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Abstract—Motivated by the potential ability of heating venti-
lation and air-conditioning (HVAC) systems in demand response
(DR), we propose a distributed DR control strategy to dispatch
the HVAC loads considering the current aggregated power supply
(including the intermittent renewable power supply). The control
objective is to reduce the variation of nonrenewable power de-
mand without affecting the user-perceived quality of experience.
To solve the problem, first, a queueing model is built for the
thermal dynamics of the HVAC unit based on the equivalent
thermal parameters (ETP) model. Second, optimization problems
are formulated. Based on an extended Lyapunov optimization ap-
proach, a control algorithm is proposed to approximately solve the
problems. Third, a DR control strategy with a low communication
requirement is proposed to implement the control algorithm in a
distributed way. Finally, practical data sets are used to evaluate
and demonstrate the effectiveness and efficiency of the proposed
control algorithm.

Index Terms—Demand response (DR), heating ventilation and
air-conditioning (HVAC), Lyapunov optimization, power varia-
tion, renewable power integration, smart grid, thermal dynamic
queue.

I. INTRODUCTION

EMAND response (DR) is anticipated to be a critical ap-

plication in smart grid. Aided by the advanced metering
infrastructure (AMI), the power usage of different appliances in
the customer premises can be adjusted either directly, such as
operational parameters/states changing requested by grid oper-
ators; or indirectly, such as real-time pricing. By smoothing out
the system power demand over time, DR is capable of providing
peak shaving, load shifting and ancillary services to maintain
the system reliability and stability.

On the power supply side, a growing number of renewable
energy sources are introduced into the power grid. The renew-
able energy can reduce congestion in the grid and decrease the
need for new generation or transmission capacity. However, the
intermittent nature of renewable energy brings new challenges,
which can be inimical to the power grid stability, and requires
extra energy storage or local generation to balance the gener-
ated power with the demand. Thus, the potential positive envi-
ronmental and economic benefits may be offset by these new
problems and costs [1].
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On the customers side, the customer power demand can
typically be divided into three categories, inelastic load and
two types (Type-I and Type-II) of elastic load. The inelastic
load must be satisfied immediately when needed, e.g., lighting.
Hence, the inelastic load is not suitable for DR. The Type-I
elastic load includes the power demand of the devices whose
operation can be delayed but not interrupted, such as washers.
For DR, this type of demand is mostly interested in providing
peak shaving and load shifting services. The Type-II elastic
load denotes the most flexible power demand, such as heating
ventilation and air-conditioning (HVAC) systems. Consid-
ering the thermal capacity of the building, which introduces
correlation of the temperature across time and is similar to a
queueing system, the control of HVAC units can align well
with the needs to smooth the energy demand variation in the
time scale of minute-level. The potential of HVAC devices for
load balancing/regulation service has been evaluated in [2].

In the literature, there have been many works on how to use
DR to shave demand peaks or to shift the peak [3]-[8]. While
both of the power peak and the power variation are important
to the stability of the power systems, the later one fluctuates in
a much smaller time scale (minute-level) with a relatively low
amplitude comparing to the demand peak. In this paper, moti-
vated by the HVAC units’ potential in demand response service,
our focus is to explore how to utilize in-house HVAC units to re-
duce the power demand variation, which has not attract enough
attention previously. By smoothing the energy demanding in
the minute-level, the total cost for the power generation can
be reduced, as we can reduce the needs for online regulation
services [9], [10].

The main contributions in this paper are fourfold. First, we
build a queueing model for the thermal dynamics of HVAC
units, a representative source of the Type-II elastic load. With
such a queueing model, the controlled room temperature is sim-
ilar to the power in a battery, which is increased (filled) when
the HVAC unit is on (when the battery is charged) and is de-
creased (emptied) when the HVAC unit is off (when the battery
is discharged). Second, optimization problems are formulated
to minimize the average variation of the nonrenewable power
demand by controlling the on/off states of HVAC units. By ex-
tending the Lyapunov optimization techniques in [11], we can
jointly optimize the objective value and guarantee the room tem-
peratures staying in customers’ desired regions. Third, to fur-
ther reduce the communication cost and complexity, we pro-
pose a suboptimal control algorithm and a strategy to implement
the algorithm in a distributed way. One more merit of the con-
trol algorithm is that it can be tuned to effectively reduce the
average variation of the nonrenewable power demand without
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significantly increasing the frequency of HVAC units’ on/off
switching. At last, using practical data sets, simulation results
demonstrate that our control algorithm can effectively reduce
the variation of nonrenewable power demand and guarantee the
customers’ comfortable experiences.

The rest of this paper is organized as follows. In Section II, we
present a summary of related work on DR control. Section III
describes our system model. In Section IV, we present our
queueing model for the HVAC units’ thermal dynamics. In
Section V, optimization problems are formulated to minimize
the average variation of nonrenewable power demand and a
suboptimal control algorithm is proposed. In Section VI, a
control strategy is proposed to implement our control algorithm
in a distributed way. Section VII presents the numerical results
followed by the concluding remarks and future research issues
in Section VIII.

