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Preserving Data-Privacy With Added Noises:
Optimal Estimation and Privacy Analysis
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Abstract— Network systems often rely on distributed algo-
rithms to achieve a global computation goal with iterative local
information exchanges between neighbor nodes. To preserve
data privacy, a node may add a random noise to its original
data for information exchange at each iteration. Nevertheless,
an eavesdropping node can estimate other’s original data based
on the information it received. The estimation accuracy and data
privacy can be measured in terms of (�, δ)-data-privacy, defined
as the probability of �-accurate estimate (the difference of an
estimation and the original data is within �) is no larger than
δ (the disclosure probability). How to optimize the estimation
and analyze data privacy is a critical and open issue. In this
paper, a theoretical framework is developed to investigate how
to optimize the estimation of neighbor’s original data using the
local information received, named optimal distributed estimation.
Then, we study the disclosure probability under the optimal
estimation for data privacy analysis. We further apply the
developed framework to analyze the data privacy of the privacy-
preserving average consensus algorithm and identify the optimal
noises for the algorithm.

Index Terms— Distributed algorithm, noise adding mechanism,
distributed estimation, data privacy, average consensus.

I. INTRODUCTION

W ITHOUT relying on a central controller, distributed
algorithms are robust and scalable, so they have been

widely adopted in network systems to achieve global compu-
tation goals (e.g., mean and variance of the distributed data)
with iterative local information exchanges between neigh-
bor nodes [1]–[3]. In many scenarios, e.g., social networks,
the nodes’ original data may include users’ private or sensitive
information, e.g., age, income, daily activities, and opinions.
With the privacy concern, nodes in the network may not
be willing to share their real data with others. To preserve
data privacy, a typical method is adding random noises to
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the data to be released in each iteration. With the noise
adding procedure, the goal of privacy-preserving distributed
algorithms is to ensure data privacy while achieving the global
computation goal [4]–[6].

Average consensus, an efficient distributed computing
and control algorithm, has been heavily investigated and
widely applied, e.g., in distributed estimation and optimiza-
tion [7]–[9], sensor data fusion [10], distributed energy man-
agement and scheduling [11], [12], and time synchronization
in sensor networks [13]–[15]. The final goal of averaging is
critical in these applications, e.g., the effective data fusion
requires an accurate average consensus. Recently, how to
ensure accurate average consensus while preserving privacy
has attracted attention [16]–[20]. The main solution is to add
variance decaying and zero-sum random noises during each
iteration of the consensus process.

In the literature, differential privacy has been defined and
applied for quantifying to what extent individual privacy in
a statistical database is preserved [21]. It aims to provide
means to maximize the accuracy of queries from statistical
databases while maintaining indistinguishability of its tran-
scripts. To guarantee the differential privacy, a commonly used
solution is to add Laplacian noise [22], [23]. More privacy
definitions (e.g., identifiability, differential privacy) and the
relationship among them have been discussed in [28].

Different from the database query problems, for many
distributed computing algorithms such as consensus, the key
privacy concern is to ensure that other nodes cannot accurately
estimate the original data, rather than the indistinguishability.
No matter what type of noise distribution is used, there is a
chance that an estimated value of the original data is close
to the real data, and such a probability cannot be directly
measured by differential privacy. To quantify the estimation
accuracy and data privacy, we first define �-accurate estimate,
i.e., the difference of the estimated value and the original data
is no larger than �. Then, (�, δ)-data-privacy is defined as that
the probability of �-accurate estimate by an eavesdropper is no
larger than δ. Using the (�, δ)-data-privacy definition, in this
paper, we develop a theoretical framework to investigate how
to optimize the estimation of neighbor’s original data using
the local information received, named optimal distributed
estimation. Then, we study the disclosure probability under
the optimal estimation for data privacy analysis. The main
contributions of this work are summarized as follows.

1) To the best of our knowledge, this is the first work
to mathematically formulate and solve the optimal dis-
tributed estimation problem and data privacy problem

0018-9448 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6253-7802
https://orcid.org/0000-0002-1093-4865
https://orcid.org/0000-0003-1858-8538


5678 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 8, AUGUST 2018

for the distributed algorithm with a general noise
adding mechanism. The optimal distributed estimation
is defined as the estimation that can achieve the highest
disclosure probability, δ, of �-accurate estimate, given
the available information set.

2) A theoretical framework is developed to analyze the
optimal distributed estimation and data privacy by con-
sidering the distributed algorithm with a noise adding
procedure, where the closed-form solutions of both the
optimal distributed estimation and the privacy parame-
ter are obtained. The obtained results show how the
iteration process and the noise adding sequence affect
the estimation accuracy and data privacy, which reveals
the relationship among noise distribution, estimation and
data privacy.

3) We apply the obtained theoretical framework to analyze
the privacy of a general privacy-preserving average
consensus algorithm (PACA), and quantify the (�, δ)-
data-privacy of PACA. We also identify the condition
that the data privacy may be compromised. We further
obtain the optimal noise distribution for PACA under
which the disclosure probability of �-accurate estimate
is minimized, i.e., the highest data privacy is achieved.

The rest of this paper is organized as follows. Section II pro-
vides preliminaries and formulates the problem. The optimal
distributed estimation and the privacy analysis under different
available information set are discussed in Sections III and IV,
respectively. In Section V, we apply the framework to analyze
the data privacy of PACA. Concluding remarks and further
research issues are given in Section VI.

II. PRELIMINARIES PROBLEM FORMULATION

A network system is abstracted as an undirected and con-
nected graph, denoted by G = (V , E), where V is the set of
nodes and E is the set of edges. An edge (i, j) ∈ E exists if
and only if (iff) node i can exchange information with node j .
Let Ni = { j |(i, j) ∈ E} be the neighbor set of node i (i /∈ Ni ).
Let n = |V | be the total number of nodes and n ≥ 3. Each
node i in the network has an initial scalar state xi (0) ∈ R,
which can be any type of data, e.g., the sensed or measured
data of the node. Let x(0) = [x1(0), . . . , xn(0)]T ∈ Rn be the
initial state vector.

A. Privacy-Preserving Distributed Algorithm

The goal of a distributed algorithm is to obtain the statistics
of all nodes’ initial states (e.g., the average, maximum, or min-
imum value, variance, etc.) in a distributed manner. Nodes in
the network use the local information exchange to achieve the
goal, and thus each node will communicate with its neighbor
nodes periodically for data exchange and state update. With
the privacy concerns, each node is not willing to release its
real initial state to its neighbor nodes. A widely used approach
for the privacy preservation is adding random noise at each
iteration for local data exchange.

Define x+
i (k) the data being sent out by node i in iteration k,

given by

x+
i (k) = xi (k) + εi(k), (1)

TABLE I

IMPORTANT NOTATIONS

where εi (k) ∈ �i is a random variable and the noises added
in iteration k1 and k2, εi (k1) and εi (k2) may be dependent of
each other for k1 �= k2. When node i receives the information
from its neighbor nodes, it updates its state using the following
function,

xi (k + 1) = hi (x+
i (k), x+

j (k) : j ∈ Ni ), (2)

where the state-transition function, hi : R × R × . . . ×
R → R, depends on x+

i (k) and x+
j (k) for j ∈ Ni . The above

equation defines a distributed iteration algorithm with privacy
preserving since only the neighbor nodes’ information is used
for state update in each iteration and the data exchanged has
been mixed with random noises to preserve privacy. Hence,
(2) is named as a privacy-preserving distributed algorithm.
Since the initial state is most important for each node in the
sense of privacy, in this paper, we focus on the estimation and
privacy analysis of nodes’ initial states.

B. Important Notations and Definitions

Define the noise input and state/information output
sequences of node i in the privacy-preserving distributed
algorithm until iteration k by

I in
i (k) = {εi(0), . . . , εi (k)}, (3)

and

Iout
i (k) = {x+

i (0), . . . , x+
i (k)}, (4)

respectively. Note that for any neighbor node j ∈ Ni , it can not
only receive the information output I out

i (k) of node i , but also
eavesdrop the information output of their common neighbor
nodes, which means that there may be more information
available for node j to estimate xi (0) at iteration k ≥ 1. Since
node j can have the information output of all the common
neighbor nodes between node i and itself, we define

I i
j (k) = {x+

i (0), x+
� (0), . . . , x+

i (k), x+
� (k) |

� = j or � ∈ Ni ∩ N j },
as the available information set/outputs for node j to estimate
xi (0) of node i at iteration k. Clearly, we have I out

i (0) = I i
j (0)

and I out
i (k) ⊆ I i

j (k).
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Let fεi (k)(z) be the probability density function (PDF) of
random variable εi (k). Let Xi ⊆ R be the set of the possible
values of xi (0). Clearly, if Xi = R, it means that xi (0) can
be any value in R. Given any function f (y), we define the
function f (y, �) as

f (y, �) = f (y + �) − f (y − �), (5)

and let

�0
f = {y| f (y, �) = 0} (6)

be the zero-point set of f (y, �) = 0. Let {◦}b be the boundary
point set of a given set {◦}, e.g., (0, 1]b = {0, 1}.

