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Abstract—Optimal scheduling for concurrent transmissions in  schemes with the explicit or implicit feedback from the
rate-nonadaptive wireless networks is NP-hard. Optimal schedd  receiver, so the instantaneous link data rate is a variable
ing in rate-adaptive wireless networks is even more difficult, determined by its received SINR. We call them rate-adaptive

because, due to mutual interference, each flow's throughput . .
in a time slot is unknown before the scheduling decision of wireless networks. When we schedule multiple flows to share

that slot is finalized. The capacity bound derived for rate- @ time slot, from the perspective of an individual flow, its
nonadaptive networks is no longer applicable either. In this performance in terms of data rate or bit error probability in
paper, we first formulate the optimal scheduling problems with  the slot might be degraded due to the interference from other
and without minimum per-flow throughput constraints. Given flows. On the other hand, with more flows sharing the time

the hardness of the problems and the fact that the schedul- . . .
ing decisions should be made within a few milliseconds, we slots, each flow might be allocated with more time slots, benc

propose two simple yet effective searching algorithms which the long-term throughput of each flow and the entire network
can quickly move towards better scheduling decisions. Thus, throughput will be improved. Scheduling for rate-adaptive
the proposed scheduling algorithms can achieve high network proadband wireless networks with random network topolsgy i
throughput and maintain long-term faimess among competing 1,5 mych more difficult than that in rate-nonadaptive syste

flows with low computational complexity. For the constrained . fi lot h flow's dat te (th hout) i t k
optimization problem involved, we consider its dual problem and in a time slot, each flow's data rate (throughput) is not known

apply Lagrangian relaxation. We then incorporate a dual update before the SChEdU”ng decision of that slot is finalized; mvhe
procedure in the proposed searching algorithm to ensure that the we add or remove one flow from the set sharing the slot, the
searching results satisfy the constraints. Extensive simulations data rate of all other flows in the set will change. The cagacit

are conducted to demonstrate the effectiveness and efficienof 4,44 derived for rate-nonadaptive networks [4] is no longe
the proposed scheduling algorithms which are found to achieve applicable either

throughputs close to the exhaustive searching results with much

lower computational complexity. Given the hardness of the scheduling problem for concur-
rent transmissions in rate-adaptive wireless systems laad t
l. INTRODUCTION fact that the real time scheduling decision should be made

Many emerging wireless networks have a mesh topokithin a few milliseconds, optimal scheduling algorithme a
ogy where nodes can communicate with each other inirapractical to deploy due to the computational cost. In this
peer-to-peer fashion. Representatives of such systerhglec paper, we propose practical heuristic scheduling algmsth
the wireless mesh networks [1], ultra-wide band (UWBthat can achieve significantly better performance than the
or millimeter-wave (mmWave) based wireless personal areaisting solutions with tolerable computational compiexi
networks (WPANSs) and home networks [2]. In these systems,The main contributions of this paper are as follows. Firgt, w
because of the multi-user interference (MUI) of concurrefidrmulate an optimal scheduling problem aimed to maximize
transmissions, how to improve the system performance the network throughput and maintain long-term fairnessragno
scheduling concurrent transmissions appropriately isman icompeting flows. We decompose the problem and propose a
portant and challenging issue. simple searching algorithm which can quickly move towards

In a narrow-band rate-nonadaptive wireless system, edwdtter scheduling solutions. Thus, the scheduling deatisio
flow can successfully transmit at a specified data rate san achieve high throughput and maintain long-term fagnes
long as the received signal to interference and noise raBecond, in the case that each flow has a short-term minimum
(SINR) is greater than a certain threshold. In this cas@ntet service rate requirement, we formulate a constrained @btim
more flows transmit concurrently without violating theilN&  scheduling problem. To satisfy the constraints, we comgive
requirements implies that a higher system throughput can dheal problem and apply Lagrangian relaxation. We incorjgora
achieved. The optimal scheduling problem for this case ean & dual update procedure in the proposed searching algorithm
converted to a Knapsack problem which is known to be N ensure that the searching results satisfy the consraint
complete [3]. We have seen a great deal of research effortdHinally, extensive simulations are conducted to demotestra
determining the system capacity and optimizing the comaurr the effectiveness and efficiency of the proposed scheduling
scheduling for such systems. algorithms which are found to achieve throughputs close to

In most broadband wireless systems, however, the physitta exhaustive searching results and ensure fairness.

