communication.

Alternatively, we may apply two-dimensional discrete cosine
transform on the sensed data in IoT devices. For a two-
dimensional sample X € RN*N the two-dimensional DCT
coefficient matrix is regarded as we project all the rows of
X into frequency space U, ie., XU, and then projecting
all the columns of XU into U again, ie., Z = UTXU.
We rearrange the frequency features from the two-dimensional
DCT coefficient matrix Z following the zig-zag searching
scheme into a feature vector z, and then apply the preserve
rate into the feature vector and transmit the select portion to
the edge server for local training.

C. Discrete Wavelet Transform-based Federated Averaging
algorithm (DWT-FA)

Effective features of reduced dimensionality may also be
acquired using discrete wavelet transform (DWT). Here we
apply the Haar wavelet which is characterized b¥ the two-tap

lowpass and highpass filters hg = [ 7 f} and hy =

1 17 .
[—ﬁ %} , respectively.

For one-dimensional DWT in IoT devices with sensed data
sample © € RN*', an input sample is projected onto the
basis vector hqg with block length 2 when passing through the
lowpass filter. We denote the ith feature block as &; € R**!,
and there are also N feature blocks in total for time domain
sample x where there is one feature overlap between every
two adjacent feature blocks, e.g., &; = [x;, 11| and &;41 =
[Zit1, Tit2], and there are zero padding for the first feature
block &1 and the last feature block & .

The output of the lowpass filter is one vector with length
N where the ith term is the result of the inner product of
h¥#;. To eliminate the feature overlap impact, the results
from the lowpass filter are downsampled with factor 2, and
the result after the downsampling denoted by ay is called the

u
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Algorithm 1 Transform-Domain Federated Averaging algo-
rithm.
: Initialize global model parameters w" in central cloud
2: Initialize {D;}£, = @ and {D,;}E | =
3: for r < 1to R do

0

4:  Distribute global model to the edge network

5. S" « random set of S edge servers

6: forie S do

7: Initialize local mode @} 5 = w" ™!

8: for k< 1to K do

9: Sample batch {(x;,y;)}}L, from local data set
10: Initialize frequency feature batch D=o

11: for j < 1 to m do

12: if (acj,yj) % Dz then

13: Generate frequency features 2; of x;

14: D; (—DZU(ﬁj,yJ) and D7 (—DLU(:BJ,yJ)
15: end if

16: Fetch (25, y;) from D; and D; + D; U (25,v;)
17: end for

18: Compute gi (W ;) based on D;

19: zk_wzk l_algl(wzk 1)

20: end for

21:  end for

22:  Model aggregation following Supervised Aggregation
Scheme in Procedure 1.

23: end for

approximation information of DWT with first level decomposi-
tion. The same procedure is also applied to the highpass filter
whose outputs are called the details of DWT with first level
decomposition.

In DWT-FA, we use the approximation information of the
DWT results with different decomposition levels. Note that the
approximation features in the first level decomposition are of
length N/2, ay € RN/?>*' due to the downsampling. The
approximation features from the first level decomposition are
used as the input to the second level decomposition where the
transform is carried out in the same way. First, a; is fed into
the lowpass filter with impulse response ho whose output is
in turn downsampled by factor 2 to obtain the appr()xlmatlon
information of the second level decomposition as € RN/ 2x1,
Clearly, the length of the ith level approximation features is
of N/2.

For two-dimensional DWT, the input samples are matrices,
e.g, X € RN*M  the transform procedure by passing the
lowpass filter with impulse response hg and down-sampling-
by-2 operation will be applied on the row vectors of X firstly,
and then apply all column vectors of the previous results into
the same procedure to get the approximation information of
the first level decomposition Ay € RN/?*M/2 For multiple-
level decomposition, the feature block projection and down-
sampling-by-2 operation are applied to all rows and then all
columns of each data sample collected by IoT devices in each
level decomposition. Thus, with the same decomposition level,
two-dimensional DWT preserves only half of the size of that
in one-dimensional DWT which reduces more communication
time at the cost of possible degradation in training accuracy.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee. or?é)ubl|cat|ons/r|ghts/|ndex html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on January 26,2023 at 04:39:33 UTC from

D. Combined Discrete Cosine Transform-based Federated Av-
eraging algorithm (CDCT-FA)

The features of the samples sensed by IloT devices may
be insufficient to guarantee target training accuracy due
to the limited sensing capability of individual IoT devices.
Furthermore, the quality of the sensed feature may also be
insufficient to make effective local training. Therefore, we pro-
pose Combined Discrete Cosine Transform-based Federated
Averaging algorithm (CDCT-FA) which is an extension of the
DCT-FA algorithm by combining the time-domain features and
the frequency-domain features. Since the primary information
carried by the data sample remains after DCT transformation
and the frequency features in high frequencies can be removed
due to little energy in that part, the additional frequency-
domain features are shown to greatly enhance the performance
of the FL over the edge network with massive IoT devices
without causing much extra training time.