Note that each node can estimate its neighbor nodes’ initial
states based on all the information it knows, i.e., the available
information set of the node. For example, based on I i

j (0) =
x+

i (0), node j can take the probability over the space of noise
εi (0) (where the space is denoted by �i (0)) to estimate the
values of the added noises, and then infer the initial state of
node i using the difference between x+

i (0) and the real initial
state xi (0), i.e., x̂i (0) = x+

i (0) − ε̂i (0). Hence, we give two
definitions for the estimation as follows.

Definition 1: Let x̂i be an estimate of variable xi . If |xi −
x̂i | ≤ �, where � ≥ 0 is a small constant, then we say x̂i is an
�-accurate estimate.

Note that Iout
i (k) is the information output sequence of

node i , which is related to xi (0) directly, and this should be
considered in the estimation. Since only the local information
is available, we define the optimal distributed estimation of
xi (0) as follows.

Definition 2: Let Iout
ν (k) be the possible output given the

condition that xi (0) = ν at iteration k. Considering �-accurate
estimate, under I i

j (k),

x̂∗
i (k) = arg max

x̂i∈Xi

Pr
�Iout

ν (k) = Iout
i (k) | ∀|ν − x̂i | ≤ �

�
,

is named the optimal distributed estimation of xi (0) at iteration
k. Then, x̂∗

i = limk→∞ x̂∗
i (k) is named the optimal distributed

estimation of xi (0).
In order to quantify the degree of the privacy protec-

tion of the privacy-preserving distributed algorithm and con-
struct a relationship between estimation accuracy and privacy,
we introduce the following (�, δ)-data-privacy definition.

Definition 3: A distributed randomized algorithm is (�, δ)-
data-private, iff

δ = Pr{|x̂∗
i − xi(0)| ≤ �}, (7)

where δ is the disclosure probability that the initial state xi (0)
can be successfully estimated by others using the optimal
distributed estimation in a given interval [xi (0)−�, xi (0)+�].

In the above definition, x̂∗
i depends on the output sequences,

Iout
i (k), which are the functions of random noise inputs I in

i (k)
and its neighbors’ output Iout

j (k), j ∈ Ni . All the possible
outputs of Iout

i (k) under a privacy-preserving distributed algo-
rithm should be considered to calculate δ, and thus x̂∗

i is a
random variable in (7). There are two important parameters in
the privacy definition, � and δ, where � denotes the estimation
accuracy and δ is the disclosure probability (δ ≤ 1) denoting

the degree of the privacy protection. A smaller value of �
corresponds to a higher accuracy, and a smaller value of δ
corresponds to a lower disclosure probability.

C. Problem of Interests

We have the following basic assumptions, i) if there is no
information of any variable y in estimation, then the domain of
y is viewed as R, ii) unless specified, the full knowledge of the
global topology information is unknown to each node, but each
node can have partial knowledge of the topology, for example
each node can know its local connecting nodes (e.g., the local
topology information among each node and its neighbor nodes
is known), iii) the initial states of nodes in the network are
independent of each other, i.e., each node cannot make a good
estimation of the other nodes’ state directly based on its own
state or the estimation is of low accuracy.

In this paper, we aim to provide a theoretical framework of
the optimal distributed estimation and data privacy analysis for
the privacy-preserving distributed algorithm (2). Specifically,
we are interested in the following three issues: i) how to
obtain the optimal distributed estimation and its closed-form
expression considering the distributed algorithm (2); ii) using
the (�, δ)-data-private definition to analyze the privacy of
the distributed algorithm (2), i.e., obtaining the closed-form
expression of the disclosure probability δ and its properties;
and iii) using the obtained theoretical results to analyze the
privacy of the general privacy-preserving average consensus
algorithm, and finding the optimal noise adding process to the
algorithm, i.e., solving the following optimization problem,

min
I in

i (∞)
δ

s.t . lim
k→∞ xi(k) = x̄, (8)

where x̄ =
�n

i=1 xi (0)
n is the statistic goal, aiming at minimizing

the disclosure probability while obtaining the average value of
all initial states.

To solve the above issues, in the following, we first
consider the case that only the one-step information output
(I out

i (0) = I i
j (0)), which depends on the initial state (xi(0))

and the one-step noise (εi(0)), is available, and obtain the
optimal distributed estimation and privacy properties. This
case is suitable for the general one-step random mechanism
(e.g., [24], [27]), and the theoretical results provide the founda-
tions of the following analysis. Then, we consider the optimal
distributed estimation under the information set I i

j (1), which
reveals how the iteration process affects the estimation and
helps understand the optimal distributed estimation given the
information set I i

j (k) (k ≥ 1). Based on the observations,
we extend the results to the general case that I i

j (k) (∀k ≥ 0)
is available for the estimation. Lastly, we apply the obtained
results to the general PACA algorithm for privacy analysis,
and discuss the optimal noises for preserving data privacy.

III. OPTIMAL DISTRIBUTED ESTIMATION

AND PRIVACY ANALYSIS UNDER I i
j (0)

In this section, the optimal distributed estimation of xi (0)
using I i

j (0) only is investigated, and the disclosure probability
δ under the optimal estimation is derived.
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A. Optimal Distributed Estimation Under I i
j (0)

Let eεi (0) be the estimate of εi (0) under I i
j (0). The optimal

distributed estimation of xi (0) under I i
j (0) and its closed-form

expression are given in the following theorem.
Theorem 4: Considering the distributed algorithm (2),

under I i
j (0), the optimal distributed estimation of xi (0)

satisfies

x̂∗
i (0) = x+

i (0) − eεi (0)(x+
i (0)), (9)

where

eεi (0)(x+
i (0)) = arg max

y∈{x+
i (0)−Xi }

� y+�

y−�
fεi (0)(z)dz; (10)

Specifically, if Xi = R, then

x̂∗
i (0) = x+

i (0) − eεi (0), (11)

where

eεi (0) = arg max
y∈R

� y+�

y−�
fεi (0)(z)dz, (12)

which is independent of x+
i (0).

Proof: Given I out
i (0) and an estimate x̂i (0), we have

Pr
�Iout

ν (0) = Iout
i (0) | ∀|ν − x̂i (0)| ≤ �

�

= Pr
�
ν + εi (0) = x+

i (0) | ∀|ν − x̂i (0)| ≤ �
�

=
� x+

i (0)−x̂i (0)+�

x+
i (0)−x̂i (0)−�

fεi (0)(z)dz. (13)

From Definition 2, it follows that

x̂∗
i (0) = arg max

x̂i (0)∈Xi

Pr
�Iout

ν (0)=Iout
i (0) | ∀|ν − x̂i (0)|≤�

�

= arg max
x̂i (0)∈Xi

� x+
i (0)−x̂i (0)+�

x+
i (0)−x̂i (0)−�

fεi (0)(z)dz

= x+
i (0) − arg max

y∈{x+
i (0)−Xi }

� y+�

y−�
fεi (0)(z)dz

= x+
i (0) − eεi (0)(x+

i (0)), (14)

which concludes that (9) holds.
If Xi = R, for any real number output of x+

i (0), we have

{x+
i (0) − Xi } = {x+

i (0) − R} = R.

In this case, we have

arg max
y∈{x+

i (0)−Xi }

� y+�

y−�
fεi (0)(z)dz

= arg max
y∈R

� y+�

y−�
fεi (0)(z)dz. (15)

Substituting (15) into (14) gives

x̂∗
i (0) = x+

i (0) − arg max
y∈R

� y+�

y−�
fεi (0)(z)dz

= x+
i (0) − eεi (0),

i.e., (11) holds. Thus, we have completed the proof.
In (9), eεi (0)(x+

i (0)) can be viewed as the estimation of
the noise εi (0), i.e., ε̂i (0) = eεi (0)(x+

i (0)). Thus, (9) can be
written as

x̂∗
i (0) = x+

i (0) − ε̂i (0),

Fig. 1. Two examples of the optimal distributed estimation under I out
i (0)

considering Xi ⊂ R and Xi = R, respectively. (a) Xi ⊂ R. (b) Xi = R.

which means that the estimation problem is equivalent to
estimating the value of the added noise. From (10), it is
noted that eεi (0)(x+

i (0)) depends on �, x+
i (0), fεi (0) and Xi .

We use Fig. 1(a) as an example to illustrate how to obtain
eεi (0)(x+

i (0)) and x̂∗
i (0) when Xi ⊂ R. Let the blue curve

be the fεi (0)(z) (it follows the Gaussian distribution in this
example) and Xi = [−a, 0], and x+

i (0) is the fixed initial
output. We then have

x+
i (0) − Xi = [x+

i (0), x+
i (0) + a].

