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Abstract—Throughput-optimal scheduling has been widely dis-
cussed due to its capability to stabilize single-hop multiuser wire-
less systems if possible. However, most of the previous discussions
focused on the underloaded scenario, i.e., the arrival rate lies
inside the achievable rate region. The behavior of throughput-
optimal scheduling in overloaded multiuser wireless systems is the
focus of this paper. We first show that, with the infinite buffer
assumption, although all the queues are unstable, both the average
throughput and a function of queue length converge as time
evolves. In addition, the average throughput is the solution to a
convex optimization problem whose objective is determined by
the scheduling algorithm. By investigating the average throughput
of two special throughput-optimal scheduling algorithms, i.e., the
generalized MaxWeight and Log-Rule, we find that users can be
prioritized by tuning the parameters associated with the schedul-
ing algorithm, but the fairness is not likely to be guaranteed
and some users may starve. Second, by studying the finite buffer
system, we show that whether the buffer is dedicated to each
queue or shared among queues has a great impact on the system
performance, and the potential user starvation problem can be
alleviated by a proper design.

Index Terms—Wireless networks, throughput-optimal schedul-
ing, resource allocation, performance analysis.

I. INTRODUCTION

THROUGHPUT-OPTIMAL scheduling [8] is a class of
important scheduling polices in multiuser wireless sys-

tems. It can explore the link quality variation as those utility-
based scheduling policies discussed in [1], [2], and provide the
maximal stability region in a network with stochastic traffic,
which is superior to the utility-based scheduling whose stability
region is smaller than the capacity region in general [3].

The first throughput-optimal scheduling algorithm was pro-
posed two decades ago [4]. The authors studied the link
scheduling problem in a centralized wireless system with
ON-OFF channel and proposed a MaxWeight scheduling al-
gorithm to stabilize the system. Later, different kinds of
throughput-optimal scheduling algorithms were proposed to
provide diverse features under various system assumptions. The
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probability of max-queue overflow is asymptotically mini-
mized by the scheduling algorithms proposed in [5]–[7]. The
queueing delay is minimized by the algorithms proposed in
[8], [9]. Scheduling algorithms that can provide better delay
performance compared with MaxWeight were proposed in [10],
[11]. The system in the presence of heavy-tailed traffic can be
stabilized by the algorithms proposed in [12], [13]. General
guidelines about the necessary and sufficient conditions of the
throughput-optimal scheduling were discussed in [14]–[17].

The performance of such throughput-optimal scheduling has
been extensively investigated under the assumption that the
system is stable, or underloaded. However, it is inevitable that
a system may experience overloaded periods in practice due to
the fluctuation of the traffic volume [18]. Therefore, it is impor-
tant to characterize the system behavior in overloaded periods
which has not received sufficient attention yet. The state-of-the-
art research in this area has concluded only for some special
throughput-optimal scheduling policies, such as MaxWeight
scheduling in [24] and general-MaxWeight scheduling in [23].
The general system behavior of an overloaded system is still
missing.

To fit the gap, in this work, we have studied the limiting
properties of overloaded multiuser wireless systems with in-
finite buffer and a throughput-optimal scheduling policy sim-
ilar to [15]. We have quantified the network performance of
two throughput-optimal scheduling algorithms, the generalized
MaxWeight (GMW) [15], [17] and the Log-Rule scheduling
[8]. With the same throughput-optimal scheduling policy, we
have further analyzed the performance of a finite-buffer system
with Drop-Tail queue [27] and various buffer-sharing schemes,
which is of practical interests and often missed in the literature.

We have made the following key observations: first, with infi-
nite buffer, when the system is overloaded, all the queues in the
system are unstable and the network converges to a fixed point
formed by the average throughput and the scheduling function
of queue length. Furthermore, the average throughput can be
easily obtained by solving a convex optimization problem.
Second, with the GMW algorithm, strict priority can be given
to users by a proper parameter, so the QoS of users can be tuned
easily. If all the users have the same priority, the system fairness
in terms of Jain’s index [26] cannot be guaranteed, but the
scheduler can achieve certain fairness for the blocked/queued
traffic which echoes the results in [24]. With the Log-Rule
scheduling, the average throughput is identical to that with an
asymptotic GMW scheduling. Third, if the system is subject
to a shared buffer constraint, i.e., the buffer is shared among
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queues, then the average throughput converges to a value which
is not related to the type of the throughput-optimal scheduling
algorithm. If each queue has its dedicated buffer, some users
might suffer starvation, and some might achieve rate stability
(average throughput equals its average arrival rate), depending
on their buffer sizes.

The rest of the paper is organized as follows. Section II
presents the related work. Section III introduces the system
models and preliminaries, including the channel model, queue-
ing model and scheduling policy. In Section IV, the limiting
properties of the overloaded system are discussed, followed by
the case study of the GMW and Log-Rule scheduling algo-
rithms. The system performance with finite buffer is discussed
in Section VI. Simulation results are given in Section VII,
followed by the conclusion and further discussion.

In the following, bold face letter x represents vector, xi

represents the i-th element in x.

II. RELATED WORK

There are two categories of work discussing the system
behavior in an overloaded network. One is to design a schedul-
ing policy towards some specific objectives, such as providing
a desired throughput in [19], aiming to stabilize part of the
queueing system in [20], and dynamic routing to balance the
overloaded traffic in [21]; the other is to discuss the system
behavior under certain scheduling policies [22]–[25]. In [22],
an overloaded network with α-fair scheduling was analyzed,
and the asymptotic growth rate was obtained, which is a
fixed-point of the system. In [23], the network behaviors of
general-MaxWeight and α-fair scheduling policies in a multi-
hop switched network were discussed. It showed that the queue
size grows linearly with time for both scheduling policies, and
the corresponding growth rates were characterized. In [24],
the authors characterized the queue-size growth rate of the
MaxWeight scheduling in parallel queues, and showed that the
weight parameter can be tuned to achieve a certain fairness
which is defined as a function of the growth rate.

