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Abstract—Optimal scheduling for concurrent transmissions in
rate-nonadaptive wireless networks is NP-hard. Optimal schedul-
ing in rate-adaptive wireless networks is even more difficult,
because, due to mutual interference, each flow’s throughput
in a time slot is unknown before the scheduling decision of
that slot is finalized. The capacity bound derived for rate-
nonadaptive networks is no longer applicable either. In this
paper, we first formulate the optimal scheduling problems with
and without minimum per-flow throughput constraints. Given
the hardness of the problems and the fact that the schedul-
ing decisions should be made within a few milliseconds, we
propose two simple yet effective searching algorithms which
can quickly move towards better scheduling decisions. Thus,
the proposed scheduling algorithms can achieve high network
throughput and maintain long-term fairness among competing
flows with low computational complexity. For the constrained
optimization problem involved, we consider its dual problem and
apply Lagrangian relaxation. We then incorporate a dual update
procedure in the proposed searching algorithm to ensure that the
searching results satisfy the constraints. Extensive simulations
are conducted to demonstrate the effectiveness and efficiency of
the proposed scheduling algorithms which are found to achieve
throughputs close to the exhaustive searching results with much
lower computational complexity.

I. I NTRODUCTION

Many emerging wireless networks have a mesh topol-
ogy where nodes can communicate with each other in a
peer-to-peer fashion. Representatives of such systems include
the wireless mesh networks [1], ultra-wide band (UWB)
or millimeter-wave (mmWave) based wireless personal area
networks (WPANs) and home networks [2]. In these systems,
because of the multi-user interference (MUI) of concurrent
transmissions, how to improve the system performance by
scheduling concurrent transmissions appropriately is an im-
portant and challenging issue.

In a narrow-band rate-nonadaptive wireless system, each
flow can successfully transmit at a specified data rate so
long as the received signal to interference and noise ratio
(SINR) is greater than a certain threshold. In this case, letting
more flows transmit concurrently without violating their SINR
requirements implies that a higher system throughput can be
achieved. The optimal scheduling problem for this case can be
converted to a Knapsack problem which is known to be NP-
complete [3]. We have seen a great deal of research efforts in
determining the system capacity and optimizing the concurrent
scheduling for such systems.

In most broadband wireless systems, however, the physical
(PHY) layer uses adaptive modulation and coding (AMC)

schemes with the explicit or implicit feedback from the
receiver, so the instantaneous link data rate is a variable
determined by its received SINR. We call them rate-adaptive
wireless networks. When we schedule multiple flows to share
a time slot, from the perspective of an individual flow, its
performance in terms of data rate or bit error probability in
the slot might be degraded due to the interference from other
flows. On the other hand, with more flows sharing the time
slots, each flow might be allocated with more time slots, hence
the long-term throughput of each flow and the entire network
throughput will be improved. Scheduling for rate-adaptive
broadband wireless networks with random network topology is
thus much more difficult than that in rate-nonadaptive systems:
in a time slot, each flow’s data rate (throughput) is not known
before the scheduling decision of that slot is finalized; when
we add or remove one flow from the set sharing the slot, the
data rate of all other flows in the set will change. The capacity
bound derived for rate-nonadaptive networks [4] is no longer
applicable either.

Given the hardness of the scheduling problem for concur-
rent transmissions in rate-adaptive wireless systems and the
fact that the real time scheduling decision should be made
within a few milliseconds, optimal scheduling algorithms are
impractical to deploy due to the computational cost. In this
paper, we propose practical heuristic scheduling algorithms
that can achieve significantly better performance than the
existing solutions with tolerable computational complexity.

The main contributions of this paper are as follows. First, we
formulate an optimal scheduling problem aimed to maximize
the network throughput and maintain long-term fairness among
competing flows. We decompose the problem and propose a
simple searching algorithm which can quickly move towards
better scheduling solutions. Thus, the scheduling decision
can achieve high throughput and maintain long-term fairness.
Second, in the case that each flow has a short-term minimum
service rate requirement, we formulate a constrained optimal
scheduling problem. To satisfy the constraints, we consider the
dual problem and apply Lagrangian relaxation. We incorporate
a dual update procedure in the proposed searching algorithm
to ensure that the searching results satisfy the constraints.
Finally, extensive simulations are conducted to demonstrate
the effectiveness and efficiency of the proposed scheduling
algorithms which are found to achieve throughputs close to
the exhaustive searching results and ensure fairness.

The rest of the paper is organized as follows. Section II



introduces the related work, and the system model is presented
in Section III. In Section IV, the unconstrained and constrained
optimal scheduling problems are formulated. The correspond-
ing heuristic scheduling algorithms are proposed in Section V.
Simulation results are presented in Section VI, followed bythe
concluding remarks in Section VII.