Given an � and y ∈ [x+
i (0), x+

i (0) + a], � y+�
y−� fεi (0)(z)dz

denotes the shaded area of fεi (0)(z) in the interval [y −
�, y + �], which is named as the �-shaded area of fεi (0)(z)
at point y. Clearly, when y = x+

i (0), fεi (0)(z) has the largest
�-shaded area. It follows that eεi (0)(x+

i (0)) = x+
i (0), and

thus x̂∗
i (0) = 0. Meanwhile, we consider the case that Xi =

R or Xi is not available to the other nodes, and use Fig. 1(b) as
an example for illustration. In this case, we have Xi = x+

i (0)−
Xi = R for any output x+

i (0). From the above theorem, we
have

eεi (0)(x+
i (0)) = eεi (0) = arg max

y∈R

� y+�

y−�
fεi (0)(z)dz = 0.

Then, the optimal distributed estimation x̂∗
i (0) = x+

i (0)−0 =
x+

i (0) given any output x+
i (0).

Next, a general approach is introduced to calculate the value
of eεi (0)(x+

i (0)). Note that

∂ (
� y+�

y−� fεi (0)(z)dz)

∂y
= Fεi (0)(y + �) − Fεi (0)(y − �)

= Fεi (0)(y, �).

It is well known that Fεi (0)(y, �) = 0 is a necessary condition
that y is an extreme point of

� y+�
y−� fεi (0)(z)dz. One then fol-
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Fig. 2. The optimal distributed estimation of eεi (0)(x+
i (0)) and the optimal

estimation of εi (0) with MAP.

lows from (10) that eεi (0)(x+
i (0)) is either one of the extreme

points of
� y+�

y−� fεi (0)(z)dz (i.e., eεi (0)(x+
i (0)) ∈ �0

Fεi (0)
) or one

of the boundary points of {x+
i (0) − Xi } (i.e., eεi (0)(x+

i (0)) ∈
{x+

i (0) − Xi }b. Let

Xx+
i (0) = {x+

i (0) − Xi } ∩ �0
Fεi (0)

∪ {x+
i (0) − Xi }b,

we then have

eεi (0)(x+
i (0)) = arg max

y∈X
x+
i (0)

� y+�

y−�
fεi (0)(z)dz. (16)

Applying the above general approach to the example
of Fig. 1, one can easily obtain that

Xx+
i (0) = {x+

i (0), x+
i (0) + a}

and Xx+
i (0) = {0} for the two cases, respectively. Based

on (16), we obtain the same optimal estimations for the two
cases.

Remark 5: From the above discussion, it is observed that
eεi (0)(x+

i (0)) is the point y that fεi (0)(z) has the largest �-
shaded area around point y, where y ∈ {x+

i (0)−Xi }. It should
be pointed out that eεi (0)(x+

i (0)) is in {x+
i (0) − Xi } and

depends on �, and thus it may not be the point that has the
maximum value of fεi (0)(z). However, if � is sufficiently small
and fεi (0)(z) is continuous, fεi (0)(z) typically has the largest
�-shaded area at point y when fεi (0)(y) has the maximum
value for y ∈ {x+

i (0) − Xi }. Meanwhile, the above examples
also show that the unbiased estimation also may not be the
optimal distributed estimation of xi(0).

It should be pointed out that the proposed optimal estimation
problem is different from the maximum a posteriori estima-
tion (MAP) problem that has been heavily investigated. The
reason is that MAP ignores the estimation accuracy of |xi − x̂i |
and it does not depend on the accuracy parameter �, while the
proposed estimation problem aims to maximize the probability
of �-accurate estimate and the optimal estimation is a function
of the accuracy parameter �. An example to illustrate the
difference is given as follows. As shown in Fig. 2, we consider
a bimodal distribution of fεi (0)(z), in which the highest mode
is uncharacteristic of the majority of the distribution. Assume
that a prior distribution gi over xi (0) exists and is uniform
with a large possible value domain [−M, M]. Using MAP,

one obtains

x̂i (0) = arg max
xi (0)

fx+
i (0)(xi (0)|x+

i (0))

= arg max
xi (0)

fx+
i (0)(x+

i (0)|xi (0))gi(xi (0))

= arg max
xi (0)

fx+
i (0)(x+

i (0)|xi (0))

= x+
i (0) − a. (17)

Using the proposed optimal estimation (Theorem 4), we have
x̂∗

i (0) = x+
i (0) which is different from the estimation (17)

obtained with MAP.

B. Privacy Analysis Under I i
j (0)

In the above subsection, we have obtained the
optimal distributed estimation when I out

i (0) is fixed.
Note that

|x̂∗
i (0) − xi (0)| ≤ � ⇔ |x+

i (0) − xi (0) − eεi (0)(x+
i (0))| ≤ �

⇔ |εi(0) − eεi (0)(x+
i (0))| ≤ � (18)

when x+
i (0) is fixed. To analyze the privacy of distributed

algorithm (2) with the (�, δ)-data-privacy definition, the main
goal is to calculate the disclosure probability δ, so that all the
possible initial output x+

i (0) and its corresponding optimal
distributed estimation should be considered. Considering the
outputs which can make an �-accurate estimates of xi (0) to
be obtained, we define all the corresponding noises by

Si (0) = {εi (0) | |eεi (0)(x+
i (0)) − εi (0)| ≤ �}. (19)

For each εi(0) ∈ Si (0), we have x+
i (0) = xi (0) + εi (0)

and |eεi (0)(x+
i (0)) − εi (0)| ≤ �, i.e., an �-accurate estimate

is obtained when εi (0) ∈ Si (0).
Theorem 6: Considering the distributed algorithm (2),

under I i
j (0), the disclosure probability δ satisfies

δ =
�

Si (0)
fεi (0)(z)dz; (20)

Specifically, if Xi = R, then

δ = max
y∈R

� y+�

y−�
fεi (0)(z)dz. (21)

Proof: From (18) and the definition of δ, we have

δ = Pr{|x̂∗
i (0) − xi (0)| ≤ �}

= Pr{|εi (0) − eεi (0)(x+
i (0))| ≤ �}

= Pr{εi (0) ∈ Si (0)}
=

�

Si (0)
fεi (0)(z)dz. (22)

From Theorem 4, if Xi = R, then eεi (0)(x+
i (0)) = eεi (0)

which is independent of x+
i (0). In this case, we have

Si (0) = {εi (0) | |eεi (0) − εi (0)| ≤ �}
= [eεi (0) − �, eεi (0) + �], (23)
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i.e., only if εi(0) ∈ [eεi (0) − �, eεi (0) + �], we can obtain the
�-accurate estimate of xi (0). Then,

δ =
�

Si (0)
fεi (0)(z)dz

=
� eεi (0)+�

eεi (0)−�
fεi (0)(z)dz. (24)

Since eεi (0) satisfies (12), eεi (0) is the point y where fεi (0)(z)
has the largest �-shaded area around the point y, and the
domain of y is R, i.e.,

eεi (0) = arg max
y∈R

� y+�

y−�
fεi (0)(z)dz.

It follows that

δ =
� eεi (0)+�

eεi (0)−�
fεi (0)(z)dz

= max
y∈R

� y+�

y−�
fεi (0)(z)dz. (25)

We thus have completed the proof.
From the above theorem, we obtain that (20) provides

the expression of the disclosure probability δ under I out
i (0).

Using (20), the main challenge to calculate δ is that how to
obtain the set of Si (0). Although based on the definition of
Si (0), the elements of Si (0) can be obtained by comparing all
possible values of εi (0) and their corresponding eεi (0)(x+

i (0))
(how to obtain the value of eεi (0)(x+

i (0)) is discussed in the
previous subsection), this approach is infeasible due to the
infinite possible values of εi (0). Fortunately, we can apply
the properties of fεi (0) to fast obtain Si (0) in many cases of
practical importance. For the example given in Fig. 1(a), since
fεi (0) is continuous and concave, it is straight-forward to obtain
that

eεi (0)(x+
i (0)) =

⎧
⎨

⎩

x+
i (0), x+

i (0) ≥ 0;
0, x+

i (0) ∈ [−a, 0];
x+

i (0) + a, x+
i (0) ≤ −a.

Using the facts that x̂∗
i (0) = x+

i (0) − eεi (0)(x+
i (0)) and

x+
i (0) = xi (0) + εi (0), we then obtain

x̂∗
i (0) − xi (0) =

⎧
⎨

⎩

−xi (0), xi (0) + εi (0) ≥ 0;
εi (0), xi (0) + εi (0) ∈ [−a, 0];
−a − xi (0), xi (0) + εi (0) ≤ −a.