Different from [22], [23], where a multi-hop network with
fixed link service rate was discussed, we discuss a multiuser
wireless system with time-varying service rate, similar to the
network setting in [24]. On the other hand, the throughput-
optimal scheduling discussed in our work is more general than
that in [23] and [24], where (general)-MaxWeight scheduling
policy only was discussed. Furthermore, we focus on the aver-
age throughput, while the previous work focused on the queue
size of the overloaded system. Finally, we not only obtain the
results for the infinite buffer case which is a similar assumption
to the previous work, but also consider the finite buffer case,
which is missed in the literature.

III. SYSTEM MODELS AND PRELIMINARIES

A. N -User Fading Broadcast Channel

We consider a system where N users communicate with a
base station through a block fading broadcast channel. Within
each time slot, the channel for each user is an additive white
Gaussian noise (AWGN) one with a constant channel gain.

Across time slots, the channel gain for each user is independent
and identically distributed. The user set is denoted by N . For
users in N , the fading processes are independent of each other,
jointly stationary and ergodic, but the statistical properties are
not necessarily the same. Furthermore, there are mutual inter-
ference among users in any time instance. We further assume
that the base station can obtain the channel state information
(CSI) at the beginning of each time slot.

In time slot t, the achievable rate region is denoted by
C(t), which is determined by the MAC layer and the physical
layer protocols jointly. C(t) is always a convex and coordinate
convex region, and no larger than the capacity region of the
corresponding channel. If time division multiple access is used,
C(t) is a convex and coordinate convex simplex; if superpo-
sition coding (SPC) and successive interference cancellation
(SIC) is used, C(t) equals the capacity region of an N -user
degraded Gaussian broadcast channel [37].1 In addition, we
assume that the maximal transmission rate for any user in time
slot t is always positive, and therefore C(t) is always an N -
dimensional region. By taking an average over time, we can
obtain the average achievable rate region, which is the weighted
Minkowski sum of C(t), denoted by C, and is convex and
coordinate convex.

B. Queueing Model

The network under consideration is a collection of FIFO
queues. Data packets arrive randomly and are queued up in
a buffer reserved for each user, and the arrival processes for
different users are independent with each other. The resource
is allocated at the beginning of each time slot based on the
scheduling algorithm. Here, we first assume that the buffer
size of each queue is infinity, and the finite buffer case will
be discussed in Section VI. The state of the i-th buffer is the
queue length and denoted by qi(t). Assume that the amount
of allocated data to user i in time slot t is ri(t), whose vector
form is r(t) and satisfies r(t) ≥ 0; the amount of arrived
data in user i in time slot t is ai(t), whose vector form
is a(t) and satisfies a(t) ≥ 0. All queue states form a vec-
tor q(t) ≥ 0, which is updated by: q(t+ 1) = [q(t)− r(t) +
a(t)]+, where [x]+i = max{0, xi}, ∀i ∈ N . We further assume
that {ai(t), t = 1, 2, . . .} is a sequence of independent and
identically distributed random variables, and ai(1) has finite
moments and satisfies limA→∞

∑N
i Afi(A) Pr{ai(1) > A} =

0 where fi(.) is the scheduling function to be explained later.
This condition is used to guarantee that the tail of the arrival
distribution decays fast enough compared to the scheduling
function.2 The average arrival rate is defined as λ = E[a(1)],
where E is to take expectation.

1Examples: Consider a two-user wireless system with a degraded Gaus-
sian broadcast channel. The signal-to-noise-ratio (SNR) of user i is γi(t),
and assume γ1(t) > γ2(t). If time division multiple access is used, then
we have C(t) = {(r1, r2)|r1/ log(1 + γ1(t)) + r2/ log(1 + γ2(t)) = 1}.
If SPC and SIC are used, C(t) = {(r1, r2)|r1 = log(1 + qγ1(t)), r2 =
log(1 + γ2(t))− log(1 + qγ2(t)); q ∈ [0, 1]} [29], [30].

2The assumption is used to ensure that the scheduling policy (1) presented in
the following subsection is throughput optimal. The analysis presented in this
work does not rely on this assumption. More discussions on throughput-optimal
scheduling in queueing networks with heavy-tailed traffic can refer to [38] and
the reference therein.
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C. Scheduling Policy

In this paper, we focus on the throughput-optimal scheduling
policy proposed in [15], as it is one of the most general schedul-
ing policy. To simplify our analysis, we slightly modify the
original scheduling policy as shown below. The rate allocated
to users in time slot t is based on the solution to the following
weighted-sum-rate-maximization problem:

r(t) ∈ argmax
η∈C(t)

∑
i

fi (qi(t)) ηi, (1)

and the ties are broken randomly, where ηi is the possible
transmission rate of user i in slot t, and η is the possible
transmission rate vector lies inside the instantaneous achievable
rate region C(t), fi(x) is the scheduling function with x ≥ 0
and satisfies the following conditions:

1) ∀i, fi(x) is a non-negative strictly increasing continuous
function with limx→∞ fi(x) = ∞.

2) Given any C1, C2 > 0 and 0 < σ < 1, there is some
M > 0 such that for all x > M,∀i, fi(x) satisfies

(1− σ)fi(x) ≤ fi(x− C1) ≤ fi(x+ C2) ≤ (1 + σ)fi(x).

Examples of function fi(x) include: fi(x)=bxa, a>0, b>0;
fi(x) = b log(x+ a), a > 0, b > 0; fi(x) = ebx

a
, 0 < a < 1,

b > 0. Note that fi(x) = ebx
a
, a ≥ 1, b > 0 does not satisfy

condition 2).
Let f̄(x) be the normalized weight in vector form, whose i-th

component is denoted by f̄i(x) =
fi(xi)∑
i
fi(xi)

. Equivalently, the

optimization problem (1) can be represented as follows:

r(t) ∈ argmax
η∈C(t)

∑
i

f̄i (q(t)) ηi. (2)

D. Stability

We adopt the definitions of stability presented in [28], which
are shown as follows.

Definition 1: A queue q is weakly stable if, for every ε >
0, there exists B > 0 such that lim supt→∞ Pr{q(t) > B} < ε,
where q(t) is the queue length in time t.