II. RELATED WORK

The joint scheduling, routing, and flow-rate control prob-
lem has been heavily investigated [5]–[7]. These work em-
ployed a conflict graph to bound mutual-interference when
scheduling concurrent transmissions. However, this approach
is not suitable for rate-adaptive wireless systems where the
transceiver can adjust the link data rate to tolerate different
levels of interference. References [8] and [9] considered rate-
adaptive wireless networks, but they focused on the minimum
power allocation problem and the application-rate assignment
problem instead of the throughput maximization problem we
consider here.

As most broadband wireless systems adopt adaptive modu-
lation and coding schemes, concurrent scheduling problem for
rate-adaptive wireless networks begins to attract attention. In
[10], [11], based on the concept of “exclusive region” [12],
several heuristic scheduling algorithms with polynomial time
complexity were proposed. In their work, each receiver defines
an exclusive region, and flows are scheduled to transmit
concurrently only if the senders are outside the exclusive re-
gions of other receivers. By allowing concurrent transmissions
without violating the exclusive region conditions, the network
throughput can be made much higher than that with the time
division multiple access (TDMA) scheme. However, using
exclusive region cannot guarantee the optimal searching di-
rection. In addition, how to constrain the scheduling decisions
(such as to guarantee the minimum flow throughput) has not
been addressed.

In [13], a novel quadratic lower bound for the capacity of
single flow was employed and such approximation is involved
in the dual problem of the primal non-convex optimization
problem, where certain constrained sub-problems were then
solved. However, the computational complexity of the ap-
proach isO(n32n) which is too high for real time schedulers.

Besides the wireless network scheduling, there are problems
in other communication and networking systems with similar
mathematical models. In [14], Lee et al. studied the optimiza-
tion and rate control problem for multi-class services in the
Internet, aimed to maximize the utility function which may not
be concave (i.e., non-convex minimization). They showed that
rate control algorithms based on the dual method by a pricing-
based mechanism, developed for concave utility function, can
be used for problems with non-concave utility function. Their
problem is still simpler than the scheduling problem to be
investigated in this paper. This is because their non-concave
utility functions are chosen to be sigmoid-like which are not
difficult to evaluate, compared to our non-concave objective
function (for flow date rate under MUI). Lagrangian dual

relaxation was studied in [15]–[17] to solve the dynamic spec-
trum management problem in digital subscriber line (DSL)
systems. Yu and Lui [16] first discovered the zero duality
gap under the so-called time sharing condition. Subsequently,
Luo and Zhang [17] rigorously proved some results for the
continuous Lebesgue integral formulation. However, the opti-
mal algorithms proposed in [16] is of very high computational
cost, and they do not consider the fairness and minimum flow
throughput requirements.

In this paper, we apply the duality theory for the constrained
optimization problem and propose scheduling algorithms that
are computationally feasible and found to achieve good per-
formance for both system throughput and fairness.

III. SYSTEM MODEL

A. Network Structure

We consider a wireless network with a set of2N active
nodes,N , randomly deployed in a region. These nodes are
divided into two disjoint sets, namely the transmitter setS
and the receiver setC. The two sets have the same cardinality
|S| = |C| = 1

2 |N | = N . One transmittersi in S and one
receiverci in C form a communication pair(si, ci) (flow i).
The instantaneous data rate of flowi is determined by the
received SINR.

We consider the scenarios in that wireless devices can di-
rectly communicate to or relay for each other in a peer-to-peer
fashion, i.e., the network has a mesh topology. For presentation
clarity, in what follows we use IEEE 802.15.3 UWB WPANs
to describe the scheduling problem. Our approach can be
applicable to other wireless systems with a mesh topology.

According to the IEEE 802.15.3 standard, several wireless
devices can autonomously form a piconet in which one of the
nodes should be selected as the piconet coordinator (PNC).
The system model of a piconet is shown in Fig. 1. The system
uses a superframe structure in the time domain, where each
superframe consists of three phases: the Beacon period (BP)
for network synchronization and control messages broadcast
by the PNC, the contention access period (CAP) for devices
sending requests to the PNC using the carrier sensing multiple
access/collision avoidance (CSMA/CA) MAC protocol, and
the channel time allocation period (CTAP) for data transmis-
sions among devices in a peer-to-peer fashion. The CTAP
contains several channel time slots. Currently, TDMA is used
to allocate each time slot to a specific flow, i.e., each time slot
is occupied by one flow exclusively. Without loss of generality,
we assume that the number of time slots in a superframe
equalsN , and the scheduler (the PNC) makes a scheduling
decision for every superframe. The TDMA scheduling scheme
is easy to implement, but it is inefficient for high data rate
wireless systems such as UWB systems. This is because it
cannot utilize the spatial multiplexing gain of wireless commu-
nications [10]. Thus, novel scheduling algorithms are needed
to exploit the spatial reuse capability of broadband wireless
networks to improve network throughput. In other words, the
scheduling algorithms should be developed to allow concurrent
transmissions appropriately. On the other hand, the scheduler
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Fig. 1: System model of a piconet.

