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Abstract—Direct or centralized loading shaping in smart grid
has been heavily investigated. However, it is usually not clear how
the users are compensated by providing load shaping services. In
this paper, we will discuss indirect load shaping in a distributed
manner. On one hand, we aim to reduce the users’ energy cost by
investigating how to fully utilize the battery pack and the water
tank for the combined heat and power (CHP) systems. We first
formulate the queueing models for the CHP systems and then
propose an algorithm based on the Lyapunov optimization tech-
nique, which does not need any statistical information about the
system dynamics. The optimal control actions can be obtained by
solving a nonconvex optimization problem. We then discuss when
it can be converted into a convex optimization problem. Since
the CHP battery pack queue and water tank queue are corre-
lated, the capacity relationship between them is further explored
considering different queue weights. On the other hand, based
on the users’ reaction model, we propose an algorithm with a
time complexity of O(log n) to determine the real-time price for
the power company to effectively coordinate all the CHP systems
and provide distributed load shaping services.

Index Terms—Combined heat and power (CHP), Lyapunov
optimization, smart grid.

I. INTRODUCTION

EXTENSIVE research has been done aiming to reduce
the users’ electricity bill by taking the advantage of the

real-time price (RTP) and the elasticity of certain appliances.
However, it has been argued that without an appropriate RTP
to coordinate all the elastic loads, these algorithms may lead
to new peaks which are undesirable [1]. In order to solve the
problem, one approach is to control the elastic load directly
by a central controller. For example, in [2], [3], and [21], the
heating, ventilating, and air conditioning (HVAC)s can provide
load shaping services if the ON/OFF states of each HVAC can
be controlled by a control center directly. Others discussed
how to determine the RTP to provide indirect load shap-
ing mainly from a game theory perspective. In these papers,
the authors usually assumed that the users make decisions
according to a certain utility function. However, how to design
appropriate utility functions is still an open problem.
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In this paper, we are motivated to design an indirect load
shaping service framework through RTP, which can help both
the users and the power companies save cost. Our frame-
work can be divided into two parts. On one hand, we design
a combined heat and power (CHP) system scheduling algo-
rithm which reacts to the current RTP and help users save
their total energy bill. The reason why we choose CHP sys-
tems is that CHP systems can generate both electricity and
thermal energy simultaneously from a single fuel source,
and can achieve a much higher energy efficiency than gen-
erating electricity and heat separately [4], [5]. The use of
CHP systems can also reduce greenhouse gas emissions.
As a result, CHP systems are becoming increasingly
popular.

On the other hand, the value of the RTP will affect the
charging and discharging of the battery packs of the CHP sys-
tems, and thus influence the total load. In other words, the
power company can make the CHP systems provide load shap-
ing services by adjusting the RTP. The key issue is to find an
appropriate RTP based on the derived CHP system scheduling
algorithm such that all the CHP systems can be effectively
coordinated.

The contributions of this paper are threefold. First, we
propose a comprehensive model from the perspective of a
commercial customer, which incorporates both the electricity
and thermal energy queues. We investigate the relationship of
these two queues to minimize the average cost. Second, we
propose an algorithm to approximately achieve the optimal
average cost, considering the limited capacities of the battery
pack and the water tank. The algorithm does not require any
statistical information of the system dynamics such as electric-
ity, hot water demands, etc. To obtain the optimal scheduling
decision, we discuss when we can use the specific features
of the problem to turn a nonconvex optimization problem
into a convex one which can be solved in real time. Third,
we discuss how to set the appropriate RTP to coordinate all
the CHP systems indirectly to provide load shaping services.
The time complexity of the proposed searching algorithm
is O(log n).

The rest of this paper is organized as follows. Section II
discusses the existing CHP economic dispatch (CHPED) prob-
lems, the application of Lyapunov optimization in smart grid,
and the state-of-the-art approaches to determine the RTP.
A general description of the CHP system architecture is given
in Section III. Then, we discuss the design details of the pro-
posed algorithm in Section IV. In Section V, we discuss how to
determine the optimal RTP to coordinate all the CHP systems.
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TABLE I
NOTATIONS

Performance evaluation is given in Section VI, followed by the
conclusion in Section VII.

For easy reference, the symbols used in this paper are
summarized in Table I.

