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Abstract—Radio spectrum is a limited and increasingly scarce
resource, which motivates alternative usage methods such as
dynamic spectrum allocation (DSA). However, DSA requires
an accurate prediction of spectrum usage in both time and
spatial domains with minimal sensing cost. In this paper, we
propose NN-ResNet prediction model to address this challenge
in two steps. First, in order to make the best use of the sen-
sors in the region, we deploy a deep learning prediction model
based on convolutional neural networks (CNNs) and residual
networks (ResNets), to predict spatio-temporal spectrum usage
of the region. Second, to reduce sensing cost, the nearest neigh-
bor (NN) interpolation is applied to recover spectrum usage data
in the unsensed areas. In this case, fewer sensors are needed for
prediction with the help of the reconstruction procedure. The
model is verified through groups of comparison simulations in
terms of the sensors’ sparsity and the number of transmitters
involved. In addition, the proposed model is compared with CNN
and ConvLSTM prediction model. The results show that the
proposed NN-ResNet model maintains a lower error rate under
various sparse sensor circumstances.

Index Terms—DSA, spatio-temporal prediction, CNN, ResNet,
sparse sensor prediction.

I. INTRODUCTION

ADIO spectrum is vital to wireless communication and at
Ra premium. Spectrum scarcity became a major problem
with the explosive growth of mobile services. Traditionally, the
use of each spectrum band is statically allocated to a licensee
over wide geographical regions within a long time duration,
from months to years depending on the purposes. With static
spectrum allocation and the proliferation of wireless services,
the lack of available spectrum is becoming a severe problem.

Cognitive radio (CR) and dynamic spectrum alloca-
tion (DSA) are promising approaches to relieve spectrum
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scarcity [2]. CR allows a secondary user (SU) to use the
spectrum holes or white spaces by channel sensing [3]-[5].
The cognitive radio system first senses the usage status of the
channel, then allocates the idle channel to the SU. As the
spectrum sensing procedure is time-consuming and may be
unreliable, such as false detection and false alarm, due to
channel fluctuations caused by path loss, shadowing, fading,
or hidden-terminal issues, DSA based on spectrum prediction
is a complementary approach. Predicting the activities in a
frequency band in a specific location would allow it to be
allocated to additional licensees for a short period of time it
is predicted to be unused. Consequently, the spectrum can be
efficiently utilized and the resources can be shared.

To apply DSA, it requires the knowledge of the spectrum
usage pattern both temporally and spatially of the region [6].
For temporal prediction, the spectrum usage is predicted in
the time domain by extracting the temporal correlation of the
received signal power in the past. Accurate temporal spectrum
prediction can also simplify the sensing process to save sensing
time and energy, and improve sensing efficiency for CR [7].
On the other hand, the spatial prediction of the spectrum
usage can provide the needed insights on spectrum occupancy
and interference management in an area of interest, given
the sensed data of a few locations nearby. With a compre-
hensive understanding of spectrum utilization temporally and
spatially, we can further analyze the signal, interference, and
quality-of-service for the whole region.

Generally speaking, spatial and temporal prediction of spec-
trum usage patterns are viewed as separate research topics.
In the spatial domain prediction, the estimation of the target
transmitter’s location is based on the measurement of several
parameters, e.g., received signal strength (RSS), time of arrival
(TOA), and direction of arrival (DOA) [8]-[10]. Estimation
models such as maximum likelihood estimation (MLE), ray
tracing model [11]-[13] etc. have been later applied for local-
ization. Such approaches require a large number of sensors to
collect spectrum usage data and their performances are highly
dependent on the accuracy and completeness of the data.

With the development of machine learning and neural
networks, research interests have been more focused on the time
domain prediction. Service providers are interested in having
the knowledge of spectrum usage patterns over a period of
time. Conventionally, autoregressive models based on Kalman
filter are used for predicting the spectrum holes [14]-[16].
Recently, it has been shown that machine learning methods
are useful for making predictions in the time domain. Support
vector machines (SVM) and artificial neural networks (ANN)
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are among the most popular methods [17]-[19]. Other methods
like logistic regression, and genetic algorithms are utilized to
extract the data features and make predictions.

On the other hand, both spatial and temporal prediction
requires a large number of sensors to sense the spectrum usage
data to obtain good performances, which leads to high sens-
ing cost. However, only a limited number of sensors can be
deployed in practice in terms of economic and privacy issues.
Therefore, how to accurately predict spectrum usage in both
the time and spatial domains at the same time with minimum
sensing cost remains a challenging open issue.

Deep learning is a cutting edge tool that has shown its
success in many applications including both spatial and tem-
poral predictions. Two main types of networks are widely used
in deep learning: convolutional neural networks (CNNs) and
recurrent neural networks (RNNs). CNNs are mainly exploited
to capture spatial features in image classification and image
analysis [20], [21] while RNNs are more focused on captur-
ing temporal features like time series prediction [22]. In recent
years, residual networks [23] (ResNets), a structural modifica-
tion of CNN, have attracted attention thanks to their ability to
address the vanishing gradient problem as the network goes
deeper. Thus, ResNets are often used to address problems
in the spatio-temporal domain [24]-[26]. Deep learning has
been explored heavily to predict the spatio-temporal patterns
in many literature, e.g., for road traffic prediction [20]-[22],
but has not been applied to spectrum load prediction. With
simple manipulation, the collected spectrum usage data of a
given region can be organized into power matrices. Similar to
the road traffic images where each pixel represents the traffic
volume and location, the values in the power matrices repre-
sents the received signal power and sensor’s location. On the
other hand, unlike the road traffic data where the exact loca-
tions and number of vehicles are involved in the images, the
received signal power at sensors is an aggregation of multiple
signal sources without the knowledge of their exact location(s)
and the number of users. In addition, only a limited number
of sensors can be deployed in practice which introduces new
challenges not addressed in the literature.