Definition 2: A system of queues q is weakly sta-
ble if, for every ε > 0, there exists B > 0 such that
lim supt→∞ Pr{‖q(t)‖ > B} < ε, where ‖q(t)‖ is the Eu-
clidean norm of q(t).

From the definition we can conclude that, if q is unstable,
then for any B > 0, we have lim supt→∞ Pr{q(t) < B} < ε,
where ε > 0 and is arbitrarily small; if q is stable, we can find
a B such that for all the t, Pr{q(t) < B} > 1− ε, where ε > 0
and is arbitrarily small. If a system of queues is unstable, we
can conclude that at least one queue is unstable.

We further define the overloaded system as follows.
Definition 3: An overloaded system is defined as a system

such that the average arrival rate vector λ lies outside the
average achievable rate region C, i.e., λ 	∈ C.

IV. LIMITING PROPERTIES

As shown in [15], with scheduling policy (1), if the queueing
system is an aperiodic Markov chain and the mean arrival rate
lies inside the achievable rate region, then the Markov chain
is positive recurrent, or the system of queues is weakly stable.
Whether the system is able to be strongly stable further depends
on function fi. As indicated in [28], weak stability implies
that the offered load can be processed by the server, but the
delay performance cannot be guaranteed. Consequently, if the
system is overloaded, the system is unable to be weakly stable.
Without confusion, stable means weakly stable, and unstable
means unable to be weakly stable in the following.

A. Stability Property

From the definition of weak stability, it is unclear whether all
the individual queues in the system are unstable, or only part of
the queues in the system are unstable. We have Theorem 1 to
answer this question.

Theorem 1: Given infinite buffer, for a multiuser wireless
system with throughput-optimal scheduling as (1), if the system
is overloaded, then all the queues are unstable.

Proof: See Appendix A. �
As all the queues are unstable, then based on the stability

properties shown in Section III-D, when t → ∞, q(t)− r(t) +
a(t) > 0 holds with probability 1− ε, where ε is arbitrarily
small, which suggests that the allocated rate will not be wasted
due to the shortage of data in the queue. Therefore, when
obtaining the average throughput, we can use the allocated rate
instead of the transmitted data size in each slot.

B. Average Throughput and Fixed Point of the System

Theorem 2: For an overloaded multiuser wireless system
with scheduling and resource allocation algorithm as in (1),
the corresponding average throughput of users in the system
converges, i.e., for any t0,

lim
T→∞

1

T

T−1∑
t=0

r(t0 + t) → μ.

μ is a solution to the following problem

max
η̄∈Cλ

∑
i

lim
t→∞

f̄i ((λ− μ)t+ μ′(t)) η̄i, (3)

where η̄i is the variable in the above optimization problem and
represents the average throughput of user i, and η̄ is that in the
vector form, Cλ = {η̄|η̄ ∈ C, η̄ ≤ λ} is the constrained aver-
age achievable rate region, as the average throughput should be
no larger than the average arrival rate, and μ′(t) is an auxiliary
variable with limt→∞ μ′(t)/t = 0. Furthermore, μ is unique,
and is the solution to the following problem

lim
t→∞

max
η̄∈Cλ

∑
i
Fi ((λi − η̄i)t) , (4)

where Fi(x) is an antiderivative of fi(x).
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Proof: See Appendix B. �
From Theorem 2, although the system is overloaded, the

average throughput exists and converges to μ which is a so-
lution to (3). From (3), it is noted that μ cannot be directly
obtained. Also, by observing (3), we can conclude that the
average throughput and the scheduling function of queue length
form a unique fixed point of the system.

Since the average throughput of the system converges to the
solution of (4), based on the above approach, we can obtain the
average throughput by giving the detailed system assumptions.
Note that in [24], the author obtained a similar result for the
MaxWeight scheduling, which is a special case of (4). However,
the result obtained in [24] cannot be extended to a system with a
general throughput-optimal scheduling algorithm, as the result
relies on the linear structure of function fi(x) in the MaxWeight
scheduling.

The scheduling algorithm according to (1) is an online
algorithm to solve (4). Since Fi((λi − η̄i)t) is a function of
the average arrival rate, and η̄i is linearly impacted by λi, we
can conclude that the average throughput is also related to the
arrival rate in general. This suggests that, in the overloaded
system with scheduling algorithm as (1), if Jain’s index (which
is a function of the average throughput) is used to quantify the
system fairness, then it is likely that such a fairness index is not
only related to the throughput, but also impacted by the arrival
rate. This fairness issue will be elaborated in the following
section, by studying two sample scheduling algorithms.

V. EXAMPLES: THE GMW AND LOG-RULE

SCHEDULING ALGORITHMS

In this section, we study two representative throughput-
optimal scheduling algorithms, the GMW [15], [17] and the
Log-Rule [8]. We first discuss how to solve the optimization
problem to obtain the average throughput and the impact of the
parameters on the average throughput, followed by the fairness
issue.

A. Generalized MaxWeight

For the GMW, we have fi(x) = bix
αi , where bi > 0 and

αi > 0. Then,

Fi ((λi − η̄i)t) = − bi
αi + 1

(λi − η̄i)
αi+1tαi ,

and the average throughput is the solution to the following
problem

lim
t→∞

min
η̄∈Cλ

∑
i

bi
αi + 1

(λi − η̄i)
αi+1tαi . (5)

Easily we can see that αi is critical to solve the problem,
and the user with the largest αi dominates the objective of (5).
Therefore, we can adopt an iterative greedy approach to solve
(5) as follows.