The advantages of more efficient training with DCT or DWT
features may be described from two perspectives: First, the
transform-domain features are able to increase the sample-
vector similarity which leads to more similar local objective
functions and hence reduced local gradient drift. This results
in reduced heterogeneity and faster convergence. Second,
the compressed features (by DCT or DWT) lead to reduced
dimension of model parameters and hence increased training
speed and reduced communication cost. Unlike the technique
that uses DCT or DWT alone for the sake of dimensional-
ity reduction with compressed features, the CDCT method
employs features of increased dimensionality for the reason
that the features are now much enriched as they cover both
fundamental domains of space (or time) and frequency. The
IoT sensors send the original features to the edge servers
which further calculate the DCT values for each sample.
The CDCT method does not increase the communication cost
between the sensors and the edge servers because the sensors
only need to send the original feature vectors to the edge
servers. When the feature calculation is conducted in the edge
servers, CDCT features are obtained by combining the original
features and the low frequency features. When the compressed
frequency features are combined with the original data, there
is no gain in the mode parameter reduction, however, it
vields a data set with several advantages: the combined
data contain enriched features from two fundamental and
complimentary domains (i.e., the spatial (or time depending
on the application) domain and frequency domain) and hence
is expected to produce improved performance; moreover, data
samples combined with low-frequency features are found to
have increased cosine similarity relative to that of the original
features. The increased cosine similarity of features based on
CDCT in the example in Fig. 2 achieved 0.9401 with 1000 low
frequency features in addition to the original features, while
the cosine similarity between the original features was found to
be 0.9055. This demonstrates that the feature similarity based
on CDCT technique is higher than that of the original sample
features, but lower than that based only on DCT-compressed
features. There is a trade-off between increasing the feature
similarity and the test accuracy. Low feature similarity leads to
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severe drift in the local updating which becomes even worse in
the non-overlap local dataset scenario. High feature similarity
mitigates the heterogeneity, however, it may cause some loss
of critical information to distinguish different samples. The
CDCT features make a trade-off between the two, which
appears to be the reason of its higher accuracy.

Procedure 1 Supervised Aggregation Scheme.

1: Initialize current best global model parameters wy and the
corresponding valid accuracy tg«.
2: for t < 1to T do

32 if t <1, then

4 Weighted aggregate w < ZzE:1 PiW;
5 Evaluate the valid accuracy v, of w
6: if 1« < 1), then

7 Update w™* < w and 9 < 1

8 end if

9: else

10: Weighted aggregate w < Ef;l PiW;
11: Evaluate the valid accuracy 1, of w
12: if 1g« < 1)y then

13: Update wg < w and g« < 1)y
14: end if

15: if 4 <, then

16: Replace global model by w < wy
17: end if

18:  end if

19: end for

E. Supervised Aggregation Scheme

The supervised aggregation scheme we propose is shown in
Procedure 1. To control the model flipping from traditional av-
erage aggregation mode to the supervised aggregation mode,
we define two parameters, namely, the accuracy threshold 1,
and the round threshold 1,.. The round threshold 1), refers to
the round number from where the supervised aggregation mode
starts. Before 1,.th round, the locally trained model parameters
are aggregated by weighted average. After the 1,.th training
round, we record the current best global model w;. At each
training round, first, the local models are aggregated by the
weighted average, then the validate accuracy achieved by the
current weighted aggregated global model is compared with
the pre-defined accuracy threshold 1,: if the performance is
lower than the accuracy threshold 1),, then the current global
model is replaced by the recorded best performance global
model wy; otherwise, the current aggregated global model
will be distributed to the edge network for the next training
round.

V. CONVERGENCE ANALYSIS

The performance improvement from the (r — 1)-th round to
the r-th round is measured by

Ellw” — w*||* = B|lw""! — w*||?
+ 2E(wr—1 _ w*)T(sr—l —|—E||5T_1||2,

where w™* denotes the global optimal solution. We need to
upper bound the terms (w"™ ™t — w*)T§"~1 and ||671||?

(1)
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to estimate the improvement that one round provides. First, we
use the updating rule to write

E[(,wr—l _ w*)T(sr—l]

~ E K
= 5 22 Vi 1) (T — w),

i=1 k=1

Assuming that the local objective function f; is also ;-
strongly convex. Then Lemma 4 (see Appendix) implies that
Vfi(@] 1) (" —w*) >
filw™™) = fiw*) + Bt — w2

= Billf gy — w2

By defining n = % ZZE:1 i and B = % Zf:l Bi, we obtain
E[(wT_l _ w*)T(Sr—l] < _&(f(wr—l)

i - (12)
— flw") + Fllw" =t —w*|[?) + afe,

where
1 K
= %XE ZZ @]y — w" |2
=1 k=1

represents the drift of the local model from the current global
model.