(PHY) layer uses adaptive modulation and coding (AMC) The rest of the paper is organized as follows. Section Il



introduces the related work, and the system model is predentelaxation was studied in [15]-[17] to solve the dynamiccspe

in Section IIl. In Section 1V, the unconstrained and corisgd trum management problem in digital subscriber line (DSL)
optimal scheduling problems are formulated. The corredporsystems. Yu and Lui [16] first discovered the zero duality
ing heuristic scheduling algorithms are proposed in Sectio gap under the so-called time sharing condition. Subsetyient
Simulation results are presented in Section VI, followedh®y Luo and Zhang [17] rigorously proved some results for the

concluding remarks in Section VII. continuous Lebesgue integral formulation. However, theé-op
mal algorithms proposed in [16] is of very high computationa
Il. RELATED WORK cost, and they do not consider the fairness and minimum flow

throughput requirements.
The joint scheduling, routing, and flow-rate control prob- |n this paper, we apply the duality theory for the constrdine
lem has been heavily investigated [5]-[7]. These work emptimization problem and propose scheduling algorithnas th
ployed a conflict graph to bound mutual-interference whegte computationally feasible and found to achieve good per-

scheduling concurrent transmissions. However, this @miro formance for both system throughput and fairness.
is not suitable for rate-adaptive wireless systems wheee th

transceiver can adjust the link data rate to tolerate differ
levels of interference. References [8] and [9] considertd-r A. Network Structure
adaptive wireless networks, but they focused on the minimumyye consider a wireless network with a set o active

power allocation problem and the application-rate ass@mm nodes, A/, randomly deployed in a region. These nodes are
problem instead of the throughput maximization problem Weyided into two disjoint sets, namely the transmitter Set
consider here. and the receiver sét. The two sets have the same cardinality
As most broadband wireless systems adopt adaptive moggt — |c| = 1IN = N. One transmitters; in S and one
lation and coding schemes, concurrent scheduling probtem feceiverc; in C form a communication paifs;, ¢;) (flow 7).
rate-adaptive wireless networks begins to attract atienth  The instantaneous data rate of flawis determined by the
[10], [11], based on the concept of “exclusive region” [12]seceived SINR.
several heuristic scheduling algorithms with polynomiedé  We consider the scenarios in that wireless devices can di-
complexity were proposed. In their work, each receiver @sfinrectly communicate to or relay for each other in a peer-terpe
an exclusive region, and flows are scheduled to transmikhion, i.e., the network has a mesh topology. For pretienta
concurrently only if the senders are outside the exclusése fclarity, in what follows we use |IEEE 802.15.3 UWB WPANSs
gions of other receivers. By allowing concurrent transioiss to describe the scheduling problem. Our approach can be
without violating the exclusive region conditions, thewetk applicable to other wireless systems with a mesh topology.
throughput can be made much higher than that with the timeAccording to the IEEE 802.15.3 standard, several wireless
division multiple access (TDMA) scheme. However, usingevices can autonomously form a piconet in which one of the
exclusive region cannot guarantee the optimal searching flbdes should be selected as the piconet coordinator (PNC).
rection. In addition, how to constrain the scheduling dedis The system model of a piconet is shown in Fig. 1. The system
(such as to guarantee the minimum flow throughput) has n@les a superframe structure in the time domain, where each
been addressed. superframe consists of three phases: the Beacon period (BP)
In [13], a novel quadratic lower bound for the capacity ofor network synchronization and control messages broadcas
single flow was employed and such approximation is involvesy the PNC, the contention access period (CAP) for devices
in the dual problem of the primal non-convex optimizatiosending requests to the PNC using the carrier sensing rieultip
problem, where certain constrained sub-problems were thastess/collision avoidance (CSMA/CA) MAC protocol, and
solved. However, the computational complexity of the aphe channel time allocation period (CTAP) for data transmis
proach isO(n32™) which is too high for real time schedulerssions among devices in a peer-to-peer fashion. The CTAP
Besides the wireless network scheduling, there are prablenontains several channel time slots. Currently, TDMA isduse
in other communication and networking systems with simildo allocate each time slot to a specific flow, i.e., each tiroe sl
mathematical models. In [14], Lee et al. studied the optamizis occupied by one flow exclusively. Without loss of gengyali
tion and rate control problem for multi-class services ia thwe assume that the number of time slots in a superframe
Internet, aimed to maximize the utility function which magtn equalsN, and the scheduler (the PNC) makes a scheduling
be concave (i.e., non-convex minimization). They showed thdecision for every superframe. The TDMA scheduling scheme
rate control algorithms based on the dual method by a prcing easy to implement, but it is inefficient for high data rate
based mechanism, developed for concave utility functian, cwireless systems such as UWB systems. This is because it
be used for problems with non-concave utility function. ifhecannot utilize the spatial multiplexing gain of wirelessroou-
problem is still simpler than the scheduling problem to beications [10]. Thus, novel scheduling algorithms are eeed
investigated in this paper. This is because their non-agncdo exploit the spatial reuse capability of broadband wasgle
utility functions are chosen to be sigmoid-like which are naetworks to improve network throughput. In other words, the
difficult to evaluate, compared to our non-concave objectischeduling algorithms should be developed to allow comecuirr
function (for flow date rate under MUI). Lagrangian duatransmissions appropriately. On the other hand, the sédedu