II. RELATED WORK

To provide both electricity and heat economically, the
design and operation strategies of CHP systems have been
well investigated. Hawkes and Leach [6] discussed operating
strategies, such as heat and electricity load following, for three
micro-CHP technologies. Nanaeda et al. [7] evaluated four
typical operation modes in a hotel based on measured electric
and heating loads. Dentice et al. [8] analyzed the utilization of
micro-CHP systems in conjunction with domestic household
appliances. Lokurlu et al. [9] analyzed the cost for different
fuel-cell systems. These works tried to find the most cost-
effective strategies from a system view, and do not consider
the detailed control policies.

The CHPED problem, first raised in [10], aimed to find
the optimal operation point of CHP with minimum energy
cost such that both electricity and heat demands were met.
However, in the CHPED problems, optimization was per-
formed to minimize the cost in each time slot. No energy
buffer was used to minimize the long-term cost. In addition,
it did not consider the stochastic nature of energy demand.
Recently, Tasdighi et al. [4] formulated an mixed-integer linear
programming problem to optimize the operation of micro-
CHP-based microgrids. Different from this paper, they used
a time-of-use electricity price model and the energy require-
ment of future elastic load was assumed to be available through
prediction.

There are also several works which use the Lyapunov
optimization technique to construct low complexity energy
storage management policies. Neely et al. [11] minimized

the time average cost from the perspective of one user,
and guaranteed the worst-case delay for each elastic load.
Urgaonkar et al. [12] used uninterruptible power systems in
the data center to reduce the electricity bill in a RTP environ-
ment. Their model did not consider renewable energy sources.
Guo et al. [13] investigated how to use a household battery to
minimize the average electricity cost, considering both inelas-
tic and elastic load. Instead of guaranteeing the worst-case
delay, Huang et al. [14] guaranteed that the percentage of the
delayed elastic load was less than a threshold. These works
discussed above only considered one energy buffer, however,
the system model discussed in this paper includes two energy
buffers, the battery pack and the water tank, which are cor-
related by the CHP system. With two dependent queues, the
system model is more complicated and we need to solve a
nonconvex optimization problem to obtain the optimal con-
trol policy. In addition, we illustrate the relationship between
the capacity of these two energy buffers and the minimum
required capacity to achieve the optimal performance. This
paper focuses on the problems closely related to the unique
features of the CHP systems. Some well-studied applications
of Lyapunov optimization in smart grid, such as elastic load
queue, worst-case delay, etc., are not discussed here due to the
space limit.

How to determine an appropriate RTP to coordinate all the
“selfish” users is also a challenging task. Wu et al. [15] pro-
posed a pricing scheme to stimulate a large group of electrical
vehicle users to provide frequency regulation based on game
theory. Gao et al. [16] extended their work by considering
different users’ preferences under the presence of information
asymmetry using contract theory. One problem in the above
work is that the users’ preferences may keep changing over
time, and are highly related to the state of charge (SoC) of the
electrical vehicles’ battery. Therefore, the performance gain of
the above user preference learning algorithm may be limited.
In order to obtain a better user reaction model to price signals,
Chen et al. [17] proposed an iterative method based on a leader
and follower level game theory that needs frequent information
exchange, which may lead to a high communication overhead.
In this paper, different from the game theory approach, we
propose a fast algorithm to determine the optimal RTP which
can effectively coordinate all the CHP system for load shap-
ing services. Specifically, the proposed algorithm is based on
the CHP operation model obtained in the first part of this
paper, which aims to minimize users’ long-term average cost,
meanwhile meeting the users’ variable demands in each time
slot. In our system model, although these CHP systems may
belong to different owners, they make their operation decisions
independently according to the current real-time electricity
price. In other words, they do not compete or collaborate with
each other.

III. CHP SYSTEM MODEL

In this section, we summarize the mathematical models of
the CHP system in [18]. The major difference between the
two CHP system models is that here we consider the battery
pack queue and the water tank queue are of different weight.
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Fig. 1. CHP system uses natural gas.

A. System Architecture

Fig. 1 gives an overview of the CHP system, such as the one
used in a hotel. Le(t) and Lw(t) represent the electricity and
hot water demands from users in each time slot, respectively,
which are stochastic. Le(t) can be satisfied by the electricity
discharged from the battery D(t) or bought from the power
grid Gl(t). Gl(t) can be negative, which means to sell the
electricity in the battery to the grid. Lw(t) is satisfied by the
hot water stored in the water tank.

