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Abstract—Many third-party services and applications have integrated the login services of popular Online Social Networks, such as
Facebook and Google+, and acquired user information to enrich their services by requesting user’s permission. Although users can
control the information disclosed to the third parties in a certain granularity, there are still serious privacy risks due to the inference
attack. Even if users conceal their sensitive information, attackers can infer their secrets by exploiting the correlations among private
and public information with background knowledge. To defend against such attacks, we formulate the social network data sharing
problem through an optimization-based approach, which maximizes the users’ self-disclosure utility while preserving their privacy. We
propose two privacy-preserving social network data sharing methods to counter the inference attack. One is the efficiency-based
privacy-preserving disclosure algorithm (EPPD) targeting the high utility, and the other is to convert the original problem into a
multi-dimensional knapsack problem (d-KP) using greedy heuristics with a low computational complexity. We use real-world social
network datasets to evaluate the performance. From the results, the proposed methods achieve a better performance when compared
with the existing ones.

Index Terms—Inference attack, Online social network, Privacy, Data sharing.
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1 INTRODUCTION

ONLINE Social Networks (OSNs) have attracted an in-
creasing number of people to build their social rela-

tions on the Internet. The accounts in popular social network
sites, such as Facebook and Google+, have become people’s
second identity since they record users’ detailed profile in-
formation (attributes) and interpersonal relationships (social
relations). People are willing to share part of their personal
information to find new friends with similar interests, which
is called self-disclosure [1]. Due to the privacy concerns [2],
OSN users are reluctant to disclose their full set of personal
information. Therefore, the social network service providers
allow users to determine whether a specific field is open
to the public or not. However, it is still possible to infer
the hidden and secret information of OSN users with high
accuracy by exploiting the public information. As a result,
unsafe self-disclosure may be followed by potential privacy
leaks, leading to targeted spams, reputation damage, and
even property loss.

Nowadays, the third-party applications can access user
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profiles and relationships with user’s authorization, so they
can leverage the application-specific social networks and
integrate their services with the existing OSNs. OAuth 2.0
[3], a common authorization protocol, has been designed
to guarantee the authorization security and simplify the
authorization process without sharing users’ credentials.
The authorization mechanism allows each user to know the
resources that the third-party applications require and then
to determine whether to grant the resource access permis-
sion. However, even if users have a full control of what to
disclose, they have little knowledge of whether the third-
party applications can exploit the disclosed information to
infer their secrets. Meanwhile, the user experience with the
OSNs and applications depend on safe self-disclosure. It is
critical to ensure that users enjoy the benefits of the services
free from the worries about privacy leakage.

Different from the privacy-preserving anonymized data
publishing, social network data provided to the third parties
are sometimes required to be only partially or even not
anonymized (e.g., logging services with Facebook account
information). The main privacy concern here is the infer-
ence attack on user secrets. For various types of inference
methods [4], [5], [6], [7], the principle is to find out the
targeted secrets based on the information extracted from
the published dataset and background knowledge of the
attackers. For example, an attacker can train a classifier from
the training dataset to predict whether a user has a certain
secret. When a new social network is published, the attacker
extracts features from the public information of the targeted
user as the input of the classifier and then infers the secret.
In the whole process, the training dataset can be viewed
as the background knowledge, and the extracted features
can be regarded as the observation. Both the quality of the
training set and the performance of the attacker’s classifier
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affect the effectiveness of the inference attack.
A direct way of defending against the inference attack is

to pre-process the released network data. There are several
common operations to reduce the chance of inference at-
tacks, such as masking (removing data), obfuscation (adding
confusing data), and generalization (coarsening data) [8]. In
this work, we prefer to mask the secret-related information
rather than to add misleading information to maintain
the data utility because misleading or fake information
may bring users other troubles (e.g., inaccurate news feeds
and friend recommendations) in non-anonymized social
networks. According to the survey [9] on privacy protec-
tion strategies on Facebook, the interviewed students were
strongly against using fake information as a privacy protec-
tion method because of the confusion brought by the fake
information. However, the excessive concealment of user at-
tributes will reduce the self-disclosure utility of OSN users,
which results in the degradation of user experience and
application performance. Thus, we need to mask attributes
effectively and efficiently with the consideration of both the
self-disclosure utility and privacy concerns.

Therefore, our goal is to design the algorithms for releas-
ing as much social network data as possible while satisfying
the privacy guarantees according to different user concerns.
To achieve the goal, there are three main challenges. i)
Privacy Concerns: Different users may have different pri-
vacy concerns. A certain profile attribute may be a secret
to one person while it may not be sensitive to another;
ii) Attacker’s Ability: It is necessary to design a general
protection algorithm with regard to attackers’ ability. But the
background knowledge and capabilities of an attacker are
usually unknown; and iii) Privacy and Utility Evaluation: To
establish the privacy protection model, we need to quantify,
evaluate and make a trade-off between the extent of self-
disclosure and privacy leakage.

In this paper, we first formulate the privacy-preserving
online social network data sharing problem as a knapsack-
like problem, and then propose two social network data
disclosure methods, an efficiency-based privacy-preserving
disclosure (EPPD) algorithm and a multi-dimensional knap-
sack problem (d-KP) simplification based method, respec-
tively. The main contributions of this paper are threefold.

• We use the social-attribute network model to de-
scribe both the social network data and attacker’s
knowledge, and propose the self-disclosure rate to
quantify the leakage of user secret in the published
network regardless of the attacker’s knowledge.

• To defend the inference attack, we formulate a novel
privacy-preserving social network data sharing prob-
lem, which maximizes the user self-disclosure utility
with privacy guarantees. The optimization problem
also takes different user concerns into account and
enables a flexible self-disclosure evaluation in order
to satisfy different user demands and scenarios.

• The two proposed social network data sharing meth-
ods are designed for different purposes and pro-
tection levels. The EPPD algorithm targets the high
utility satisfying the formal privacy protection con-
straints, while the d-KP disclosure algorithm greatly
reduces the computational complexity of solving the
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Fig. 1: A simple privacy protection framework based on
OAuth 2.0 protocol.

social relation disclosure problem. We use two real-
world social networks to evaluate the performance
and compare them with the existing work.

The remainder of this paper is organized as follows.
Section 2 introduces some important preliminaries for the
problem formulation including modeling of social-attribute
networks, inference attack model, adversarial abilities, and
the definition of utility. Section 3 defines the privacy disclo-
sure and formulates the problem, followed by the privacy
protection methods proposed in Section 4. In Section 5, we
conduct several experiments with real-world datasets and
verify the efficiency of the proposed methods. In Section 6,
we introduce the related work. Finally, we conclude the
paper in Section 7 with future work.

2 PRELIMINARIES

2.1 Scenario
In our scenario, the main concern is the potential privacy
leak led by the inference attack when the OSN service
provider (host) releases a user’s information to the third-
party applications. We assume that the host OSN service
provider is fully trusted by the user, while the third-party
applications are not. On one hand, the user only authorizes
the third-party applications to access a number of limited
resources. On the other hand, some third-party applications
may be curious about the user’s secrets, and try to infer
them based on the available information and their back-
ground knowledge. The host is responsible for controlling
the information to release and ensure that the disclosed
information is insufficient for the third-party applications to
infer the secrets effectively. Thus, the OSN data disclosure
algorithms should be implemented in the servers of the OSN
service providers.