Il. SYSTEM MODEL



Rx,

to that from scheduling. Thus we assume that each sender uses
R the maximum power leveP,; for transmission. Considering
3 Tx . .
! both the path-loss and log-normal shadowing, the received
o signal or interference power of; from senders; can be
T, fo\ '~ T, expressed a®}’ = kG, ;P.d;], wherex = 107L(0)/10
5‘ is the constant scaling factor corresponding to the reteren
RX, ; path-loss.
! Rx, Denote byN, the white Gaussian noise power. The received
SINR of ¢; is then given by
Fig. 1: System model of a piconet. SINR Ppii wGi i Pd; )
. li ] -
(the PNC) may be a normal wireless device with limited No +bz#i Er N0+b2#i WG B (3)

computation power. To make a scheduling decision for evephere) denotes the MUI factor and it is related to the cross-
superframe (with duration arour8d ms), the computation cost ¢correlation of signals from different users.

of the scheduling algorithm should be sufficiently low. For flow i, the achievable data rate can be estimated
B. Physical Layer Model according to Shannon’s channel capacity?as= nW log, (1+

h i chall ¢ ft . hed I_SINRi), where IV is the signal bandwidth ang € (0,1)
€ main challenge of concurrent transmission SCheAulig o coefficient describing the efficiency of the transeeiv

lies in the management of MUI. To maintain the transmissiodﬁesign In a practical system, the number of transmissitas ra
qL_Jallty (ensuring t_he BER below certain threshold), W|du1_)a supported is finite, so the sender sets the transmissioriaate
wireless communication systems can adjust the transmissjo." largest one no larger tha®). Here, we simplify the
configuration according to the received SINR, e.g., by tgni ' '
the modulation and coding schemes.
The received SINR are affected by path-loss, shadowing, IV. SCHEDULING PROBLEM FORMULATION

multipath and other wireless channel impairments. As it is For time slotk, the scheduling decision can be represented
difficult if not impossible to obtain the instantaneous ahen by a control vectol/;, = [ug.1 uko --- uk ], Where variable

conditions of all flows, the scheduling decisions are based g, ; controls the channel access of flowvith uy ; = 1 if flow

the average link throughput mainly affected by path-loss$ ap is scheduled to transmit in sldt, andu,; = 0 if i is idle

large-scale fading/shadowing, as discussed in [18]. ThedcC in slot k. Denote byR, ; the throughput of flow in slot k,
uler assumes that the network topology and channel conditiqye can write

remain unchanged during the period of each superframe, and I
it has the knowledge of them. This assumption is acceptabler, ; = 4V - log, (1 + Rl i —). (4)
for UWB mesh networks with low user mobility. No + b3, uk kGriPed; ]

The path-loss at distanaéin dB can be estimated usingynger these circumstances, the primary design goal of

the following model the scheduling algorithm is to determine the optimal
Uy, U,,...,Uyx to maximize the system throughput.
To maximize the total throughput, we first formulate the
scheduling problem as an unconstrained optimization prabl
Problem 1: (P1)

rbroblem by assuming the sending rate equak}o

PL(d)[dB] = PL(do)[dB] + 10 logw%» 1)

where~ is the path-loss exponent, ardel(d,) is the path-
loss at reference distandg. PL(dy) can be calculated by the

Friis free-space equation N N
: Ry 2 2 e ©
gitgrv Uk,i s 1 i—
PL(do)[dB] = 10'10&0((117?)%)7 2 k=1i=l
0