First we divide the user set N into K groups {Gk}, k =
1, 2, . . . ,K. The users in the same group have the same αi,

i.e. ∀i ∈ Gk, αi = αGk
. The groups are ordered decreasingly

according to αi. i.e., if m < n, then αGm
> αGn

.
Suppose that the average throughput of user i ∈

⋃k−1
m=1 Gm

is η̄∗i . Then the solution to problem (5) is the solution to the
following problem

lim
t→∞

min
∑
i

bi
αi + 1

(λi − η̄i)
αi+1tαi−αGk ,

s.t. η̄ ∈ Cλ, ∀i ∈
k−1⋃
m=1

Gm, η̄i = η̄∗i ,

which is further equivalent to

lim
t→∞

min
∑

i∈
⋃k−1

j=1
Gj

bi
αi + 1

(λi − η̄i)
αi+1tαi−αGk

+
∑
i∈Gk

bi
αi + 1

(λi − η̄i)
αi+1,

s.t. η̄ ∈ Cλ, ∀i ∈
k−1⋃
m=1

Gm, η̄i = η̄∗i .

For the obtained average throughput η̄∗i , we have either ∀i ∈⋃k−1
j=1 Gj , η̄∗i = λi, or ∃i ∈

⋃k−1
j=1 Gj , η̄∗i 	= λi. For the first case,

the solution to (5) is the solution to the following problem

min
∑

i∈Gk

bi
αi + 1

(λi − η̄i)
αi+1, (6a)

s.t. η̄ ∈ Cλ, ∀i ∈
⋃k−1

m=1
Gm, η̄i = η̄∗i . (6b)

For the second case, it implies that η̄∗i < λi, which further im-
plies that η̄∗ lies on the boundary of Cλ, where η̄∗ = {η̄i : η̄i =
η̄∗i , if i ∈

⋃K
j=k+1 Gj ; η̄i = 0, if other wise}. By summarizing

the above two cases, we can conclude that the solution to (5) is
also the solution to the following problem

min
∑

i∈
⋃k

j=1
Gj

bi
αi + 1

(λi − η̄i)
αi+1,

s.t. η̄ ∈ Cλ, ∀i ∈
⋃k−1

m=1
Gm, η̄i = η̄∗i ,

which further implies that the average throughputs of users in
group Gk can be obtained by solving the above problem, as the
solution is unique.

Iteratively, the average throughput is obtained.
1) Impact of Scheduling Parameters: By observing the al-

gorithm structure to obtain the average throughput, we can see
that αi and bi are important to the performance of users. Note
that in a stable system, αi can be used to control the priority of
the queue and improve the delay performance [7]. This priority
only affects the delay performance, and it does not change the
average throughput which equals the average arrival rate in an
underloaded system. But in an overloaded system, since the
scheduler allocates the available resource to the users in the
decreasing order of αi, a user with a larger αi has a ‘hard’
higher priority. Therefore by increasing αi of a user to a proper
value (for instance, larger than all the other αj , where j 	= i),
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its average throughput can be improved. This behavior suggests
that the QoS of a user can be improved by assigning a larger αi.
In summary, if the system is stable, then a larger αi can result
in a smaller delay; if the system is unstable, then it can result in
a higher throughput.

Similar to αi, bi can also be used to differentiate the users,
but within a group of users with the identical αi. Note that
the throughput of users in Gk is either all zero, or can be
obtained from problem (6). As ∀i ∈ Gk, αi are identical. Fixing
bj where j 	= i, ri is possible to be increased w.r.t. bi. A larger
bi generally means a possible larger average throughput, but
it cannot guarantee the user gets served first. Therefore we
consider the priority associated with bi as a ‘soft’ priority.

2) Fairness: Since αi is used to control the priority of user,
and the incoming traffic is served strictly according to the
priority, the fairness should only be considered within each
group. Considering the scheduling algorithm with αi = α, the
average throughput is the solution to the following problem

min
η̄∈Cλ

∑
i

bi(λi − η̄i)
α+1, (7)

which is a Lα+1-Norm minimization problem in a scaled
space with constraint η̄ ∈ Cλ, and b

1/α
i is the scale factor in

dimension i.
Suppose that the scale factor for each dimension is identical,

i.e., ∀i, bi = 1, and then geometrically, the average throughput
is a point in the constraint set Cλ and has the minimal Lα+1 dis-
tance to the point λ. Since C and {η̄|η̄ ≤ λ} are both convex,
the constraint set Cλ is also convex, so we can conclude that, as
long as λ is not scaled proportional to λ− μ(λ), where μ(λ) is
the solution for the given λ, the average throughput will change
based on the change of λ. As a result, the fairness (in terms
of Jain’s index) only makes sense for a given λ. For a system
where λ is not under control, fairness cannot be guaranteed
as any user can change the Jain’s index by increasing the
arrival rate.

Although the fairness of the throughput cannot be guaran-
teed, the scheduling algorithm actually guarantees the fairness
of the queued/blocked traffic. This can be seen from two
asymptotic cases easily. When α → 0, the problem approaches
maxη̄∈Cλ

∑
i η̄i which means the user with a larger possible

transmission rate will be satisfied first and users with smaller
possible transmission rates may starve. Such a greedy allocation
can also be interpreted as that the scheduling algorithm does
not consider the fairness at all. When α → ∞ the problem
approaches minη̄∈Cλ |λ− η̄|∞, i.e., minimizing the L∞ norm
of vector λ− η̄, which means the queued traffic satisfies a min-
max fairness [34], the dual of the max-min fairness [32], [33].
From the above two asymptotic cases we can conclude that, the
fairness of the blocked traffic can be guaranteed by choosing a
proper α.

There are some other works discussed the fairness issue in
some systems. In [24], the author proposed a fairness metric
using the backlog growth direction in parallel queues, which
is identical to the fairness of the queued/blocked traffic. Fur-
thermore, the author showed that, for a specific backlog growth
direction, by designing a proper bi, the backlogged traffic is also

minimized. In [34], the author discussed how to minimizing an
α-penalty function of the queue overflow rate in a server farm.
It turns out that by choosing ∀i, bi = 1, the problem (7) is a
special construct of the problem discussed in [34]. However, as
[24] and [34] both using identical αi, i.e., only discussed the
fairness within each group, their works are unable to find the
critical impact of αi on the fairness.