In this paper, we focused on solving this joint spatio-
temporal prediction problem with a limited number of sensors.
The main contributions of this paper are two-fold.

o First, to address the open issue of predicting spectrum
load spatially and temporally at the same time, we
proposed a novel neural network model combining both
CNN and ResNet, which can accurately predict the spec-
trum usage pattern of a large region. Sensors are deployed
in a region with a grid topology to record the signal
power of transmitters. The recorded data are organized
into matrices with their spatio-temporal information and
later used for prediction.

e Second, on top of the above spatio-temporal issue, we
further address a practical challenge, how to maintain
prediction performance with a limited number of sen-
sors, where the power matrices are incomplete due to the
lack of active sensors. To reconstruct the power matrix,
we applied two approaches, matrix completion and local
interpolation, and their performance are compared and

analyzed. With the proposed reconstruction procedure,
the prediction model is capable of providing accurate
prediction results with fewer sensors.

To verify the proposed model’s performance under different
sparse sensor circumstances, three control groups with differ-
ent sparsity of 0.4, 0.5, and 0.6 are compared and analyzed.
In addition, we also considered the scenario where multiple
transmitters are involved in the target region. How multiple
transmitters will affect the performance is analyzed in a similar
scheme with different levels of sparsity. Finally, the proposed
prediction model is compared with the CNN prediction model
to further verify its performance.

In the following sections, related works on temporal
prediction and spatio-temporal prediction is introduced in
Section II. Preliminaries and system model are introduced in
Section III and Section IV respectively. Section V discusses
the details of the proposed spatio-temporal prediction model
based on deep learning. Introduction to the dataset, set up of
experiment, and numerical results of the proposed prediction
model are analyzed in Section VI. The concluding remarks
and further research are summarized in Section VII.

II. RELATED WORK
A. Temporal Prediction

1) ANN Based Method: Accurate prediction of spectrum
occupancy is fundamental to the DSA system. In [19], an ANN-
based prediction system is proposed to support opportunistic
DSA for SUs. The system predicts the spectrum occupancy
state of PUs in terms of busy and idle state. Once a request
for transmission with time interval 7 arrives at an SU, the
SU makes the transmission decision based on the prediction
result of the system. If the predicted remaining time is longer
than the requested time interval 7, the transmission request is
granted. The ANN architecture is decided based on a range of
comparison results where the number of hidden layers and the
number of perceptron nodes vary. In the end, a simple single-
perceptron ANN architecture is selected due to its high accuracy
and low time cost. The system has a low time complexity of
O(N) where N is the number of input features. In [19], 12 input
features are selected, namely current life of idle period, SU
transmission request time interval, and 10 previous idle periods.
Sigmoid activation function, binary cross entropy loss function,
and Nadam optimizer are applied in the perceptron. The system
provides a binary output where 0 represents transmission denial
and 1 represents transmission approval.

2) LSTM-Based Method: Long-term spectrum load
prediction is also important to the DSA system. The authors
in [27] proposed an LSTM-based prediction model to predict
the fixed length and multiple-slot future spectrum load with
previously measured data over a wide spectrum band. The
LSTM structure is designed to have long-term memories of
the input. LSTM learns the sequential correlations of the input
data by a repeating module consisting of four components
namely, memory cell, forget gate, input gate, and output gate.

e The memory cell maintains the history information of

previous time slot that flows along the chain with minor
linear changes.
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o The forget gate decides what information needs to be
dropped from the memory cell.
¢ The input gate decides what new information to be stored
in the memory cell.
o The output gate decides what the output of the module.
The LSTM model in [27] takes in hybrid historical spec-
trum data with joint multi-dimensional dependencies in space,
frequency and time to predict a long-term usage pattern of
multiple channels at multiple locations.

B. Spatio-Temporal Prediction

To our best knowledge, how to predict the spatio-temporal
features of spectrum load remains an open issue. Although
road traffic load prediction has been explored heavily using
deep learning tools, how to predict the spatio-temporal features
of spectrum load is much more difficult.

1) Local CNN Model: To enable spatio-temporal feature
extraction using CNN, a local CNN model is proposed in [26].
Generally speaking, in terms of regression problems, CNNs
consist of two components including feature learning and
prediction. The feature learning part will impose convolution
and pooling filters to the input images, where the inner fea-
tures are detected. Followed by a fully connected layer as
the predictor, which gives prediction result at each pixel. The
aforementioned two main components of CNNs consist of
several subcomponents as follows.

o Convolution Layers: The convolution operation is per-
formed on the input data by convolution kernels to extract
the features of the input data.

o Activation Functions: The output of a convolution layer
is passed through a nonlinear activation function, e.g.,
ReLU, tanh, and sigmoid.

e Pooling Layer: Pooling layer is responsible for a down-
sampling operation which reduces the dimension of
feature maps. The reason behind the pooling layer is
to make the feature maps invariant to small shifts and
distortions.

o Fully-Connected Layer: The fully-connected layer is
mainly responsible for prediction. It is of note that
each fully-connected layer is followed by an activation
function.