The optimization problem (P1) is a nonlinear integer pro-
where v is the wavelength corresponding to the center frgramming problem. One possible approach solving (5) is to
quency, L is the system loss factor, ang and g, are the relax the integer variables to continuous ones, and use opti
transmitter and receiver antenna gain, respectively. mization tools to solve the approximated problem. However,
The effect of shadowing can be described using the logven the approximated problem is difficult to solve, sinse it
normal shadowing model [19]. Denote b¥; ; the fading gain objective function is not necessarily concavelip. This is
due to shadowing from sendey to receiverc;. The dB value because the first term of the Hessian matrix of the objective
of G, follows a normal distribution with zero mean. Assuméunction can be negative. There is no existing software to
that the scheduler knows the shadowing gain for each flogffectively solve the non-convex optimization problem.
G, Vi. For unknownGj ;'s, the scheduler just sets them to The optimization problem (P1) is more difficult than the
one. optimal single slot scheduling problem for rate-nonadegpti
As pointed out in [12], in terms of throughput, the benefit ofietworks, which can be reduced to0al Knapsack prob-
power control in UWB wireless systems is marginal compardem [3]: Consider the case where the data rate of each flow



in a slot, corresponding to the profit of items in the knapsacecompose each problem into several smaller decision prob-
problem, is fixed so long as the total interference is smalllams to reduce the computational complexity. The technical
than a threshold. Items (flows) can be added into the knapsaghails of our approach are described in the following secti
(allocated to use the slot). The objective is to maximize the
total profit (total throughput) with the weight (interfeies)
constraints. It is well-known that the Knapsack problem is In this section, we present our solutions for both the un-
NP-complete [3]. The problem we investigate here is hardé@nstrained and the constrained optimal scheduling pnudle
than the Knapsack problem, since the profits of items (floi@sed on a single-flip global-search algorithm (S-GSA) and a
throughput) will change according to the selected subsefial optimization method.

It results in the hardness of this scheduling problem, and A Single-flip GSA Algorithm

the existing approximation algorithms for Knapsack praotse . : . .
cannot be used for our problem. It is difficult to approximate the unconstrained scheduling

In addition, it is obvious that the optimal algorithm (ifp_robl_ems (P1) and (P2), due to the data rate adaptation: Con-
exists) for (P1) will lead to a biased solution, i.e., all th§'dering the hardness of the problems and that a scheding a
resources (time slots) will be allocated to those flows wiC!Ithm needs to be executed with very limited time (typical

better channel conditions while some unlucky flows will pd! the order of milliseconds), we develop heuristic a.lgms
starving. that offer good performance with tolerable complexity.

To ensure long-term faimess among competing flows, LS§/Intumvely, the optimal scheduling resulf* can be found

employ a control parameter based on the weighted fair quelY. evaluating the system throughput for all the scheduling
ing [20] as ecisions (the states) in the searching spgdcé&uch a brute

force global search algorithm (GSA) is not feasible since
— , (6) the induced computation load grows exponentially w.r.& th
(et B +€)° multiplication of the number of flows and the number of
wheree is a small positive scalar to prevent zero denominatdiots. The inefficiency of GSA is mainly caused by the huge
w; is a weight for flowi to provide differentiated services, ancdsearching space that includes many undesirable candidates
a(> 0) is a parameter to make a tradeoff between fairne$§erefore, to develop a practical search algorithm, theikey
and network throughpub may be considered as the dynam|é0 find a better state in each SearChing Step eﬁlCIently,eNhll
weight of each flow determined by the scheduling scherfiéscarding those undesirable ones.

V. SCHEDULING ALGORITHM DESIGN

Wy

Pk—1,i =

up to (k — 1)th time slot, Uy, Us,--- ,Uix_;. The optimal Since the scheduling problem has a decomposed structure
scheduling problem considering the long term fairness can nin the time domain, instead of optimizing all th¥ flows
be formulated as in N time slots simultaneously, we solve the problem in an
Problem 2: (P2) iterative manner by reducing the searching space of thesstat
NN frorrk]lQN‘Ig to 2VV. In this way, each step of the scheduling
roblem becomes
e {01} ;2%’“ B @ ° Problem 4: (P4)
—1i= .
where initially po ; = 1/e. max Zpkfl,ileW (10)

With a large value ofa, flows with less accumulated €105
throughput in the previous slots have larger values,080 Another advantage of this approach is that it maintains
they have a better chance to transmit in the following skusl, the long-term fairness among competing flows, because the
better fairness can be achieved. When= 0, the scheduler dynamic weight of each flow;_; ; depends on the scheduling
allocates resources to flows without considering the hjistodecisionsUy,Us,--- ,U,_1 in the pastk — 1 time slots,
and thus it ignores the fairness requirement. thus the iterative allocation structure allows us to updhee

For the cases where a minimum throughgtjt,, of each weights slot by slot.

flow needs to be ensured, the optimal scheduling problem withNote that the decomposed version of the scheduling problem

the constraints is formulated as (P4) is still non-convex and NP-hard. To improve the efficien
Problem 3: (P3) of the GSA, in each searching step the state should move
N N towards a better one. For our problem, the metric to dete¥min
max Z Zpk—l,i - Ry, (8) Whether or not the scheduling stdtg is better thariJj, is the
up,i€{0,1} = = corresponding system throughputs. For fast convergenee to

N better state, we propose a single-flip scheme as follows. If
s.t. ZRk,i > R, Vi (9) the profit of adding flowi is greater than the degradation of
k=1 throughput it causes to other pre-selected flows, this flollv wi
be temporarily added (flip ; from zero to one); otherwise,
To deal with the NP-hard optimal scheduling problems (Plthis flow will be temporarily removed (flip:x ; from one to
(P2) and (P3), we use a dynamic programming approach. \A&ro).