(the PNC) may be a normal wireless device with limited
computation power. To make a scheduling decision for every
superframe (with duration around65 ms), the computation cost
of the scheduling algorithm should be sufficiently low.

B. Physical Layer Model

The main challenge of concurrent transmission scheduling
lies in the management of MUI. To maintain the transmission
quality (ensuring the BER below certain threshold), wideband
wireless communication systems can adjust the transmission
configuration according to the received SINR, e.g., by tuning
the modulation and coding schemes.

The received SINR are affected by path-loss, shadowing,
multipath and other wireless channel impairments. As it is
difficult if not impossible to obtain the instantaneous channel
conditions of all flows, the scheduling decisions are based on
the average link throughput mainly affected by path-loss and
large-scale fading/shadowing, as discussed in [18]. The sched-
uler assumes that the network topology and channel conditions
remain unchanged during the period of each superframe, and
it has the knowledge of them. This assumption is acceptable
for UWB mesh networks with low user mobility.

The path-loss at distanced in dB can be estimated using
the following model

PL(d)[dB] = PL(d0)[dB] + 10γ log10(
d

d0
), (1)

whereγ is the path-loss exponent, andPL(d0) is the path-
loss at reference distanced0. PL(d0) can be calculated by the
Friis free-space equation

PL(d0)[dB] = 10· log10(
gtgrv

2

(4π)2d2
0L

), (2)

where v is the wavelength corresponding to the center fre-
quency,L is the system loss factor, andgt and gr are the
transmitter and receiver antenna gain, respectively.

The effect of shadowing can be described using the log-
normal shadowing model [19]. Denote byGj,i the fading gain
due to shadowing from sendersj to receiverci. The dB value
of Gj,i follows a normal distribution with zero mean. Assume
that the scheduler knows the shadowing gain for each flow,
Gi,i ∀i. For unknownGj,i’s, the scheduler just sets them to
one.

As pointed out in [12], in terms of throughput, the benefit of
power control in UWB wireless systems is marginal compared

to that from scheduling. Thus we assume that each sender uses
the maximum power levelPt for transmission. Considering
both the path-loss and log-normal shadowing, the received
signal or interference power ofci from sendersj can be
expressed asP j,i

r = κGj,iPtd
−γ
j,i , where κ = 10PL(d0)/10

is the constant scaling factor corresponding to the reference
path-loss.

Denote byN0 the white Gaussian noise power. The received
SINR of ci is then given by

SINRi =
P i,i

r

N0 + b
∑

l 6=i P l,i
r

=
κGi,iPtd

−γ
i,i

N0 + b
∑

l 6=i κGl,iPtd
−γ
l,i

,

(3)
whereb denotes the MUI factor and it is related to the cross-
correlation of signals from different users.

For flow i, the achievable data rate can be estimated
according to Shannon’s channel capacity asRi = ηW log2(1+
SINRi), where W is the signal bandwidth andη ∈ (0, 1)
is the coefficient describing the efficiency of the transceiver
design. In a practical system, the number of transmission rates
supported is finite, so the sender sets the transmission rateto
be the largest one no larger thanRi. Here, we simplify the
problem by assuming the sending rate equal toRi.

IV. SCHEDULING PROBLEM FORMULATION

For time slotk, the scheduling decision can be represented
by a control vectorUk = [uk,1 uk,2 · · · uk,N ], where variable
uk,i controls the channel access of flowi with uk,i = 1 if flow
i is scheduled to transmit in slotk, anduk,i = 0 if i is idle
in slot k. Denote byRk,i the throughput of flowi in slot k,
we can write

Rk,i = ηW · log2(1 +
uk,iκGi,iPtd

−γ
i,i

N0 + b
∑

l 6=i uk,lκGl,iPtd
−γ
l,i

). (4)

Under these circumstances, the primary design goal of
the scheduling algorithm is to determine the optimal
U1, U2, ..., UN to maximize the system throughput.