A. Averaged Local Model Drift in One Round
Below we analyze the upper bound of . According to the
local updating and Lemma 2, we have
|[0f ) — w2 < (1+ a) || oy — w2
1 . (13)
(4 D llgi (@)l

Since the local updating is stochastic, and we have defined the
variance from the sampled gradient to the full local gradient
as o2, we have E||g;(w)||? = ||Vfi(w)||? + o2, which
in conjunction with (13) leads to an upper bound of the
expectation as

1
Bl —w MR < (1 ) Bl ey — w1

+ Kof ||V fi(@] p_1)||* + Kajo®
(14

where a = ﬁ To deal with the term Vf,i('u?{’k_l) in (14),
first we apply Lemma 2 to write

IV fi (D k) * < 20|V fi(@F o—y) — VFi(w™ |2

+2[|9 fi(w" )2
Next, we use the fact that function f; has Lipschitz continuous
gradient to bound the drift of the local gradient as

IV fi(@]g—1) — VFi(w™ ™ HI* < BF||0] oy — w2
It now follows that
E||lw]) —w™H* <
1 R _
1+ -1 2K o} B}) B| |} jo_y —w" Y| |?
+2Ka?||Vfs(w™ )| + Kafo?.

/)
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To upper bound the drift over K local updates, we unroll the
. ~T ~T . AT r—1
recursion from wy o 10 Wy y,_ 4. Since w; o = w" ™", we have

E||w] ¢ —w" M| <

K-1 1

Z(l + ﬁ + 2Ka12ﬂi2)k><

k=0

2Kaf||V fi(w™™Y)||* + Kajo?)
which involves a geometric series. This upper bound can be
also written as

E||w] x —w"H|? < qQ2Kaf ||V fi(w"||* + Kajo?),

where q is a constant with fixed local learning rate o; and
local updating iterations K defined as

1—(1+ & +2Ka787)"
1—(1+ g5 +2Ka7B7)

q:

Consequently, the average drift over E clients is upper
bounded by

1
€<

&=

E
S q2Ka||Vfi(w™ )| + Kafo?).
=1

Note that from (9), we upper bound € as

e < 8K aPB(f(w" ) = f(w")) + ¢Kal (4B + o2). (15)

B. Global Model Improvement in One Round

By applying Lemma 3, we bound the expectation of
167112 as

e a X , | @%?
Ell|6" <||== v fi(w] .
18" 1P) < i 23 ot +
(16)
And using Lemma 2, we have
8 EK
o S a1 <
i=1 k=1

NE
] =

2|l ==

5 2 2 (VE(E 1) = Vi )P a7

1

b
Il

1

-
Il

~ E
a T_
F2 %Y Vi I
=1

Then, by Jensen’s inequality and {3;}¥_, smoothing,

N‘Qz

E K
I EZZ(Vfi('lD{,k_l — Vfi(w" )|

1 k=1

~ E K
@ ~T r—
< o DY V(@) — VFi(wm Y2
=1 k=1
a E K
< 5 2D Bl —w" | = 6| %

s
Il
-
E
Il
-
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where 3 = {B;}¥_,. Now using Jensen’s inequality again and
(9), we have
a L a2 E
15 S AP < S Fi )P
i=1 i=1
< 462B(f(w"™Y) — f(w*)) +2a°B
which leads us to
E[|6"7 %] < 2a]|8]|% + 4a°B
Ax2 r—1 * d202

Synthesizing the above analysis, the improvement provided by
the proposed technique in one round is estimated by the upper
bound of E[||w™ — w*||?]:

Elljw" —w*||?] < (1 - %)Ellw"_1 —w|[?

~2

o
+ e B(f(w"™h) = f(w”)) +4a(cr + @) B + (e1 + =)0,
(18)
where o 2
¢ = qKaj (B +2|8]]%)
co = 8Ba(a+¢1) — a.
C. Convergence Analysis in Multiple Rounds
By rearranging the terms in (18), we obtain
— * 1 Qfl r— *
Blf(w™™) - f(w*)] < B[ Tu)ll’w e
1 2 4da _ a2 o?
- —||w" — w* — B —_—)—.
" = w2+ e+ DB+ e+ 1)

Applying a weighted summation to the above inequality and
letting Ay = (1 — E2)'=" and Ap = Zf:ll Ar, We obtain

Bl = ) wm =t — w|[? — fJu” — w* |
(1= SPllw® — w2 (1= ) Rl — w2

Agr Agr

By choosing the step size & from the region (0, %], we reach
the upper bound

ap — * *
E[(1 = =)l —w”||* = [Jw” — w"||?]

0 * (19)
o (= TPl — w||?
> An .

If we set the federated training round R > %, we obtain a
lower bound for the summed weights Ag in R rounds:

~_ 1_ _RGE
Ap >4 - Hy-rI7€¢ ¢
4 jte]
. Rua — 2
Since =4= > 1 and e 1<§,
4(1 — SBy-R
Ap > ( Af) ;
3pc
which leads the estimate in (19) to
afi - * *
E[(1 = —)|[w"™" —w”||* = |lw” — w”|]?]
3ap, . aji .
< 21— SRR — w2,
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and thus
364167(1%4—1);1&
E[f(w®) — f(w*)] < 1 [Jw® — w*||?
2 (20)
+4d( +a&)B+ (c1 + 5‘2)02
—I\C Q C —_— ).
co YWKE e

From (20), we conclude that the quality of model w mea-
sured by its closeness to the optimal w* in terms of the mean
E[f(w®) — f(w*)] is determined by three factors, namely, R
: the number of rounds, B : the average magnitude of local
gradients at global model w*, and o®-the variance from the
sampled gradient to the full local gradient. The upper bound
provided in (20) clearly indicates that model w* is expected
to be satisfactory if R is sufficiently large so as to keep the
first term of the upper bound small, and both B and o> are
small to keep the other two terms of the bound reasonably
small as well.