Figure 1 is an example of implementation based on
the OAuth 2.0 framework [3] with the “Privacy Module”
as the critical part to protect users’ privacy. OAuth 2.0
defines four roles, including client (third-party applica-
tions), resource owner (OSN users), authorization server
and resource server (the host OSN service providers). To
be compatible with the existing framework, the privacy
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TABLE 1: Notation

Symbol Definition
VN Vertex set of social actors
VA Vertex set of attributes
EN Edge set of social relations
EA Edge set of attribute links
Nu / Na Social actors connected with actor u/attribute a
Au Attribute set of actor u
Su Secret attributes of actor u
Pu Public attributes of actor u
GA Attack graph
GP Published social network graph
tu(s) Indicating whether actor u has secret s
Φ(u, s,GP ) Self privacy disclosure of actor u’s secret s in GP

pi Value of the ith attribute or social relation
ε, E Privacy budget (set)
δ,∆ Relaxation variable (set)
θ,Θ Privacy threshold (set) determined by ε and δ

module with the data disclosure algorithms is implemented
in the resource server, which intercepts the data access
(mainly the READ operation) to the database storing users’
personal information. As shown in Fig. 1, once the third-
party applications send the authorized request with a valid
access token to the resource server, the privacy module will
acquire the requester, the targeted user, the requested fields,
and some other additional information, and then decide
what to disclose as the protected resources to the third-party
applications.

In the next part, we will introduce some preliminaries
including the social network model, and the inference attack
as well as the utility of the third-party services before
formulating the privacy-preserving data sharing problem in
OSNs. Table 1 shows the basic notations commonly used in
our work.

2.2 Social-Attribute Network

A social network is usually described as a graph consisting
of social actors and relationships where user attributes (e.g.,
profile information) are used to label or group social actors.
To present both social actors and attributes together, we use
a social-attribute network graph G = {VN , VA, EN , EA},
where VN is the social actor set, VA is the attribute node set,
EN is the social relation set and EA is the attribute link set.
The social-attribute network model is first proposed by Yin
et al. [10], and it is widely used for social network analysis,
link prediction and hidden attribute inference [11], [12]. The
social network model used in Fig. 2 is a social-attribute net-
work. There are two types of attributes: categorical attribute
and numerical attribute. A categorical attribute belongs to a
certain category in the user profile, where all candidates can
be enumerated. If an attribute is described as a number, it
can be regarded as a numerical attribute.

In our model, in order to represent a numerical attribute
with a node, it has to be converted into a categorical
attribute by using the interval or ordinal variables. For
example, “Age: 26” can be shown as “Age: 20–29” or
“Young”. For simplicity, despite the fact that a category can
be regarded as a tree with attributes at different granularities

(e.g., location can be “Mountain View, CA” or only “CA”,
and the former attribute is the child node of the latter one),
we consider all attributes belonging to the same category
are in the same level of the tree.

A social relation (u, v) ∈ EN means that u and v
are friends in an undirected network, or u follows v in a
directed network, while an attribute link (u, v) ∈ EA means
that u has the attribute v. We use an indicator function
tGu (v) ∈ {0, 1} to indicate the existence of edge (u, v) in
graph G. In a social-attribute network, there are two kinds
of edges: actor-to-attribute and actor-to-actor. We can use the
neighborhood information to form node sets where nodes
have the same attributes or common friends. For a social
actor u, the friend set (in undirected networks) of node u is
denoted asNu = {v|v ∈ VN , (u, v) ∈ EN}, and the attribute
set of social actor u is denoted as Au = {a|a ∈ VA, (u, a) ∈
EA}. Similarly, social actors sharing the same attribute a
are all involved in the set Na = {v|v ∈ VN , (v, a) ∈ EA}.
Furthermore, we can obtain the social actor set with mul-
tiple common attributes and relationships by calculating
the intersection of the corresponding neighborhood sets.
For example, A’s friends who are photographers can be ex-
pressed byNA∩NPhotographer. For convenience, we introduce
some other symbols. The attributes of the node u can be
divided into two sets, the secret attributes Su and the public
attributes Pu, where Au = Su ∪ Pu,Su ∩ Pu = ∅.

2.3 Privacy Inference Attack

In a social-attribute network, the privacy inference attack
(sensitive attributes and relations inference) can be regarded
as a special form of link prediction [12]. An attacker exploits
both the public information from published social networks
and the background knowledge to infer user privacy. Since
the attacker can adopt a variety of techniques with different
background knowledge, it is difficult to take all situations
into consideration. However, it is feasible to model an
attacker into a knowledge graph [13], [14], [15]. Similarly,
we use another social-attribute network graph GA (attack
graph) to describe the background knowledge of an attacker.
An attack graph can contain the following information:

1) Statistical Information. It can be obtained from official
statistics directly or from the published dataset. A
piece of statistical information can be expressed as
a conditional probability of owning a secret given
several attributes.

2) Node & Edge Information. An attack graph can con-
tain node and edge information not contained in the
published social networks. It can involve part of the
original social network, and additional edges from
other social networks as well.

Different from the social-attribute network for the orig-
inal dataset, an attack graph translates each piece of statis-
tical information into a tree-like inference path: Attributes-
Feature-Secret, where Feature node is treated as a virtual
social actor with several Attribute nodes connecting to it
and a weighted edge to a Secret node. The weight is the
conditional probability Pr(Secret|Attributes). For example,
the statement “People with attributes A1 and A2 have a prob-
ability of 90% to own secret S1” can be expressed as path
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Fig. 2: An example of the attribute inference attack in OSNs. According to #4 and #5 in the attack graph (a), the attacker
infers that A and B in the original graph (b) have a high probability of earning $80k–85k annually. According to #6, the
attacker knows that around 75% friends of D are in the same age group, which implies that C, as D’s friend, is probably
around 35 to 39 years old. However, attackers can hardly make accurate inferences on processed graph (c) since only 25%
of people in the age group of 20–24 and 40% of engineers have the salary of $80k–85k. Also, for C, after removing the
relation between C and D, it is hard to guess C’s true age from other attributes.

A1,A2-F1-S1 where F1 is a virtual node representing social
actors with attribute A1 and A2. Fig. 2 gives a toy example
of the inference attack and a feasible defending method
against it. With sufficient information observed from the
social-attribute network, an adversary can easily conduct
the inference attack based on the background knowledge.
After removing a few attributes and social relations, the
probability of inferring the secrets of the targeted OSN user
will greatly decrease.

2.4 Adversarial Ability

As mentioned in the scenario, the third party is considered
as the potential attacker who is curious about the users’
hidden information. After a user provides the third-party
service with public information stored in the host social
network service, the third party can exploit this information
to generate a formatted input for its attack model whose
output is whether the user has a secret attribute. The attack
model can be a well-trained classifier or a statistical model.
To obtain such a model, the attacker can use the data from
its own database or the public anonymized data collections.
As a result, both the host social network and the user can
hardly predict the adversarial ability. Therefore, to achieve a
good protection performance, it is necessary to assume that
the adversary has a strong attack capability.