To maximize the total throughput, we first formulate the
scheduling problem as an unconstrained optimization problem:

Problem 1: (P1)

max
uk,i∈{0,1}

N∑

k=1

N∑

i=1

Rk,i. (5)

The optimization problem (P1) is a nonlinear integer pro-
gramming problem. One possible approach solving (5) is to
relax the integer variables to continuous ones, and use opti-
mization tools to solve the approximated problem. However,
even the approximated problem is difficult to solve, since its
objective function is not necessarily concave inUk. This is
because the first term of the Hessian matrix of the objective
function can be negative. There is no existing software to
effectively solve the non-convex optimization problem.

The optimization problem (P1) is more difficult than the
optimal single slot scheduling problem for rate-nonadaptive
networks, which can be reduced to a0-1 Knapsack prob-
lem [3]: Consider the case where the data rate of each flow



in a slot, corresponding to the profit of items in the knapsack
problem, is fixed so long as the total interference is smaller
than a threshold. Items (flows) can be added into the knapsack
(allocated to use the slot). The objective is to maximize the
total profit (total throughput) with the weight (interference)
constraints. It is well-known that the Knapsack problem is
NP-complete [3]. The problem we investigate here is harder
than the Knapsack problem, since the profits of items (flow
throughput) will change according to the selected subsets.
It results in the hardness of this scheduling problem, and
the existing approximation algorithms for Knapsack problems
cannot be used for our problem.

In addition, it is obvious that the optimal algorithm (if
exists) for (P1) will lead to a biased solution, i.e., all the
resources (time slots) will be allocated to those flows with
better channel conditions while some unlucky flows will be
starving.

To ensure long-term fairness among competing flows, we
employ a control parameter based on the weighted fair queu-
ing [20] as

ρk−1,i =
wi

(
∑k−1

m=1 Rm,i + ǫ)α
, (6)

whereǫ is a small positive scalar to prevent zero denominator,
wi is a weight for flowi to provide differentiated services, and
α(≥ 0) is a parameter to make a tradeoff between fairness
and network throughput.ρ may be considered as the dynamic
weight of each flow determined by the scheduling scheme
up to (k − 1)th time slot, U1, U2, · · · , Uk−1. The optimal
scheduling problem considering the long term fairness can now
be formulated as

Problem 2: (P2)

max
uk,i∈{0,1}

N∑

k=1

N∑

i=1

ρk−1,i · Rk,i, (7)

where initially ρ0,i = 1/ǫ.
With a large value ofα, flows with less accumulated

throughput in the previous slots have larger values ofρ, so
they have a better chance to transmit in the following slots,and
better fairness can be achieved. Whenα = 0, the scheduler
allocates resources to flows without considering the history
and thus it ignores the fairness requirement.

For the cases where a minimum throughputRi
min of each

flow needs to be ensured, the optimal scheduling problem with
the constraints is formulated as

Problem 3: (P3)

max
uk,i∈{0,1}

N∑

k=1

N∑

i=1

ρk−1,i · Rk,i (8)

s.t.

N∑

k=1

Rk,i ≥ Ri
min ∀i. (9)

To deal with the NP-hard optimal scheduling problems (P1),
(P2) and (P3), we use a dynamic programming approach. We

decompose each problem into several smaller decision prob-
lems to reduce the computational complexity. The technical
details of our approach are described in the following section.

V. SCHEDULING ALGORITHM DESIGN

In this section, we present our solutions for both the un-
constrained and the constrained optimal scheduling problems,
based on a single-flip global-search algorithm (S-GSA) and a
dual optimization method.

A. A Single-flip GSA Algorithm

It is difficult to approximate the unconstrained scheduling
problems (P1) and (P2), due to the data rate adaptation. Con-
sidering the hardness of the problems and that a scheduling al-
gorithm needs to be executed with very limited time (typically
in the order of milliseconds), we develop heuristic algorithms
that offer good performance with tolerable complexity.

Intuitively, the optimal scheduling resultU∗ can be found
by evaluating the system throughput for all the scheduling
decisions (the states) in the searching spaceU . Such a brute
force global search algorithm (GSA) is not feasible since
the induced computation load grows exponentially w.r.t. the
multiplication of the number of flows and the number of
slots. The inefficiency of GSA is mainly caused by the huge
searching space that includes many undesirable candidates.
Therefore, to develop a practical search algorithm, the keyis
to find a better state in each searching step efficiently, while
discarding those undesirable ones.

Since the scheduling problem has a decomposed structure
in the time domain, instead of optimizing all theN flows
in N time slots simultaneously, we solve the problem in an
iterative manner by reducing the searching space of the states
from 2N ·N to 2N . In this way, each step of the scheduling
problem becomes

Problem 4: (P4)

max
uk,i∈{0,1}

N∑

i=1

ρk−1,iRk,i. (10)

Another advantage of this approach is that it maintains
the long-term fairness among competing flows, because the
dynamic weight of each flowρk−1,i depends on the scheduling
decisionsU1, U2, · · · , Uk−1 in the pastk − 1 time slots,
thus the iterative allocation structure allows us to updatethe
weights slot by slot.