In summary, since the transform domain features can in-
crease the similarity among local objective functions, namely,
the landscape of local objective functions tend to be more
similar to each other and the local optimizers get much closer
to each other. Therefore, the drift in the local models during
the federated training procedure can be reduced, which in turn
improves the convergence.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, the proposed method with different SOTA
algorithms are examined by applying them to several popular
data sets. First we provide a case study to demonstrate the
advantages of the proposed frequency features in FL compared
with FedProx and Mime-Lite, where the algorithms are im-
plemented with federated-EMNIST and federated-CIFAR-100
data sets. Due to the different complexity of these two data
sets, we have applied different local models in the federated
training.

Next, we verify the usefulness of the proposed method in
various scenarios with a case study via FedAvg. We proposed
various the transform-domain FL schemes based on FedAvg,
i.e., one-dimensional DCT (1D-DCT-FA) and the combination
with time-domain features (ID-CDCT-FA); two-dimensional
DCT (2D-DCT-FA) and the combination with the time-domain
and frequency-domain features (2D-CDCT-FA); one dimen-
sional DWT (1D-DWT-FA); and two dimensional DWT (2D-
DWT-FA). For both DCT and DWT based techniques, in
addition to the preserve rate there are several parameters that
are adjustable (e.g., the decomposition levels of DWT) to meet
specific requirements in applications.

A. The Advantage of Frequency Features

First, the proposed transform-domain technique was incor-
porated into the FedProx algorithm which behaves practically
the same way as FedAvg except that it includes a proximal
regularization term that prevents clients from drifting too far
from the global model. The test accuracy results in comparison
with the original FedProx and the frequency-feature enabled
FedProx when applied to the federated EMNIST dataset are
shown in Fig. 3 (a). For FedProx, the proximal strength
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parameter, which controls the regularization level, was set to
0.1. The local model used here was one simple neural network
with one hidden layer and softmax regression loss, which was
optimized using Adam in updating the local model, where the
learning rate was set to 0.02. For the Adam local optimizer,
the decay for tracking previous gradients and their second
moments was set to 0.9 and 0.999, respectively. For each
iteration at an edge server in the local training procedure,
the batch size was set to 20 and there were 5 local training
epochs in one federated training round. The results shown in
Fig. 3 (a) were obtained after 4 rounds of federated training,
where 0.1-DCT-FedProx and 0.3-DCT-FedProx are meant to
utilize only 10% and 30% of frequency features. The proposed
method was also integrated into the Mime-Lite algorithm with
the same setting (except that the local learning rate was
set to 0.001), and the results obtained are shown in Fig. 3
(b). Clearly, in both cases the results have demonstrated the
ability of the proposed method to quickly converge to fairly
accurate solutions with 70% to 90% reduction of the input
dimensionality.

In addition, the proposed technique was also applied to the
CIFAR-100, a more complex data set in terms of the number
of categories. In this case study, our method also outperforms
the original FedProx. Since there are 100 different classes in
CIFAR-100, a relatively more complex local model known as
one VGG block [33] was employed to track the convergence
trends. As shown in Fig. 3 (c), our proposed frequency features
enabled FedProx converges faster than the original FedProx
when applied to the CIFAR-100.

B. A Case study with FedAvg

To investigate the diversified data distribution over IoT
devices covered by different edge servers, we divided the
MNIST [34] data sets and allocated them to randomly selected
10 edge servers. The lcoal model applied the one-hidden layer
neural network with softmax loss function. The performance
of the proposed transform-domain FL schemes were compared
with FedAvg over different heterogeneous level of local data
sets to illustrate the advantages and robustness of the proposed
schemes over the FedAvg in various loT application scenarios.

For local training, the batch size was set as 0.5 of the
local training data set and each edge server only conducted
1 epoch in each round and there were 200 training rounds
for all following experiments. In this case study, we applied
Stochastic Gradient Descent algorithm (SGD) as the local
training optimizer. For all DCT-FA except for the measurement
of the impact of different preserve rates, the preserve rate was
set to 0.2. For all DWT-FA except for the measurement of the
impact of different decomposition levels, we applied the first
level DWT into the FL procedure. The train-test rate which
means the percentage of training data size in the test data
size was set to 10 except the experiment measures the impact
of train-test rate.