In [26], a batch of images of successive time slots
TMXNXT are forwarded to the local CNN model. At time
slot ¢, the output of kth convolution layer Ytk is obtained with
extracted spatial information. Then it is passed to a flatten
layer to transform the tensor Ytlc into a feature vector s; at
time 7. Finally, a fully connected layer is applied to obtain the
original size-output.

8t = F(W%; + b]%), (1)

where Wtf ¢ and b/ are the learnable parameters of the fully
connected layer and f(-) denotes the activation function used.
In this way, for a range of successive time slots, both spatial
and temporal information are kept.

2) SeqST-ResNet: ResNet [28] is initially designed to
address the gradient vanishing problem [29] caused by the
increment of network depth via residual blocks as shown in

weight layer

X
identity

Fig. 1. Residual block.

Fig. 1. The skip connection in a residual block can help to
improve the network’s performance by allowing the gradient
to flow through shortcut and ensuring the higher layer will
perform at least in the same level as the lower layer, not worse.

Xout:F(Xin)JrXin )

Taking the advantages of ResNet in deep neural networks,
Zhai et al. [30] proposed SeqST-ResNet to predict the traf-
fic flow by capturing the spatial and temporal dependencies
in historical data. In SeqSt-ResNet, sequences of task images
{Xt—n,Xt—n,..., X1} are forwarded to the same network
where each convolution layer is followed by multiple residual
blocks.

In our work, a spectrum load spatio-temporal prediction
model combining both CNN and ResNet is proposed. With
the help of CNN and ResNet, the spatio-temporal features in
the power matrices are captured and used for prediction.

III. PRELIMINARIES
A. Path Loss Model

Path loss characterizes the attenuation of signal power as the
propagation distance increases. The linear path loss is defined
as the ratio of the transmitted signal power p; over the received
signal power py, i.e., PL = p¢/p,. Specifically, path loss at a
distance d in dB can be modeled by

PL(d) = PL(dp) + 10alogyo(d/do) + Xy, (©)

where dy, PL(dy), o, and X, are the reference distance,
path loss at dy, path loss exponent, and shadowing, respec-
tively. o is determined by the propagation environment. The
average received power with transmitter at distance d can be
calculated by

pr=pt-d *+n, “4)

where n is a zero-mean normal distribution caused by shad-
owing component Xj.

B. Data Reconstruction Methods

The key idea of data reconstruction is to model the depen-
dencies between the missing values and the known ones.
Two widely used techniques are filtering and matrix com-
pletion [31]. The performance of the two approaches are
compared and analyzed in Section V.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on January 26,2023 at 04:20:40 UTC from IEEE Xplore. Restrictions apply.



REN et al.: SPATIO-TEMPORAL SPECTRUM LOAD PREDICTION USING CNN AND ResNet 505

Strategy 2
Strategy 1 -40.52 -63.08 -79.24 -904
~— Strategy 3
-120 -83.92 -60.65

Fig. 2. Example of how NN interpolation works.

1) Nearest Neighbor Interpolation: Various filtering meth-
ods have been proposed to extract the local interdependence of
the matrix such as median filtering, moving average, Kriging,
and nearest neighbor etc [32], [33]. According to the path loss
model in Eq. (3), it is clear that the wireless signals decay
exponentially over distance. Since the average received power
(ignore fast fading) in nearby locations are close to each other,
experiencing higher spatial correlation, which will be consid-
ered in data reconstruction and spatial predictions. In other
words, only the sensors close to the unsensed area are useful
for data recovery. Thus, the nearest neighbor (NN) interpola-
tion method is selected to reconstruct the power matrix under
the sparse sensor condition. The NN interpolation uses a slid-
ing window of size 2 x 2 to recover the missing values. An
example of the filter is shown in Fig. 2.

2) Matrix Completion: Since in practical environments, the
wireless transmission will mutually interfere with each other,
so typically each transmission will occupy a certain spectrum
exclusively. Given the sparsity of sensors due to either data
loss or deployment cost, the power matrices can be incom-
plete under some circumstances. The matrix completion (MC)
method naturally solves the problem. It focused on formulat-
ing an optimization problem and recover the missing values
by minimizing the rank of the target matrix [34]-[36].

2.

observed 4,j

s.t. rank(Z) = r, )

min (Xi7j — ZZ'J')Q

where X is the incomplete matrix and Z is the recov-
ered matrix. However, the constraint rank(Z) = r makes the
problem non-convex and high computation cost. It is replaced
with the nuclear norm of Z which is the tightest relaxation
of rank(Z) [37]. Therefore, the optimization problem can be
rewritten as follows in Lagrange form:

1
mzlngHPQ(X)—PQ(Z)II%+/\||Z||*7 (6)

where Pq(-) is the projection on the observed entries (the
known values in the matrix), || - || is the Frobenius norm,
and || - ||« is the nuclear norm. In this way, the non-convex
problem is relaxed to a non-constrained semi-definite program
(SDP) problem with much lower computation cost.

IV. SYSTEM MODEL

The system model of this work is shown in Fig. 3. In this
paper, we consider the following scenario: In a rectangular-
shaped region, 100 sensors were deployed uniformly into a

Data Organize into Is P Data
collection Power Matrix P complete Reconstruct
vV
Complete
Power Matrix
Result anlysis }4—[ Prediction model }4—‘
Fig. 3. Flow chart of the system model.