In this paper, we assume that the adversary has almost
the same dataset as the host social network service, which
means that the adversary has the identical topology of the
social-attribute network as the original one. In addition, we
make some specific assumptions for the privacy inference
attack via public attributes and social relations, respectively.
For the former one, we assume that the adversary has the
“anonymized” version of the original graph so that it can
obtain full statistical information about public attributes and
secrets. For the latter one, we assume that the adversary
knows the exact number of common neighbors who have
the secret attributes with the given set of users. In Section
3, we introduce the self privacy disclosure based on the
adversarial ability.

2.5 Utility

To defend against the inference attack and guarantee users’
privacy, it is essential to limit the information to disclose,
which can cause the loss of utility. The third parties are al-
ways expecting as much information from users as possible
because it not only helps them improve services (e.g., pro-
viding more accurate recommendation), but also provides
useful information for marketing and analytics. However,
sharing too much social network data exposes users into
the threats of privacy inference attack. Therefore, there is
always a trade-off between the utility and privacy.

Before we give the privacy definition for the user side,
we also need to quantify the utility for the third parties.
In this paper, We regard the utility as the value of an
attribute or a social relation which is denoted as p, and to
determine the utility of disclosed information T , we have
a utility function p(T ). The most intuitive and common
way of determining the utility is to consider every piece
of information equally (p = 1) and get the sum of them [16].
Nevertheless, we provide some other utility options for both
attribute utility and relation utility.

2.5.1 Attribute Utility

The utility of an attribute highly depends on its semantic
properties and the requirements of the third parties. For
example, a location attribute “Mountain View, CA” contains
more information than “CA” alone, and the location-based
services usually prefer the detailed location attributes to the
others. Therefore, it is difficult to find a uniform standard
to evaluate the attribute. To measure the attribute utility in
a general way, we focus on the neighbors of the attribute
in the social-attribute network, which naturally shows how
common the attribute is in the whole social network.

Uniqueness: the information carried by an attribute can
be measured as − log(1/|Na|) according to the informa-
tion theory. Intuitively, an attribute with fewer social actor
neighbors is more “informative”, and makes a user more
“unique”. Here, we use the inverse of the attribute node’s
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degree centrality to calculate the uniqueness score.

pU (a) =
1

log(|Na|) + 1
. (1)

Commonness: sometimes, the third parties are more
interested in the common attributes for analysis. We can
simply use the normalized degree centrality in the whole
network. To ensure the structure of a community, we use the
degree centrality in the ego network of the targeted social
actor.

pC(a, u) =
|Nu ∩Na|
|Nu|

. (2)

2.5.2 Social Relation Utility
An edge’s value can be determined by the node similarity
between two social actors connected. Intuitively, two similar
social actors (sharing a lot of attributes in common) have a
stronger tie between them.

Jaccard Coefficient: The normalized common neighbor
metric describes the similarity of two social actors. The more
common friends will bring a higher Jaccard coefficient.

pJ(eu,v) =
|Nu ∩Nv|
|Nu ∪Nv|

. (3)

Adamic/Adar Score: Adamic et al. [17] proposed this
score to describe the similarity between two web pages. Dif-
ferent from the Jaccard coefficient, it considers the weight of
each common feature. For our experiments, Adamic/Adar
score is defined as follows.

pA(eu,v) =
∑

k∈Fu∩Fv

1

log |Nk|
, (4)

where the common feature with a smaller degree centrality
weighs more.

3 PROBLEM FORMULATION

3.1 Self Privacy Disclosure
To quantify the privacy disclosure, Martin et al. [18] defined
the disclosure risk as the likelihood of the most possible sen-
sitive attribute assignment with respect to the background
knowledge for privacy-preserving data sharing. In the case
of social networks, the disclosure risk of a binary secret s of
the social actor u in a published network graph GP given a
certain background knowledge graph GA is:

Pr{tu(s) = 1|GA, GP } = Pr{tAu (s) = 1|g(APu )}, (5)

where the function AAu = g(APu ) maps the attribute set APu
onto AAu in the attack graph GA.

However, since the background knowledge varies from
attackers to attackers, we should consider a general privacy
measurement without regard to a certain attack graph.
Therefore, we introduce the self privacy disclosure to evaluate
the disclosure rate of a certain social actor n’s secret s in the
graph G.

Based on the adversarial ability mentioned in the previ-
ous section, we can further define the self privacy disclosure
under a strong attacker. The self privacy disclosure from the
perspective of attributes, ΦA, can be calculated by

ΦA(u, s,GP ) , Pr{tu(s) = 1|Au ∩ APu }. (6)

Also, we can process the social relations in a similar way
to attributes. Let ΦN be the self privacy disclosure which is
the likelihood of owning secret s given the Nu.

ΦN (u, s,GP ) , Pr{tu(s) = 1|Nu ∩NP
u }. (7)

Similarly to the existing definitions of privacy such as
Bayes-optimal privacy [19], indistinguishable privacy [20]
and differential privacy [21], [22], we define the threshold
for self privacy disclosure as the privacy guarantee. An
operation is considered to be privacy-preserving if it satis-
fies the constraint that the difference between the attacker’s
prior and posterior beliefs about the sensitive information is
small enough, which can be expressed as follows.

Φ(u, s,GP ) ≤ exp(ε) Pr{tu(s) = 1}+ δ, (8)

where Pr{tu(s) = 1} is the prior probability of u’s secret
s. Here, we use two parameters, ε and δ, to control the
privacy protection strength. ε is the privacy budget, a non-
negative parameter to define how close the self privacy
disclosure rate is to the prior probability. It determines
the strict privacy threshold at δ = 0, and therefore, it is
usually set to a small number. δ controls the tolerance of
privacy disclosure, and it should be numerically smaller
than 1 − exp(ε) Pr{tu(s) = 1} since the range of self
privacy disclosure is [0, 1]. δ enables a flexible way to relax
the privacy constraint which allows to customize different
privacy requirements for different situations.

In this paper, we define a user’s privacy concern as a
set of tuples consisting of secret attributes and their privacy
requirements. Each tuple (s, ε, δ) is representing a piece of
privacy setting that follows the privacy definition shown in
(8). When we take all users’ privacy concern into account,
and denote it as C = {S, E ,∆}, which is the aggregation of
all tuples, the disclosed graph GP can be regarded privacy-
preserving if it satisfies

Φ(u,Su, GP ) ≤ Θu,∀u ∈ VN , (9)

where Θu is the vector of privacy thresholds θu,i which can
be calculated as

θu,i = exp(εu,i) Pr{tu(Su,i) = 1}+ δu,i, (10)

where εu,i ∈ E , δu,i ∈ ∆, i = 1, 2, . . . , |Su|.
Note that since the disclosed graph GP is a subgraph

of the original graph which is supposed to remove part of
the edges (i.e., social relations and attribute links), we can
also use the disclosed edges T ⊆ EN ∪ EA to represent the
disclosed graph.

3.2 General Form

The goal of our work is to mask part of edges in the
social-attribute network so that users can disclose as much
valuable personal information as possible with privacy
guarantees. The masking operations start with all edges
involved and then remove one edge after another from the
network. Here we process the network in the opposite way:
at the beginning, the network includes all the nodes only,
both social actors and attributes, and we add edges into it.
Then, the general social network data sharing problem is
formulated as follows.
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Given a social network graph G = {VN , VA, EN , EA},
all users’ privacy concern C = {S, E ,∆} and the utility
function p(T ), obtain a disclosed social network Gp with
the disclosed edge set T = E′N ∪ E′A, where E′N ⊆ EN and
E′A ⊆ EA such that the disclosed social network satisfies
privacy requirements given in (9) with the maximum utility.
And the maximum utility can be obtained by

y = max
T⊆EN∪EA

{p(T ) : Φ(u, Su, T ) ≤ Θu,∀u ∈ VN}, (11)

where Θu can be calculated with S , E , and ∆ by (10) .
However, the self privacy disclosure function does not

hold either submodularity or monotonicity. This can be
shown by the following proofs.