II. RELATED WORK

With customers’ participation, DR enables more options to
balance the power supply and demand. To attract customers’
participation, one important strategy is to shape the power
demand through time-dependent pricing (TDP) [4]. By mon-
itoring the electricity consumptions and providing customers
the real-time price information through the smart grid infra-
structure, the power operators can manipulate the electricity
price. Thus, customers’ electricity usage may be restrained at
the high power price period and stimulated at the low power
price period. Note that the controllable power demand can be
any of the three types discussed above, when the electricity
usages are controlled by customers according to the TDP. In
[5], game theory has been applied to reduce the peak load of
the grid considering the consumers’ reactions to the electricity
prices, the subsequent changes in the demand pattern of the
target day, and the resulting effect on observed prices. The ben-
efits of using TDP are illustrated in [12], which used real data
to illustrate that shifting usage physically can reduce the risk
of overloading. However, one limitation of the pricing based
DR strategy is that it relies on the assumption of reasonable
customers’ reaction to the electricity price, which may not
always be true in a real environment. Besides, it also depends
on the price prediction to achieve such benefit, which is also a
challenging issue.

Another type of DR is to control the demand-side load
directly by utilities or system operators. Considering the
customers’ requirements on comfortable experiences, most re-
searches focus on utilizing the Type-I elastic load. Dividing the
loads into real-time loads (inelastic load) and controllable loads
(Type-I elastic load), [6] proposed an approach that attempts
to produce a uniform load demand over time by scheduling
the power usage lower than a preset target. In [3], a stochastic
model was developed and two online demand scheduling poli-
cies were introduced to minimize the long-term average power
grid operational cost. In the first one, the controller serves a
new demand request immediately or postpones it to the end of
its deadline, depending on the current power consumption. In
the second one, a new power demand is activated immediately
if power consumption is lower than a threshold; otherwise it
is queued. A queued demand is activated when its deadline
expires or when consumption drops below the threshold.
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Comparing to the Type-I elastic load, Type-II elastic load
can be more attractive for DR as the power can flow in two
directions, not only help reduce the load demand in a period,
but also compensate the power shortage by being “discharged”
without requiring energy storage devices, i.e., functioning as
battery. In the literature, there are also several strategies taking
the advantage of the Type-II elastic load for the direct DR. [13]
presented a strategy for that using water heaters as regulation
resources. In [14], a direct control strategy was proposed to
manage the large population of HVAC units using the system
identification approach. A centralized optimal control algorithm
with comfortable room temperature consideration was proposed
in [15] by controlling the operational set-point of HVAC units.
However, the control algorithm in [15] relies on the population
information of the room temperature, which makes it vulner-
able if the data packet is lost due to communication impair-
ments [16]. Nevertheless, utilizing the power-storage feature of
Type-I1 elastic load is a promising approach to provide ancillary
service in smart grid, which motivates our work in this paper.

III. SYSTEM MODEL

In this paper, we aim to reduce the variation of nonrenewable
power demand, which is typically supplied by traditional power
plants, by controlling the “ON/OFF” states of HVAC units.

Fig. 1 shows a typical demand response scenario in smart
grid. In the service community, there are N distributed resi-
dential houses, assuming each of the house is equipped with an
HVAC unit and a smart meter. A control center connects the
customers to the renewable and nonrenewable power sources
through communication networks, and directly controls cus-
tomers” HVAC working states through communicating with the
smart meters.

To satisfy customers’ requirements on comfortable living en-
vironments, a comfortable temperature region is set for each res-
idential house. Let T; be the room temperature in the 7th house
(t=1,2,...,N.)and [T;,, T; ] denote the comfortable tem-
perature region, such that T; € [T;;, T; ]. In each house, T; is
determined by the environment temperature (7j), the previous
room temperature and the working state u; of the HVAC unit.

Let u;(t) be the state of an HVAC unit in slot ¢, C; ;, be the
equivalent heat capacity (J/°C), R; be the equivalent thermal
resistance (°C/W) of the residential house, and (}; j, be the
equivalent heat rate (W) of the HVAC unit. According to
the ETP model in [2], the room temperature (°C) evolves as
follows:

Ti(t+ 1)
_ { To(t) — [To(t) = Ti(8)]n, if ui(t) = 0

L (To) + QinRi) (1 —n) + Ti(t)n, ow, W
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where 7 = e 2¢/RiCiv  An HVAC unit only switches its
working state when the room temperature reaches one of the
region bounds, i.e., switching from “ON” (u; = 1) to “OFF”
(v, = 0)if T; > Ty, switching from “OFF” to “ON” if
T; < T;,, and keeping its working state when T} ; < T; < T ,.
In this paper, it is assumed that the environment temperature
T} is the same for the NV residential houses but changes over
time as a random variable and Ty < T jmax. For the HVAC
thermal dynamics related parameters, including 7 ;, T; 1., Qi 1.,
RR,;, and C; j,, they can be different for different customers and
their houses.