Based on the above equation, for any given xi(0) and �,
we obtain all the εi (0) in Si (0) by solving |x̂∗

i (0)−xi(0)| ≤ �,
and thus Si (0) is obtained. For instance, if xi (0) = 0 and
� = 0.5 < a, then solving |x̂∗

i (0) − xi (0)| ≤ � gives the
results that ε ∈ [−0.5,∞), and thus Si (0) = [−0.5,∞).

IV. OPTIMAL DISTRIBUTED ESTIMATION

AND PRIVACY UNDER I i
j (k)

In this section, we investigate the optimal distributed esti-
mation and privacy under I i

j (1), and then extend the results to
the general case that I i

j (k) is available to the estimation. Let
eεi (0)|I i

j (k) be the estimation of εi (0) under I i
j (k).

A. Optimal Distributed Estimation Under I i
j (1)

Under I i
j (1), there are two outputs, x+

i (0) and x+
i (1),

of node i , which can be used for initial state estima-
tion or inference attack. Note that x+

i (1) = hi (x+
i (0), x+

j (0) :
j ∈ Ni ), which means that x+

i (1) has involved the outputs
of node i ’s neighbors. Hence, under I i

j (1), both the optimal
distributed estimation and privacy analysis depend on the
output of both node i and its neighbor nodes. Suppose that
hi in (2) is available to the estimation in the remainder parts
of this paper.

The following theorem provides the optimal distributed
estimation of xi (0) under I i

j (1), which reveals the relationship
between the information outputs (which are available to the
node j for estimation) and the optimal estimation.

Theorem 7: Considering the distributed algorithm (2),
under I i

j (1), the optimal distributed estimation of xi (0)
satisfies

x̂∗
i (1) = x+

i (0) − eεi (0)|I i
j (1)(x+

i (0)), (26)

where

eεi (0)|I i
j (1)(x+

i (0)) = arg max
y∈{x+

i (0)−Xi }

� y+�

y−�

fεi (1)(ε̃i (1)) fεi (0)|εi (1)=ε̃i (1)(z)dz, (27)

in which ε̃i (1) = x+
i (1) − hi (x+

i (0), x+
j (0) : j ∈ Ni ); Then,

if Xi = R, we have

eεi (0)|I i
j (1)(x+

i (0)) = arg max
y∈R

� y+�

y−�

fεi (1)(ε̃i (1)) fεi (0)|εi (1)=ε̃i (1)(z)dz. (28)

Proof: Let x̂i (1) be an estimate of xi (0) under I i
j (1) at

iteration k = 1. Given Iout
i (1), and we have

Pr{Iout
ν (1) = Iout

i (1) | ∀|ν − x̂i (1)| ≤ �, I i
j (1)}

= Pr{Iout
ν (1) = {x+

i (0), x+
i (1)} | ∀ |ν − x̂i (1)| ≤ �, I i

j (1)}.

Note that x+
i (0) depends on xi(0) and εi(0) only, while x+

i (1)
depends on x+

i (0), x+
j (0) : j ∈ Ni and εi (1), where εi (0) and

εi (1) are two random variables. It follows that

Pr{Iout
ν (1) = {x+

i (0), x+
i (1)} | ∀ |ν − x̂i (1)| ≤ �, I i

j (1)}
= Pr{Iout

ν (0, 0) = x+
i (0),Iout

i (0, 1) = x+
i (1) |

∀ |ν − x̂i(1)| ≤ �, I i
j (1)}

=
� x̂i (1)+�

x̂i (1)−�
fεi (0),εi (1)(x+

i (0) − ν, ε̃i (1))dν, (29)

where

ε̃i (1) = x+
i (1) − hi (x+

i (0), x+
j (0) : j ∈ Ni ).
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Using the relationship between the joint distribution and the
conditional distribution, one infers that
� x̂i (1)+�

x̂i (1)−�
fεi (0),εi (1)(x+

i (0) − ν, ε̃i (1))dν

=
� x+

i (0)−x̂i (1)+�

x+
i (0)−x̂i (1)−�

fεi (1)(ε̃i (1)) fεi (0)|εi (1)(z|εi(1) = ε̃i (1))dz

=
� x+

i (0)−x̂i (1)+�

x+
i (0)−x̂i (1)−�

fεi (1)(ε̃i (1)) fεi (0)|εi (1)=ε̃i (1)(z)dz (30)

where fεi (0)|εi (1)=ε̃i (1) is the conditional PDF of εi(0) under

the condition εi (1) = ε̃i (1). Then, one can obtain that

max
x̂i∈Xi

Pr
�
Iout

ν (k) = Iout
i (k) | ∀|ν − x̂i | ≤ �, I i

j (1)
�

= max
x̂i∈Xi

� x+
i (0)−x̂i (1)+�

x+
i (0)−x̂i (1)−�

fεi (1)(ε̃i (1)) fεi (0)|εi (1)=ε̃i (1)(z)dz.

(31)

Hence, we have

x̂∗
i (1) = arg max

x̂i∈Xi

� x+
i (0)−x̂i (1)+�

x+
i (0)−x̂i (1)−�

fεi (1)(ε̃i (1)) fεi (0)|εi (1)=ε̃i (1)(z)dz

= x+
i (0) − eεi (0)|I i

j (k)(x+
i (0)).

When Xi = R, we have x+
i (0) − Xi = R hold for any

output x+
i (0) ∈ R. It follows that (27) is equivalent to (28) in

this case. Thus, the proof is completed.
Note that the joint distribution of any two random vari-

ables X and Y satisfies

fX,Y (x, y) = fX |Y (x |y) fY (y) = fY |X (y|x) fX (x), (32)

and we have
� x̂i (1)+�

x̂i (1)−�
fεi (0),εi (1)(x+

i (0) − ν, ε̃i (1))dν

=
� x+

i (0)−x̂i (1)+�

x+
i (0)−x̂i (1)−�

fεi (1)|εi(0)(ε̃i (1)|εi(0) = z) fεi (0)(z)dz

=
� x+

i (0)−x̂i (1)+�

x+
i (0)−x̂i (1)−�

fεi (1)|εi(0)=z(ε̃i(1)) fεi (0)(z)dz. (33)

It thus follows that eεi (0)|I i
j (1)(x+

i (0)) also satisfies

eεi (0)|I i
j (1)(x+

i (0))

= arg max
y∈R

� y+�

y−�
fεi (1)|εi (0)=z(ε̃i (1)) fεi (0)(z)dz. (34)

It should be noticed that eεi (0)|I i
j (1)(x+

i (0)) can be viewed as

the optimal distributed estimation of εi (0) under I i
j (1), which

depends on the distributions of εi (1) and εi (0), the values of
x+

i (0) and ε̃i(1), and Xi . Next, we consider how these factors
affect the value of eεi (0)|I i

j (1)(x+
i (0)).

For the results of Theorem 7, the noises being added
at different time steps may or may not be independent to
each other, which are examined in the following corollaries,
respectively.

Corollary 8: Considering the distributed algorithm (2),
if εi (0) and εi (1) are independent of each other, under I i

j (1),
we have eεi (0)|I i

j (1)(x+
i (0)) = eεi (0)(x+

i (0)) and the optimal

distributed estimation of xi(0) satisfies

x̂∗
i (1) = x̂∗

i (0) = x+
i (0) − eεi (0)(x+

i (0)). (35)

Proof: For eεi (0)|I i
j (1)(x+

i (0)) in (26), since εi (0) and εi(1)

are independent of each other, we have that

fεi (1)|εi (0)(ε̃i (1)|εi(0) = z) = fεi (1)(ε̃i (1)) (36)

holds for ∀z. Then, it follows from (32) that
� y+�

y−�
fεi (1)(ε̃i (1)) fεi (0)|εi (1)=ε̃i (1)(z)dz

=
� y+�

y−�
fεi (1)|εi (0)(ε̃i (1)|εi(0) = z) fεi (0)(z)dz

=
� y+�

y−�
fεi (1)(ε̃i (1)) fεi (0)(z)dz

= fεi (1)(ε̃i (1))

� y+�

y−�
fεi (0)(z)dz, (37)

where fεi (1)(ε̃i (1)) is a constant when I i
j (1) is fixed. Together

with (27), one infers that

eεi (0)|I i
j (1)(x+

i (0))

= arg max
y∈{x+

i (0)−Xi }



fεi (1)(ε̃i (1))

� y+�

y−�
fεi (0)(z)dz

�

= arg max
y∈{x+

i (0)−Xi }

� y+�

y−�
fεi (0)(z)dz

= eεi (0)(x+
i (0)), (38)

where we use the fact that fεi (1)(ε̃i (1)) is a constant
under I i

j (1). From Theorem 7, we have known that under
I i

j (1), x̂∗
i (1) satisfies (26). Substituting (38) into (26), one

obtains (35), which completes the proof.
The above corollary shows that when the added noises are

independent of each other, the optimal distributed estimation
eεi (0)|I i

j (1)(x+
i (0)) of εi(0) at iteration k = 1 equals the optimal

distributed estimation eεi (0)(x+
i (0)) of εi (0) at iteration k = 0,

and thus we have x̂∗
i (1) = x̂∗

i (0). Hence, one concludes that
the later outputs cannot increase the estimation accuracy of
xi (0) when the added noises are independent of each other,
and more details related to this conclusion will be provided in
the next subsection.