Non-submodular: Given the social network G with
VN = {a, b, c, d, e, f}, VA = {S,A1, A2}, and
EA = {(a, S), (a,A1), (a,A2), (b, S), (b, A1), (c, S), (c, A1),
(d,A1), (d,A2), (e,A1), (f,A2)} where S is the secret
of user a, there exist e = (a,A2), T1 = EA \
{(a, S), (a,A1), (a,A2)} and T2 = EA \ {(a, S), (a,A1)},
T1 ⊆ T2 such that

g(T1 ∪ {e})− g(T1) < g(T2 ∪ {e})− g(T2), (12)

where g(T ) = Φ(a, S, T ). Since the example here does not
follow the definition of the submodular function, we can
conclude that the self privacy disclosure function is non-
submodular with the fixed u and Su. �

Non-monotonic: Given the same conditions as the pre-
vious proof, there exist e1 = (a,A1), e2 = (a,A2) and
T = EA \ {(a, S), (a,A1), (a,A2)} such that

g(T ) < g(T ∪ {e1}), g(T ∪ {e1}) > g(T ∪ {e1, e2}), (13)

which violates the definition of monotonicity. Therefore, the
self privacy disclosure function is non-monotonic with the
fixed u and Su. �

Due to the properties of the self privacy disclosure
function, it is difficult to solve the general social network
data sharing problem directly. Therefore, we need to fur-
ther process the general problem. Because of the different
assumptions on adversarial abilities for public attributes
and social relations, we separately consider attribute and
relation disclosure problems derived from the general form
for simplification. In Section 4, we give two privacy pro-
tection algorithms to obtain the feasible solutions with low
computational complexity, where one of the proposed algo-
rithms, d-KP simplification, is designed to further simplify
the problem into a well-studied one.

3.3 Attribute Disclosure Problem
According to our assumptions on the attacker’ ability, each
user has an independent profile which means that the
change of a user’s profile will not affect the other users’
disclosure strategies. Therefore, we can process the attribute
disclosure problem for each user. Then, we introduce an
optimization problem as follows.

max
x

|Pu|∑
i=1

pixi (14)

s.t. ΦA(u, sj ,x) ≤ θj , j = 1, . . . , |Su|, (15)
xi ∈ {0, 1}, i = 1, . . . , |Pu|, (16)

where each element xi in vector x indicates whether to
disclose the corresponding public attribute ai with utility
value pi which can be defined as the value of the attribute
for different purposes (see Section 2.5). ΦA(u, sj ,x) is the
self privacy disclosure of node u’s secret sj according to
vector x, which is defined in (6). θj is the privacy protection
threshold for secret sj , which is equal to exp (ε) Pr{tu(sj) =
1} + δj . Note that the disclosed social network here is the
subgraph of the original network. The self privacy disclo-
sure is actually determined by selected attributes, and thus,
we use ΦA(u, sj ,x) instead of ΦA(u, sj , GP ).

3.4 Relation Disclosure Problem
As described above, the attribute disclosure problem for
each social actor can be solved locally without the involve-
ment of other social actors. However, a social relation in-
volves two actors, and therefore, when we disclose a relation
for a social actor, we should take into account the influence
of this relation on the other actor. Hereby, we formulate the
social relation disclosure problem as follows.

In the directed social networks, we mainly consider the
successors of a social actor since users can determine who
to follow, but not their followers. Besides, the removal of
a directed social relation does not affect its reverse rela-
tion. Therefore, we can process the directed social relation
disclosure problem in a similar way to the attribute dis-
closure problem by changing Pu into Nu and using the
ΦN (u, sj , GP ) as the constraints.

In the undirected social networks, the relation disclosure
problem cannot be solved for each social actor, because
the removal of one undirected edge will affect two social
actors. Therefore, we need to address the relation disclosure
problem as a whole, which is formulated as follows.

max
x

|EN |∑
i=1

pixi (17)

s.t. ΦN (uk, sk,j ,x) ≤ θk,j ,
j = 1, . . . , |Suk

|, k = 1, . . . , |VN |, (18)
xi ∈ {0, 1}, i = 1, . . . , |EN |, (19)

where θk,j = exp (ε) Pr{tuk
(sk,j) = 1}+δk,j and all protec-

tion constraints including all social actors and their secrets
are considered together. Compared with the optimization
problem formulated in (14), the main challenge is the com-
plexity of the undirected social relation disclosure problem.
Thus, to address this problem, we specifically propose a d-
KP simplification method, which will be introduced in detail
in the next section.

4 PRIVACY PROTECTION ALGORITHMS

4.1 Overview
Our social network publishing problem is a knapsack-like
combinatorial optimization problem. For each attribute or
relation, we can regard the utility (e.g., self-disclosure) as
its “profit” or “value”, the contribution to secret disclosure
as its “weight”, and the privacy protection threshold as the
“maximum weight”. For the knapsack problem, there exists
an exact solution by using dynamic programming (DP) or
Branch and Bound [23]. Similarly, we can use DP to obtain
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a feasible solution to our proposed problem. The maximum
value of selected attributes or social relations can be defined
as the following general form:

pmax(i, C) =


0, i ≤ 1, i > n,

pmax(i− 1, C), i > 1, ∃w > θ,

max(pmax(i− 1, C ∩Ni) + pi,

pmax(i− 1, C)), otherwise.
(20)

However, such a DP algorithm does not necessarily
achieve the optimal solution, since the “weight” of each
item is not fixed and even may become negative with
different items selected. Consider the whole procedure of
the DP algorithm as a tree. During the recursion, once the
current combination (e.g., x = [1, 0, 1, 0, 0, . . . , 0]) exceeds
the threshold, this branch will be cut because all the com-
binations derived from this branch are regarded to exceed
the threshold as well. However, it is possible that there is a
combination satisfying the constraints in a subtree due to the
items with a negative weight. Although the DP algorithm
can cope with the negative weight situation in knapsack
problems by preprocessing, it is hard to process “weights” in
advance for our problem because of their inter-dependency.

Besides, the DP algorithm has an exponential time com-
plexity. It is applicable when the data is of low scale only.
However, a social actor may have hundreds and even thou-
sands of social relations, which make the DP algorithm fail
to find out a solution within an acceptable time limit.

To design an efficient algorithm for social network data
sharing, both protection performance and computational
complexity should be taken into account. In our work, we
first propose a heuristic method to obtain a feasible solution
to the original combinatorial problem. In order to reduce
the high complexity brought by the high-dimensional so-
cial relations, we then simplify the original social relation
disclosure problem into a d-KP problem.

4.2 Efficiency-based Privacy-Preserving Disclosure
For the knapsack problem and its variants, a great num-
ber of heuristic algorithms are proposed to obtain feasible
solutions approaching the optimal one with relatively low
time complexity [23]. Among them, the greedy algorithm
is the most intuitive with a reasonable performance. To
obtain a feasible solution with polynomial time complexity,
we propose the EPPD algorithm to solve the knapsack-like
problem.