TABLE I
DATASET CONFIGURATION

Case  Quantity Bandwidth (kHz)  Power (mW) Range (km)
1. 27 50 37 20
2. 25 25 37 20

10 x 10 array, which divides the region into 81 grids, and each
grid is called an area. The size of an area is 1 km in width and
2 km in length. Sensors will sense and record the spectrum
usage data periodically. The length of each time slot is 150 ms.
Each transmitter keeps emitting signals while taking a random
walk mobility pattern. In the mobility model, the transmitter
will move at a constant speed following the same direction for
a duration of 2 seconds, and then randomly select a new direc-
tion and speed. The selection of the speed is within the range
between 0.69 m/s and 1.44 m/s. Note that the mobility range
of each transmitter over the experiment duration is constrained
in a small part of the region mainly affecting its neighboring
sensors, and the trajectory of the transmitter is continuous both
spatially and temporally. The sensed data at the sensors con-
tains the reception time, received packet’s label, and received
power. Each experiment lasts for 15 minutes, during which
all the spectrum usage data of the whole region is recorded
by the sensors. In each time slot, the data is organized into
the form of a 10 x 10 matrix and each element represents the
received power.

Two different cases are set up to obtain our dataset. The
configuration of the two cases are in Table I.

In Case-1, 23 transmitters move continuously within a
20 x 20 km square region. The power level of the signal is
37 mW and the utilized spectrum bandwidth is 50 kHz. Each
transmitter uses the same channel during the entire experiment
and the sensors record the received power of each transmitter
accordingly.

In Case-2, the number of transmitters changed to 27 and
the utilized spectrum bandwidth changed to 25 kHz. The rest
of the configurations remain the same.

To make the dataset an appropriate input to the prediction
model, we focus on the received power at different sensors.
In the case of an idle time slot when nothing is recorded, the
corresponding time slot will be filled by noise (—110 dBm).
At the end of the unification process, a power matrix of the
100 sensors, Pigx10x T € RR? can be obtained, where T is the
total number of time slots. The prediction model is trained and
tested against the organized dataset. A total length of 15 min-
utes of data is applied to verify the model. Overall, there are
6000 time slots in the power matrix. We allocated 80% of the

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on January 26,2023 at 04:20:40 UTC from IEEE Xplore. Restrictions apply.



506 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 8, NO. 2, JUNE 2022

Complete power matrix Incomplete power matrix

5
H w
&
n
@
as
%
4 s s 71 8 o W

(b) Incomplete power matrix

¥ & & &

a
2
105 1

6 R T2 s

(a) Complete power matrix

Fig. 4. An example of complete and incomplete spectrum sensing data.

TABLE 11
DEFINITION OF SYMBOLS

Symbols | Meaning

R Sparsity, the ratio of unused sensors
P Power matrix

Do Complete dataset

D Incomplete dataset

D Reconstructed dataset

D1y Incomplete dataset with R = 0.4
Do Incomplete dataset with R = 0.5
D3 Incomplete dataset with R = 0.6
Se Working sensor

Su Unused sensor

A Single transmitter scenario

B Multiple transmitters scenario

dataset to the training phase, and the rest for the test phase.
This pile of data are referred to as the complete sensor data
Dp, where all of the 100 sensors’ data are used for prediction.
An example of complete sensor data Dy is shown in Fig. 4a.

In order to verify the capability of the proposed model
under the circumstance where the sensors are sparse, spectrum
usage data are collected randomly from the sensor network.
The sensors selected to collect data are referred to as work-
ing sensors, S.. The unused sensors are referred to as Sy.
Therefore, the organized data of each time slot is incomplete
with null value in some elements. The incomplete dataset
is referred as D, as shown in Fig. 4b, where the navy blue
color stands for the unsensed area. To use D as the input of
the prediction model, the null first needs to be recovered
to obtain a complete dataset. Considering that the received
power at each sensor is geographically related to its neigh-
boring sensors, the local interpolation approach is adopted to
recover the missing values in the power matrix after compar-
ing with the matrix completion algorithm. More details about
the data reconstruction work can be found in Section VI-A.
The reconstructed dataset D is then forwarded for prediction.
The symbols used in the paper to describe the problem are
summarized in Table II.

V. SPATIO-TEMPORAL PREDICTION
USING DEEP LEARNING

In this Section, the construction of our prediction model
is explained in three parts: the first part compares the
performance of two data reconstruction approaches from both
accuracy and time aspects, and one approach is selected in
the prediction model. The second part illustrates the structure

TABLE III
RELATIVE ERROR OF TWO APPROACHES

Sparsity | NN interpolation  Time (s) | MC Time (s)
R =04 | 33397 0.926 4.8545 99.853

R=0.5 | 3.5638 0.983 7.6761 124.586
R=0.6 | 5.0581 1.025 21.9675 153.794

of the proposed prediction model. The last part describes how
the model parameters are determined.

A. Reconstruction of Incomplete Data

Both local interpolation method and matrix completion
algorithm show satisfactory results in reconstructing images.
In this section, we first compare the two approaches from
two aspects, error rate and time cost, and select the better
approach for data reconstruction. Relative error (RE) is used
for measuring the error rate.

|X — X||F x 100
1 X1 F ’

where || X || = /Tr(XXT). The two approaches are com-
pared under various sparse rate 0.4, 0.5, and 0.6. The sparse
rate represents the proportion of the missing matrix values.
The higher the sparse rate is, the less sensors are used for
data collection.