1) Simulation Results and Analysis with IID Local Data
Sets: First, we measured the performance of the DCT
transform-domain FL. Fig. 4 shows the test accuracy of Fe-
dAvg, ID-DCT-FA, and 2D-DCT-FA with increasing preserve
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Fig. 3. Advantage of frequency features over different algorithms and different data sets.
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(b) Mime-Lite with EMNIST

rate. From the results shown in Fig. 4 (a), the performance
of both 1D-DCT-FA and 2D-DCT-FA are improved rapidly
with the increasing preserve rate at the beginning. When
the preserve rate reaches 0.05, 2D-DCT-FA achieved good
performance and the improvement of the performance slows
down compared to that with the original features when the
preserve rate is 0.1. When the preserve rate is smaller than 1,
ID-DCT-FA has much worse performance than that with 2D-
DCT-FA. We conclude that 2D-DCT-FA needs less information,
i.e., features in the frequency domain, to obtain a comparable
performance. The performance of both 1D-DCT-FA and 2D-
DCT-FA are comparative to the performance of FedAvg after
the preserve rate achieving 0.1. The advantages of 1D-DCT-FA
and 2D-DCT-FA are shown in Fig. 4 (b). Both 1D-DCT-FA and
2D-DCT-FA need much less overall training time to achieve
a comparable performance which is shown to be promising
property with time-sensitive loT applications.
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Overall Training Time (s)
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(a) Test Accuracy

Fig. 4. The performance of 1D-DCT and 2D-DCT based Federated Learning
with different preserve rate.

(b) Overall Training Time

Furthermore, when combining the time-domain features and
the frequency-domain ones, the test accuracy achieved for
both 1D-CDCT-FA and 2D-CDCT-FA is much better than that
of FedAvg even with a very low preserve rate as shown in
Fig. 5 (a) where 1D-CDCT-FA improves 6% and 2D-CDCT-
FA improves T% of the test accuracy compared with FedAvg.
It also shows that 2D-CDCT-FA needs less information to
converge to a better test accuracy compared with 1D-CDCT-
FA. Furthermore, the overall training time of both 1D-CDCT-
FA and 2D-CDCT-FA are also comparative to the overall
training time consumed by FedAvg with a low preserve rate
as shown in Fig. 5 (b). According to the improvement of
accuracy performance, this additional overall training time
cost is quite tolerable. We conclude that when combining a
few frequency-domain features to the time-domain features,
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the testing performance is greatly improved.
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Fig. 5. The performance of 1D-CDCT and 2D-CDCT based Federated
Learning with different preserve rate.

(b) Overall Training Time

As illustrated in Fig. 6, we measured the performance of
ID-DWT-FA and 2D-DWT-FA with different decomposition
levels and we extracted the approximation information at each
level for training. There were less information at a higher
decomposition level. The results from Fig. 6 (a) show that both
ID-DWT-FA and 2D-DWT-FA achieve their best performance
with first level decomposition, and with increasing decompo-
sition levels, their performance both deteriorate. However, the
performance of 1D-DWT-FA is more robust with the increasing
decomposition levels compared with 2D-DWT-FA. Even in
the third level decomposition where much less information is
preserved, the performance of 1D-DWT-FA is still better than
that of FedAvg with much less overall training time as shown
in Fig. 6 (b). It is because the approximation information of
ID-DWT-FA is a little more than that of 2D-DWT-FA at the
same level. As shown in Fig. 6 (b), 2D-DWT-FA needs a little
more overall training time than that of 1D-DWT-FA. Both of
them are more efficient than the FedAvg with all decomposition
levels.

To compare the performance of different transform-domain
FL schemes, we measured the test accuracy over 200 training
runs with different training data sizes. In this experiment, the
size of the test data sets were the same, and we controlled the
size of the training data by the train-test rate. As illustrated
in Fig. 7 (a), when the train-test rate is 0.1, the performance
of ID-DCT-FA, 1D-DWT-FA, and 1D-CDCT-FA are all better
than that of FedAvg. This limited training data size setting is
commonly occurring in real IoT applications where each loT
device observes very limited data samples. This result shows
the advantage of the transform-domain FL to deal with the
limited local training data sets.
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Fig. 6. The performance of 1D-DWT and 2D-DWT based Federated Learning
with approximation information in different decomposition levels.

- edivg

= 1D-DCTFA
= 1D-DWTFA
== 10-CDCT-FA

== fedAvg

= 1D-DCTFA
= 1DDWTRA
= 1pCDCT-FA

0.1 1.0
Train-Test Size Rate

Avg-2 Avg-4 Avg-6 Avg-8
Number of Aggregated Models

(a) Rate of Train-Test data size  (b) Aggregated local model number

Fig. 7. The performance comparison with different participation scenarios.

In real FL applications over the edge network, it is very
hard to gather sufficient qualified edge servers for the specific
application in each training round. Transform-domain FL
still achieves promising performance with very limited edge
servers participating in each training round. To evaluate the
advantages of transform-domain FL when encountering the
situation where both available edge servers and the local
training data samples were limited, we set the number of local
training samples for each digit class as 50, and there were 200
samples in each class for testing. In each federated training
round, we randomly selected 2, 4, 6, or 8 edge servers to
conduct the local model aggregation which perfectly simulated
the scenario of many real IoT applications. The results in
Fig. 7 (b) show that with increasing qualified edge servers
participating in the federated training, the performance of all
schemes are improved, and the transform-domain FL schemes
always show better performance with limited participating
edge servers in each federated training round.

Test Accuracy
Overall Training Time (s)

©o
o
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Optimizers
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Optimizers
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(a) Test Accuracy (b) Overall Training Time

Fig. 8. The performance of the Federated Learning with different optimizers.