Next, given εi (0) and εi (1) are dependent, we investigate
how the different partial information of the topology and
connectivity affect the optimal estimation of xi(0), and obtain
the following two corollaries.

Corollary 9: Considering the distributed algorithm (2), if
Ni � N j for ∀ j ∈ Ni or the other nodes do not know all
the information used for the updating by node i , under I i

j (1),
the optimal distributed estimation of xi (0) satisfies

x̂∗
i (1) = x+

i (0) − ẽεi (0)|I i
j (1)(x+

i (0)), (39)
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where

ẽεi (0)|I i
j (1)(x+

i (0)) = arg max
y∈{x+

i (0)−Xi }

� y+�

y−�

�

�
ε̃i (1)|I i

j (1)

fεi (1)(h) fεi (0)|εi (1)=h(z)dhdz, (40)

and �ε̃i (1)|I i
j (1) is the set of all possible values of ε̃i (1)

under I i
j (1). Specifically, if �ε̃i (1)|I i

j (1) ⊇ �i (1), we have

ẽεi (0)|I i
j (1)(x+

i (0)) = eεi (0)(x+
i (0)) and x̂∗

i (1) = x̂∗
i (0).

Proof: For ∀ j ∈ Ni , since Ni � N j , there is at least
one neighbor node of node i satisfying l ∈ Ni but l /∈ N j .
It means that node j cannot obtain all the neighbor nodes’
information used for node i ’s state updating. Thus, in the
expression of ε̃i (1), there is at least one unknown variable
in hi (x+

i (0), x+
j (0) : j ∈ Ni ), which results in that the

exact value of ε̃i (1) cannot be obtained. Hence, during the
estimation, ε̃i (1) is no longer a deterministic value but is in
a possible value set. Let �ε̃i (1)|I i

j (1) be set of the all possible

values of ε̃i (1) under I i
j (1). During the estimation, we take all

possible values of ε̃i(1) into consideration, and then obtain

Pr{Iout
ν (1) = {x+

i (0), x+
i (1)} | ∀ |ν − x̂i (1)| ≤ �, I j

i (1)}

=
� x+

i (0)−x̂i (1)+�

x+
i (0)−x̂i (1)−�

�

�
ε̃i (1)|I i

j (1)

fεi (1)(h)dh fεi (0)|εi (1)=h(z)dz.

Therefore, we have

x̂∗
i (1) = arg max

x̂i∈Xi

Pr{Iout
ν (1) = {x+

i (0), x+
i (1)} |

∀ |ν − x̂i (1)| ≤ �, I j
i (1)}

= x+
i (0) − arg max

y∈{x+
i (0)−Xi }

� y+�

y−�

�

�
ε̃i (1)|I i

j (1)

fεi (1)(h)dh fεi (0)|εi (1)=h(z)dz
= x+

i (0) − ẽεi (0)|I i
j (k)(x+

i (0)).

If �ε̃i (1)|I i
j (1) ⊇ �i (1), we have

� y+�

y−�

�

�
ε̃i (1)|I i

j (1)

fεi (1)(h)dh fεi (0)|εi (1)=h(z)dz

=
� y+�

y−�

�

�i (1)
fεi (1)|εi (0)=z(h)dh fεi (0)(z)dz

=
� y+�

y−�
fεi (0)(z)dz,

where we have used the fact that
�

�i (1)
fεi (1)|εi (0)=z(h)dh ≡ 1

holds for ∀z ∈ R. It thus has

ẽεi (0)|I i
j (k)(x+

i (0)) = arg max
y∈{x+

i (0)−Xi }

� y+�

y−�
fεi (0)(z)dz

= eεi (0)(x+
i (0)),

which means that

x̂∗
i (1) = x+

i (0) − eεi (0)(x+
i (0)) = x̂∗

i (0).

We thus have completed the proof.

In the above corollary, if the assumption that for an
unknown variable, it can be any value in R for estimation
and hi (x+

i (0), x+
j (0) : j ∈ Ni ) with domain R, then we have

�ε̃i (1)|I i
j (1) = R since there is at least one unknown variable

in hi (x+
i (0), x+

j (0) : j ∈ Ni ). Then, (40) can be simplified to

ẽεi (0)|I i
j (1)(x+

i (0))

= arg max
y∈{x+

i (0)−Xi }

� y+�

y−�

�

R
fεi (1)(h) fεi (0)|εi (1)=h(z)dhdz

= arg max
y∈{x+

i (0)−Xi }

� y+�

y−�

�

R
fεi (1)|εi (0)=z(h)dh fεi (0)(z)dz

= arg max
y∈{x+

i (0)−Xi }

� y+�

y−�
fεi (0)(z)dz,

where we have used the facts that (32) and
�

R
fεi (1)|εi (0)=z(h)dh ≡ 1.

Corollary 10: Considering the distributed algorithm (2),
if Ni ⊆ N j and Ni are known to node j , under I i

j (1), the
optimal distributed estimation of xi (0) satisfies (26) with

eεi (0)|I i
j (1)(x+

i (0)) = arg max
y∈R

� y+�

y−�
fεi (0)|εi (1)=ε̃i (1)(z)dz. (41)

Proof: When Ni ⊆ N j and Ni are known to node j ,
under I i

j (1), node j can obtain the exact value of ε̃i (1), since
all the information of x+

i (1) − hi (x+
i (0), x+

j (0) : j ∈ Ni ) are

available to it. That is, ε̃i (1) is fixed when node j makes the
estimation, and thus

arg max
y∈{x+

i (0)−Xi }

� y+�

y−�
fεi (1)(ε̃i (1)) fεi (0)|εi (1)=ε̃i (1)(z)dz

= arg max
y∈{x+

i (0)−Xi }

� y+�

y−�
fεi (0)|εi (1)=ε̃i (1)(z)dz. (42)

Then, from Theorem 7, we can obtain the results given in this
corollary, which has completed the proof.

Corollaries 9 and 10 show the optimal distributed estimation
of xi (0) until iteration k, considering node j can and cannot
have all information of the parameters in hi (x+

i (0), x+
j (0) :

j ∈ Ni ) for the estimation, respectively. Therefore, they
reveal that how the neighbor nodes’ information outputs affect
the optimal distributed estimation according to the iteration
process of the privacy-preserving distributed algorithm (2).

B. Optimal Distributed Estimation Under I i
j (k)

In this subsection, we consider the optimal distributed
estimation of xi (0) under I i

j (k). Let k → ∞, and we obtain
the optimal distributed estimation under I i

j (∞).
We first give the following theorem, which provides the

expression of the optimal distributed estimation under I i
j (k).

Theorem 11: Considering the distributed algorithm (2),
under I i

j (k), the optimal distributed estimation of xi (0) sat-
isfies

x̂∗
i (k) = x+

i (0) − eεi (0)|I i
j (k)(x+

i (0)), (43)
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where

eεi (0)|I i
j (k)(x+

i (0))

= arg max
y∈{x+

i (0)−Xi }

� y+�

y−�
fεi (1),...,εi (k)(ε̃i(1), . . . , ε̃i (k))

fεi (0)|εi (k)=ε̃i (k),...,εi (1)=ε̃i (1)(z)dz, (44)

in which ε̃i (k) = x+
i (k) − hi (x+

i (k − 1), x+
j (k − 1) : j ∈ Ni ).

Proof: From Theorem 7, it is proved that (43) holds for
k = 1. Now, we prove that it holds for ∀k ≥ 1, where the
basic idea is similar to the proof of Theorem 7.

Let x̂i (k) be an estimate of xi (0) under I i
j (k). We have the

following equation holds,

Pr
�
Iout

ν (k) = Iout
i (k) | ∀|ν − x̂i (k)| ≤ �, I i

j (k)
�

= Pr{Iout
ν (k) = {x+

i (0), . . . , x+
i (k)} | ∀ |ν− x̂i(k)|≤�, I i

j (k)}
= Pr{Iout

ν (0, 0) = x+
i (0), . . . ,Iout

i (k − 1, k) = x+
i (k) |

∀ |ν − x̂i(k)| ≤ �, I i
j (k)}

=
� x̂i (k)+�

x̂i (k)−�
fεi (0),...,εi (k)(x+

i (0) − ν, ε̃i (1), . . . , ε̃i (k))dν,

where

ε̃i (k) = x+
i (k) − hi (x+

i (k − 1), x+
j (k − 1) : j ∈ Ni ).