1) Nearest Neighbor Interpolation Method: The local inter-
polation approach is used in reconstructing the incomplete
power matrix. According to the path loss model in Eq. (4), the
missing values are more related to their neighbor sensors given
the comparatively lower distance. The interpolation model to
recover the missing values can be formulated as follows:

RE:|

@)

pr = w1 (di)pl + wa(dp)p!? + ws(ds)pl + n
—W-P,+n. (8)

where pv[ﬂ is the signal power received at a neighbor sensor,
w;(d;) is the weight assigned to the sensor proportional to the
distance, and n is the Gaussian noise caused by shadowing.

The reconstruction results are shown in Fig. 5 and the
numerical evaluations are summarized in Table III. It can be
seen that the nearest neighbor interpolation is able to recover
the missing values with low error rate and low time cost. It
achieves a 3.9872 error rate at speed of 0.926 seconds per
hundred matrices in average regardless of the sparse rate.

2) Matrix Completion Method: As for the MC method, we
first re-formulate our problem as follows.

min _|[Po(0) ~ Po(D)[” +NDIL. ©
D 2 F

where the input of the algorithm is the observed incomplete
power matrix D; and the goal is to obtain the reconstructed
power matrix D. In order to solve the non-constrained SDP
problem, a solver named Templates for First-Order Conic
Solvers (TFOCS) proposed by Becker et al. in [36] is applied.
The solver is capable of handling cone convex problems flexi-
bly. An example of the reconstructed matrix is shown in Fig. 5
and the numerical evaluations are summarized in Table III. The
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Fig. 6. Prediction model.

matrix completion approach, however, only maintains a rea-
sonable error rate at 4.8545 when the sparse rate is 0.4. Both
error rate and time cost increases as the sparse rate raises. The
reason why MC underperforms in this scenario is that it fails
to emphasize the local dependence among the missing values.
TFOCS gives the optimal solution to the optimization problem
under a global view including power data that are spatially far
away from the missing point. However, these data can hardly
contribute to the meaningful estimation of the missing values,
which degrades the reconstruction performance.

In conclusion, the nearest neighbor interpolation approach
outperforms the matrix completion method in both the error
rate and time cost aspects. So it is chosen for the data
reconstruction procedure in the proposed model.

B. Prediction Model

In order to predict spectrum usage in a future time slot,
we focus on the usage of previous time slots as shown in
Fig. 6. In this figure, width and height of the input data corre-
spond to the sensor grid size (10 x 10), and the depth is how
many previous time slots are being used in the prediction pro-
cess, i.e., the window length. For a certain window length and
according to the input, the prediction model should be trained
to generate an output, X; that has the minimum error compared
with the groundtruth, X;. During the process of searching for
the minimum error, the weights of the model is updated. The
mean squared error function is chosen as the loss function of
the prediction model. It is defined as:

£(9) = HXt - Xt‘ z (10)

where 6 is the trainable parameters used in the prediction
model.

The prediction model consists of convolution blocks and
residual blocks. The convolution blocks are used in the model
to capture the spatial correlations among the sensors. As men-
tioned earlier, CNNs is powerful in capturing spatial features

Reconstructed (NN interpolation)

- Reconstructed (matrix completion)

-5 55
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(c) Reconstructed (NN interpolation) (d) Reconstructed (matrix completion)

of an image (here a 10 x 10 power matrix). Each convolu-
tion block is a combination of convolution layers, activation
function layers, and pooling layers. The convolution layer is
responsible for capturing the features via a number of filters
or convolutional kernels.

Each filter is responsible for extracting one feature from the
input image. Due to the size of the image, the filter size in the
proposed model is selected to be 2 x 2. Intuitively, the more
filters in a convolution block are set, the better performance
it could achieve. However, increasing the number of filters
also means increasing the number of weights to be calcu-
lated and updated, which results in heavy training cost. In
Section V-C, more details about determining the number of
filters are explained. In the convolution blocks, the “same”
padding strategy has been employed in the pooling layer. This
padding procedure is necessary when the size of the pooling
window does not match the image size. “same” padding adds
an extra zero-column to the matrix, so that the last column of
data is preserved.

Increasing the number of convolution blocks results in
a deep CNN which may encounter the vanishing gradient
problem as introduced in Section II. According to [24], [38],
ResNet can solve this problem. As shown in Fig. 1, the skip
connection structure that bypass the convolution layers helps
the neural network focus more on the variation of data F(x)
rather than the output H(x). For instance, the initial input is
denoted as w;, the output is denoted as H(z;) = x;41, then
within one residual block, the output can be written as:

zip1 = H(z) = F(z;) + ;, (11)

where F'(z;) is the combination of convolution and activation
nonlinear mapping process. With the addition of z;, the differ-
ence between the output H(x) and input x increases, and thus
alleviates the reduction of the gradient. In the proposed model
several residual blocks are stacked to prevent the vanishing
gradient problem as the neural network goes deeper.

As shown in Fig. 7, each residual contains two activation
functions and two convolution blocks. The deployed activation
function in the residual blocks is the linear rectifier, reLU.
Note that each activation function block is followed by a
BatchNormalization block to normalize the data in each
step and improve the convergence of the model.

C. Configurations of the Model

In this subsection, more detailed explanations about config-
uring the model parameters including window length, number
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blocks.

Block diagram of the prediction model, Convolution, and residual

of ResNet blocks and number of filters are addressed. Root
mean squared error (RMSE) and mean absolute percent-
age error (MAPE) are used to evaluate the impact of these
parameters to the model’s performance.