In each time slot, the CHP device can generate electricity, in
the amount of ηcePc(t), to charge the battery, and hot water, in
the amount of ηcgPc(t), to fill the water tank simultaneously,
where Pc(t) is the amount of the natural gas consumed by
the CHP, ηce is the conversion efficiency from natural gas to
the amount of the electricity charged to the battery, and ηcg
is the conversion efficiency from natural gas to the amount of
hot water. Meanwhile, if the battery is full or the grid electric-
ity price is high, the electricity generated from the CHP, in the
amount of ηcoPc(t), can be sold back to the grid with the con-
version efficiency ηco. The parameter r(t), ranging from 0 to 1
is used to determine the ratio of the amount of electricity used
to charge the battery and that sold to the grid.

Note that, we did not let the power generated from the CHP
supply the user’s electricity demand Le(t) directly in the above
model to simplify the analysis. The reason is that we assume
the electricity prices bought from and sold to the power grid
are the same, so whether the electricity is used to supply the
user’s demand directly or sold back to the grid does not affect
the total energy cost (if we do not sell the electricity, less
electricity is bought from the grid).

Since the electricity price in the real-time electricity market
changes according to the supply and demand, in this paper,
we assume the real-time electricity price Ce(t) for the next
time slot is known ahead of time. Ce(t) is bounded in the
range [Ce,min, Ce,max]. On the other hand, the price of the
natural gas does not change frequently and the percentage of
the change is usually not large, so it is assumed constant in
each time slot. The proposed algorithm is still applicable if
we also consider the real-time gas price because the control

decisions of the proposed algorithm are made upon the current
system states in each time slot, including the natural gas price.

To minimize the average energy cost in the long term, in
each time slot the controller determines the amount of electric-
ity Gl(t) and Gs(t) bought from the grid to meet the electricity
demand and charge the battery, the amount of the natural gas
Pc(t) consumed by the CHP and the amount of the natural
gas Pa(t) consumed by the boiler. The parameter ηs in Fig. 1
represents the battery charging efficiency, and ηag represents
the conversion efficiency from natural gas to the amount of
hot water using the boiler.

The intuition is that the controller discharges the battery
and makes the CHP generate more electricity to meet the
high electricity demand or sell to the grid to earn profit when
the electricity price is high. On the contrary, the controller
charges the battery using the electricity from the grid when
the electricity price is low.

B. Electricity Queueing Model

In practice, although the lifetime of the battery may be influ-
enced by the charging and discharging process, etc., we do not
take them into account. Besides, we use a linear model for the
SoC of the battery, viewed as the energy queue of the battery to
simplify our analysis. However, the proposed algorithm will
not be largely affected if we incorporate more complicated
battery models because the proposed algorithm only needs to
know the current battery status to make control decisions.

The SoC level of the battery B(t) evolves according to the
following equation:

B(t + 1) = B(t) − D(t) + ηsGs(t) + r(t)ηcePc(t). (1)

Obviously, in any slot t, the battery needs to have the
following capacity and charge/discharge constraints:

0 ≤ B(t) ≤ Bmax (2)

0 ≤ D(t) ≤ Dmax (3)

0 ≤ ηsGs(t) + r(t)ηcePc(t) ≤ Cchar (4)

where Bmax is the capacity of the battery, Dmax is the maxi-
mum discharge rate of the battery, and Cchar is the maximum
charge rate of the battery.

The amount of electricity drawn from the grid in one time
slot is also bounded by Pe,max

0 ≤ Gl(t) + Gs(t) ≤ Pe,max (5)

−Dmax ≤ Gl(t) ≤ Gl,max, 0 ≤ Gs(t) ≤ Gs,max (6)

where Gl,max and Gs,max are the upper bound of Gl(t) and
Gs(t), respectively. In the case that we sell the electricity in the
battery to the grid, Gl(t) should also be greater than −Dmax.
Since the grid can meet the commercial power demand most
of the time, we assume Pe,max ≥ Le,max where Le,max is the
upper bound of Le(t).

C. Water Queueing Model

The water tank discussed here is assumed an ideal one, so
we do not consider heat leakage. A more practical water tank
model can easily be applied as we can consider the amount
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of the heat needed to reheat the water tank as the additional
heat demand in the form of hot water from the users.

The amount of hot water stored in the water tank, which is
the queue length of the water tank, evolves according to the
following equation:

W(t + 1) = W(t) − Lw(t) + ηcgPc(t) + ηagPa(t) (7)

where W(t) is the water level in the water tank in slot t.
Since the amount of the water stored in the water tank

should always be bounded by the size of the water tank, we
have 0 ≤ W(t) ≤ Wmax, where Wmax is the capacity of the
water tank. In addition, since we assume that the hot water
demand in each time slot will not exceed Lw,max, to ensure that
users’ demand can always be met even in the worst-case situ-
ation, i.e., the hot water demand is always Lw,max, we assume
the following constraint:

Lw,max ≤ ηagPa,max (8)

where Pa,max is the maximum amount of the natural gas used
by the boiler in each time slot, and Lw,max is the upper bound
of the hot water demand in each time slot.