Note that the decomposed version of the scheduling problem
(P4) is still non-convex and NP-hard. To improve the efficiency
of the GSA, in each searching step the state should move
towards a better one. For our problem, the metric to determine
whether or not the scheduling statẽUk is better thanUk is the
corresponding system throughputs. For fast convergence toa
better state, we propose a single-flip scheme as follows. If
the profit of adding flowi is greater than the degradation of
throughput it causes to other pre-selected flows, this flow will
be temporarily added (flipuk,i from zero to one); otherwise,
this flow will be temporarily removed (flipuk,i from one to
zero).



Based on this idea, below we propose the single-flip global
search algorithm (S-GSA). For thek-th time slot, we first
initialize the scheduling vectorUk = ~0 and calculate the
weighted fair queuing coefficientsρ(k − 1, i). Next, the local
optimal valueuk,1 is evaluated. To this end, we letuk,1 be 0
or 1 while keeping all the other variablesuk,2, uk,3, · · · , uk,N

fixed, and choose the value ofuk,1 according to the superior
weighted sum of all flows’ data rates inUk. The same criterion
is used to setuk,2 while keeping all otheruk,i (i 6= 2) fixed.
All other variablesuk,3, uk,4, · · ·uk,N are locally optimized
in a similar manner. The above process is repeated untilUk

converges (i.e., no flip of singleuk,i will result in a higher
weighted sum of flow data rates). A step by step description
of the S-GSA algorithm is shown in Algorithm 1.

Algorithm 1 Single-flip GSA (S-GSA)

1: initialize the dynamic weight of each flow,ρ0,i = 1

ǫ
∀ i;

2: for k = 1 to N (time slot)do
3: updateρk−1,i = wi/(

∑k−1

l=1
Rl,i + ǫ)α for each flow based

on U1, U2, · · · , Uk−1

4: initialize the vectorUk = ~0
5: repeat
6: for i = 1 to N (i is the flow index)do
7: setuk,i according to

arg max
uk,i∈{0,1}

{ρk−1,iRk,i +

N∑

l=1,l6=i

ρk−1,lRk,l}

8: end for
9: until Uk = [uk,1 uk,2 · · · uk,N ] converges

10: end for

The proposed S-GSA algorithm reduces the exponential
searching complexity for each slot from2N to O(T1N), where
T1 is the number of iterations forUk to converge. The value
of T1 is typically smaller than the polynomial function ofN .
From the simulation results of a network with up to40 flows,
T1 was found to be smaller than5. Thus, the computation load
of S-GSA is feasible for making realtime scheduling decisions.

Remarks:The S-GSA algorithm ensures that we cannot get
a better scheduling solution by adding or removing one flow
to share the time slot. However, it is possible to get a better
solution by adding or removing two or more flows. Therefore,
the S-GSA only finds a locally optimal solution and cannot
ensure the global optimality of the solution. On the other hand,
for each time slot, an individual flow that is not scheduled
to transmit is considered unfavorable (namely, adding it will
reduce the total throughput), and the profit of adding a groupof
such unfavorable flows is statistically low. Similarly, each flow
being scheduled to transmit in the slot is considered favorable
(namely, removing it will reduce the total throughput), the
profit of removing a group of such favorable flows is also
low.

B. A Scheduling Algorithm for Constrained Problem Using a
Dual Method

In this section, we present an algorithm for the constrained
optimal scheduling problem (P3). The constraints give rise

to the difficulties for the scheduling problem. With the pre-
vious S-GSA algorithm, some unlucky flows cannot get the
minimum throughput required, even the long-term fairness
is considered. This is because, in the rate-adaptive wireless
networks the total throughput can be achieved is unknown
(unlike many other scheduling or job-assignment problems)
and proportional fairness among flows cannot guarantee a
minimum throughput of a flow.

This motivates us to develop efficient algorithms for ef-
fectively enforcing the minimum throughput constraints. Our
approach here is to consider a dual problem and apply La-
grangian relaxation. The basic idea in Lagrangian duality is to
consider all the constraints of the primal problem by augment-
ing the original objective function with a weighted sum of the
constraint functions. Lagrangian duality has also been used by
several authors for communication system optimization [14]–
[16]. Similar to the approach in [16], we employ the S-GSA
to decompose the problem to find local optimal scheduling
variableuk,i. Different from [16], we also employ a dynamic
weight to each flow for maintaining long-term fairness.