N

1 ~
RMSE = , | Z (X; — X;)2, (12)
=1
N A
1 X — X;
MAPE = — ;1 % | 100. (13)

The data used to show how the model parameters are deter-
mined as an example comes from Case 2 described in
Section IV.

Window Length: The window length parameter is highly
dependent on the temporal correlations of the data. The length
of each predicting window determines how long the histori-
cal data can be used for learning. The correlation between the
spectrum pattern of the future time slot and each previous time
slot varies due to spectrum occupancy, channel fluctuation,
and transmitter mobility. If the data have a long memory, the
more historical data are used, the more accurate the prediction
is. Given the random walk mobility model, the transmitter
will change its moving speed and direction after 2 seconds.
Thus, only a certain range of the successive historical data
are strongly related to the future time slot. Above that, the
historical data may degrade prediction performance. In order
to choose the optimal window length, a group of compari-
son experiments is conducted. Fig. 8(a) shows the comparison
of RMSE and MAPE metrics with respect to the window
length. The total number of convolutional filters and residual
blocks in this figure are fixed to 64 and 4, respectively. The
result shows that the minimum RMSE and MAPE is achieved
when 14 previous time slots are utilized in the prediction
process.

Number of ResNet Blocks: The skip connection idea
in ResNet block helps to alleviate the gradient vanishing
problem. To determine the number of ResNet blocks in the
model, a comparison of model performance in terms of the
number of ResNet blocks is given in Fig. 8(b). It can be
observed that the minimum RMSE and MAPE is achieved
with three ResNet blocks.

Number of Filters in Convolution Layer: Fig. 8(c) shows
the results of the prediction model as the number of filters in

—o-RMSE | | 65 245 —6—RMSE
—o—mape | | —o—mapE

26

MAPE
RMSE
MAPE

2 4 6 8 10 12 14 16 18 20 i

2 3
Window length Number of ResNet blocks

(a) Window length. (b) ResNet blocks.

RMSE

MAPE
RMSE
MAPE

a a8 48
o Y Adam RMsprop  Nadam
Optimizers
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Number of fiters

(c) Filter numbers. (d) Optimizers.

Fig. 8. Determination of parameters of the proposed model.

TABLE IV
MODEL PARAMETERS USED IN THE TRAINING PROCESS

Learning Parameters | Value
Width 10
Height 10
Depth 14
Number of filters 64
Filters’ size 2x2
Number of epochs 60
Learning rate 0.0005
Batch size 32
Activation function tanh , ReLU
Optimizer Adam
Loss function Mean Squared Error

the convolution blocks increases. Each filter extracts a type
of feature from the image. As expected, increasing the total
number of filters reduces both RMSE and MAPE. However,
a large number of filters results in a deeper neural network,
heavier computation costs, and severer over-fitting problem.
Thus, the number of filters does not exceed 64 in the proposed
prediction model.

Comparison of Optimizers: Fig. 8(d) shows the impact of
applying different optimizers to the model’s performance. Here
we compared a few popular optimizers applied in deep learn-
ing [39] namely SGD, Adam, RMSprop, and NAdam. All of
them converge at a similar speed, however, the Adam opti-
mizer provides the best performance in terms of accuracy as
shown in the figure. Therefore, the Adam optimizer is applied
in our model.

In conclusion, the model parameters of the proposed model
is summarized in Table IV. Since the deep learning-based
model is naturally sensitive to datasets, adjusting these param-
eters according to different datasets is necessary. For instance,
when the variation of spectrum usage pattern changes dramat-
ically, a shorter window length is preferred, and vice versa.
Therefore, modifications of the parameters may be needed
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Algorithm 1 Spatio-Temporal Spectrum Load Prediction
Model

Input: collected sensor data

Output: spatio-temporal spectrum load prediction

procedure START
Organize sensor data into PMXNXT,
if P is incomplete then
Apply data reconstruction procedure in Eq. (8).
Obtain P.
else
Continue.
Adjust model parameters according to P (P).
Forward P (P) to NN-ResNet prediction model.
Evaluate prediction results.

1:
2
3
4
5:
6:
7
8
9

10:

in different scenarios. Algorithm 1 describes the complete
process of the proposed prediction model.

In this section, we described the proposed data reconstruc-
tion filter and spatio-temporal spectrum prediction model in
details. In addition, an example to determine the model param-
eters by evaluating the model’s accuracy with RMSE and
MAPE is explained. In the next section, a group of simu-
lations to verify the performance of the proposed model are
explained and analyzed in details.

VI. SPECTRUM USAGE PREDICTION RESULTS

We first describe the configurations of the four types of
datasets used for simulations in Section VI-A. Apart from
one group of complete sensor dataset, three control groups
with different sparsity R 0.4, 0.5, 0.6 are established.
Next, a detailed explanation of the simulation is introduced in
Section VI-B. Four groups of datasets complete sensor dataset
Dy, incomplete dataset D1 with R = 0.4, Dy with R = 0.5, and
D3 with R = 0.6 are used for comparison experiments. Last
but not the least, in Section VI-C and Section VI-D, two dif-
ferent application scenarios: single transmitter A and multiple
transmitters B, are analyzed respectively to explore the effect
of multiple transmitters to the model’s performance. Finally,
in Section VI-F we compared the proposed NN-ResNet model
with the original CNN model using the same datasets in both
single and multiple transmitters scenarios.