D. Control Objective

In each time slot, the total energy cost for the CHP system
is the sum of the electricity and natural gas cost minus the
amount of the electricity sold to the grid

f (t) = Ce(t){Gl(t) + Gs(t) − (1 − r(t))ηcoPc} + Cg{Pc + Pa}
(9)

where Cg is the natural gas price.
The control objective is to find a control policy determining

the amount of the electricity and natural gas dispatched in each
time slot, so as to minimize the long-term average energy cost

favg = lim
T→∞

1

T

T−1∑

i=0

E{ f (i)}. (10)

IV. CHP SYSTEM SCHEDULING ALGORITHM

In this section, we assume that the electricity and hot water
demands in each time slot Le(t) and Lw(t) are independent.
The proposed algorithm in this section will solve the following
problems. First, given the current states of the CHP system,
including the electricity and hot water demand, battery and
water tank storage level, electricity price in the current time
slot, etc., how to obtain the optimal control decisions with a
low computational complexity and can adapt to the stochastic
system dynamics? Second, what is the minimum capacity of
the battery pack and water tank we should have to achieve
a given performance requirement? Third, since the CHP can
generate both electricity and heat, the battery pack and water
tank queues specified in (1) and (7) are dependent. What is
the relationship between the capacity of the battery pack and
that of the water tank?

According to the system architecture and control objective
described in Section III, the problem can be formulated as the
following stochastic network optimization problem.

Problem 1:

min
D(t),r(t),Gl(t),Gs(t),Pc(t),Pa(t)

P1 = lim
T→∞

1

T

T−1∑

t=0

E{ f (t)} (11)

subject to

B(t + 1) = B(t) − D(t) + ηsGs(t) + r(t)ηcePc(t) (12)

W(t + 1) = W(t) − Lw(t) + ηcgPc(t) + ηagPa(t) (13)

0 ≤ B(t) ≤ Bmax (14)

0 ≤ W(t) ≤ Wmax (15)

Le(t) = Gl(t) + D(t) (16)

0 ≤ ηsGs(t) + r(t)ηcePc(t) ≤ Cchar (17)

0 ≤ r(t) ≤ 1, Pc(t), Gs(t) ≥ 0 (18)

0 ≤ D(t) ≤ Dmax. (19)

The above problem cannot fit into the traditional stochastic
network optimization framework directly mainly because of
the battery and water tank capacity constraints (14) and (15).
Specifically, stochastic network optimization can only guar-
antee that the average energy generation equals the average
consumption in the long term, but cannot provide a hard bound
on the difference between the generation and consumption in
any time slot. To solve this problem, we take the expectation
on the two sides of (12) and (13), which leads to the following
relaxed problem.

Problem 2:

min
D(t),r(t),Gl(t),Gs(t),Pc(t),Pa(t)

P1 = lim
T→∞

1

T

T−1∑

t=0

E{ f (t)} (20)

subject to D(t) = ηsGs(t) + ηcer(t)Pc(t) (21)

Lw(t) = ηcgPc(t) + ηagPa(t) (22)

and (16)–(19).
Problem 2 fits the stochastic network optimization frame-

work, so we can solve it using existing algorithms [19].
Obviously, only if the solutions to Problem 2 can meet the
constraints (14) and (15) for ∀t ∈ T , they are also feasi-
ble to Problem 1. To reach this objective, we define two
constants θ and ε. The intuition is that by adjusting these
two constants appropriately, we can make the solutions to
Problem 2 also be feasible to Problem 1.

To start, we define two queues E(t) and X(t)

E(t) = B(t) − θ (23)

X(t) = W(t) − ε. (24)

The constants θ and ε are two queue offsets, which are used
to guarantee that the two queues B(t) and W(t) are bounded.