Using the properties of the joint distribution of multiple
random variables, one infers that
� x̂i (k)+�

x̂i (k)−�
fεi (0),...,εi (k)(x+

i (0) − ν, ε̃i (1), . . . , ε̃i (k))dν

=
� x+

i (0)−x̂i (k)+�

x+
i (0)−x̂i (k)−�

fεi (1),...,εi (k)(ε̃i (1), . . . , ε̃i (k))

fεi (0)|{εi (1),...,εi (k)}(z|ε̃i (1), . . . , ε̃i (k))dz

=
� x+

i (0)−x̂i (k)+�

x+
i (0)−x̂i (k)−�

fεi (1),...,εi (k)(ε̃i (1), . . . , ε̃i (k))

fεi (0)|εi (k)=ε̃i (k),...,εi (1)=ε̃i (1)(z)dz (45)

where fεi (0)|εi (k)=ε̃i (k),...,εi (1)=ε̃i (1)(z) is the conditional PDF

of εi(0) under the condition that {εi (k) = ε̃i (k), . . . , εi (1) =
ε̃i (1)}. Then, one obtains that

x̂∗
i (1) = arg max

x̂i∈Xi

Pr{Iout
ν (k) = Iout

i (k) |
∀|ν − x̂i(k)| ≤ �, I i

j (k)}

= arg max
x̂i∈Xi

� x+
i (0)−x̂i (k)+�

x+
i (0)−x̂i (k)−�

fεi (1),...,εi (k)(ε̃i (1), . . . , ε̃i (k))

fεi (0)|εi (k)=ε̃i (k),...,εi (1)=ε̃i (1)(z)dz

= x+
i (0) − arg max

y∈{x+
i (0)−Xi }

� y+�

y−�
fεi (1),...,εi (k)

(ε̃i (1), . . . , ε̃i (k)) fεi (0)|εi (k)=ε̃i (k),...,εi (1)=ε̃i (1)(z)dz

= x+
i (0) − eεi (0)|I i

j (k)(x+
i (0)). (46)

Thus, the proof is completed.
Then, we study the optimal distributed estimation of xi (0)

under I i
j (k) and some other conditions, and provide three

corollaries, respectively, as follows.

Corollary 12: Considering the distributed algorithm (2),
if the added noises εi(0), . . . , εi (k) are independent of each
other, under I i

j (k), eεi (0)|I i
j (k)(x+

i (0)) = eεi (0)(x+
i (0)) and the

optimal distributed estimation of xi (0) satisfies

x̂∗
i (k) = x̂∗

i (0) = x+
i (0) − eεi (0)(x+

i (0)). (47)

Proof: We only need to prove eεi (0)|I i
j (k)(x+

i (0)) =
eεi (0)(x+

i (0)), then (47) can be inferred from Theorem 11
directly. Since the added noises are independent of each other,
we have

fεi (0)|εi (k)=ε̃i (k),...,εi (1)=ε̃i (1)(z) = fεi (0)(z).

Then, (44) can be simplified

eεi (0)|I i
j (k)(x+

i (0))

= arg max
y∈{x+

i (0)−Xi }
fεi (1),...,εi (k)(ε̃i(1), . . . , ε̃i (k))

� y+�

y−�
fεi (0)(z)dz

= arg max
y∈{x+

i (0)−Xi }

� y+�

y−�
fεi (0)(z)dz

= eεi (0)(x+
i (0)), (48)

which completes the proof.
One concludes from the above corollary that if the added

noises sequence are independent of each other, the esti-
mation accuracy of xi (0) will not change with iteration k
although there is more information available. It shows that
the knowledge of data at following iterations cannot improve
the estimate at iteration 0 when the noises are independent.

Corollary 13: Considering the distributed algorithm (2), if
Ni � N j for ∀ j ∈ Ni or the other nodes do not know all
the information used for the updating by node i , under I i

j (k),
the optimal distributed estimation of xi (0) satisfies

x̂∗
i (k) = x+

i (0) − ẽεi (0)|I i
j (k)(x+

i (0)), (49)

where

ẽεi (0)|I i
j (k)(x+

i (0))

= arg max
y∈{x+

i (0)−Xi }

� y+�

y−�

�

�
ε̃i (1)|I i

j (1)

· · ·
�

�
ε̃i (k)|I i

j (k)

fεi (1),...,εi (k)(zk, . . . , z1) fεi (0)|εi (k)=zk ,...,εi (1)=z1(z0)

dzk · · · dz1dz0, (50)

�ε̃i (k)|I i
j (k) is the set of all possible values of ε̃i (0) under

I i
j (k). Specifically, if �ε̃i (�)|I i

j (�)
⊇ �i holds for � = 1, . . . , k,

ẽεi (0)|I i
j (k)(x+

i (0)) = eεi (0)(x+
i (0)) and x̂∗

i (k) = x̂∗
i (0).

Proof: Similar to the proof of Corollary 9, if Ni �
N j for ∀ j ∈ Ni , there always exist unknown variables
in the calculation of ε̃i (1), . . . , ε̃i (k). Hence, under I i

j (k),

in (44), ε̃i (1), . . . , ε̃i (k) cannot be fixed as constants during the
estimation. Taking all the possible values of ε̃i (1), . . . , ε̃i (k)
into consideration for the estimation, (44) is written as (50).
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When �ε̃i (�)|I i
j (�)

⊇ �� holds for � = 1, . . . , k, we have

�

�
ε̃i (1)|I i

j (1)

· · ·
�

�
ε̃i (k)|I i

j (k)

fεi (1),...,εi (k)|εi (0)

(zk, . . . , z1|εi (0) = z0)dzk · · · dz1

=
�

�1

· · ·
�

�k

fεi (1),...,εi (k)|εi (0)

(zk, . . . , z1|εi (0) = z0)dzk · · · dz1 ≡ 1, (51)

holds for ∀z0. It follows that
� y+�

y−�

�

�
ε̃i (1)|I i

j (1)

· · ·
�

�
ε̃i (k)|I i

j (k)

fεi (1),...,εi (k)(zk, . . . , z1)

fεi (0)|εi (k)=zk ,...,εi (1)=z1(z0)dzk · · · dz1dz0

=
� y+�

y−�

�

�
ε̃i (1)|I i

j (1)

· · ·
�

�
ε̃i (k)|I i

j (k)

fεi (0)(z0)

fεi (1),...,εi (k)|εi (0)(zk, . . . , z1|εi(0) = z0)dzk · · · dz1dz0

=
� y+�

y−�
fεi (0)(z0)dz0. (52)

Thus, (40) is equivalent to

ẽεi (0)|I i
j (k)(x+

i (0)) = arg max
y∈{x+

i (0)−Xi }

� y+�

y−�
fεi (0)(z0)dz0

= ẽεi (0)(x+
i (0)), (53)

which completes the proof.
Note that if all the information used in (2) is available

to node j for estimation, then values of ε̃i (1), . . . , ε̃i (k) are
fixed and known to node j . From Theorem 11, we obtain the
following corollary directly.

Corollary 14: Considering the distributed algorithm (2),
if Ni ⊆ N j and Ni is known to node j , under I i

j (k), then
the optimal distributed estimation of xi (0) satisfies (43) with

eεi (0)|I i
j (k)(x+

i (0)) = arg max
y∈{x+

i (0)−Xi }

� y+�

y−�

fεi (0)|εi (1)=ε̃i (1),...,εi (k)=ε̃i (k)(z)dz. (54)

The above three corollaries are correspondingly similar to
Corollaries 8 to 10, respectively.

Remark 15: Corollary 13 gives the optimal estimation of
xi (0) if other nodes do not know all the information used
for the updating by node i . Note that the partial knowledge
of the information used by node i will not affect the result,
i.e., x̂∗

i (1) = x̂∗
i (0), so long as one variable in hi is unknown

and with domain R. However, it follows from Corollary 14
that if all information (including the global topology and
the connectivity graph used during the iterative consensus
process) about hi is known, the values of εi(1), . . . , εi (k) are
released, and eεi (0)|I i

j (k)(x+
i (0)) satisfies (54) and depends on

εi (1), . . . , εi (k). Then, the estimation accuracy of xi (0) may
be increased when the noise sequences εi (0), . . . , εi (k) are
correlated with each other, since the relationship among the
noise sequences can be used to decrease the uncertainty of
noise εi (0) as shown in Theorem 18 of Sec. V-A.

C. Disclosure Probability Under I i
j (k)

The information set that can ensure an accurate estimation
is defined by

Si (k) = {I i
j (k) | |eεi (0)|I i

j (k)(x+
i (0)) − εi (0)| ≤ �}. (55)

Then, define S1
i (k) be the set of the first element in Si (k),

i.e., all possible x+
i (0) included in Si (k).