A. Description of the Dataset

In this paper, the dataset generated from Case-1 is used
for conducting the following simulations to test our model.

12 3 4 5 6 7 8 9 10

(c) Reconstructed R=0.5

1 2 3 4 5 6 7 8 9 10

(d) Reconstructed R=0.6

vels of sensor sparsity.

First, the dataset with the complete usage of sensors is gen-
erated. Next, In order to verify the proposed model’s capacity
under sparse sensor circumstances, three control groups are
generated following a similar procedure. Instead of using the
complete set of sensors, a smaller number of sensors are
selected randomly from the sensor networks. The sensor data
are collected and organized as introduced in Section IV. To
maintain a 10 x 10 power matrix, the unsensed entries in
the power matrix are replaced with noise-level power values.
These datasets are later used to verify the performance of the
proposed model.

B. Configurations of the Experiments

Two experiments, single transmitter scenario A and multiple
transmitters scenario B are established to validate the
performance of the proposed model. In each experiment, four
groups of datasets are used for simulations. The complete
sensor dataset Dy uses all the sensors to collect spectrum
usage data and the data reconstruction process is skipped for
this group. Three control groups using the incomplete sensor
dataset with different sparse rates are generated. Dy, Do, D3
has the sparsity of 0.4, 0.5 and 0.6, respectively. The control
group datasets are first reconstructed using the NN interpo-
lation methods before forwarded for prediction. The control
groups are set up to examine the capability of the proposed
model under different levels of sparsity.

All of the simulation results are compared with the real
received signal power recorded at the sensors in both exper-
iments. RMSE and MAPE are used to measure the error
rate.

C. Experiment A: Single Transmitter Scenario

In this experiment, only one transmitter is considered
in the target region. The transmitter takes a random walk
mobility pattern as explained in Section IV. First, the
datasets are collected from the sensors and categorized as
Dao,Da1, Dao, Das respectively. The incomplete datasets
are reconstructed before prediction. A few examples of the
reconstructed datasets are shown in Fig. 9(b-d). In comparison,
the real received data is shown in Fig. 9(a). It can be observed
that as the sparsity grows, the performance of the proposed
reconstruction method degrades slightly. In general, it does a
good job in recovering the missing data. Especially in the area
close to the hot spot where spectrum is used intensively.

Next, the reconstructed power matrices are forwarded to the
proposed model for prediction. During the prediction process,
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TABLE V
PREDICTION RESULTS EVALUATION SUMMARY

Single transmitter multiple transmitters
Complete R=0.4  R=0.5 R=0.6 Complete  R=0.4 R=0.5 R=0.6
Incomplete data prediction v.s. | RMSE - 9.0785 10.875  13.4725 - 10.0606  10.944  11.3066
Real power matrix MAPE - 6.6156  8.863 10.2573 - 8.2954 9.7504  10.13
CNN prediction v.s. RMSE | 4.115 43951 5.9837  6.0072 4.1257 4.5493 6.3481  6.9831
Real power matrix MAPE | 3.4068 3.42 4.928 4.9892 3.5679 4.2332 5.8176  6.8197
ConvLSTM prediction v.s. RMSE | 3.6883 42368  4.7652 53127 4.1027 4.4434 5.2821  5.591
Real power matrix MAPE | 2.8411 3.3278 45893 4.7376 3.3432 4.1376 5.1262  5.6179
NN-ResNet prediction v.s. RMSE | 3.7079 4.0907 4.2044  4.6983 4.0147 43512 49811  5.0775
Real power matrix MAPE | 2.9224 3.2831 4.1695 4.3158 3.3495 4.0310 4.8067  5.0498

the previous 80% of the data is used for training and the
rest for testing. Fig. 10(c-e) show the prediction results with
the incomplete dataset Dy, Dgo, and Dyg respectively. In
comparison, Fig. 10(b) shows the prediction results with the
complete data D4 and Fig. 10 (a) is the real received spec-
trum usage data. When comparing the first row and second
row in Fig. 10, we can observe that the performances of the
prediction model are dependent on the input matrices. In other
words, more complete and accurate reconstructed power matri-
ces lead to a more accurate prediction of the target region. The
numerical evaluations of the prediction results are summarized
in Table V.

It can be concluded that the proposed model is capable
of predicting spectrum usage both spatially and temporally
with the help of the reconstruction process, even when miss-
ing parts of the sensor data. It can be also concluded that
the performance of the proposed model is dependent on
the completeness of the input power matrices and the accu-
racy of the reconstruction process. The error rate is only
3.7079 when the complete sensor data D, were used. In
this subsection, the performance of the proposed model of
a single spectrum user scenario is verified and proved to be
effective. In the next subsection, a more complicated sce-
nario where multiple transmitters are involved to test the
model.

D. Experiment B: Multiple Transmitters Scenario

In this experiment, two transmitters are considered as our
analysis objects in the target region. Thus, the spectrum usage
data is more likely to be missed in a sparse sensor cir-
cumstance. Following the same procedure introduced in the
previous experiment A, datasets were collected and categorized
into four groups: Dpg, D1, Dpa, and Dp3. The reconstruc-
tion process was applied to the incomplete datasets before
prediction. The reconstructed results are shown in Fig. 11.
Although more data about the spectrum usage were lost as
the sparsity grows bringing more challenges to predictions,
with the help of the reconstruction procedure, the lost data
can be recovered to some extent.