We also have checked the performance of transform-domain
FL schemes with different optimizer in the local training.
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The results are shown in Fig. 8 where the performance
with optimizer SGD is quite similar with the performance
with optimizer ASGD in both test accuracy achieved after
200 training rounds and the consumed overall training time.
However, the performance with optimizer Adam is not always
good as the others. It is due to that both SGD and ASGD
apply only the gradients from the current round to update the
local model parameters, however, Adam applies the momentum
of the gradients which needs to considering the historical
gradients to adjust the current local parameter. This property
becomes a drawback in the FL framework due to the local
model aggregation procedure.

2) Simulation Results and Analysis with non-IID Local
Data Sets: Fig. 9 shows the test accuracy of FedAvg, 1D-
DCT-FA, and 2D-DCT-FA with increasing preserve rate over
the non-IID local data sets with heterogeneous level 0.1.
Compared with the results over the IID local data sets shown
in Fig. 4, the test accuracy of the FedAvg shown in Fig. 9 (a)
has been reduced due to the heterogeneous local data sets.
However, the performance of both 1D-DCT-FA and 2D-DCT-
FA are improved rapidly with the increasing preserve rate at
the beginning and 2D-DCT-FA will out perform FedAvg when
the preserve rate reaches 0.05 which means that 2D-DCT-
FA needs only 5% features of that for FedAvg to achieve a
better test accuracy. With the increasing preserve rate, the
performance of 2D-DCT-FA converges much faster than that
of ID-DCT-FA where 1D-DCT-FA achieves better performance
than FedAvg until preserve rate reaches 0.1 as illustrated in
Fig. 9 (a). Both 1D-DCT-FA and 2D-DCT-FA need much less
overall training time to achieve a better performance over
the non-IID local data sets where the overall training time
varies very little with increasing preserver rate from 0.01 to
0.1. More interestingly, 2D-DCT-FA costs less overall training
time compared with both FedAvg and 1D-DCT-FA as shown in
Fig. 9 (b). Both 1D-DCT-FA and 2D-DCT-FA achieve better
performance with only 10% features compared with that of
FedAvg at the same time with much less overall training time.

135

e e e <
B o= NN W
o U o u o

Overall Training Time (s)
o
w

0.05 0.1 1.0
Preserve Rate of DCT

0.01 0.05 0.1

Preserve Rate of DCT

1.0

(a) Test Accuracy (b) Overall Training Time

Fig. 9. The performance of 1D-DCT and 2D-DCT based Federated Learning
with different preserve rate.

With non-IID local data sets, the schemes of combining the
time-domain features and the frequency-domain ones, i.e., 1D-
CDCT-FA and 2D-CDCT-FA, not only achieve much better test
accuracy than that of FedAvg, but also less overall training
time when the preserve rate is low as illustrated in Fig. 10.
With low preserve rate 0.01, both ID-CDCT-FA and 2D-
CDCT-FA combine very limited frequency-domain features
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with the time domain features achieve more than 10% test
accuracy and there is no compromise in the overall training
time. When the preserve rate is 0.01, the performance of 1D-
CDCT-FA is little better than that of 2D-CDCT-FA, but 2D-
CDCT-FA has more advantage in the overall training time.
The test accuracy of 2D-CDCT-FA is greatly improved when
the preserve rate achieves 0.05 which is much better than that
of ID-CDCT-FA. Furthermore, when the preserve rate is no
larger than 0.1, both 1D-CDCT-FA and 2D-CDCT-FA achieve
promising overall training time compared with FedAvg.
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Fig. 10. The performance of 1D-CDCT and 2D-CDCT based Federated
Learning with different preserve rate.

Both 1D-DWT-FA and 2D-DWT-FA achieve much efficient
performance, i.e., higher test accuracy and lower overall
training time, when the decomposition level is no larger than
2 with non-IID local data sets as illustrated in Fig. 11. With
increasing decomposition levels, the test accuracy achieved
by both 1D-DWT-FA and 2D-DWT-FA is reduced due to the
decreasing information reserved as shown in Fig. 11 (a). But
there is advantage on the overall training time with higher
decomposition level as illustrated in Fig. 11 (b). The 2D-DWT-
FA outperforms 1D-DWT-FA with first level decomposition,
however, the performance of 2D-DWT-FA declines rapidly
with the increasing decomposition levels compared with 1D-
DWT-FA. It is due to that the approximation information
extracted from 2D-DWT-FA is much less than that of 1D-
DWT-FA. With first level decomposition, there is still sufficient
approximation details reserved by 2D-DWT-FA which ensures
the best performance compared with the other two schemes.
However, when the decomposition level increases to 3, there is
too less information of the sample features left in 2D-DWT-FA,
the performance will be greatly deteriorated. As illustrated in
Fig. 11 (b), although there are advantages in overall training
time with higher decomposition level, the benefit is not cost-
effective with respect to the deterioration in test accuracy.