S0
i (k) = {εi (0) | x+

i (0) ∈ S1
i (k)}. (56)

Clearly, we have S1
i (k) = xi (0) + S0

i (k)
The following theorem provides an upper bounded of the

disclosure probability under I i
j (k), which is denoted by δ(k).

Theorem 16: Considering the distributed algorithm (2), the
disclosure probability δ at iteration k satisfies

δ (k) ≤
�

S0
i (k)

fεi (0)(z)dz. (57)

Proof: Given an I i
j (k), the optimal distributed estimation

x̂∗
i (k) satisfies (43). Then,

|x̂∗
i (k) − xi (0)| ≤ �

⇔ |x+
i (0) − xi (0) − eεi (0)|I i

j (k)(x+
i (0))| ≤ �

⇔ |εi (0) − eεi (0)|I i
j (k)(x+

i (0))| ≤ �. (58)

From the definition of δ, we have

δ(k) = Pr{|x̂∗
i (k) − xi (0)| ≤ �}

= Pr{|εi(0) − eεi (0)|I i
j (k)(x+

i (0))| ≤ �}

=
�

Si (k)
f I i

j (k)(z)dz, (59)

where f I i
j (k)(z) is the PDF of I i

j (k) (since I i
j (k) is random

under the distributed algorithm). From the above function,
it is hard to calculate the value of δ, since f I i

j (k)(z) is
unknown and difficult to obtain due to the coupled input
random variables. However, note that for each I i

j (k) ∈ Si (k),
its element x+

i (0) should satisfy x+
i (0) − xi (0) = εi (0)

and εi (0) ∈ S0
i (k). It means that only if εi (0) ∈ S0

i (k),
|εi(0) − eεi (0)|I i

j (k)(x+
i (0))| ≤ � can be true. Thus,

δ(k) =
�

Si (k)
fI i

j (k)(z)dz

≤
�

S0
i (k)

fεi (0)(z)dz, (60)

which completes the proof.
If there exist other conditions for estimation, e.g., indepen-

dent noise inputs, we obtain the closed-form expression of δ,
and thus we have the following theorem.

Theorem 17: Considering the distributed algorithm (2),
under I i

j (k), if one of the following conditions holds,
1) the added noises εi (0), . . . , εi (k) are independent of

each other;
2) �ε̃i (�)|I i

j (�)
⊇ �i or �ε̃i (�)|I i

j (�)
= R holds for

� = 1, . . . , k and ∀k ≥ 1;
then δ(k) = δ holds for ∀k ≥ 0 and δ satisfies (20).
Furthermore, if Xi = R, δ satisfies (21).
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The above theorem can be obtained from
Corollaries 12 and 13 and Theorem 6, so we omit the
proof.

In the above subsections, all the theoretical results about the
optimal distributed estimation and data privacy analysis can
be extended to directed network topologies. The reason is that
both the optimal distributed estimation x̂∗

i (0) and the calcula-
tion of the disclosed probability δ are based on the available
information of node j , and the bidirection communication is
not necessary.

Algorithm 1 : Calculation of eεi (0)|I i
j (k)(x+

i (0))

1: Input: The information I i
j (k), the PDFs fεi (0)(z), . . . ,

fεi (k)(z).
2: Calculation: Using the correlation among εi (0), . . . , εi (k)

to obtain joint PDF fεi (1),...,εi (k)(ε̃i (1), . . . , ε̃i (k)) and the
conditional PDF fεi (0)|εi (k)=ε̃i (k),...,εi (1)=ε̃i (1).

3: Computing the following derivative to obtain f̃ε (y, �),

∂
� y+�

y−� f̃ε (z)dz

∂y
= Fε (y, �) (61)

where

f̃ε (z) = fεi (1),...,εi (k)(ε̃i (1), . . . , ε̃i (k))

fεi (0)|εi (k)=ε̃i (k),...,εi (1)=ε̃i (1)(z) (62)

4: Solving the following equation to obtain the zero point set,
�0

Fε
,

Fε (y, �) = 0. (63)

5: Calculating the set of

Xx+
i (0) = {x+

i (0) − Xi } ∩ �0
f̃εi

∪ {x+
i (0) − Xi }b.

6: Obtaining the estimation by

eεi (0)|I i
j (k)(x+

i (0)) = arg max
y∈X

x+
i (0)

� y+�

y−�
f̃ε (z)dz. (64)

7: Output: The estimation of eεi (0)|I i
j (k)(x+

i (0)).

D. Calculation of the Optimal Estimation

From the discussions in the above subsections, the optimal
distributed estimation of xi (0) is the most important factor for
the privacy analysis. We design an algorithm to calculate the
optimal distributed estimation of xi (0) under I i

j (k) for ∀k ≥
0. From Theorem 11, one infers that the key challenge to
obtain x̂∗

i (k) is to calculate eεi (0)|I i
j (k)(x+

i (0)). Similar to the
general approach given in Sec. III-A, we design Algorithm 1
to calculate eεi (0)|I i

j (k)(x+
i (0)).

V. CASE STUDIES AND OPTIMAL NOISES

Privacy-preserving average consensus algorithm (PACA) is
a typical privacy-preserving distributed algorithm, which aims
to guarantee that the privacy of the initial state is preserved

and at the same time the average consensus can still be
achieved [16], [18], [20]. The basic idea of PACA is adding
and subtracting variance decaying and zero-sum random noises
to the traditional consensus process. Regarding to privacy-
preserving average consensus, the often used criterion in the
literature is differential privacy. However, first, no matter what
type of noise distribution is used, there is a chance that an
estimated value of the original data is close to the real data, but
such a probability cannot be directly measured by differential
privacy (e.g., considering �-accurate estimate, the disclosed
probability of initial states cannot be measured by differential
privacy). Furthermore, [18] has proved that average consensus
and differential privacy cannot be guaranteed simultaneously
by PACA. Hence, it motivates us to provide the privacy analy-
sis of PACA in terms of (�, δ)-data-privacy in this section.
We adopt the developed theories in the above section to
analyze the (�, δ)-data-privacy of the PACA algorithm, and
then find the optimal noises for the algorithm to achieve the
highest data privacy.

A. Privacy of PACA

Referring to the existing algorithms, we describe the PACA
algorithm as follows:

xi (k + 1) = gi(x+
i (k), x+

j (k) : j ∈ Ni )

= wii (xi (k) + εi(k)) +
�

j∈Ni

wi j (x j (k) + ε j (k)),

(65)

for ∀i ∈ V and k ≥ 0, where wii and wi j are weights, and its
matrix form is given by

x(k + 1) = W (x(k) + ε(k)), k ≥ 0, (66)

where W ≥ 0 ∈ Rn×n is a doubly stochastic matrix satisfying
wii > 0 and wi j > 0 for (i, j) ∈ E and wi j = 0 for otherwise;
and each εi (k) ∈ ε(k) satisfies Var{εi (k)} < 
Var{εi (k − 1)}
(where 0 < 
 < 1) and

�∞
k=0 εi (k) = 0. When ε(k) = 0

for k ≥ 0, it is proved in [25] that an average consensus is
achieved by (66), i.e.,

lim
k→∞ x(k) =

�n
�=1 x�(0)

n
1 = x̄ . (67)

When ε(k) �= 0 for k ≥ 0, it is proved in [20] that an average
consensus is achieved by (66) in the mean-square sense.

The following two theorems analyze the data privacy of the
PACA algorithm under the conditions that node j can and
cannot have all the information used in the iteration process
for the estimation, respectively.

Theorem 18: If Ni ⊆ N j and Ni is known to node j for
j ∈ Ni , using PACA, we have δ = 1 holds for ∀� > 0,
i.e., xi (0) is perfectly inferred.

Proof: When Ni ⊆ N j and Ni is known to node j
for j ∈ Ni , then the values of ε̃i (1), . . . , ε̃i (∞) are fixed
and released to node j under I i

j (∞). From Corollary 14,
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it follows that

eεi (0)|I i
j (∞)(x+

i (0))

= arg max
y∈{x+

i (0)−Xi }

� y+�

y−�
fεi (0)|εi (1)=ε̃i (1),...,εi (∞)=ε̃i (∞)(z)dz.

(68)

Meanwhile, from
�∞

k=0 εi (k) = 0, it follows that εi (0) =
− �∞

k=1 εi (k). Hence, in the right side of (68), the maximum
value of the integral is achieved when y = − �∞

k=1 εi (k), i.e.,

eεi (0)|I i
j (∞)(x+

i (0)) = −
∞�

k=1

ε̃i (k) = εi (0).