B. Log-Rule

By a slight modification to the original policy presented
in [8], we have the equivalent Log-Rule which has fi(x) =
bi log(1 + aix) with ai > 0 and bi > 0. Then

Fi((λi − η̄i)t)=−
(

bi
ait

+ bi(λi − η̄i)

)
log(1 + ai(λi − η̄i)t)

+
bi
ait

+ (λi − η̄i)bi,

and the average throughput is the solution to the following
problem

lim
t→∞

min
η̄∈Cλ

∑
i

(
bi
ait

+ bi(λi − η̄i)

)
log (1 + ai(λi − η̄i)t)

− bi
ait

− (λi − η̄i)bi,

which is equivalent to

lim
t→∞

min
η̄∈Cλ

∑
i

bi(λi − η̄i) log (1 + ai(λi − η̄i)t) , (8)

by ignoring the terms that do not increase with t as they have
no impact on the solution.

Note that the solution to (8) is also the solution to the
following problem

lim
t→∞

min
η̄∈Cλ

∑
i

bi(λi − η̄i) log (1 + ai(λi − η̄i)t) / log(1 + t),

which is further equivalent to

max
η̄∈Cλ

∑
i
biη̄i, (9)

since

lim
t→∞

log (1 + ai(λi − η̄i)t) / log(1 + t) = 1.

Problem (9) and problem (8) are not equivalent. But if (9) has
a unique solution, then it is also the solution to (8).

Note that (9) is not related to ai, the average throughput of
the Log-Rule is only affected by parameter bi. Comparing (9) to
the GMW with α → 0, both schedulers have the same average
throughput. Consequently, the discussions on the impact of bi
on the average throughput and the fairness issue are identical to
the GMW with α → 0 case.
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VI. PERFORMANCE IN A FINITE BUFFER SYSTEM

In the previous sections, we have discussed the limiting
properties of the overloaded system with throughput-optimal
scheduling. All the queues in the system are unstable, and each
queue length increases to infinity. While with a more practical
assumption that the buffer for the queue should be finite, the
overloaded packets will be dropped by the queue management
scheme. In this section, we give a discussion on the system
performance in a finite buffer system.

A. System Assumption

Since the system is a collection of queues, all the queues can
either share the same buffer, such as the downlink case of a
wireless communication system, or each queue has its own ded-
icated buffer, such as the uplink of a wireless communication
system. We further assume that the system uses the Drop-Tail
scheme as the queue management scheme, and the arrival traffic
for i-th flow (for user i) is a Poisson traffic with average arrival
rate λi.

B. Shared Buffer Case

As the queue has finite buffer, the incoming packet will
be dropped if it encounters the event that the buffer is full.
The packet drop in a queueing system with a shared buffer is
identical to that in a single queue with buffer size Bmax and the
aggregated arrival traffic.

As the incoming traffic of each flow is Poisson traffic, the
aggregated traffic is also Poisson. According to the Poisson
Arrival See Time Average (PASTA) property, each packet
encounters the event that the buffer is full with the same
probability. So the packet dropping probability for each flow is
identical and denoted as k∗. Consequently the packet dropping
rate d is proportional to the packet arrival rate λ, and we have
d = k∗λ. For the average throughput μ, we have μ = λ− d.
As the system is overloaded and throughput-optimal scheduling
is used, μ should lie on the boundary of the capacity region C,
i.e., μ ∈ bd(C). Consequently, we have μ = (1− k∗)λ, and
k∗ is obtained from k∗ = argmin(1−k)λ∈C k.

The average throughput is not affected by the type of the
throughput-optimal scheduling algorithm, and is determined by
the statistical properties of the arrival traffic and the queue
management scheme. Furthermore, the average throughput is
proportional to the average arrival rate, which is different
from the infinite buffer case where some users may starve
(such as GMW with heterogeneous αi). In other words, for
an overloaded system with finite shared buffer, the long-term
(permanent) fairness may be improved, despite the fairness may
be poor during the transient period (as the performance during
the transient period is similar to the infinite buffer case), such
as in a system using the GMW scheduling with heterogeneous
αi as discussed in Section V-A.

Note that as long as the packet dropping probability is
identical for different flows, the above argument holds. Even
though in a system with Drop-Tail scheme and bursty arrival
traffic, the above property may not hold in general, however,

certain active queue management (AQM) scheme can be used,
such as Random Early Detection [27], to retain this property.

C. Dedicated Buffer Case

As discussed in [35], the system can be modeled as a
controlled random walk and can be further approximated by a
deterministic fluid model, where the data packets for each user
are modeled as a continuous fluid flow that enter and leave the
buffer [36]. Each flow has its dedicated buffer with size Bmax

i ,
then all the Bmax

i will jointly determine the average through-
put and therefore fairness. The corresponding fluid scheduling
model is represented as q(t) = q(0)− z(t) + λt, where z(t) is
the cumulative allocated fluid resource up to time t.

As the system is overloaded and the fluid model is used to
approximate the system, the system cannot be idle at the time it
loses fluid. Therefore, the average throughput should be equal
to the average allocated rate, i.e., μ = limt→∞ z(t)/t. We have
z(t) = μt+ μ′(t), where limt→∞ μ′(t)/t = 0. Consequently,
we have

q(t) = q(0)− μt− μ′(t) + λt. (10)

Suppose that the queues in set S can achieve rate stability, i.e.,
the average throughput equals the average arrival rate, and the
queues not in S cannot achieve rate stability. We have ∀i ∈ S ,
μi = λi and ∀i 	∈ S , μi < λi. Therefore, based on (10), ∀i 	∈ S
there exists a tb such that for all t > tb, fi(qi(t)) = fi(B

max
i ),

i.e., the buffer of queue i is full after it has been filled up.
Consequently the allocated rate in t is based on the following
problem

max
η∈C(t)

∑
i	∈S

fi (B
max
i ) ηi +

∑
i∈S

fi (qi(t)) ηi,

with random tie-breaking. By taking an average over time, we
have μ to be the solution to the following problem

max
η̄∈Cλ

∑
i	∈S

fi(B
max
i ) η̄i

+
∑

i∈S
limT→∞

1

T

∑tb+T

t=tb+1
fi (qi(t)) η̄i. (11)

Since ∀i ∈ S , μi = λi and fi(qi(t)) ≤ fi(B
max
i ), substituting

fi(B
max
i ) for fi(qi(t)) does not change the solution. Thus,

problem (11) is identical to the following problem

max
η̄∈Cλ

∑
i
fi (B

max
i ) η̄i, (12)

with uniform tie-breaking.
In the above analysis, the key argument is that ∀i 	∈ S and

t > tb, fi(qi(t)) = fi(B
max
i ). Therefore, for any arrival traffic

as long as the above condition can approximately hold, the
average throughput is close to the solution to (12).