We define the total contribution of the selected items Tsel
to social actor n’s secret s as the self privacy disclosure rate:

ws(Tsel) = Φ(u, s, Tsel) (21)

=
| ∩t′∈Tsel

Nt′ ∩Ns|
| ∩t′∈Tsel

Nt′ |
. (22)

Accordingly, the contribution (weight) of a single item t
to social actor u’s secret s with selected items Tsel can be
computed as the increment of the total contribution, i.e.,

wt,s(Tsel) = Φ(u, s, Tsel ∪ {t})− Φ(u, s, Tsel). (23)

The main idea of our algorithm is to compare all edges
(attribute links or social relations) and find out the most
suitable one at each time. If all constraints are satisfied

Algorithm 1 EPPD Algorithm

Input: Item value list ~p = {p1, p2, . . . , pn}, secret neighbor-
hood set list ~S = {S1, S2, . . . , Sm}, item neighborhood
set list ~N = {N1, N2, . . . , Nn}, and secret threshold list
θ = {θ1, θ2, . . . , θm}

Output: Maximum value pmax, result set Sel
1: C ← VN , Sel← ∅, Vmax ← 0,~l← [1, 2, . . . , n]
2: while ~l 6= ∅ do
3: ρmax ← −1, s← −1, wsel ← ∅
4: for each i ∈ ~l do
5: for j ← 1, 2, . . . ,m do
6: wj ← |C∩Ni∩Sj |

|C∩Ni|
7: end for
8: ρ← pi∑m

k=1 wj/θj
9: if ρ > ρmax then

10: s← i, ρmax ← ρ, wsel ← w
11: end if
12: end for
13: if wj <= θj , ∀j ∈ {1, 2, . . . ,m} then
14: Sel← Sel∪{s}, C ← C ∩Ns, pmax ← pmax + ps
15: end if
16: ~l.remove(s)
17: end while
18: return pmax, Sel

after adding the selected item, then add it to the result
list; otherwise, drop it and repeat the former steps. The
termination condition is that all the edges are visited, and no
more edges can be added into the result set to keep all the
constraints satisfied. Intuitively, an edge with a higher value
and a lower contribution to each disclosure rate constraint
is preferable. Here, we define the efficiency of an edge as
its value-to-weight ratio. Since there are usually multiple
constraints with different thresholds in our problem, it is not
reasonable to add up all the “weights” for different secrets
directly. Instead, we need to consider the magnitudes and
importance of the constraints and compute the efficiency as
the following general form:

ρi =
pi∑m

j=1 bjwi,j
, (24)

where bj is the importance coefficient of the jth constraint
and wi,j is the total weight (contribution) with item i to
secret j. We use the total weight instead of the weight of
each item defined in (23) so as to avoid the negative weight
problem. In this way, the efficiency e is always non-negative.

The coefficient bj can be changed for different purposes
to reach a more suitable solution to the given scenario (e.g.,
a secret with a higher priority can have a smaller bj). In the
experiment shown in Section 5, we only take the magnitudes
of constraints into account and let bj = 1/θj . The pseudo-
code is shown in Algorithm 1.

From the code, we can see that different from greedy
heuristics for knapsack problems which require sorting all
items according to a certain criteria at the beginning, the
proposed algorithm for the edge masking problem needs to
find out the most suitable edge in each iteration, because
the “weight” of each item changes after each iteration.
Intuitively, in each iteration, we select the attribute or social
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relation with the highest efficiency, which means that it
provides more increment in utility with leaking less in-
formation about the secrets. It helps the EPPD algorithm
to achieve a high utility while satisfying all the privacy
requirements. Moreover, it also naturally supports the case
that categorical attributes have different granularities. As
long as an attribute a with the social node neighbor set Na
is selected, all the attributes with the social node neighbor
set which is the superset of Na (i.e., the parent attribute
in the attribute tree) will be selected because they do not
leak more information about the secrets. For example, if the
attribute “live in Mountain View, CA” has been selected, the
attribute “live in the United States” will be also selected into
the result set.

The EPPD algorithm for the social relation masking
problem in undirected networks is slightly different. Since
the problem is solved as a whole, there may be hundreds of
constraints. But actually, the existence of a certain edge only
affects two nodes’ constraints. With this property, each time
we only need to calculate the related constraints and avoid
much redundant computation. Therefore, the efficiency of
an undirected edge e = (n1, n2) can be calculated as
follows.

ρe =
pe∑m1

j=1 bjwn1,j +
∑m2

j=1 bjwn2,j
, (25)

where m1 is the number of social actor n1’s secrets and m2

is that of social actor n2.
Computational Complexity: In Algorithm 1, we cal-

culate the efficiency of each item with set intersection
operations. Assume that the time complexity of each set
intersection operation is O(|VN |). In the attribute disclosure
problem, the time complexity of the EPPD algorithm for
each node actor is O(n2m · |VN |), where n is the number
of attributes and m is the number of secrets. In the practical
attribute disclosure problem, the scale of n (the attribute
number of a social actor) is usually related to |VA|, which
is far less than the scale of |VN |. In the undirected social re-
lation disclosure problem, the time complexity of the EPPD
algorithm for the whole network is O(|S| · |VN | · |EN |2)
where |S| is the total number of all constraints/secrets.
When the social network becomes very large, although
within polynomial time complexity, it may consume much
time to find a feasible solution. This drives us to further
simplify the original problem and find an undirected social
relation disclosure strategy to obtain a solution with a lower
complexity.

4.3 d-KP Simplification
The main factor that causes the high complexity is that the
self privacy disclosure considers all the correlations among
attributes and social relations. Omitting the correlations
and considering all the public information (conditionally)
independent, on one hand, may weaken the privacy re-
quirements because two public attributes/social relations
may provide more information than the sum of the infor-
mation provided individually. On the other hand, it will
also simplify the problem and fix the weight of each public
attribute or social relation. For example, the countermea-
sures against inference attacks proposed by [16] adopts
the Naive Bayes model, which treats all public attributes

and social relations conditionally independent, and aims to
minimize the classification accuracy. The disclosure strategy
is to follow the Naive Bayes model by hiding the attributes
and social relations with a higher likelihood. Therefore, in
order to further reduce the computation complexity of the
undirected social relation disclosure problem, one possible
solution is to simplify the original problem with indepen-
dent assumption.

Since the knapsack problem and its variants have been
well-studied for decades, we try to transform the original
relation disclosure problem into a multi-dimensional knap-
sack problem. The key point is how to fix the weight of each
item. We can rewrite the constraints (18) and assign a fixed
weight to each public attribute. To determine the weight
of each relation, we assume that the correlations among
relations can be neglected (independent assumption), which
is identical to the situation where the adversary only knows
the secret distribution in each ego network and the degree
of each social actor.

First, we consider the basic form of a single constraint.
Given a node u, a secret s and the social relation indicator
vector x, let ~v = {v1, v2, · · · , vp} denote the neighbor node
of u that whose corresponding social relation’s indicator x
equals 1, and then we have

ΦN (u, s,x) = Pr{tu(s) = 1|v1, . . . , vp} (26)

= Pr{tu(s) = 1}
p∏
i=1

Pr{vi|tu(s) = 1}
Pr{vi}

, (27)

where Pr{vi} is the probability of connecting to node vi.