To implement the DR control, time is divided into time slots
with slot duration A;. Instead of letting HVAC units work au-
tomatically, control decisions are made in each time slot to des-
ignate the working states of HVAC units.

On the customer side, at each time slot, we divide the load de-
mand into two parts: HVAC load and non-HVAC load (D,,(t))
that includes the inelastic load and Type-I elastic load. On the
supply side, the power is supplied by two kinds of sources, the
traditional power grid and the renewable power sources, e.g.,
wind power, denoted as P, (t) and P,.(t), respectively. We as-
sume that there exists a peak power supply P nax and a peak
load demand D,, yax, s0 that P.(¢) < P, yax and D, () <
D 7, max-

In time slot #, the power supplies should be equal to the N
customers’ total loads, which requires that

N

Pe(t) + Po(t) = Dy(l) + Qp Z u; (1)

i=1

2

where (), is the power consumed by an HVAC unit if it is turned
on.

However, as the renewable power (P,.(¢)) is time-varying and
noncontrollable, the power supplied by the traditional power
grid (£.(t)) has to vary timely, which causes great challenges
to the power generation and the grid stability. To minimize the
variation of the demand on the traditional power supply (P.(%))
caused by these time-varying power supplies, we propose an ap-
proach to balance the load demand and power supply through
tuning the load demand by directly controlling the HVAC units’
“ON/OFF” states but not disturbing customers’ comfortable ex-
periences. We assume that customers have the incentive to par-
ticipate in the direct DR control, as they will be compensated by
the power company accordingly.

IV. QUEUEING MODEL OF HVAC THERMAL DYNAMICS

In this work, considering that the thermal capacity of the
building introduces correlation of the temperature across time,
which is similar to a queueing system, we remodel the HVAC
thermal dynamics in (1) using a queueing model. Let AT; ;(#)
be the temperature loss in each time slot, and AT; ,(¢) be the
room temperature increased by the HVAC unit if it is on. Given
the environment temperature Ty(%), when u,(%) = 0, the room
temperature will decrease from T; 5, (¢) to T;;(¢) in K; f(¢)
slots. Suppose

Ti(t) = Tinlt) — K, j (AT (1) 3)

and according to (1), we have

Tia(t) = To(t)[1 — ﬁKi’f(t)] + Ty () O, 4)
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Fig. 2. Validation of the queueing model of HVAC thermal dynamics (Q; » =
300 W, R; = 0.1208° C/W, C; » = 3599.37/°C, T, = 25° C).

Comparing (3) and (4), we can derive that

[ RiCin To(t) — T n(t)
K f(t)= [ A, log To(t) = T;z(f)-‘ %)
X - Ty 7,,Ki_f(f,)
ATy (1) = T~ T K%l) ) RS

When w;(t) = 1, the room temperature will increase from
T;.1(t) to T; . (t) in K; ,(t) slots. Suppose

Tin(t) =Tia(t) + Ki o(D[AT; (1) — AT; (). (D)
Similar to the case when w;(#) = 0, we have
R, Cip, To(t) + QinRi — Tiy(t) J
Ki.o t) = ’ 0O - : 8
o(t) { Ay & To(t) + Qs nRi — T 1 (1) ®)

[To(t)+ Qs n R =T y(1)][L—nee®]
Ki.o(t) '

AT, o (t)= AT, s (1) +
©)

By (1) and (3)—(9), we derive the queueing model of the
HVAC thermal dynamics as follows:
L+ 1) =Ti(#) - AT ;(B) + wi()ATi (). (10)
To evaluate the accuracy of the queueing model, simulation
has been run to compare the room temperature dynamics of an
HVAC unit in 250 minutes based on the proposed model and the
one in [2]. According to the results shown in Fig. 2, the proposed
model matches the one in [2] quite well.

V. OPTIMAL DEMAND RESPONSE CONTROL

Based on the queueing model in Section IV, we study how
to utilize HVAC units to reduce the average variation of non-
renewable power demand by using the mean square successive
difference of P, () as our optimization objective.

A. Problem Formulation

It is assumed that the current D,,(t) and P,(¢) can be mea-
sured or estimated [17]. Let Ay (t) = Dy (t) — Po(t) = P(t - 1).
Ap(t) + ZLI u;(t)()p represents the difference of the nonre-
newable power demand in two successive time slot. Thus, our
optimization problem is formulated as P/.
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1) Problem I (Pl):

t N 2
Min thj& —Z [Z wi(T)Qp + Ap(t) (11)
=1
st. T;; < Tl(t + )—AT.L’f(t) + YI,i(lL,)AT[‘:O(t)STL‘Jl
(12)
w;(t)y e {0, 1}, Vi=1,2,...,N (13)

where (12) stands for each customer-desired room temperature
requirement and (13) says that each HVAC unit can either be on
or off.