Note that if the average arrival rate λ is sufficiently large,
the constraint set Cλ will be equal to the capacity region C.
Based on (12), the average throughput is no longer related to λ.
Consequently, the system fairness in terms of Jain’s index can
be guaranteed by a properly designed buffer size Bmax

i .
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With the finite buffer assumption, the system behavior is
quite different from that with the infinite buffer assumption,
which is typically used in the literature. The user starvation
problem can be alleviated by the shared buffer scheme, while
certain queues may achieve rate stability if the buffer size is set
properly in the dedicated buffer case and we will demonstrate it
with an example in Section VII-A2.

VII. PERFORMANCE EVALUATION

In this section, we validate our analytical results and compare
the system performance based on different throughput-optimal
scheduling algorithms and different system assumptions. Dur-
ing the evaluation, Poisson arrival traffic is used if not specified.
For each simulation setting, we repeat the simulation multiple
runs and the results demonstrate that the average throughput
can converge to the theoretical value. Then, we take one run as
a sample-path of the system to plot the results in the figures.
The average throughput in time slot t is calculated by taking
the average over the results of the previous 2000 time slots.

A. Two-User Static Channel Case

First considering a two-user static Gaussian broadcast chan-
nel (GBC), the signal-to-noise ratio of user i is γi, and assume
γ1 > γ2. Then the achievable rate region is [37]

C = {r|r1 = log2(1 + qγ1),

r2 = log2(1 + γ2)− log2(1 + qγ2), 0 ≤ q ≤ 1} .

This channel is a special case of the general N -user fading
broadcast channel, since the stochastic process governing the
transition of the channel state is deterministic. Such channel
is discussed because of the strictly convex property of the
resultant achievable rate region, and therefore the average
throughputs for different simulation settings are always unique.
Also by using the two-user GBC channel first and then the
Markov channel in Section VII-B, we are able to demonstrate
that the convergence of f̄i(q(t)) and average throughput does
not depend on whether the channel is stochastic or not.

During the evaluation, we set γ1 = 100 and γ2 = 10.
1) Infinite Buffer Case: We first validate that with the GMW

or Log-Rule scheduling, the average throughput and f̄(q(t))
converge. The results are shown in Figs. 1–3. In the figures
illustrating the average throughput, the solid curve represents
the throughput of user 1 and the dashed curve represents that
of user 2. The analytical results are shown by points “×” in all
figures.

Fig. 1 illustrates the system behavior with the GMW
scheduler and identical α. The average throughputs and
f1(q1)/f2(q2) quickly converge, and different b results in dif-
ferent converged value. Fixing b1 = 1 and increasing b2 from 1
to 10, the average throughput of user 2 also increases, but the
network does not give a ‘hard’ priority to user 2. From the trend
of throughput changes, with the further increasing of b2, the
average throughput of user 2 will increase to the same as its ar-
rival rate. Since f1(q1)/f2(q2) is no more informative than the
average throughput and the convergence of average throughput

Fig. 1. The convergence of the average throughput and f̄(q(t)) of an infinite
buffer network with GMW scheduler, α = [1 1], λ = [4 3]. (a) b = [1 1];
(b) b = [1 1]; (c) b = [1 10]; (d) b = [1 10].

Fig. 2. The average throughput of an infinite buffer network with GMW
scheduler, b = [1 1], λ = [4 3]. (a) α = [1 1.3]; (b) α = [1 1.6].

Fig. 3. The average throughput of an infinite buffer network, comparing
Log-Rule scheduler with asymptotic GMW scheduler, b = [1 1], λ = [4 3].
(a) Log-Rule, a = [1 1]; (b) GMW, α = [0.1 0.1].

indicates the convergence of f1(q1)/f2(q2), in the following we
only show the comparison of the average throughput.

Fig. 2 shows the behavior of a system with GMW scheduler
and different α. With α = [1 1.3], the average throughput
converges slowly, and cannot converge to the analytical results
within 50 000 time slots. Changing α to [1 1.6], the system
converges much fast, and the average throughput of user 2
converges to its arrival rate, which suggests that user 2 has a
strictly higher priority compared with user 1.
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Fig. 4. The average throughput of a finite shared buffer network with
GMW scheduler and Drop-Tail scheme, α = [1 1], λ = [4 3], Bmax = 104.
(a) b = [1 1]; (b) b = [1 10].

Fig. 5. The average throughput of a finite dedicated buffer network with
GMW scheduler and Drop-Tail scheme, α = [1 1], λ = [4 3], Bmax =
[5000 12 500]. (a) b = [1 1]; (b) b = [1 10].

We compare the Log-Rule with the asymptotic GMW in
Fig. 3. For the asymptotic GMW, we choose α = 0.1. The
average throughputs of GMW and Log-Rule are identical and
equal to the analytical results. Also we observe that the average
throughput of user 1 equals its arrival rate, which is a result that
the Log-Rule or the asymptotic GMW degrades to an algorithm
which schedules the user with a larger channel rate first.

2) Finite Buffer Case: The system behavior under the finite
buffer assumption is presented here. In order to observe the
transient network behavior, we set the buffer size to be a
relatively large value in different scenarios.

First we show the results of the shared buffer with the Drop-
Tail queue scheme case. Fig. 4 shows the results of a network
with the GMW scheduler with different b. As shown in the
figure, the average throughput first converges to a transient
value which is determined by the infinite buffer case, and
thereafter converges to a permanent value. The transient value
is determined by the parameters of GMW (parameter b), while
the permanent fixed value is identical and independent of these
parameters.