If we substitute (27) into (18) and take the natural loga-
rithm of both sides, we can obtain

p∑
i=1

ln
Pr{vi|tu(s) = 1}

Pr{vi}
+ ln Pr{tu(s) = 1} ≤ ln θ. (28)

Then, for a node u, the weight of each social relation e
is now fixed. If e is the edge connecting to u, the weight is
equal to the mutual information between two events, “u is
connected to the other node v of e” and “uk has the secrets
of sk,j” respectively; otherwise, it is equal to 0. Let I(e; sk,j)
denote the mutual information between social relation e and
node uk’s secret sk,j , i.e.,

I(e; sk,j) =

{
ln

Pr{v,tuk
(sk,j)=1}

Pr{v}Pr{tuk
(sk,j)=1} u ∈ e

0 u /∈ e
(29)

Note that the “mutual information” defined here is
slightly different from that between two random variables.
The former can be either non-negative or negative while the
latter is always non-negative. A positive “mutual informa-
tion” implies the contribution to inferring the secret, while
a negative one implies the misguidance.
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TABLE 2: Secret Settings

Dataset Attribute name Category # of actors

Facebook

School 538 School 631
Birth year 5 Birthday 372
Location 84 Hometown 365
Concentration 14 Concentration 368

Google+
Google Inc. Institution 1,123
Manager Job Title 975
New York Location 976

Then we obtain the d-KP simplified version of our pro-
posed optimization problem as follows.

max
x

|EN |∑
i=1

pixi (30)

s.t.
|EN |∑
i=1

I(ei; sk,j)xi ≤ θ′k,j ,

j = 1, . . . , |Suk
|, k = 1, . . . , |VN |, (31)

xi ∈ {0, 1}, i = 1, . . . , |EN |, (32)

where θ′k,j is the new threshold which can be calculated by

θ′k,j = ln(exp(ε) +
δk,j

Pr{tuk
(sk,j) = 1}

). (33)

The intuition of d-KP transform is to use the information
gain as the fixed weight of each relation, which has been
widely adopted for feature selection in machine learning.
The constraints are to limit the total information gain, which
the adversary acquires about the targeted secrets from all
disclosed relations, to a small number. Also, we can keep the
original privacy constraints and adopt the greedy algorithm
for d-KP as the disclosure strategy, selecting the edge e =
(m,n) with the minimum weight-price rate (ρ−1e ) which is
calculated by

ρ−1e =

∑|Sm|
j=1 I(e; sm,j) +

∑|Sn|
j=1 I(e; sn,j)

pe
. (34)

The reason for using ρ−1e instead of ρe is that the information
gain can be non-positive in the d-KP simplified problem.

Computational Complexity: The common methods to
solve d-KP can be applied to this problem. For our experi-
ments, we use the greedy heuristics to solve the transformed
d-KP whose time complexity is O(|S| · |EN |) [23] with all
items sorted in advance. Comparing to the EPPD algorithm,
the d-KP disclosure algorithm computes the weights only
once and does not need to compute them again during the
iterations, which greatly decreases the time complexity.

On one hand, the d-KP disclosure algorithm naturally
counters the inference attacks by machine learning. On the
other hand, the fixed weight greatly reduces the time com-
plexity with certain protection performance loss compared
to directly solving the original relation disclosure problem.
Therefore, the d-KP disclosure algorithm is suitable for strict
privacy protection which requires a fast response.

5 EXPERIMENT RESULTS

To evaluate the performance of our proposed social network
publishing methods, we conduct several experiments on

(a) Before using EPPD (b) After using EPPD

Fig. 3: Results for inferring the social actors who attended
the school 50 in a Facebook Ego Network before and after
using the EPPD Algorithm for attribute disclosure. Green:
True Positive, Grey: True Negative, Yellow: False Positive,
and Red: False Negative.
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Fig. 4: Inference attacks via profile attributes on School 538

real-world social network datasets with different utility
settings and a variety of inference attack algorithms.

5.1 Methodology

5.1.1 Datasets

We apply our algorithms in 2 real-world social network
datasets published by Stanford Network Analysis Project
(SNAP) [24]. One is the Facebook dataset, including 4,039
undirected social actors and 88,234 social relations, where
user profiles consist of 11 categories (i.e., gender, birthday,
location, hometown, work, education, etc.). For some categories,
there are several sub-categories (e.g., employer and start
date belong to work category). The other is the Google+
dataset, including 17,258 social actors, 1,344,555 directed
social relations, where user profiles consist of 5 categories
(i.e., gender, institution, job title, location, and university). Note
that attributes in the same category are not necessarily
mutually exclusive, as they may coexist in the same user
profile (e.g., a user can speak two or more languages).

In the experiment, we select several attributes as the
secrets with a moderate sample size (the attributes con-
nected with around 5–10% of social nodes in the datasets)
from different categories so that the inference attack can
be successfully launched on the original dataset with suf-
ficient positive training data. The detailed secrets settings
are shown in the Table 2.
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(e) Google+: Uniqueness Score - δ
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Fig. 5: Profile attribute utility in Facebook and Google+ datasets

5.1.2 Disclosure Methods for Comparison

In order to show the effectiveness of our proposed methods,
we introduce some commonly used and benchmark meth-
ods for comparison. When we compare the utility metrics,
all the algorithms are supposed to use the same privacy
constraints introduced in Section 3.1. To determine ε, the
self privacy disclosure for a binary attribute connected with
10% social actors is supposed not to be larger than 0.5 at
δ = 0, where ε should be smaller than ln(0.5/0.1) ≈ 1.6. To
be specific, all ε’s for different secrets are uniformly set to
a moderate value 0.5, and we mainly study the relationship
between relaxation variable δ and different metrics. Further-
more, the range of δ is from 0 to 0.3, since 0.3 is already quite
high (loose) according to the sample size of the selected
secrets.

• Random Mask (RND): Randomly remove attribute or
social relation until all of the protection constraints
are satisfied. In our experiments, the results of ran-
dom masking are the average of 100 runs.

• Naive Bayes Mask (NB): Heatherly et al. [16] proposed
a masking algorithm based on Naive Bayes classifier
to defend against the inference attacks. The basic idea
is to remove the attributes and social relations with
higher likelihood.

• d-KP: In our work, the d-KP algorithm is mainly
proposed to solve the undirected social relation dis-
closure problem. However, it can be also applied to
the other disclosure problems with evaluating the
information gain of the attributes and social relations
as the disclosure criteria.

5.1.3 Algorithms for Inference Attacks

To test the protection effects, we use a variety of classifica-
tion algorithms to conduct inference attack via either public
attributes (local classifier) or social relations (relational clas-
sifier). The local classifiers include Decision Tree, Random
Forest, Gaussian Naive Bayes and Logistic Regression with
the default parameter settings in the Scikit-learn library1.
The relational classifiers include class-distribution rela-
tional neighbor (CDRN), weighted-vote relational neighbor
(WVRN) and network-only link-based classification (NOLB)
implemented in Netkit-SRL library2, which were proposed
by S. A. Macskassy et al. [25]

To launch the inference attack, we have the following
experiment settings. For local classifiers, the adversary is
assumed to have the whole dataset as its training set,
and then conduct the inference attack on the published
dataset with the trained model. For relational classifiers, the
adversary is assumed to have the half of the dataset and
published network as its training set, and then conduct the
inference attack on the remaining part of the dataset with
the trained model. The different experiment settings are due
to the different design principles. The relational classifiers
rely on the identity of social actors while the local ones do
not. It makes no sense for the relational classifier to train on
the whole dataset with all actors’ secrets already known.