The problem above is challenging mainly due to the
time-coupling property brought by the first constraint. Pre-
vious methods handling similar problems are usually based
on dynamic programming, requiring detailed knowledge of
statistics of P,.(¢) and P.(t), and are vulnerable to the curse of
dimensionality problem [18]. Moreover, these statistics may be
unknown or difficult to obtain in practice.

Another way to solve P/ is to study its relaxed form by using
the bounded average room temperature instead of constraint
(12); thus:

2) Problem II (P2, Rhe Relaxed P1):

Min  (the same as (11))
S.t. Ti,l < Ti(t) < Tiy},, (14)
wi(t) e {0, 1}, Vi=1,2,...,N (15)

where T(t) is the average room temperature.

The solution to P2 is easy to be characterized based on the
framework of Lyapunov optimization [11]. However, the solu-
tion for the relaxed problem may not be feasible for the original
problem.

In this work, we introduce auxiliary parameters C; (i =
1,2,...,N) for each HVAC unit and virtual temperature
queues, X, (t), as a shift of 7;(¢). We have

X =Tt -C;, Vi=12,....N (16)
where
Ci< G <Ot
ct = Uiz

+1;p — maxf{ATq o(t) = AT, , (1)}

[N -1V, Q +2V,, QAL
Cl=——miar,mr + Lt max AT ()}
min,{AT;y(,(t)[Ti,h—T/_, AT; o ()]}

BEEN 1) 5420, E A ol)

Vm =

Ay = maxy{D,(t) — P.(t) — P.(t — 1)}
I, = min D, () — P.(t) — P.(t — 1}}.
7)
With (10) and (16), we obtain N virtual queues as
X;(t+1) = X;(t) — AT, s (t) + w;(DAT; (1) (18)

and then we can reformulate P/ as a quadratic optimization
problem based on the Lynapnuv optimization [11]. After some
manipulations (Please refer to the Appendix.), we obtain:
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3) Problem III (P3):

N 2
Min Vm{Zui(t)Ql,} (19)
=1
+ Z f)AE o ) + 2‘/771,(“2])Ap(t)]ui (t)
s.t. ()e{() 1}, Vi=1,2,...,N. (20)

In each time slot, P.(%), T;(#) are updated according to (2)
and (10), respectively, and the optimal control decision of «] (#)
can be found by solving P3.

Theorem 1: The solution to P3 is always feasible to P1.

Before we prove Theorem 1, we first present the solution to
P3.LetY;(t) = Xi(t)AT; ,(t). We first sort the N HVAC units
according to Y;(¢) in an ascending order. Let & be the indicator
of the order of ith HVAC unit and ¢;, denote the HVAC unit
be the £th one in the sorted sequence. We obtain the optimal
solution to P3 by finding the k£*th HVAC unit satisfying (21)
and (22) as follows:

I(E*) =Y (E*) 4 2V QpA, (1) + Vi Q2(26* — 1) <0
2n

I(E*+1) = Y(E"+1) 4 2V, QAL (1) + Vi Q2 (26" +1) >0
(22)

where I(k) denotes the increment of (11) when the #th HVAC
unit is turned on.
Thus, the control decisions for all HVAC units are

1, i=1,2,... k"
“f’(t)‘{o, i=k 41,... N (23)
with Y71 () < Y5(1) < ... < Yy(t). In the following, we prove

Theorem 1.
Proof: Assuming that 1 < £ < N, with (17), we obtain
(24) when T}, (¢) < T3, 1 + ATy, ¢(¢), and (25) when T;, (2) >

Tin — AT;, o(t) + AT;, (1), respectively:
I(k) =Y (k) + 2V Qpdp(t) + Vin Q5 (26 — 1)
<[], - ¢ ]AT% o(t) <0 (24)
>[ch - o,;,;]ATq:k,o(f> > 0. (25)

As the function Y (k) + 2V,, A, (1) + V3, Q3 (2k — 1) is mono-
tonically increasing, the control decision is u;(f) = 1 when
T“ (t) < T5, 1+ AT, ;(t) and wi(t) = 0 when T;, (t) >
Ti, . — ATy, o(t) + AT, (1), such that no room temperature
will be out of the customer desired region, which satisfies the
constraint in (12). Note that, for the HVAC units with room tem-
perature between T; ;+AT; ;(t) and T j, — AT, ,(£)+ AT, ¢ (1),
they can be either turned on or off. |
Theorem 2: If Ty(t) is i.i.d. over slots, then the expected A,
under our algorithm is within a bound B/V,, of the optimal
value A,
— _— D
Besfety

(26)
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where

t)+ AT (1)} (27)

N
1
=3 Z HI?X{ATE’O(
i=1

Proof: First, PI is relaxed to be P2 with the mean rate
stable constraint only. Let A be the optimal value of ¢(t) of
PI and AC ~e; be the optimal value of ¢(¢) in P2. As all the
solutions to P will be feasible to the relaxed problem and there
are looser constraints in P2 than in P/, A el S A

Second, with (16), we can formulate a new 0pt1mizati0n
problem P4 (as shown in the Appendix.) with the same objec-
tive as that in P/, but with constraints on mean rate stable of
those virtual queues only. Let K:_ x denote the optimal value of
the objective in P4. To solve P4, we actually solve P3. It can be
proved us1n% Lyapunov theory [11] that there exist a constant
B,A. <A,y + B/V,.