From (12) and (13), we can obtain the queueing dynamics

E(t + 1) = E(t) − D(t) + ηsGs(t) + r(t)ηcePc(t) (25)

X(t + 1) = X(t) − Lw(t) + ηcgPc(t) + ηagPa(t). (26)

We then define the Lyapunov function Q(t) = (1/2)E(t)2 +
(1/2)w2X(t)2, where w represents the weight between these
two queues. The conditional one-slot Lyapunov drift is

�(t) = E{Q(t + 1) − Q(t)|E(t), X(t)}. (27)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: INDIRECT LOAD SHAPING FOR CHP SYSTEMS THROUGH RTP SIGNALS 5

According to (25) and (26), by squaring both sides, we have

�(t) ≤ 0.5 max
[(

ηsGs,max + ηcePc,max
)2

, D2
max

]

− E(t)[D(t) − ηsGs(t) − r(t)ηcePc(t)]

+ 0.5w2 max
[(

ηcgPc,max + ηagPa,max
)2

, L2
w,max

]

− w2X(t)
[
Lw(t) − ηcgPc(t) − ηagPa(t)

]

= B − E(t)[D(t) − ηsGs(t) − r(t)ηcePc(t)]

− w2X(t)
[
Lw(t) − ηcgPc(t) − ηagPa(t)

]

where Pc,max is the maximum amount of the natural gas that
can be used by the CHP in each time slot, and B is a constant
and defined as

B = 0.5 max
[(

ηsGs,max + ηcePc,max
)2

, D2
max

]

+ 0.5w2 max
[(

ηcgPc,max + ηagPa,max
)2

, L2
w,max

]
. (28)

According to the stochastic network optimization frame-
work, in order to make the two queues E(t) and X(t) mean
rate stable, we must minimize the drift �(t). In addition, our
control objective is to minimize the average cost. So, we use a
constant V to represent the tradeoff between these two objec-
tives. Then the drift plus penalty function can be written as
follows:

�(t) + VE{ f (t)}
≤ B − E(t)E{D(t) − ηsGs(t) − r(t)ηcePc(t)|E(t)}

− w2X(t)E
{
Lw(t) − ηcgPc(t) − ηagPa(t)|X(t)

}

+ VE
{
Ce(t){Gl(t) + Gs(t) − (1 − r(t))ηcoPc}
+ Cg{Pc + Pa}

}
. (29)

We then substitute Gl(t) in (29) according to (16), and after
some manipulation we can obtain

�(t) + VE{ f (t)}
≤ B + VE{Ce(t)Le(t)|E(t)} − E

{
Lw(t)w2X(t)|X(t)

}

− E{D(t)[E(t) + VCe(t)]|E(t)}
+ E{Gs(t)[ηsE(t) + VCe(t)]|E(t)}
+ E

{
Pc(t)

[
r(t)ηceE(t) + ηcgw2X(t)

− (1 − r(t))ηcoVCe(t) + CgV
]∣∣∣E(t), X(t)

}

+ E

{
Pa(t)

[
ηagw2X(t) + VCg

]∣∣∣X(t)
}
. (30)

Based on the “min-drift” principle of the Lyapunov opti-
mization approach, the main idea of the proposed algorithm
is to minimize the right-hand side of (30) over all the fea-
sible control policies in each time slot. In other words, at
the beginning of each time slot, we observe the system states
B(t), W(t), Le(t), Lw(t), and Ce(t), determine the value of
B + VE{Ce(t)Le(t)|E(t)}−E{Lw(t)w2X(t)|X(t)}, and then solve
the following problem.

Problem 3:

min Gs(t)Hs(t) + Pc(t)Hc(r(t)) + Pa(t)Ha(t) − D(t)Hd(t)

(31)

subject to 0 ≤ ηsGs(t) + r(t)ηcePc(t) ≤ Cchar (32)

0 ≤ r(t) ≤ 1, Pc(t), Gs(t) ≥ 0 (33)

0 ≤ D(t) ≤ Dmax (34)

where

Hs(t) = ηsE(t) + VCe(t) Ha(t) = ηagw2X(t) + VCg

Hd(t) = E(t) + VCe(t) Hc(r(t)) = Hr(t)r(t) + Hb(t)

Hr(t) = ηceE(t) + ηcoVCe(t)

Hb(t) = ηcgw2X(t) − ηcoVCe(t) + CgV. (35)

Note that (31) contains the product of Pc(t) and functions
of r(t), so Problem 3 is a nonconvex optimization problem
because its Hessian matrix is not always positive definite.
When looking into the structure of Problem 3, we can find
that D(t) and Pa(t) can be easily obtained according to the
value of Hd(t) and Ha(t). If Hd(t) ≥ 0, then D(t) = Dmax;
otherwise D(t) = 0. If Ha(t) ≤ 0, then Pa(t) = Pa,max; other-
wise Pa(t) = 0. Therefore, we only have to solve the following
subproblem:

min Gs(t)Hs(t) + Pc(t)[Hr(t)r(t) + Hb(t)]

subject to (32) and (33). (36)

Suppose that (32) is not active and 0 < r(t) < 1. Since
Hc(r(t)) is a linear function of r(t), then we can always
increase or decrease r(t) to make (36) smaller. Therefore,
either (32) is active or r(t) equals 0 or 1.