Then, we have

x̂∗
i (∞) = x+

i (0) − eεi (0)|I i
j (∞)(x+

i (0))

= x+
i (0) − εi (0) = xi (0),

i.e., xi (0) is perfectly inferred, and thus δ = 1.
In the above proof, Corollary 14 is adopted to prove the

theorem. Actually, if ε̃i (1), . . . , ε̃i (∞) are fixed and released,
the values of εi(1), . . . , εi (∞) are released to node j . Then,
using the condition

�∞
k=0 εi (k) = 0, we can obtain εi(0),

and thus xi (0) is obtained from using x+
i (0) − εi (0) = xi(0).

It obtains the same results as Theorem 18, and thus verifies
the results of Corollary 14.

Theorem 19: If Ni � N j for ∀ j ∈ Ni and �i (k) = R for
∀i ∈ V , then the PACA algorithm achieves (�, δ)-data-privacy,
where δ satisfies (20), and then if Xi = R, δ satisfies (21).

Proof: Since the conclusion in this theorem are the same
as Theorem 17, we prove it by showing that one of the
conditions in Theorem 17 holds. Since Ni � N j for ∀ j ∈ Ni ,
which means that any neighbor node j cannot obtain all
the information using in the right-hand side of (65) at each
iteration k. Hence, there exists at least one x+

j0
(k − 1) ( j0 �= j

and j0 ∈ Ni ) which is not available to node j for estimation.
Note that under the PACA algorithm,

ε̃i (k) = x+
i (k) − (wii x+

i (k − 1) +
�

j∈Ni

wi j x+
j (k − 1)).

Since x+
j0
(k − 1) = x j0(k − 1) + ε j0(k − 1) and ε j0(k − 1) ∈

� j0(k − 1) = R, we have ε̃i(k) ∈ R during the estima-
tion, i.e., �ε̃i (k)|I i

j (k) = R. Therefore, the second condition
in Theorem 17 holds, and we thus have completed the
proof.

With the above theorem, it is not difficult to prove that the
algorithms proposed in both [6] and [20] provide (�, δ)-data-
privacy and δ satisfies (21).

Remark 20: From the above two theorems, on one hand,
one infers that if all the information of one node used in
the iteration process of the PACA is known to others for the
estimation, xi (0) can be perfectly inferred. On the other hand,
the partial knowledge of the information used by node i will
not affect the privacy result of the PACA, i.e., δ satisfies (21),
so long as one variable in hi is unknown and with domain R.

B. Optimal Noises

In this subsection, we consider the optimization problem (8).
First, we investigate the necessary and sufficient condition
that ensures an exact average consensus can be achieved
through (66), and obtain a theorem as follows.

Theorem 21: Using the iteration algorithm (66), we can
have (67) iff limk→∞

�k+1
l=1 Wlε(k − l + 1) = 0. Especially,

if (67) holds, then
�∞

k=0
�n

i=1 εi (k) = 0.
Proof: From (66), it follows that

x(k + 1) = W k+1x(0) +
k+1�

l=1

Wlε(k − l + 1). (69)

Since W is a doubly stochastic matrix, it is well known that
limk→∞ W k+1x(0) = x̄ . Taking limits on both sides of (69),
we have

lim
k→∞ x(k + 1) = x̄ + lim

k→∞

k+1�

l=1

Wlε(k − l + 1). (70)

Thus, it follows that

lim
k→∞ x(k + 1) = x̄ ⇔ lim

k→∞

k+1�

l=1

Wlε(k − l + 1) = 0. (71)

Then, one infers that

1T lim
k→∞

k+1�

l=1

Wlε(k − l + 1) =
∞�

k=0

n�

i=1

εi (k) = 0,

where we have used the fact that 1T W = 1T .
From the above theorem, one infers that if the noise adding

process given in PACA satisfies the zero-sum condition and
the series

�k+1
l=1 Wlε(k − l + 1) converge, then an exact aver-

age consensus can be achieved by the algorithm. Therefore,
in PACA, the noise adding process is that each node i arbitrary
chooses an integer ki > 1 and let

�ki
k=1 εi (k) = −εi(0),

so the average consensus can be guaranteed. In other word,
it is not difficult to satisfy the constraint in (8) using the above
design in PACA, where there are not any constraints on the
noise εi (0).

Second, from Theorem 19, it follows that δ satisfies (20),
when node j cannot know all the information used in the con-
sensus process at each iteration. Thus, using appropriate design
of PACA, problem (8) can be considered as an unconstrained
minimization problem as follows,

min
fεi (0)(y)

δ =
�

Si (0)
fεi (0)(y)dy. (72)

In problem (72), there is no constraint on fεi (0)(y) and it can
be a PDF of any distribution of noises. Hence, we can find a
fεi (0)(y) with a large variance such that δ is smaller than any
given small value since Si (0) is a bounded set. For example,
when Xi = R, we have Si (0) = [eεi (0) − �, eεi (0) + �]. Then,
a uniform distribution with fεi (0)(y) ≤ 1

M (M is a constant)
can ensure that

δ =
�

Si (0)
fεi (0)(y)dy ≤ 2�

M
. (73)
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Fig. 3. The (�, δ)-data-privacy of PACA with normal distributed, uniformly
distributed and and Laplace distributed noises.

It means that for any given δ, we can always find a large
M to ensure that the above inequality holds. Hence, one
concludes that, for any given small δ, PACA can provide (�, δ)-
data-privacy by adding an uniformly distributed noise with
fεi (0)(y) ≤ 1

M , where M ≥ 2�
δ . It has been proved that the

convergence rate of PACA depends on max(
2, |λ2|2, |λn |2),
where 
 is the decay factor of the noise variance, λ2 and
λn are the second largest and the smallest eigenvalue of W ,
respectively [20]. Thus, the convergence rate of PACA will
not be affected by the distribution of εi (0).

Note that a doubly stochastic matrix W can be easily
designed for an undirected network in a distributed way,
e.g., using Metropolis weights [10]. Considering directed
networks, the strongly connected topology is needed to ensure
the convergence of PACA. In this case, a doubly stochas-
tic matrix W is not easy to design in a distributed way,
since the column-stochastic is difficult to be guaranteed in
directed networks (where the column-stochastic is crucial
for the algorithm to converge to the exact average). Hence,
to ensure an exact average consensus, the algorithm should
be redesigned so that limt→∞

�n
i=1 xi (t) = �n

i=1 xi (0) and�∞
k=0

�n
i=1 εi (k) = 0 hold, i.e., the sum of the nodes’ states

will not change when the algorithm converges.
Then, we consider the case that the variance of εi (0) is

a constant. Note that a smaller � means a higher accuracy
estimation. It means that when � becomes smaller, the value
of δ is more important for the privacy preservation. Hence,
we define the optimal distribution in the sense of the data-
privacy as follows.

Definition 22: We say f ∗
εi (0)(y) is the optimal distribution

of εi (0) for a PACA. If, for any given distribution f 1
εi (0)(y),

there exists an �1 such that δ( f ∗
εi (0)(y), �) < δ( f 1

εi (0)(y), �)
holds for ∀� ∈ (0, �1].

Based on Definition 22, we formulate the following
minimization problem,

min
fεi (0)(y)

δ

s.t . Var{εi (0)} = σ 2. (74)

From our previous research on this optimization problem [26],
the optimal solution is that the noise εi (0) should follow a
uniform distribution given � ≤ σ .

Then, using the proposed theoretical framework in this
paper, we conduct the simulation to compare the privacy of
existing PACA. Figure 3 compares the (�, δ)-data-privacy of
PACA with normal distributed, uniformly distributed [20], and
Laplace distributed [18] noise adding processes, respectively.
In the simulation, 10, 000 simulation runs are conducted,
where one node first generates a state εi (0) randomly with
the given distribution at each run. The other node uses the
proposed optimal estimation approach to estimate the value
of the noise εi (0) (i.e., ε̂i (0)). Thus, one can obtain the
disclosure probability of δ = |ε̂i (0) − εi (0)| ≤ �. Clearly, it is
observed from Fig. 3 that uniform distribution is better than
normal distribution and Laplace distribution in the sense of
(�, δ)-data-privacy.

VI. CONCLUSIONS

In this paper, we have investigated the optimal distributed
estimation and privacy problem for privacy-preserving distrib-
uted algorithm. We introduced the definition of the optimal
distributed estimation and the (�, δ)-data-privacy definition,
which reveals the relationship between the privacy and the esti-
mation accuracy. A theoretical framework was provided for the
optimal distributed estimation and the privacy analysis, where
both the closed-form expressions of the optimal distributed
estimation and the privacy parameters were obtained. With
the obtained framework, we proved that the existing PACA
algorithm is (�, δ)-data-private and the optimal noises, which
guarantees the minimized disclosure probability, was obtained.
The applications of the proposed framework will be considered
in our future work.
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