Th1rd comparing P2 and P4, they are of the same form | except

the different meaning of the queues. Thus, AC x = AC el <
A’ . We derive that the achievable objective is bounded by A, <

=% ¥
A, x +B/Vi, <A+ BV, |

B. DR Control Algorithm

Our control algorithm using the extended Lyapunov opti-
mization above is summarized in Algorithm 1.

Algorithm 1 The DR control algorithm

1:SetC; (i =1,2,.
2: In each time slot ¢

3: collect Ti(t). AT o(t), AT; (t) Dy (t) of each customer’
house, P,(t) and P.(f — 1) in the last slot

: update the values of Xy(¢)
: sort the virtual queue according to ¥; (¢ —1)
: find £* according to (21)-(22)

: For each HVAC unit, u;(t) = 1 if i <= k*, otherwise,
u;(t) =0

.., ) satisfying (17)

~N N L K

Note that, when different combinations of the auxiliary pa-
rameter C; for the N queues are used, the control decisions
made may be different, so as the room temperatures, which will
be demonstrated in Section VII. However, when C; satisfies
(17), the result of the control objective will be almost the same.

VI. DISTRIBUTED DEMAND RESPONSE CONTROL STRATEGY

To implement Algorithm 1, one strategy is to use a central-
ized control by collecting all required information to the control
center and then delivering the «;() to each customer every slot
after decision-making. However, such a strategy is not efficient
as these information (line 3 in Algorithm 1) has to be reported
to the control center frequently, which introduces large commu-
nication cost and time delay for decision-making. In addition,
such a strategy is vulnerable to security and privacy problems as
both customers’ private information and control decisions may
be intercepted during the communication process.

Observing the solution to P3 in (21)—(23), it is found that the
HVAC unit’s state in a time slot depends on the sorted Y (k)
and corresponding order k. While X, (1), AT; ,(t), AT, ¢(%),
and V,,,(,, can be known by each customer, the only informa-
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tion required for customers to make their own decisions on the
HVAC units’ states is the value of A,(¢) and k. Thus, in this
paper, we propose a distributed DR control strategy, as shown
in Strategy 1.

In a control slot, the control center distributes a summary of
power consumption A, () and the virtual queue sequence (k)
to all customers. Accordingly, each customer makes the deci-
sion independently by checking whether 7(k) is positive or not
according to its own virtual queue sequence k. On the other
hand, the control center can also predict customers’ decisions by
(21)—(23), the room temperatures by (10), and the virtual queue
length by (16).

With such a distributed implementation, the benefits of such
a strategy are three-folds. First, the communication cost can be
reduced with fewer customer reports than that in centralized
control; second, the control can be more reliable as there is no
control-error due to the communication error in delivering the
control decisions from the control center to customers; third, the
system can be more secure with a lower frequency for customers
to report their private information and no control decision is de-
livered over communication networks.

Strategy 1 The distributed DR control strategy

1: In each time slot ¢,

2: the control center calculates the summary of power
consumption (A, (¢)) and the virtual queue sequence (k)

: the control center delivers A, () and & to customers
: each customer calculate its own (k)

1if I(k) < 0 then

: the customer turns on its HVAC unit during the slot £
: else

: the customer turns off its HVAC unit during the slot ¢
: end if

O 0 3 N L AW

Note that it is possible to have an inaccurate prediction of
the household’s room temperature as we use a queueing model
for approximation. However, the difference will be quite small
within a slot when the control slot is short, e.g., one minute
as shown in Fig. 2. To avoid the inaccurate prediction to ac-
cumulate to the point of causing a negative effect, one approach
is to increase the frequency of customers reporting their room
temperatures so that the control center can limit the error. How
to quantify the inaccurate prediction and design an optimal re-
porting interval to balance the control benefit and communica-
tion cost [19] is left for future study.

VII. PERFORMANCE EVALUATION

A. Simulation Settings

We evaluate the proposed DR control algorithm in Section V
in a community with 2000 residential houses and a 1-MW wind
turbine providing renewable energy using practical data. For the
power supply, the renewable power data are generated with a
typical turbine power-curve using the wind speed data during
Apr. 10-12, 2012 taken from Canada climate website, http://cli-
mate.weather.gc.ca. On the customer side, we used typical res-
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Fig. 3. Environment data. (a) Wind turbine power-curve
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Fig. 4. Nonrenewable power demand.

idential house non-HVAC loads [20]. While the data from [20]
are the discrete average load per 5 minutes, we interpolated
it into per minute loads with Gaussian fluctuation, which is
10% of the load on average. The environment temperature data,
which are required for the proposed control algorithm, are also
from Canada climate website. Fig. 3 shows a) the wind turbine
power-curve (cut-in speed: 3 m/s, cut-out speed: 20 m/s, rated
power output: 1 MW), b) the 24-hour wind speed and c) the
24-hour environment temperatures used in the simulation.