Similar to the shared buffer with the Drop-Tail queue scheme
case, in the dedicated buffer with the Drop-Tail queue scheme
case, the network first converges to a transient value, then con-
verges to the permanent value, which is illustrated in Fig. 5. By
changing the parameter b, not only the transient value changes,
but also the permanent value changes. Since the permanent
throughput of user 2 equals its average arrival rate, user 2
achieves rate stability.

B. Markov Channel Model

We further use a Markov channel model to illustrate the
system dynamics with temporarily overloaded arrival traffic.

Fig. 6. The system behavior of a finite buffer network with GMW scheduler
and Drop-Tail scheme. α = 1, b = 1. (a) Shared Buffer, Bmax = 105.
(b) Dedicated Buffer, Bmax

i =10 000+(i−1)×1000, i={1, 2, 3, 4, 5, 6}.

The channel of each user is independent of each other, and
has two states (G and B). The transmission rate of user i in
state G and B are RG

i and RB
i , respectively. Assume that the

probability of user i in state G is πG
i , then πB

i = 1− πG
i . The

ergodic capacity region can be obtained as

C =

{
r : ri ≤

∑
i

tGi π
G
i R

G
i + tBi π

B
i RB

i ,
∑
i

tBi + tGi ≤ 1

}
.

The behavior of a temporarily overloaded system is illus-
trated in Fig. 6. Here we simulate a 6-user system in 100 000
time slots, and choose ∀i, RB

i = 1, RG
i = 3, πG

i = 1/2. During
the first 30 000 time slots and the last 40 000 time slots, the
system has a Poisson arrival traffic with arrival rate λ, where
λ1 = λ2 = λ3 = 8/3 and λ4 = λ5 = λ6 = 2. From time slot
30 001 to time slot 60 000, there is no traffic arrived in the
system.

For the shared buffer case, by investigating Fig. 6(a), first
the average throughput converges to a point determined by the
infinite buffer case. After the time slot 10 000, as the buffer is
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full, the average throughput converges to the point determined
by the finite buffer case. After the time slot 30 000, since there
is no new arrival traffic, the system can be stabilized and the
average throughput converges to the same value, which is due
to the symmetric channel. After the time slot 60 000, a similar
pattern as that during time slots 1–30 000 can be found.

The results of the dedicated buffer case are shown in
Fig. 6(b). The curves from top to down in the buffer usage figure
are for user 1 to user 6, respectively. The average throughput
exhibits a similar trend as that in the shared buffer case. The
buffer usages of different users in the transient period (none
of the buffer is full) are identical, which is a result of the
symmetric channel assumption.

Overall, the simulation results have validated our analytical
model and confirmed our analytical results and conclusions.

VIII. CONCLUSION AND FURTHER DISCUSSION

In this paper, we have studied the limiting properties of an
overloaded multiuser wireless system with throughput-optimal
scheduling. By studying a general throughput-optimal schedul-
ing, we have found that certain results obtained in a system with
special throughput-optimal scheduling is possibly universal.
More specifically, we have shown that if the system is subject
to infinite buffer assumption, all the queues in the network are
unstable, but the average throughput and the scheduling func-
tion of queue length converges, respectively. By studying GMW
and Log-Rule algorithms, we have found that the fairness of
the corresponding system generally cannot be guaranteed. The
Log-Rule can be viewed as a special GMW, and GMW can
provide user differentiation by choosing parameters properly. If
the buffer size is finite, then the buffer and queue management
schemes play an important role on the network performance,
and a proper design may alleviate the potential starvation
problem.

There are several open issues left behind. First, we have as-
sumed the achievable rate region C(t) is always a N -dimension
region. But in practice, if the channel is deep faded, the cor-
responding user may have zero achievable rate, and we cannot
always increase the allocated rate of one user by decreasing the
rates of other users. Second, the throughput-optimal scheduling
considered is only queue-length based, which excludes the
delay-driven throughput-optimal scheduling. Given the linear
relationship between delay and queue length [14], the analysis
for delay-driven throughput-optimal may have a similar result.
Third, some queue-length based throughput-optimal scheduling
algorithms, such as EXP-rule [5], are excluded from the dis-
cussion. How to extend our work to consider a more general
throughput-optimal scheduling, such as the one proposed in
[16] remains an open issue.

APPENDIX A
PROOF OF THEOREM 1

Suppose that queue 1 is stable, and queue 2 is unstable.
Then, we can find a B1 such that for all t, Pr{f1(q1(t)) <
B1} > 1− ε1, where ε1 > 0. Because queue 2 is unstable,
then for any B > 0, we have lim supt→∞ Pr{q2(t) < B} < ε2,

where ε2>0. So we have lim inft→∞ Pr{q2(t)>B}>1−ε2.
Because f2 is a strictly increasing continuous function, we
have lim inft→∞ Pr{f2(q(t)) > f2(B)} > 1− ε2. By choos-
ing B2 = f2(B), we have lim inft→∞ Pr{f2(q2(t)) > B2} >
1− ε2.

Suppose that the optimal solution for the following problem
is η∗(t),

max
η∈C(t)

∑
i

wiηi,

where for all the i, wi > 0. Because C(t) is a N -dimensional
region, i.e., we can always increase the rate of one user by
decreasing the rates of other users. Therefore, by increasing w1

and decreasing w2, η∗1(t) will increase and η∗2(t) will decrease.
So we have, when t → ∞, with probability (1− ε1)(1− ε2),

the rate allocated to user 1 is upper-bounded by r∗1(t), and r∗(t)
is the solution to the following problem,

max
η∈C(t)

B1η1+B2η2+f3(q3(t)) η3 + . . .+ fN (qN (t))ηN . (13)

Since for any B2 and ε2, we have limt→∞ Pr{f2(q2(t)) >
B2} > 1− ε2. Consequently, for any given ε1 and the corre-
sponding B1, with any given ε2, we can choose a B2 such that
B2  B1. Then based on (13), we have r∗1(t) → 0 as B2 → ∞
and B2  B1.