1. http://scikit-learn.org/stable/
2. http://netkit-srl.sourceforge.net/
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5.2 Attribute Disclosure Results
5.2.1 Protection Performance
The protection performance of our proposed disclosure al-
gorithm depends on the self privacy disclosure constraint,
which is defined in Section 3. As long as the self-privacy
disclosure rate is smaller than the constraint threshold, we
regard the published social network as a privacy-preserving
one. In this part, we mainly study the protection perfor-
mance of our EPPD algorithm under different δ, because
the self privacy disclosure rate of applying EPPD is closer to
the constraint threshold compared to the other algorithms.

We first show an example of the inference attack based
on the Decision Tree classifier on a small Facebook ego net-
work with 348 users in Fig. 3, where the targeted secret is the
education attribute School 50 (with 154 users having this at-
tribute). Before we apply the EPPD algorithm, the adversary
successfully infers 119 of 154 users with the secret (Precision:
83.80%, Recall: 77.27% and F-Score: 80.41%). After applying
the EPPD algorithm (δ = 0.3), the adversary fails to find
out most positive instances with only 23 inferred correctly
(Precision: 14.94%, Recall: 16.20% and F-Score: 15.54%). The
performance of the inference attack decreases significantly,
which means that the EPPD algorithm is able to defend
against the inference attack effectively. For the experiment
on the large dataset, we mainly study the F-Score of the
classification results because it takes both precision and
recall into account.

Fig. 4 shows the experiment on inferring the secret
School 538 in the Facebook dataset. As shown in Fig. 4a, the
original F-Score of 4 classifiers are 85.17% (Decision Tree),
84.24% (Random Forest), 66.83% (Naive Bayes), and 69.05%
(Logistic Regression), respectively, where the random guess
is around 15.62%. However, after applying the EPPD al-
gorithm, the F-Scores of these four local classifiers are no
larger than 15% even with a very loose δ = 0.3. With critical
attributes concealed, the published user information will
mislead the local classifier to make an inaccurate prediction.
Therefore, the local classifiers can hardly work on the pro-
cessed dataset. When the privacy constraints are strict δ = 0,
almost every social actor with the targeted secret is well
protected with all F-Scores around 1% only. All these results
show that the EPPD algorithm can well defend against the
inference attack via a variety of local classifiers.

5.2.2 Utility Comparison
To evaluate the performance of attribute disclosure, we
mainly compare the utility scores and the percentage of
masked attributes under different social network data shar-
ing algorithms. In our experiment, we adopt the normalized
value of each utility score p (e.g., uniqueness score and
commonness score) which is calculated as follows.

U =

∑
u∈V ∗N

∑|Pu|
i=1 pixi∑

u∈V ∗N

∑|Pu|
i=1 pi

, (35)

where V ∗N = {u|u ∈ VN ,Su 6= ∅} is the set of the affected
social actors having privacy concerns. For an algorithm,
a higher utility score indicates that more valuable non-
sensitive attributes are shared.

Fig. 5a and 5d show the attribute disclosure results of
experiments on the Facebook and Google+ datasets. For all
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Fig. 6: Inference attacks via social relations on School 538

the four algorithms, the percentage of the masked attributes
decreases with the increment of δ. According to the results
in the Facebook dataset, the EPPD algorithm always has the
best performance, where only 40.74% of the public attributes
are masked at δ = 0.3, while the other three algorithms
need to mask 49.66% (d-KP), 59.79% (NB) and 71.27% (RND)
of the public attributes. Even under the strict protection
constraints at δ = 0, the EPPD algorithm only masks 55%
of the public attributes. Besides, the d-KP algorithm is also
better than the Naive Bayes Masking algorithm with fewer
attributes masked. Similar results are also observed from the
experiment on the Google+ dataset. Combining with results
of protection performance experiments, the EPPD algorithm
can realize a good protection effect by removing as few
critical attributes as possible.

For the utility score experiments, we try the two differ-
ent utility settings, namely the uniqueness score and the
commonness score introduced in Section 2.5. Generally, the
utility scores always increase with the increment of δ since a
loose privacy constraint allows more information published.
Fig. 5b and 5e compare the uniqueness scores of 4 algo-
rithms in the Facebook and Google+ datasets. Intuitively,
an attribute with a higher uniqueness score may imply
more information about whether a social actor has a certain
secret, which conflicts the idea of making a social actor’s
profile indistinguishable. Therefore, all the four algorithms
have low uniqueness scores. Besides, the d-KP, an algorithm
based on Information Gain, has a close performance to the
Naive Bayes Masking in the Facebook dataset while it has
a slightly higher score in the Google+ dataset. However, the
EPPD algorithm has the best performance among the four
algorithms with around 40-50% performance increase over
the Naive Bayes Masking.

In contrast with the uniqueness score, the commonness
score weighs more on the common attributes. As shown
in Fig. 5c and 5f, both EPPD and d-KP algorithms have
significantly higher scores than Naive Bayes Masking. In
the Google+ dataset, the EPPD algorithm performs much
better than the other three algorithms at any δ while the
Naive Bayes Masking algorithm is just slightly better than
Random Masking since it does not set the utility score as its
objective. In summary, for the attribute disclosure problem,
the EPPD algorithm is more desirable since it has a higher
utility score and masks fewer attributes with an acceptable
time complexity.
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Fig. 7: Social relation utility in Facebook and Google+ datasets

5.3 Social Relation Disclosure Results

5.3.1 Protection Performance
Similar to the attribute disclosure experiments, we first
study the protection performance of the EPPD algorithm
against three different relational classifiers, WVRN, CDRN,
and NOLB respectively. Although they all focus on the ego
network of the targeted node, they have different classi-
fication principles which lead to different performances,
where WVRN first assigns weights to the neighboring nodes
then to get the weighted average probability of owning the
secret, CDRN is based on the secret distribution in the ego
network and NOLB uses logistic regression with labels of
the neighboring nodes as feature vectors.

Fig. 6a shows the inference results of the three relational
classifiers on School 538 before applying the EPPD algo-
rithm. From the figure, we can see that WVRN has a slightly
better performance with a higher F-Score 74.41%, compared
with CDRN (71.53%) and NOLB (65.93%). CDRN features a
high recall score 94.92% while NOLB has a relatively high
precision score 74.54%. Fig. 6b shows the change of F-Scores
of the three relational classifiers with the increment of δ.
The performance of NOLB decreases significantly at any δ.
However, unlike the local classifiers, the F-Scores of WVRN
and CDRN do not decrease dramatically at a loose δ = 0.3
(WVRN: 69.61% and CDRN: 67.75%), and they are still even
better than that of NOLB attacking the original dataset.
When δ ≤ 0.06, the F-Scores of the two classifiers are smaller
than 0.5, making them ineffective in the inference attack.