Based on this idea, below we propose the single-flip glob@l the difficulties for the scheduling problem. With the pre-
search algorithm (S-GSA). For the-th time slot, we first vious S-GSA algorithm, some unlucky flows cannot get the
initialize the scheduling vectot/, = 0 and calculate the minimum throughput required, even the long-term fairness
weighted fair queuing coefficienigk — 1,i). Next, the local is considered. This is because, in the rate-adaptive \sgele
optimal valueu; ; is evaluated. To this end, we lef, ; be0 networks the total throughput can be achieved is unknown
or 1 while keeping all the other variables, o, u; 3,--- ,ur,ny  (unlike many other scheduling or job-assignment problems)
fixed, and choose the value af, ; according to the superior and proportional fairness among flows cannot guarantee a
weighted sum of all flows’ data rates i},. The same criterion minimum throughput of a flow.
is used to sety, » while keeping all othem;, ; (i # 2) fixed. This motivates us to develop efficient algorithms for ef-
All other variablesuy, 3, uy 4, - - u,, v are locally optimized fectively enforcing the minimum throughput constraintsirO
in a similar manner. The above process is repeated Until approach here is to consider a dual problem and apply La-
converges (i.e., no flip of single, ; will result in a higher grangian relaxation. The basic idea in Lagrangian duaityi
weighted sum of flow data rates). A step by step descripti@onsider all the constraints of the primal problem by augmen

of the S-GSA algorithm is shown in Algorithm 1. ing the original objective function with a weighted sum oéth
constraint functions. Lagrangian duality has also beed bye
Algorithm 1 Single-flip GSA (S-GSA) several authors for communication system optimizatiorj{14
1: initialize the dynamic weight of each floy ; = * V i; [16]. Similar to the approach in _[16]' we employ the S'GS_A
2: for k = 1 to N (time slot)do to decompose the problem to find local optimal scheduling
3. updatepr_1,; = wi/(zf: Ry + €) for each flow based variableuy, ;. Different from [16], we also employ a dynamic
onUy,Usz, -+, Uk weight to each flow for maintaining long-term fairness.

g_ irgisggfe the vectorUx = 0 Using duality variables ensures that the solution locates i
6
7

for i — 1 to N (i is the flow index)do Fh_e fe_a_sible_regioh (thus_ satisfying 'ghe constraints)._bm,
setuy, ; according to it is difficult if not impossible to obtain the global optimab-
' lution of the primal problem, which can be obtained only &th

N . o .
arg max {pn_1.: Res + Z oot Res} numper of t|m_e_ slots goes to |ﬂ_f|p|t67(—> oo) under thg time-
ug ;€40,1} T sharing condition [16] or the jointly concave condition [17

Hence, our algorithm is not aimed at the optimal solution of
8: end for . ; L . .
. the duality variables and it will terminate when the corista
9 until Uy = [uk,1 uk,2 -~ ur,n] CONVerges o . L
10: end for o ’ are satisfied, so the computational complexity is signitigan
reduced. Considering the constrained optimization prable

The proposed S-GSA algorithm reduces the exponentf&3): We follow the definition of Lagrangian dual [21] and
searching complexity for each slot frad to O(71 N'), where take the ngranglan fu.nctlon as our opjectlve function. The
T, is the number of iterations fai, to converge. The value COrresponding Lagrangian function is given by
of T3 is typically smaller than the polynomial function of.