For DR control, we set the control slot, A;, as one minute,
which is short enough that the customers’ load demand and the
renewable energy supply are assumed static. Table I presents
the HVAC units related parameters. For the HVAC thermal dy-
namics related parameters, including Q; &, R;, C; . 15, and
T: rn, we assume they are uniformly distributed in the range
shown in Table I. For the HVAC unit power load, it is assumed
to be 600 W.

B. Simulation Results

In this section, the proposed DR control algorithm is first
compared with two other schemes: one without DR control and
one using the algorithm in [15], in which the HVAC units are
controlled by adjusting the customers’ set-point of the room
temperatures within [(T ,, + 37;,)/4, (3T, + Ti1)/4].

contrast, both the proposed algorithm and that in [ 15] effectively
reduce the fluctuations, which brings down the risk of power
outage and reduces the need for activating high cost supplemen-
tary power generation sources for load balancing/regulation.

Fig. 5 presents the average nonrenewable power demand dif-
ferences in consecutive slots. Although the variation of the non-
renewable power supply seems larger using the proposed scheme
thanthatin [15] occasionally in Fig. 4, the overall performance of
the control algorithm outperforms that in [15] substantially with
a 19% gain. When compared to that without DR control, a 32%
gain is achieved by the proposed algorithm in the simulation.
This is because the proposed scheme directly control the HVAC
units’ states instead of attempting to affect the states through any
intermediate variable, i.e., the room temperature set-point, which
enables a finer granularity to tune the loads.

2) Cost of the Control Algorithm: While the HVAC units are
controlled to reduce the variability of power production, one po-
tential cost is the increase of the frequency of the HVAC on/off
switching. In Fig. 6, such impact is evaluated by the PMF of
the number of HVAC on/off cycles per hour. It is found that the
number of on/off cycles increased from about 0-3 cycles per
hour without DR control to about 1-5 cycles per hour using the
one in [15], and to about 5-20 cycles per hour using the pro-
posed control algorithm.

For the control algorithm in [15], as the set-point is con-
trolled, only the HVAC units, with which the room temperatures
are close to T} or T}*, will toggle their states and others will keep
their states. Thus, its impact on the frequency of HVAC on/off

!In the figure, we enlarge the result between 964—1002 minutes. Please refer
to [21] for the enlarged version of the figure.
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switching is limited. Comparing to [15], the proposed algorithm
directly controls the HVAC units’ states. In every slot, both of
the previous on and off HVAC units may change their states,
which causes more frequent HVAC on/off switching.

To avoid overusing the HVAC units, we can try to keep the
HVAC units’ states as much as possible. To do so, instead of
using the constant C; in (16), we can use a time varying C;(¢),
which is related to the HVAC unit’ previous state ;{t — 1), and

Cit) = uit — 1O + [1 — st — 1)]CY
Cr=rCl+(1-7r)CL (0<r <)
Xi(t+1) = X{(#) + Cilt)

+Ci(t + 1) — AT ;1 (#) + wi(H)AT; o ().

When r = 1, it is the same as using C;. When r < 1, if an
HVAC unit is previously turned on, it will get a large shift for
its T;(#) to have a low order in S; otherwise, it is likely to gain
a high order. In this way, HVAC units will be more likely to
keep their states to avoid frequent on/off switching. As shown
in Fig. 7, with a smaller r, there is high probability to have the
HVAC on/off switch less than 5 cycles per hour.

On the other hand, with the adaptive C;(t), the control effec-
tiveness may also be affected. Fig. 8 shows the power variation
with different values of r. As it is shown, the mean variation
of nonrenewable power demand increases as the value of r de-
creases. Thus, an adaptive C;(t) may help balance the cost and
the effectiveness of the proposed control algorithm. Also, it is
possible to devise an incentive mechanism to encourage users
tolerating a larger value of r to provide more DR, which is left
for future research.
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Note that, with the adaptive C;(¢), T;(t) may changes with a
larger fluctuation but still bounded (shown later in Fig. 9). The
proof for this can be found in [21].