Using duality variables ensures that the solution locates in
the feasible region (thus satisfying the constraints). However,
it is difficult if not impossible to obtain the global optimalso-
lution of the primal problem, which can be obtained only if the
number of time slots goes to infinite (N → ∞) under the time-
sharing condition [16] or the jointly concave condition [17].
Hence, our algorithm is not aimed at the optimal solution of
the duality variables and it will terminate when the constraints
are satisfied, so the computational complexity is significantly
reduced. Considering the constrained optimization problem
(P3), we follow the definition of Lagrangian dual [21] and
take the Lagrangian function as our objective function. The
corresponding Lagrangian function is given by

L(U ;λ) =

N∑

k=1

N∑

i=1

ρk−1,i · Rk,i +

N∑

i=1

λi[

N∑

k=1

Rk,i − Ri
min].

(11)
whereλ = [λ1 λ2 · · · λN ] is the Lagrangian dual variable.

Define the dual functiong(λ) as the maximization of the
Lagrangian function

g(λ) = max
U

L(U ;λ), (12)

and the Lagrangian dual optimization problem can be formu-
lated as

Problem 5: (P5)

min g(λ) (13)

s.t. λi ≥ 0 ∀i. (14)

If the primal problem (P3) is convex, then the duality gap
is zero and the maximum value of the primal problem (P3)
and the minimum value of the dual problem (P5) converge
at the same optimal solution. If the primal problem is non-
convex, the dual problem provides an upper bound, which is
not always tight, for the primal solution. However, the dual



problem is always convex w.r.t.λ regardless of the primal
problem. This allows a direct optimization ofg(λ) by some
dual update methods. The main idea here is to minimizeg(λ)
by updating all components ofλ along a specific direction
which can be found using the existing optimization tools.

To this end, the gradient descent method is employed (sub-
gradient for the non-differentiable case), and the updating
direction corresponding toλi is given by

d = −(

N∑

k=1

Rk,i − Ri
min). (15)

Next, we update allλ’s along their gradient descent direc-
tions with a step sequencesl. Consideringλi ≥ 0, the update
is performed as

λl+1
i = max(0, λl

i − sl · (
N∑

k=1

Rk,i − Ri
min)), (16)

wheresl is a scalar sequence and is square summable [22].
Here, we choosesl = 1/l as the update step size. Ideally,
we can employ this algorithm to obtain the optimal solution
of the dual problem and then solve the primal problem with
the leverage of the dual problem. However, evaluating the
dual objective function, which is to maximize the Lagrangian
function to all λ, is difficult if not impossible. Nevertheless,
the dual problem is still very important to ensure that the
solution is feasible when we use the S-GSA algorithm for the
constrained scheduling problem, sinceλ may further increase
the weights of those starving flows. In what follows, we
employ a local search algorithm to approximately evaluate the
dual objective function

g(λ) =max
U

L(U ;λ)

=max
U

{
N∑

k=1

N∑

i=1

ρk−1,i · Rk,i

+

N∑

i=1

λi[

N∑

k=1

Rk,i − Ri
min]}

=

N∑

k=1

max
Uk

{
N∑

i=1

(ρk−1,i + λi)Rk,i} −
N∑

i=1

λiR
i
min.

(17)
Since the scheduling problem has a decomposed structure,

we set

g̃(λ) = max
Uk

{
N∑

i=1

(ρk−1,i + λi)Rk,i} (18)

and the S-GSA algorithm can be modified to locally optimize
g(λ). Different from the original S-GSA algorithm, we need
to use the dual update to ensure our solution is feasible, i.e.
the minimum throughput requirements are satisfied. Obviously,
λi increases if the constraint of flowi is violated. In (18),
the throughput of each flow is multiplied by(ρk−1,i + λi).
Thus, the flows with a larger value ofλi get larger weights. In
the following iteration, these flows will have a better chance
to get resources. A sub-optimal solution of the constrained

optimization problem is then obtained by combining the S-
GSA and the dual update technology. The proposed algorithm
is named Single-flip Dual-update GSA (SD-GSA) described
in Algorithm 2.

Algorithm 2 Single-flip Dual-update GSA (SD-GSA)

1: initialize the dynamic weight of each flow,ρ0,i = 1

ǫ
∀ i

2: setλ0 = (λ0

1, λ
0

2, · · · , λ0

N )
3: repeat
4: for k = 1 to N (time slot)do
5: updateρk−1,i = wi/(

∑k−1

l=1
Rl,i + ǫ)α for each flow based

on U1, U2, · · · , Uk−1

6: initialize the vectorUk = ~0
7: for i = 1 to N (flow index) do
8: sum up the data rate of flowi in the time slots up to

k − 1, SRi
=

∑k−1

l=1
Rl,i

9: if SRi
> Ri

min then
10: setβi = 0
11: else
12: setβi = 1
13: end if
14: end for
15: repeat
16: for i = 1 to N (flow index) do
17: setuk,i according to

max
uk,i∈{0,1}

{(ρk−1,i + βiλi)Rk,i

+

N∑

l=1,l6=i

(ρk−1,l + βlλl)Rk,l}

18: end for
19: until Uk = [uk,1, uk,2, · · · , uk,N ] converge
20: end for
21: updateλ using equation (16)
22: until all the constraints are satisfied.