The protection experiment results imply that a loose
privacy constraint for social relation disclosure is still likely
to expose the users’ secrets to the threat of inference attacks
by means of relational classifiers. Similar results were also

observed in [16] where the removal of a number of social
relations does not lead to a significant performance decrease
for the relational classifiers. Thus, it is recommended to set
a small value for the privacy threshold (both δ and ε) to
protect against social relation based inference attacks.

5.3.2 Utility Comparison
As discussed in Section 3, the directed and undirected social
relation disclosure problems are quite different from each
other. Here, we conduct both experiments with the Face-
book dataset (undirected) and the Google dataset (directed).
Besides the percentage of masked relations, we also use
Jaccard coefficient and Adamic/Adar score introduced in
Section 2.5 for performance evaluation. We also calculate
the normalized value of each utility score p as follows.

U =

∑|E∗N |
i=1 pixi∑|E∗N |
i=1 pi

, (36)

where E∗N = {e|e = (u, v) ∈ EN ,Su 6= ∅ or Sv 6= ∅} is
the set of the affected edges with the social actors having
privacy concerns.

Fig. 7a and 7d show the masked relation percentage the
processed networks under different disclosure algorithms.
Compared with the attribute disclosure, the social relation
disclosure needs to mask much more edges, especially for
the undirected one. As shown in the figure, when δ = 0,
nearly 95% affected social relations in the Facebook network
need to be removed to satisfy the privacy guarantee while
in the Google+ network, the EPPD algorithm can only retain
about 18.54% affected social relations (d-KP: 13.67% and NB:
11.25%). Although the EPPD algorithm can keep around
30% social relations at a loose δ = 0.3, the performance
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of the inference attack does not decrease significantly. That
is to say, to protect the privacy effectively, masking a great
number of relations is essential, which leads to a limited op-
eration space for privacy-preserving disclosure algorithms.
For this reason, the performances of the three disclosure
algorithms look similar. Nevertheless, the EPPD algorithm
still has a slightly better performance over d-KP and NB.

Both Jaccard coefficient and Adamic/Adar score assign
a weight to each social relation according to its importance
based on the similarity between the two connected nodes.
However, the former describes the similarity by the common
friends (structure similarity) while the latter emphasizes the
similarity between the two nodes’ profiles (profile similar-
ity). Fig. 7b and 7e illustrate the Jaccard results in both
directed and undirected social networks. In the undirected
Facebook network, the performances of EPPD and d-KP
are very close and still slightly better than NB at a strict
δ < 0.06. And in the directed Google+ network, the EPPD
algorithm has higher utility scores compared with the other
two algorithms. Similar results are also observed in the
Adamic/Adar experiments as shown in Fig. 7c and 7f. In
conclusion, the utility performance of the EPPD algorithm is
always good since it is designed to keep the important rela-
tions as many as possible. However, in the undirected social
relation disclosure experiments, the d-KP algorithm, which
simplifies the original disclosure problem and reduces the
computational complexity, has a very similar performance
with the EPPD algorithm at a strict δ. In this case, we can
use the d-KP algorithm to replace the EPPD algorithm for a
faster response and fairly good results.

5.4 Summary
From the experiment results, we can conclude that the EPPD
algorithm can effectively defend against different kinds of
inference attacks via public attributes and social relations.
Under the same security requirements, the EPPD algorithm
can achieve a higher utility score than the state-of-the-art
algorithm for both attribute disclosure and social relation
disclosure problems. As shown in the undirected social
relation experiments on Facebook, the d-KP algorithm has a
similar performance with the EPPD algorithm with a lower
complexity. Thus, we can also consider the d-KP algorithm
as a substitute of EPPD in the undirected social relation
disclosure problem.

6 RELATED WORK

Privacy-preserving Social Network Publishing: Different
from the work focusing on the privacy-preserving dis-
tributed data aggregation [22], [26], publishing a social
network usually takes the entire network into consideration
directly. There are extensive works on privacy-preserving
social network data sharing and publishing, which mainly
focused on anonymization techniques. Li et al. [14] pro-
posed a graph-based privacy-preserving data publishing
framework to construct several subgraphs and perform
the existing anonymity operations independently for each
subgraph. Wang et al. [27] studied how to outsource social
networks with indistinguishability. The introduction of dif-
ferential privacy [21] also provides a solid theoretical foun-
dation for social network data publishing. Jorgensen et al.

[28] involved differential privacy guarantees into attributed
social graph publishing, and Day et al. [29] proposed a dif-
ferential privacy based graph degree distribution publishing
method.
Controlled Information Sharing in OSNs: One of the
typical security and privacy issues in OSNs is how to protect
data from unauthorized access [30]. To address this issue,
there are extensive works on the access control models,
which concentrate on how to share the social network data
according to identity, relationship, and data sensitivity [31],
[32], [33]. They mainly studied the design of access control
policies to secure the private social network information
based on the trust among users. In addition, for the specific
resources like photos, Xu et al. [34] proposed a distributed
consensus-based method to control the photo sharing with
friends by using an efficient facial recognition system. How-
ever, few of these works take the inference attack into
account, which can be conducted via authorized access.
Our work is from the novel perspective of the correlations
between public and private information, which makes it
possible to integrate with the existing access control models
to defend against the inference attack.
Inference Attack: Inference attack has been widely studied
to infer user demographics [5], [35], social roles [7], [36],
hidden attributes [4], [6], [37], user activities [38], etc., in
online social networks. Most of the inference attacks ex-
tract the features from the published data as the input
of trained models to obtain the most probable secrets. To
describe attackers’ capabilities, Qian et al. [13], [15] used
the knowledge graph where each relation connecting two
entities is a piece of knowledge. In our work, the back-
ground knowledge of an attacker is captured by a social-
attribute network [11], [12] where each piece of knowledge
is a tree-like inference path involving at least 3 nodes. To
defend against the inference attack, Heatherly et al. [16]
studied the inference attack based on Naive Bayes and
introduced a correspondent protection approach. Different
from our work, the principle of its masking algorithm is
to remove the most highly indicative attributes and social
relations without considering the correlation among public
information, which makes it hard to satisfy a variety of
utility metrics and the inference attacks based on other
statistical learning methods. For our EPPD algorithm, we
consider the correlations among public attributes or social
relations, and consider customized utility values of them.

7 CONCLUSIONS

This paper investigated the online social network data shar-
ing with defense against the inference attack and formulated
the optimization problem which maximizes the utility with
privacy guarantee and user privacy concerns. In the paper,
we have proposed two different methods to address the
problem. One is the EPPD algorithm which is based on
the greedy heuristics to directly obtain a feasible and good
solution to the original problem, while the other is the d-KP
approximation algorithm which transforms and simplifies
the undirected social relation disclosure problem into a d-
KP problem. Extensive experiments on real-world datasets
demonstrated that our proposed methods are efficient and
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effective to defend against the inference attack, and espe-
cially the EPPD algorithm substantially outperforms the
existing masking techniques while the d-KP approximation
algorithm has a lower computational complexity, and it is
applicable when dealing with the undirected social relation
disclosure problem.

For the future work, we will further study the utility
metrics to consider more complicated situations, such as
non-linear utility objectives and attributes with different
granularities. For the social relation disclosure problem, we
will also investigate the correlations among structural or
community information and user privacy, and makes the
corresponding protection algorithms to defend against the
inference attack based on these aspects.
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