We conclude that with probability (1− ε1)(1− ε2), when
t → ∞, the average rate allocated to user 1 is upper-bounded
by limT→∞

1
T

∑t+T−1
τ=t r∗1(τ), where limt→∞ r∗1(t) → 0.

Since the average rate allocated to user 1 is always upper-
bounded by the average achievable rate which is a finite value,
with probability 1− (1− ε1)(1− ε2), the average rate allo-
cated to user 1 is upper-bounded by a finite value.

In summary, we can conclude that the average rate allocated
to user 1 is upper-bounded by a value which approaches to 0
as the increment of time. As a result, queue 1 is not possible
to be stable, which contradicts the assumption. Thus we proved
Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

First we prove that the average throughput of the system
converges.

For any n > 0 we can always find C1,i and C2,i > 0 such
that

qi(t)− C2,i ≤ qi(t+ n) ≤ qi(t) + C1,i.

Since fi is a non-negative increasing continuous function, we
have

fi (qi(t)− C2,i) ≤ fi (qi(t+ n)) ≤ fi (qi(t) + C1,i) .

Since qi is unstable, with probability 1− ε, for any M > 0,
there exists a T such that for all t > T , we have qi(t) > M .
Further based on condition 2) of the scheduling algorithm, for
any i and 0 < σi < 1, for all t > T , we have

(1− σi)fi (qi(t)) ≤ fi (qi(t+ n)) ≤ (1 + σi)fi (qi(t)) .
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Then we have

(1− σi)fi (qi(t))∑
i(1 + σi)fi (qi(t))

≤ f̄i (q(t+ n))≤ (1 + σi)fi (qi(t))∑
i(1− σi)fi (qi(t))

.

Define

Δi(t, n)
Δ
= f̄i (q(t+ n))− f̄i (q(t)) ,

and choose σi = σ, so we have(
1− σ

1 + σ
− 1

)
f̄i (q(t)) ≤ Δi(t, n) ≤

(
1 + σ

1− σ
− 1

)
f̄i (q(t)) .

Equivalently, we have

|Δi(t, n)| ≤ max

(
2σ

1 + σ
,

2σ

1− σ

)
f̄i (q(t))=

2σ

1− σ
f̄i (q(t)) .

Define

δi
Δ
=

2σ

1− σ
,

since f̄i(q(t)) ≤ 1, we have

|Δi(t, n)| ≤ δi.

So for any δi and n we can find a corresponding σ that
satisfies |Δi(t, n)| < δi.

In summary, with probability 1− ε, for any i and δi, we can
find a T such that for all t > T and any n > 0,∣∣f̄i (q(t+ n))− f̄i (q(t))

∣∣ ≤ δi,

and then we can conclude that for any i, f̄i(q(t)) is a Cauchy
sequence indexed by t, thus Cauchy converges in probability.

Suppose that f̄(q(t)) converges to w. According to (2), r(t)
converges to a solution to the following problem

max
η∈C(t)

∑
i

wiηi,

which is only related to the capacity region in time slot t (C(t))
and a weight vector (w). Consequently, the convergence of the
average throughput,

lim
T→∞

1

T

T∑
t=0

r(t0 + t),

only requires the existence of the average capacity region,
which is guaranteed by the assumption that the fading channel
process is ergodic. Thus, the average throughput converges in
probability, and we use μ to denote it.

Then we prove that μ is the solution to an optimization
problem.

Since all the queues are unstable, with probability 1− ε, for
any M > 0, there exists a T such that for all t > T , we have
mini qi(t) > M . So for all t > T ,

q(t) = q(t− 1)− r(t− 1) + a(t− 1),

by taking summation from T to t, we have

q(t) = q(T ) + a(T ) + a(T + 1) + . . .+ a(t− 1)

− (r(T ) + r(T + 1) + . . .+ r(t− 1)) .

Note that

λ = lim
t→∞

1

t− T
(a(T ) + a(T + 1) + . . .+ a(t− 1)) ,

μ = lim
t→∞

1

t− T
(r(T ) + r(T + 1) + . . .+ r(t− 1)) ,

so we have

q(t) = (λ− μ)t+ μ′(t) + q(T )− (λ− μ)T,

where

lim
t→∞

μ′(t)

t
= 0.

As q(T )− (λ− μ)T is finite, hence, with probability 1− ε,
when t > T ,

(1− σ)fi ((λi − μi)t+ μ′
i(t)) ≤ fi (qi(t))

≤ (1 + σ)fi ((λi − μi)t+ μ′
i(t)) ,

then based on the identical approach as to prove the con-
vergence of f̄i(q(t)), we can first prove the convergence of
f̄i((λ− μ)t+ μ′(t)) and then by using the squeeze theorem
to prove that limt→∞ f̄i(q(t)) = limt→∞ f̄i((λ− μ)t+ μ′(t))
in probability. Therefore r(t) is the solution to the following
problem,

max
η∈C(t)

∑
i

lim
t→∞

f̄i ((λ− μ)t+ μ′(t)) ηi.

Then we can conclude that the average throughput μ converges
in probability and is a solution to the following problem,

max
η̄∈Cλ

∑
i

lim
t→∞

f̄i ((λ− μ)t+ μ′(t)) η̄i.

Next, we prove μ is unique.
The antiderivative of fi((λi − μi)t+ μ′

i(t)) is −tFi((λi −
μi)t+ μ′

i(t)). Since limt→∞
∑

i fi((λi − μi)t+ μ′
i(t))μi ≥

limt→∞
∑

i fi((λi − μi)t+ μ′
i(t))η̄i, i.e.,

lim
t→∞

∑
i

fi ((λi − μi)t+ μ′
i(t)) (μi − η̄i) ≥ 0.

Furthermore because fi(x) is a strictly increasing continuous
function, μ is the solution to the following problem [31]

lim
t→∞

max
η̄∈Cλ

∑
i
Fi ((λi − η̄i)t+ μ′

i(t)) .

As limt→∞ μ′
i(t)/t = 0, the above problem is further equivalent

to

lim
t→∞

max
η̄∈Cλ

∑
i
Fi ((λi − η̄i)t) ,

whose solution exists and is unique.
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