The computational complexity of the SD-GSA is
O(T2T1N

2). It is higher than S-GSA due to the update
of λ. The inner-loop of SD-GSA is used for evaluating
g̃(λ), similar to S-GSA, and it has the same computational
complexity as S-GSA,O(T1N

2). The outer-loop is used to
update the dual variablesλi.

From our simulations, we note that the network performance
degrades if the outer-loop is terminated too early. This is
because a larger value ofλ will give the flows with worse
channel conditions more resources than their requirements,
so the whole network throughput will be reduced. To avoid
the network throughput degradation and ensure the minimum
requirement of each flow,λi is multiplied by a parameterβi,
andβi is set to zero if the minimum throughput requirement
of flow i has been satisfied, andβi is one otherwise. Conse-
quently, λi does not play a role in the following time slots
if the minimum throughput requirement of flowi is satisfied.
Once a feasible solution is obtained, the outer-loop iteration
terminates, so the number of iterations of the outer-loop can
be much less than that in [16] which is a polynomial function
of N . From the simulations of a network with up to40 flows,
the iteration number for the outer-loopT2 was found to be
smaller than10.



TABLE I: Simulation Parameters
Bandwidth (W ) 1 GHz

Center frequency (fc) 5.092 GHz
Transmitting power (Pt) 0.0397 mW

Noise power (N0) 3.9811 × 10
−9 mW

Large-scale shadowing parameter (σG) 4.3

Path-loss exponent (γ) 4

MUI factor (b) 0.1

VI. PERFORMANCEEVALUATION AND DISCUSSION

A. Simulation Setting

In the simulation, we set a UWB network with random
network topology. In the network, all nodes were randomly
deployed in a10 × 10 m2 region and the communication
pairs were selected randomly, i.e., randomly selected one node
from the sender set and one from the receiver set to form a
communication pair. The shadowing gain from each sender
to any receiver was generated randomly according to the log-
normal distribution. All flows have the same weight (wi = 1).

Let all senders use the same transmission power level for
transmission. Given the location of each node, the signal
and interference power were calculated based on the physical
layer model discussed in Section III. A typical physical layer
parameter setting of UWB systems was adopted, as shown
in Table I. The parameter values are the same as those
in [10], except the MUI factor, as in some practical systems
the MUI factor might be larger than the one used in [10].
Hence, we used a larger MUI factor in simulation. We tested
our algorithm with different node density, by varying the
active node number from4 (2 flows) to 80 (40 flows). For
each density (with the same number of flows), we repeated
1000 times using Monte Carlo simulations, and calculated the
average results with different network topologies and wireless
channels.

We implemented the heuristic algorithm based on the ex-
clusive region proposed in [10], since, to the best of our
knowledge, it is the best algorithm so far solving the same
concurrent scheduling problem. The exclusive region size
was set to2 meters, which is the optimal value calculated
according to the analysis in [10]. We used the same network
configurations to compare the performance of all scheduling
algorithms.

We investigate two performance metrics, the total network
throughput and the fairness index. To show the performance
gain, network throughputs are normalized to the average
throughput of the case that there are two flows in the network
scheduled by the TDMA scheme. Fairness is measured by the

widely used Jain’s fairness index, defined as
(
∑

N

i=1
Ri)

2

N ·
∑

N

i=1
R2

i

[23].

B. Performance of Scheduling without Constraints

We first evaluate the performance of the S-GSA algorithm
for the unconstrained scheduling problem (P2) with different
node density and different value ofα.

As shown in Figs. 2 and 3, the throughput degrades asα
increases while the fairness has a reverse trend. This is because
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Fig. 2: Normalized network throughput.

that a larger value ofα will give the starving flows larger
weights, thus more time slots will be allocated to the flows
with bad channel conditions. When the value ofα is moderate,
around0.4 to 0.6, the network throughput using the S-GSA
algorithm is much higher than that with the exclusive region
based algorithm, and both algorithms are found to achieve
similar fairness level. The throughput with S-GSA increases
with network density, and it can outperform TDMA and the
exclusive region based algorithm by1300% and 100% with
40 flows, respectively (withα = 0.4). The major weakness of
the exclusive region based algorithm is that the procedure to
select the concurrent transmission subset is not guaranteed to
reach a better scheduling state.