From the simulation results of a network with up4o flows, N N N N ,

T, was found to be smaller than Thus, the computation load L(U; ) = SN kv Bei+ Y MDD Rii — Riyil-

of S-GSA is feasible for making realtime scheduling decisio k=11i=1 =1 k=1 (11)
RemarksThe S-GSA algorithm ensures that we cannot ggf, .\ — [\ As --- An] is the Lagrangian dual variable.

a better scheduling solution by adding or removing one flow Define the dual functioy()) as the maximization of the
to share the time slot. However, it is possible to get a bettE

solution by adding or removing two or more flows. Therefore,5granglaln function
the S-GSA only finds a locally optimal solution and cannot g(A) = max L(U; \), (12)
ensure the global optimality of the solution. On the othercha v

for each time slot, an individual flow that is not schedule@nd the Lagrangian dual optimization problem can be formu-
to transmit is considered unfavorable (namely, adding It wiated as

reduce the total throughput), and the profit of adding a gafup ~ Problem 5: (P5)

such unfavorable flows is statistically low. Similarly, &dtow min  g(\) (13)
being scheduled to transmit in the slot is considered fdlera
(namely, removing it will reduce the total throughput), the

profit of removing a group of such favorable flows is also . ) )
low. If the primal problem (P3) is convex, then the duality gap

is zero and the maximum value of the primal problem (P3)

B. A Scheduling Algorithm for Constrained Problem Using gnd the minimum value of the dual problem (P5) converge
Dual Method at the same optimal solution. If the primal problem is non-

In this section, we present an algorithm for the constrainednvex, the dual problem provides an upper bound, which is
optimal scheduling problem (P3). The constraints give ris®t always tight, for the primal solution. However, the dual

st. A >0 Vi (14)



problem is always convex w.r.t\ regardless of the primal optimization problem is then obtained by combining the S-

problem. This allows a direct optimization g{A) by some GSA and the dual update technology. The proposed algorithm

dual update methods. The main idea here is to minim{2¢ is named Single-flip Dual-update GSA (SD-GSA) described

by updating all components of along a specific direction in Algorithm 2.

which can be found using the existing optimization tools.
To this end, the gradient descent method is employed (su#dgorithm 2 Single-flip Dual-update GSA (SD-GSA)

gradient for the non-differentiable case), and the updating. isitialize the dynam,C weight of each flow; = L V i

direction corresponding ta; is given by 2:setA’ = (A2, 09, -+, A%)
3: repeat
ZR _ (15) 4: for k =1to N (time slot)do
ki~ Biin) 5: updatep,_1,; = w;/( Rl i +¢)< for each flow based
on U17 UQ, s ,Uk—l
Next, we update aII\s along their gradient descent direc- 6: initialize the vector;, = 0
tions with a step sequeneé. Considering\; > 0, the update 7 for i = 1to N (flow index)do _
; 8: sum up the data rate of flow in the time slots up to
is performed as k—1
k—1,Sr, =) ,_, Rui
9: if Sr, > RL;, then
AL — max (0, AL — ZR;“ — R (16) 10: set; =0
11: else
. . 12: set@; =1
where s' is a scalar sequence and is square summable [223; end if
Here, we choose' = 1/I as the update step size. Ideally14: end for
we can employ this algorithm to obtain the optimal solut|0|3\5f repeat

for i = 1 to N (flow index) do

of the dual problem and then solve the primal problem witte :
setuy ; according to

the leverage of the dual problem. However, evaluating the’
dual objective function, which is to maximize the Lagramgia max  {(pr—1, + BiXi) Ri,i
function to all \, is difficult if not impossible. Nevertheless, i€l
the dual problem is still very important to ensure that the

N
+ —1,0 + BiA)R
solution is feasible when we use the S-GSA algorithm for the Z (Prvi+ i) Bietd

. . . . 1=1,l#1
constrained scheduling problem, sintenay further increase

. . 8 end for
the weights of those starving flows. In what follows, we until Uk = [up1, wes, -, uen] CONVrge
employ a local search algorithm to approximately evalua¢e to).  and for F oy B2 BN
dual objective function 21: update) using equation (16)

22: until all the constraints are satisfied.

g(\) = max L(U; )

N The computational complexity of the SD-GSA is
ngX{ZZPk—u "Ry O(T>TyN?). It is higher than S-GSA due to the update
k=1i=1 of A. The inner-loop of SD-GSA is used for evaluating
N N ‘ g(N), similar to S-GSA, and it has the same computational
+ ZMZ Rii — Rininl} complexity as S-GSAQ(T,N?). The outer-loop is used to
=1 kzl update the dual variables.
N From our simulations, we note that the network performance
Z X{Z Pr—1,i T i) Biei} — ZA Ripin- degrades if the outer-loop is terminated too early. This is

k=t =1 (17) because a larger value of will give the flows with worse

Since the scheduling problem has a decomposed struct&*éa””el conditions more resources than their requirements

we set so the whole network throughput will be reduced. To avoid
the network throughput degradation and ensure the minimum
g(\) = maX{Z Pr—1,i + Xi) R} (18)  requirement of each flow; is multiplied by a parametes;,
boisl and j; is set to zero if the minimum throughput requirement