3) Impact on Customers’ Comfort Requirements: At last, we
evaluate the impact of the DR control algorithm on the cus-
tomer’s comfort requirements by showing the room tempera-
ture of a sample residential house in Fig. 9. As it is shown,
the proposed algorithm guarantees that the desired temperature
requirements. However, the algorithm in [15] violates the de-
sired room temperature setting sometimes. It is also found that
the proposed scheme can provide more comfortable experience
for a customer as the room temperatures is more stable with a
smaller gap between the desired region. Meanwhile, when the
adaptive C;(t) used, the room temperature controlled by the
proposed DR control algorithm fluctuates in a larger range with
a small 7.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have studied the DR control using HVAC
units. A DR control algorithm based on the Lyapunov optimiza-
tion has been proposed. Simulations with practical data sets
have showed that the proposed control algorithm is effective
in reducing the variation of the nonrenewable power demand
and guaranteeing customers’ comfortable experiences. Besides,
a distributed strategy to implement the control algorithm has
been proposed, which has fewer communication cost and more
secure. Moreover, simulation results demonstrates that the pro-
posed algorithm can be tuned to balance the control cost and its
effectiveness.
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Several research issues beckon for further investigation.
First, the DR problem discussed may be extended to include the
Type-I elastic load for peak shifting. As the Type-I elastic load
is delay-tolerant, a maximum queueing delay constraint can be
built in each residential house. Thus, the current system model
and problem formulation in P/ can be extended to include two
types of queues, the thermal dynamics queues and the Type-I
load queues, and the method developed in this paper may also
be applicable. Such a method may also help further reduce the
control cost in frequent HVAC on/off switches by providing
more controllable demand. Second, the proposed DR control
strategy assumes that the HVAC units are of the same power.
This assumption is reasonable in some scenarios, such as in
department buildings and university dormitories, where the
administrators are likely to install similar HVAC units for each
unit. In the scenario with HVAC units of heterogeneous power,
our algorithm may still be applicable by grouping these HVAC
units according to their power, assigning the renewable power
demand to groups in proportion to the group sizes, and then
applying the algorithm in each group separately. Third, the
effectiveness of the proposed distributed DR strategy may be
influenced by two factors, including the accuracy of the control
center’s prediction on the sequence of virtual temperature
queues and the potential communication errors. To improve the
robustness of the distributed DR control strategy, one approach
is to increase the frequency of customers’ room temperatures
reports to mitigate the error. How to quantify the impact of
inaccurate prediction and design an optimal reporting interval
to balance the control benefit and communication cost is still
an open topic.

APPENDIX
THE FORMULATION OF P3

With (16), we can formulate a new optimization problem:
Problem 1V (P4):

Min (the same as (11))
st Xi < Xo(h) < X
u;(t) € {0, 1}, vi=1,2,...,N

where XU = TL] — Oi and Xi,h =dyh — Cl

Different from P/, in which each queue is bounded, the vir-
tual queues are with mean rate stable constraints only. Based
on this new optimization problem, we make use of the Lya-
punov optimization techniques. Define the Lyapunov function
as L(O(1) = (1/2) Z\ X /(t)? and the conditional 1-slot
Lyapunov driftas A(0(t)) £ E{L(O(t+1))— L(0(1))|0(t)}.

Following the MIN DRIFT-PLUS-PENALTY algorithm
in [11], to solve P4 is to make decisions u;(t) in each
slot ¢ by minimizing A(©(t)) + V,,E{Z(¢)|©(¢)}, where
Z(t) = [A(1) + XN, Quuilt )]2 Similar to that in [11], it
is easy to prove that A(©(t)) + V,,E{Z(¢)|©({)} is upper
bounded by

B+ V,.E{Z(1 )|®( )}
+ZX

i(D)AT; (1) — AT, ¢ (1)[0(2)].
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Rather than directly minimizing the drift-plus-penalty every
slot, one approach is to minimize its upper bound as follows:
Problem V (P5):

N

Min V,,Z(t +ZX (AT (1) — AT; 4 (1)),

s.t. ui(t) € {0, 1} Vi=1,2,...,N.

As X;(t), AT; ;(t), and A ( ) are given in every slot, P5
equivalent to P3. Besides, let AC y denote the optimal objective
value of P4 and A, be the achievable objective of P3, it can be
proved that A, < Z:y x + B/V,,. The proof follows directly
from the framework of Lyapunov optimization in [11], which is
omitted here for brevity.

REFERENCES

[1] M. Ilic, Y. Makarov, and D. Hawkins, “Operations of electric power
systems with high penetration of wind power: Risks and possible solu-
tions,” in Proc. IEEE PES General Meet., 2007, pp. 1-4.

[2] N. Lu, “An evaluation of the HVAC load potential for providing
load balancing service,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp.
1263-1270, Sep. 2012.

[3] 1. Koutsopoulos and L. Tassiulas, “Optimal control policies for power
demand scheduling in the smart grid,” IEEE J. Sel. Areas Commun.,
vol. 30, no. 6, pp. 1049-1060, Jul. 2012.

[4] C. Joe-Wong, S. Sen, S. Ha, and M. Chiang, “Optimized day-ahead
pricing for smart grids with device-specific scheduling flexibility,”
IEEE J. Sel. Areas Commun., vol. 30, no. 6, pp. 1075-1085, Jul. 2012.