These reconstructed power matrices are later used as the
input to the proposed prediction model to predict the future
spectrum usage. The prediction results are presented in Fig. 12.
Fig. 12(c-e) show the prediction results of the incomplete
dataset. In comparison, Fig. 12 (b) shows the prediction results
with the complete data Dp and Fig. 12 (a) is the real received
spectrum usage data. Similar to what we can observe from
experiment A, it can be seen from Fig. 12 that the proposed
model is capable of predicting future spectrum usage of the
region based on the reconstructed dataset. However, due to
the loss of data, the proposed model’s performance degrades
slightly in some area. Even though, the proposed model can
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provide us with the general distribution of spectrum usage
in the target region. Regardless of data loss, the prediction
with complete sensor data as shown in Fig. 12 (b) shows that
the proposed model maintains a good performance even under
multiple transmitters scenario. Numerical evaluations based on
the averaged RMSE and MAPE of the experiment’s results are
summarized in Table V.

E. Impact of Vanishing Gradient Problem

To show the advantages of applying ResNet to address the
vanishing gradient problem, a group of CNN prediction model
with different depth are tested. As shown in Fig. 14, we com-
pared the performances of CNN with 6, 9, and 14 layers under
different sparse sensor conditions, receptively. Under the same
sparsity condition, the prediction error rate increases with the
increase of network depth. On the other hand, the prediction
error of a shallow CNN model (e.g., layer-6 CNN) increases
quickly with sparser sensor observation. Therefore, the original
CNN model has limited capacity to predict the spatio-temporal
spectrum load with sparse data.

FE. Comparison With Other Prediction Models

To further verify the performance of the proposed model, we
compared the proposed NN-ResNet model with CNN (layer 6)
and ConvLSTM prediction model under various sparsity con-
ditions using the same reconstructed datasets. The ConvLSTM
model has the same depth as NN-ResNet. The comparison
results are shown in Table V.

The results show that the three models have relatively lower
error rate using the complete dataset for prediction. In the
single-transmitter scenario, NN-ResNet and ConvLSTM have
similar performance while LSTM performs slightly better with
RMSE 3.6883 thanks to its memory-preserving property. CNN
gives RMSE of 4.115. However, the performance of the three

1.2 3 4 5 6 7 8 9 10

(c) Prediction with Dpgq

1 2 3 4 5 6 7 8 9 10

(e) Prediction with Dp3s

12 3 4 5 6 7 8 9 10

(d) Prediction with Dpgo

models start to differ with sparser sensor observations, i.e.,
with the increase of sparsity R. The performances of CNN
and ConvLSTM degrade quickly where the RMSE of CNN
increased from 4.3951 to 6.0072 and ConvLSTM increased
from 4.2368 to 5.3127. NN-ResNet on the other hand, main-
tains a relatively more stable prediction accuracy with the
increase of R: the RMSE increased gradually from 4.0907 to
4.6983. The superiority of NN-ResNet is more obvious in the
multiple-transmitter scenario. The three models show similar
performance when trained with the complete dataset where
NN-ResNet gives the best result with RMSE 4.017. When the
sparsity increases, the RMSE of both CNN and ConvLSTM
prediction model increase quickly from 4.5493 and 4.4434 to
6.9831 and 5.591, respectively. NN-ResNet maintains smaller
error rates and increment from 4.3512 to 5.0775. In addi-
tion, we also compared the performance of ResNet without
the nearest neighbor reconstruction procedure, i.e., using the
incomplete dataset directly for training and prediction. As it
is shown in the first row of Table V, the prediction has very
high error rate in both single and multiple-transmitter scenar-
ios and worsens with the increase of sparsity. The results show
the importance of the reconstruction procedure.

VII. CONCLUSION AND FUTURE WORK

In this paper, we focused on the spectrum load prediction
both spatially and temporally. We proposed a spatio-temporal
prediction model based on deep learning. In our work, CNNs
and ResNets were utilized in the prediction process, since the
former performs well in capturing both spatial and temporal
features, while the latter is helpful in avoiding the vanish-
ing gradient problem. The combination of CNN and ResNet
guarantees stable weight updating during the back-propagation
process. The model performed well in predicting an overall
spectrum usage pattern spatially and temporally. It is also
worth mentioning that the configurations of the parameters,
such as the settings of window length, number of filters,
and number of ResNet blocks, are dependent on the dataset
itself. Different datasets may require different configurations
to obtain the best performance of the model.

In addition, we studied the cases where a limited number
of sensors are utilized for prediction to avoid high sensing
cost. In order to maintain good performance, two widely used
data reconstruction approaches are compared and analyzed.
As a result, the nearest neighbor interpolation method out-
performs the matrix completion method in both accuracy and
time cost aspects. The capability of the proposed prediction
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model under sparse sensor circumstances are verified through
two experiments: single transmitter scenario A and multiple
transmitters scenarios B. With the help of the reconstruction
process, the proposed prediction model is able to maintain
good performances under different levels of sensor sparsity.

However, the proposed model only focused on the short-
term prediction due to the limitation of the dataset. The
performance of the long-term prediction needs further veri-
fication. On the other hand, the proposed model has a similar
problem as other deep learning models that the model param-
eters are fixed to particular scenarios dependent on the dataset
fed to the model. Transfer learning is a promising tool to
migrate models across different scenarios. In future work,
transfer learning could be added to the proposed model. The
transfer learning module tunes the existing model’s parameters
accordingly when the target scenario is changed.
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