and the S-GSA algorithm can be modified to locally optimizef flow i has been satisfied, an] is one otherwise. Conse-
g(\). Different from the original S-GSA algorithm, we needquently, \; does not play a role in the following time slots
to use the dual update to ensure our solution is feasible, ifethe minimum throughput requirement of flowis satisfied.
the minimum throughput requirements are satisfied. OblgpusOnce a feasible solution is obtained, the outer-loop itemat
A; increases if the constraint of flowis violated. In (18), terminates, so the number of iterations of the outer-loap ca
the throughput of each flow is multiplied bip,_1; + A;). be much less than that in [16] which is a polynomial function
Thus, the flows with a larger value af get larger weights. In of N. From the simulations of a network with up 40 flows,
the following iteration, these flows will have a better chancthe iteration number for the outer-lodf, was found to be
to get resources. A sub-optimal solution of the constrainethaller thanl0.
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TABLE [: Simulation Parameters | [ TOMA A
Bandwidth M/) 1 GHz 300 | —+ Ex-region : !,.:” i
Center frequencyjt.) 5.092 GHz ---g--- S-GSA =0 [
Transmitting power ;) 0.0397 mw || S-GSA a=0.4 ,,
Noise power Vo) 3.9811 x 107 mW 5| e 5.05A 0s06 A
Large-scale shadowing parametei;( 4.3 = 0o S.GSA om o o
Path-loss exponentj 4 8 200} O
MUI factor (b) 0.1 E
ﬁ 150+
[0]
£
VI. PERFORMANCEEVALUATION AND DISCUSSION 2 100k
A. Simulation Setting
In the simulation, we set a UWB network with random o
network topology. In the network, all nodes were randomly
. . . . 0
deployed in al0 x 10 m? region and the communication 0 Number of Flows
pairs were selected randomly, i.e., randomly selected ode n
from the sender set and one from the receiver set to form a Fig. 2: Normalized network throughput.

communication pair. The shadowing gain from each sender
to any receiver was generated randomly according to the log-
normal distribution. All flows have the same weight;(= 1). that a larger value ofv will give the starving flows larger
Let all senders use the same transmission power level {geignts, thus more time slots will be allocated to the flows
transmission. Given the location of each node, the Signgith had channel conditions. When the valuexd moderate,
and interference power were calculated based on the physi¢a) ndo.4 to 0.6, the network throughput using the S-GSA
layer model discussed in Section Ill. A typical physicalday ajgorithm is much higher than that with the exclusive region
parameter setting of UWB systems was adopted, as shopdkeq algorithm, and both algorithms are found to achieve
in Table I. The parameter values are the same as thQ§gijlar fairess level. The throughput with S-GSA increase
in [10], except the MUI factor, as in some practical systemgiih network density, and it can outperform TDMA and the
the MUI factor might be larger than the one used in [10byclysive region based algorithm Hp00% and 100% with
Hence, we used_a Iarger MUI factor in s!mulanon. We testeq flows, respectively (withw = 0.4). The major weakness of
our algorithm with different node density, by varying thgne exclusive region based algorithm is that the procedure t

active node number from (2 flows) to 80 (40 flows). For gelect the concurrent transmission subset is not guachitee
each density (with the same number of flows), we repeatgchch a petter scheduling state.

1000 times using Monte Carlo simulations, and calculated theAS shown in Fig. 3, the faimess index with all of the
average results with different network topologies and legg scheduling algorithms including TDMA are low. This is

Cha””?'s- L i because the received signal powers of different flows vary
We |mplgmented the hgunsuc a'QO”thm based on the e§1’gnificantly, so their throughputs have large variatiorev
clusive region proposed in [10], since, to the best of O\hen there is no mutual interference. On the other hande ther
knowledge, it is the best algorithm so far solving the same »yavs a tradeoff between throughput and faimess, aad th

concurrent scheduling problem. The exclusive region Si%\%vantage of S-GSA is that we can adjust the parameter
was set to2 meters, which is the optimal value calculatecﬁexib'y make the tradeoff

according to the analysis in [10]. We used the same networ

. . . As we mentioned before, the S-GSA guarantees local op-
configurations to compare the performance of all scheduli

- rtllgnality only. To further improve the system throughput, we
algorithms. . -
may use a more complex global search algorithm by flipping