As shown in Fig. 3, the fairness index with all of the
scheduling algorithms including TDMA are low. This is
because the received signal powers of different flows vary
significantly, so their throughputs have large variation even
when there is no mutual interference. On the other hand, there
is always a tradeoff between throughput and fairness, and the
advantage of S-GSA is that we can adjust the parameterα to
flexibly make the tradeoff.

As we mentioned before, the S-GSA guarantees local op-
timality only. To further improve the system throughput, we
may use a more complex global search algorithm by flipping
multiple variables inUk to find a better state tillUk converges.
Consider the case of flipping two variables inUk and call it
double-flip GSA (D-GSA). With D-GSA, the states of two
flows are changed simultaneously, and the one resulting in
the largest network throughput among all of the four possible
choices is chosen. From Fig. 4, D-GSA is found to achieve
marginal improvement compared to S-GSA. However, the
computation complexity of D-GSA isO(T3N

2) whereT3 is
the number of iterations used for convergence, and it is larger
thanT1.

We next investigate whether exhaustive search the optimal
Uk will result in significant improvement in total throughput
or not. We compare the performance of the per-slot brute-
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force exhaustive searching algorithm and that of the proposed
S-GSA and D-GSA algorithms in Figs. 4 and 5. The brute-
force searching algorithm searches all of the2N combination
of uk,i for each slot, and choose theUk which leads to
the maximum

∑
i ρk−1,i · Rk,i. The figures show that the

performance gap between the S-GSA and the global optimal
solution is marginal.

Surprisingly, the network throughput using the brute-force
searching algorithm is sometimes even lower than that using
the S-GSA or D-GSA when the value ofα is positive. This is
because, with the long-term fairness factorα, those flows with
worse channel conditions got larger weights. Although the
brute-force algorithm finds the weighted optimal throughput
per-slot, summing up the maximum weighted throughput of
each slot does not necessary lead to global optimal in terms
of total throughput of multiple slots. Whenα is zero, the brute-
force searching result can lead to the global optimum. But in
this case, all slots might be allocated to the same subset of
flows, so the remainder flows might starve.

It is not feasible to obtain the the global optimal results by
brute-force searching a space of2N×N states. We conjecture
that the performance improvement will be marginal as well.
Another observation is that, with the proposed algorithm,
the network throughput increases w.r.t. the number of flows
much faster than that predicted in the capacity bound for rate-
nonadaptive networks [4].

C. Performance of Scheduling with Constraints

Next, the performance of SD-GSA for the constrained
scheduling problem is evaluated. In SD-GSA, the dual method
is employed to solve the constrained non-convex optimization
problem. The Lagrangian dual variables are used to ensure
that all the constraints are satisfied.

Using SD-GSA, simulation results show that the minimum
throughput requirements of all flows are satisfied; however,the
overall network throughput degrades slightly compared with
that with S-GSA, as shown in Fig. 6. This is because, with
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SD-GSA, more time slots are allocated to the flows with low
received signal power to satisfy their minimum throughput
requirements, so the total network throughput is degraded.

The minimum flow throughput requirements cannot be arbi-
trarily set since the data rates of some flows with bad channel
conditions are very low even without interference. Thus, the
minimum throughput requirements should be carefully set to
be feasible. In the simulation, we use1.15 times the flow
throughput achieved using the TDMA scheme as the minimal
throughput requirement, so the requirement could be feasible
w.h.p. In general, it is difficult to evaluate whether or not
the throughput constraints are feasible, since the data rate of
each flow depends on the network topology and the scheduling
decision. What is the capacity of the rate-adaptive wireless
network is still an open issue.

Fig. 7 shows the minimal flow throughput among all
competing flows. The results show that the minimal flow
throughput with SD-GSA can be80% higher than that with
TDMA, so it can achieve better max-min fairness.
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VII. C ONCLUSION

In this paper, we have investigated the scheduling problem
for concurrent transmission in rate-adaptive wireless networks.
For the unconstrained and constrained scheduling problems,
we have proposed simple yet effective S-GSA and SD-GSA
algorithms. Extensive simulation results have shown that the
proposed scheduling algorithms significantly outperform the
previous heuristic algorithm. With much lower computation
cost, the proposed algorithms are found to achieve throughputs
close to the exhaustive searching results. Given the popularity
of rate-adaptive PHY layer technologies in wireless systems,
more research work is beckoned to investigate the capacity of
rate-adaptive wireless networks and to design effective cross-
layer resource management schemes for them.
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