[5] H. K. Nguyen, J. B. Song, and Z. Han, “Demand side management to
reduce peak-to-average ratio using game theory in smart grid,” in Proc.
IEEE INFOCOM WKSHPS12, Mar. 2012, pp. 91-96.

[6] G. Xiong, C. Chen, S. Kishore, and A. Yener, “Smart (in-home) power
scheduling for demand response on the smart grid,” in Proc. IEEE PES
ISGT’11, Jan. 2011.

[7] Z. Fadlullah et al., “Towards intelligent machine-to-machine commu-
nications in smart grid,” I[EEE Communicat. Mag., vol. 49, no. 4, pp.
60-65, Apr. 2011.

[8] B. Chai et al., “Demand response management with multiple utility
companies: A two-level game approach,” IEEE Trans. Smart Grid, vol.
5, no. 2, pp. 722-731, Mar. 2014.

[9] N. V. Zorchenko et al., “Evaluating the effect of frequency regulation
modes on the reliability and economic efficiency of thermal power gen-
eration units,” Power Technol. Eng., vol. 45, no. 2, pp. 132-136, 2011.

[10] S. Parkinson et al., “Wind integration in self-regulating electric load
distributions,” J. Energy Syst., pp. 341-377, Jan. 2012.

[11] M. Neely, Stochastic Network Optimization With Application to Com-
munication and Queueing Systems. San Rafael, CA, USA: Morgan
& Claypool, 2010, Synthesis Lectures on Communication Networks.

[12] E.Hirst, “The financial and physical insurance benefits of price-respon-
sive demand,” Electricity J., vol. 15, no. 4, pp. 66—73, May 2002.

[13] J. Kondoh, N. Lu, and D. Hammerstrom, “An evaluation of the water
heater load potential for providing regulation service,” IEEE Trans.
Power Syst., vol. 26, no. 3, pp. 1309-1316, Aug. 2010.

[14] D. Callaway, “Tapping the energy storage potential in electric loads to
deliver load following and regulation with application to wind energy,”
Energy Convers. Manage., vol. 50, no. 9, pp. 1389—-1400, 2009.

[15] S. Parkinson et al., “Comfort-constrained distributed heat pump man-
agement,” in Proc. IEEE ICSGCE’11, 2011, vol. 12, pp. 849-855.

[16] L. Zheng, S. Parkinson, D. Wang, L. Cai, and C. Crawford, “Energy
efficient communication networks design for demand response in smart
grid,” in Proc. IEEE WCSP’11, 2011, pp. 1-6.

[17] “IESO demand forecasting performance indicators,” Sep. 2011
[Online]. Available: http://www.ieso.ca/imoweb/marketData/market-
Data.asp

[18] D. P. Bertsekas, Dynamic Programming and Optimal Control, 2nd
ed. Nashua, NH, USA: Athena Scientific, 2000.

[19] L. Zheng, N. Lu, and L. Cai, “Reliable wireless communication net-
works for demand response control,” [EEE Trans. Smart Grid, vol. 4,
no. 1, pp. 133—140, Mar. 2013.

[20] I. Knight and H. Ribberink, “International energy agency-energy con-
servation in buildings and community systems programme,” in Proc.
Eur. Can. Non-HVAC Electric DHW Load Profiles for Use in Simu-
lating the Performance of Residential Cogenerat. Syst., 2007.



ZHENG AND CALI: DISTRIBUTED DR CONTROL STRATEGY USING LYAPUNOV OPTIMIZATION 2083

[21] L. Zheng and L. Cai, “A distributed demand response control strategy
using Lyapunov optimization,” Tech. Rep. 2013 [Online]. Available:
http://www.ece.uvic.ca/~zhengl/materials/TSG13ZL

M

Lei Zheng (S’11) received the B.S. and M..S. degrees
in electrical engineering from Beijing University of
Posts and Telecommunications, Beijing, China, in
2007 and 2010, respectively. He is currently working
toward the Ph.D. degree with the Department of
Electrical and Computer Engineering, University of
Victoria, Victoria, BC, Canada.

His research interest is machine-to-machine net-
works, including medium access control protocol,
radio resource allocation in wireless networks, and
demand response control in smart grid.

Lin Cai (S°00-M’06-SM’10) received the M.A.Sc.
and Ph.D. degrees in electrical and computer engi-
neering from the University of Waterloo, Waterloo,
ON, Canada, in 2002 and 2005, respectively.

Since 2005, she has been an Assistant Professor
and then an Associate Professor with the Department
of Electrical and Computer Engineering, University
of Victoria, Victoria, BC, Canada. She has been
’ an Associate Editor for IEEE TRANSACTIONS ON
I A 2 WIRELESS COMMUNICATIONS, IEEE TRANSACTIONS

ON VEHICULAR TECHNOLOGY, EURASIP Journal on
Wireless Communications and Networking, the International Journal of Sensor
Networks, and the Journal of Communications and Networks. Her research
interests include wireless communications and networking, with a focus on
network protocol design and control strategy supporting emerging applications
in ubiquitous networks.