In the experiment with different training data sizes over
non-I1ID local data sets, we compared the performance of
2D-DCT-FA, 1D-DWT-FA, 2D-CDCT-FA with the FedAvg. The
size of the test data sets were the same for each train-test
size rate. As illustrated in Fig. 12 (a), the performance of
the transform-domain FL schemes all outperform FedAvg with
limited training data size. Especially, 2D-CDCT-FA achieves
very high test accuracy when train-test size rate is small
compared with others. As illustrated in Fig. 12 (a), the test
accuracy for 2D-CDCT-FA achieves near 90% with very small
local training data sets, i.e., train-test size rate is 0.1, where
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Fig. 11. The performance of ID-DWT and 2D-DWT based Federated
Learning with approximation information in different decomposition levels.

the FedAvg can not even get close to the test accuracy of 80%
with the same local training data sets setting. Furthermore, for
the medium local training data sets with train-test size rate as
1.0, 2D-DCT-FA achieves very high test accuracy near 95%,
however, the test accuracy for FedAvg is still around 80%.
This experiment result shows the benefit of transform-domain
FL also achieves very promising results with the limited and
heterogeneous local training data sets.

= 2D-CDCTFA

0.1 1.0 10.0
Train-Test Size Rate
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Number of Aggregated Models

(a) Rate of Train-Test data size (b) Aggregated local model number

Fig. 12. The performance comparison with different participation scenarios.

Fig. 12 (b) shows the advantages of transform-domain
FL schemes over the FedAvg with very limited edge servers
participating in each training round over the non-IID local
data. The 2D-DCT-FA easily achieves the test accuracy around
95% when their are only 4 edge servers participating into
the FL in each round where FedAvg only achieves the test
accuracy less than 60%. Furthermore, both 2D-DCT-FA and
1D-DWT-FA achieve the test accuracy near 90% when the
number of edge servers participating in each training round
is more than 4. The performance of transform-domain FL
schemes is very promising with limited participating edge
servers in each federated training round over the non-IID local
data sets.

As illustrated in Fig. 13, the transform-domain FL schemes
all achieve better performance than the FedAvg with different
optimizers over the non-IID local data sets. With heteroge-
neous local data sets, the performance of optimizer Adam
on the test accuracy is a little better than both SGD and
ASGD with respect to FedAVg, 2D-DCT-FA, and 1D-DWT-
FA. Although, the performance of 2D-CDCT-FA with Adam
is a little worse than the other 2 optimizers, it is still the
best among the other schemes. Both 2D-DCT-FA and 1D-
DWT-FA still achieve promising overall training time among
all the schemes over different optimizers, and 2D-CDCT-FA
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Fig. 13. The performance of the Federated Learning with different optimizers.

also achieves comparable efficiency with FedAvg in overall
training time. Furthermore, it is also observed that the impact
of different optimizers over the non-IID local data sets on
the transform-domain FL is very little compared with that of
FedAvg in both test accuracy and overall training time.

3) Simulation Results and Analysis with Non-Overlap Local
Data Sets: Fig. 14 (a) shows the test accuracy of FedAvg, 1D-
DCT-FA, and 2D-DCT-FA with increasing preserve rate over
the non-overlap local data sets. When the preserve rate is very
small as 0.01, 1D-DCT-FA slightly outperforms 2D-DCT-FA,
however, both of them can not achieve the same performance
of FedAvg with test accuracy 70%. When the preserve rate
increases to 0.05, which is still small, the performance of 2D-
DCT-FA is greatly improved to achieve test accuracy near
85%, however, the performance of ID-DCT-FA is still very
poor with test accuracy around 55%. With increasing preserve
rate, the performance of ID-DCT-FA will be continuously
improved, but it only achieves the same performance as 2D-
DCT-FA with maximum preserve rate 1.0. Furthermore, 2D-
DCT-FA achieves test accuracy of 90% with preserve rate
0.1 which is much efficient compared with that of FedAvg.
As shown in Fig. 14 (b), when the preserve rate is no more
than 0.1, the overall training time of both 1D-DCT-FA and 2D-
DCT-FA are much smaller than that of FedAvg. Furthermore,
the impact of different preserve rates on the overall training
time of both 1D-DCT-FA and 2D-DCT-FA is very limited.
When set the preserve rate as 0.1, it achieves much better
performance on the test accuracy but also remain small cost
on the overall training time.
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Fig. 14. The performance of 1D-DCT and 2D-DCT based Federated Learning
with different preserve rate.

Both ID-CDCT-FA and 2D-CDCT-FA achieve far better
performance compared with FedAvg over the non-overlap
local data sets. As shown in Fig. 15 (a), both 1D-CDCT-FA
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and 2D-CDCT-FA improve more than 20% of the test accuracy
compared with FedAvg. When the preserve rate is 0.01, the
performance of ID-CDCT-FA maybe a little better than that
of 2D-CDCT-FA, however; the improvement of 2D-CDCT-FA is
faster than that of 1D-CDCT-FA with the increasing preserve
rate. When the preserve rate reaches 0.05, 2D-CDCT-FA
already achieves test accuracy over 95% where the 1D-CDCT-
FA can only achieve the same test accuracy with the maximum
preserve rate 1.0. Furthermore, the overall training time of
both 1D-CDCT-FA and 2D-CDCT-FA also are comparative to
that of FedAvg when preserve rate is no more than 0.01 as
shown in Fig. 15 (b). It shows that when combining a few
frequency-domain features to the time-domain features, the
testing performance is greatly improved over the non-overlap
local data sets.
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Fig. 15. The performance of 1D-CDCT and 2D-CDCT based Federated
Learning with different preserve rate.