We investigate two performance metrics, the total netWOmuItipIe variables irUj, to find a better state till/;, converges.
throughput and the fairness index. To show the performan nsider the case of flipping two variables G, and call it
gain, network throughputs are normalized to the avera ot i . i ’
throughput of the case that there are two flows in the netwo?lfume flip GSA (D-GSA). With D-GSA, the states of two

i : ows are changed simultaneously, and the one resulting in
scheduled by the TDMA scheme. Fairness |steasured by & largest network throughput among all of the four possibl

[23]. choices is chosen. From Fig. 4, D-GSA is found to achieve
=1 marginal improvement compared to S-GSA. However, the
B. Performance of Scheduling without Constraints computation complexity of D-GSA i§(T5N2) where T} is
We first evaluate the performance of the S-GSA algoriththe number of iterations used for convergence, and it isfarg
for the unconstrained scheduling problem (P2) with différethan’.
node density and different value of We next investigate whether exhaustive search the optimal
As shown in Figs. 2 and 3, the throughput degrades: asU,, will result in significant improvement in total throughput
increases while the fairness has a reverse trend. This&ibec or not. We compare the performance of the per-slot brute-

widely used Jain’s fairness index, defined
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Fig. 3: Fairness index. Fig. 4: Normalized network throughput.

0.8

force exhaustive searching algorithm and that of the pregos T Evegion
S-GSA and D-GSA algorithms in Figs. 4 and 5. The brute- | \ oS
force searching algorithm searches all of #7& combination \

of uy, for each slot, and choose thg; which leads to
the maximumy_. pr_1; - Ri,:. The figures show that the
performance gap between the S-GSA and the global optimal
solution is marginal.

Surprisingly, the network throughput using the brute-orc
searching algorithm is sometimes even lower than that using ..}
the S-GSA or D-GSA when the value ofis positive. This is
because, with the long-term fairness factgthose flows with
worse channel conditions got larger weights. Although the
brute-force algorithm finds the weighted optimal throughpu
per-slot, summing up the maximum weighted throughput of ~ “%
each slot does not necessary lead to global optimal in terms
of total throughput of multiple slots. Whenis zero, the brute- Fig. 5: Fairness index.
force searching result can lead to the global optimum. But in
this case, all slots might be allocated to the same subset of

flows, so the remainder flows might starve. SD-GSA, more time slots are allocated to the flows with low

It is not feasible to obtain the the global optimal results byscejved signal power to satisfy their minimum throughput
brute-force searching a space f*V states. We conjecture requirements, so the total network throughput is degraded.
that the performapce 'improvemgnt will be marginal as 'weII. The minimum flow throughput requirements cannot be arbi-
Another observation is that, with the proposed algorithmg,yily set since the data rates of some flows with bad channel
the network throughput increases w.rt. the number of flowgditions are very low even without interference. Thusg, th
much faster than that predicted in the capacity bound fer rafsinimum throughput requirements should be carefully set to
nonadaptive networks [4]. be feasible. In the simulation, we udel5 times the flow
throughput achieved using the TDMA scheme as the minimal
throughput requirement, so the requirement could be feasib

Next, the performance of SD-GSA for the constrained.h.p. In general, it is difficult to evaluate whether or not
scheduling problem is evaluated. In SD-GSA, the dual methtlte throughput constraints are feasible, since the dataafat
is employed to solve the constrained non-convex optinonati each flow depends on the network topology and the scheduling
problem. The Lagrangian dual variables are used to ensudegision. What is the capacity of the rate-adaptive wireless
that all the constraints are satisfied. network is still an open issue.

Using SD-GSA, simulation results show that the minimum Fig. 7 shows the minimal flow throughput among all
throughput requirements of all flows are satisfied; howeter, competing flows. The results show that the minimal flow
overall network throughput degrades slightly comparechwithroughput with SD-GSA can b&0% higher than that with
that with S-GSA, as shown in Fig. 6. This is because, witRDMA, so it can achieve better max-min fairness.
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C. Performance of Scheduling with Constraints
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[16]
VIlI. CONCLUSION
[17]

In this paper, we have investigated the scheduling problgmg,
for concurrent transmission in rate-adaptive wirelessvoeks.
For the unconstrained and constrained scheduling proble g]
we have proposed simple yet effective S-GSA and SD—GEESO]
algorithms. Extensive simulation results have shown that t
proposed scheduling algorithms significantly outperfoima t 21]
previous heuristic algorithm. With much lower computatim[]
cost, the proposed algorithms are found to achieve thrautghp[22]
close to the exhaustive searching results. Given the pofyula
of rate-adaptive PHY layer technologies in wireless systenyys;
more research work is beckoned to investigate the capatity o
rate-adaptive wireless networks and to design effectiesser
layer resource management schemes for them.
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