When we extract the approximation information at different
decomposition levels for training, the performance of both
ID-DWT-FA and 2D-DWT-FA can outperform FedAvg when
the decomposition level is no greater than 2 over the non-
overlap local data sets as illustrated in Fig. 16 (a). However,
the performance of 2D-DWT-FA becomes much worse when
the decomposition level reaches 3 due to less information at a
higher decomposition level. Both 1D-DWT-FA and 2D-DWT-
FA achieve their best performance with first level decomposi-
tion. With the increasing decomposition level, the performance
of 1D-DWT-FA will be slightly deteriorated compared with the
large test accuracy reduction of 2D-DWT-FA. Although, the
performance of 1D-DWT-FA is better than 2D-DWT-FA on test
accuracy, 2D-DWT-FA have advantages on the overall training
time and both of them outperform the FedAvg as shown in
Fig. 16 (b). Furthermore, the 1D-DWT-FA achieves the test
accuracy near 90% in the third level decomposition with very
little overall training time which is much efficient than that of
FedAvg.

As shown in Fig. 17 (a), the performance of applying
optimizer Adam becomes much worse with non-overlap local
data sets for all FL schemes, and the transform-domain FL
schemes achieve much better performance on test accuracy
with optimizers SGD and ASGD, which are 20% higher than
that of FedAvg. The performance deterioration with Adam over
the non-overlap local data sets is due to the property of Adam
considering the historical local gradients to adjust the current
local parameter which is highly unsuitable for the scenario
where the local data sets are totally different with each other.
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Fig. 16. The performance of 1D-DWT and 2D-DWT based Federated
Learning with approximation information in different decomposition levels.
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Fig. 17. The performance of the Federated Learning with different optimizers.

The historical local gradient information can not be used to
adjust the model parameters which try to learn the knowledge
over all local data sets. Furthermore, due to the sophisticated
updating mechanism, the optimizer Adam also does not have
advantages on the overall training time as shown in Fig. 17
(D), the overall training time of both FedAvg and 2D-CDCT-
FA with Adam grow rapidly compared with optimizers SGD
and ASGD, however, the overall training time growth of 2D-
DCT-FA and 1D-DWT-FA are very slow.

100 500
loT data size

1000 1500

Fig. 18. The communication advantages.

As expected, transform-domain FL also provides consid-
erable help in alleviating the overall communication burden
among IloT devices and edge servers. As shown in Fig. 18,
where the communication burden is defined as the amount of
sample features needed to be transmitted from IloT devices
to edge servers where each feature value needs one unit
of communication resources. When we set the preserve rate
of DCT-FA as 0.1, it only needs to transmit 10% features
compared with that of the FedAvg applying the original sample
features. From Fig. 18, we observe that DWT-FA also vastly
relieves the communication burden compared with FedAvg due
to the signal compression ability of the Haar wavelets. In this
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experiment, we apply the first level DWT decomposition which
holds the largest number of approximation features but still
causing much less communication burden compared with that
of FedAvg. In consideration of time-domain and transform-
domain features combination in CDCT-FA, there is no extra
communication burden for the IoT devices, since the feature
transformation and combination is conducted in edge servers.

VII. CONCLUSION

In this paper, based on the application scenarios of edge-
enabled IoT intelligence, we propose transform-domain FL
algorithms to improve the federated training efficiency among
multiple edge servers, which provides promising application
service for various IoT devices with limited local data and
resources. Since the transform-domain features provide suf-
ficient information of the original data when reducing the
dimensionality, the satisfactory convergence is maintained.
Furthermore, the compressed frequency-domain features in-
creases the similarity among different local objectives which
is important to address the heterogeneous challenges facing
FL. Thus, the proposed transform-domain technique leads
to faster convergence and reduced communication cost. The
performance of the proposed method is also analyzed from a
series of experiments and demonstrate its advantages over the
SOTA FL algorithms with popular data sets.
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Proof: The variance of sequence {vi}1I_, is defined by
E[||ve — E[ve]|1*] = E[[|ve] ] - 2|| E[ve]||?
+ | E[ve]||? = El|lvel|*] - || E[we]]]*-
Similarly,

E[l| Y (ve = Ef))|IP] = B[ Y wel ] = || Y ElvelI*.

Using Jensen’s inequality, we have

1) (v — Elwe)|1> < Y llve — Elvd]|I?,

and the linearity of the expectation gives

E[| Y (ve — E[oe])|1?] < ) Elllos — E[ve]||?] < To”

which immediately leads to (24).
Lemma 4 If f(x) is a B-smooth and p-strongly convex
function, thus admitting

1(2) < fl@) + VF(@)" (= — ) + D|Jz — 2l 2

I) 2 [(@)+ 9 f(@)"(y - 2) + 5 lly - 2|,

then

VI(@) (2 —y) > f(z) ~ f(y) + glly —2[|* = Bllz — =||*.
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