Suppose that (32) is active. We can replace Gs(t) using (32)
in (36) and obtain an equivalent objective function

min

(
ηco − ηce

ηs

)
VCe(t)Pc(t)r(t)

+ Cchar

ηs
[ηsE(t) + VCe(t)] + Pc(t)Hb(t). (37)

Obviously, since Ce(t), Pc(t) ≥ 0, if ηco ≥ ηce/ηs, then
r(t) = 0; otherwise r(t) should be as large as possible. If
ηcePc,max ≤ Cchar, then r(t) can be 1 and we can use this
fact to convert Problem 3 to a linear optimization problem by
substituting r(t) = 0 and r(t) = 1 into Problem 3, respectively,
and choose the minimum value. Otherwise, r(t) should be in
the range of [Cchar/ηcePc,max, 1]. Since this range is not large,
we can use a search algorithm to obtain the optimal solution.

Next we need to prove that the solutions to Problem 3 are
also feasible to Problem 1. In other words, the solutions to
Problem 3 can meet constraints (14) and (15) for ∀t ∈ T .

Theorem 1: Suppose that θ and ε are defined
in (38) and (39), respectively

θ = VCe,max

ηs
+ min

{
Dmax, Le,max

}
(38)

ε = VCg

w2ηag
+ Lw,max. (39)

Then through minimizing Problem 3, we can have the
following results:

0 ≤ B(t) ≤ θ + Cchar, ∀t ∈ T (40)
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0 ≤ W(t) ≤ max

{
ε + ηceθ − VCg

w2ηcg
+ w2ηcgPc,max, ε

+ηcoVCe,max − VCg

w2ηcg
+ w2ηcgPc,max, ε

+ w2ηcgPc,max + w2ηagPa,max

}
,∀t ∈ T

(41)

given that the above relationships are satisfied at t = 0.
The proof of this theorem can be found in [18], and is

omitted due to the space limit.
From Theorem 1, we can see the needed capacity of the

water tank is related to the queue weight w, so we can
minimize the requirement on the water tank capacity by
adjusting w2. To simplify the notation, we define

R

w2
+ Sw2 = max

{
ηceθ − VCg

w2ηcg
+ w2ηcgPc,max

× ηcoVCe,max − VCg

w2ηcg
+ w2ηcgPc,max

}

(42)

Tw2 = w2ηcgPc,max + w2ηagPa,max. (43)

Our goal is to find the right parameter w2 to minimize
max{R/w2 + Sw2, Tw2}. Since the electricity price is typi-
cally much higher than the gas price for the same amount
of energy, we have ηcoVCe,max − VCg > 0. Therefore, R,
S, and T are all positive. Define w = ŵ when R/w2 + Sw2

reaches its minimum value M(ŵ). We may reach the minimum
of max{R/w2 + Sw2, Tw2} in two cases.

1) Tŵ2 ≤ M(ŵ): We reach the minimum when w = ŵ.
2) Tŵ2 > M(ŵ): We reach the minimum when R/w2 +

Sw2 = Tw2, and choose a smaller w2.

V. DETERMINE THE REAL-TIME PRICE

From Section IV, we notice that the CHP systems make
charging or discharging decisions based on the current battery
SoC and water tank level, the power and hot water demand in
the current time slot, and the current real-time electricity price.
Therefore, by setting appropriate RTP, the power company can
control the charging and discharging process of all the CHP
systems and make them provide load shaping service. In this
section, we aim to design an algorithm to determine this RTP
to coordinate all the CHP systems. The following assumptions
are made. First, the control center in the power company can
obtain the status of all the CHP systems, including the current
battery SoC and water tank level, and the electricity and hot
water demand in the next time slot through two-way commu-
nications. Second, there is a sufficient number of CHP systems
to provide the load shaping service.

To get some insights into the CHP system reaction model
with respect to different electricity price and system status, we
first consider a simplified system as shown in Fig. 2(a).

By using a similar approach as that in Section IV, the
charging or discharging process of the simplified system is

Fig. 2. Simplified battery system. (a) System model. (b) Battery model.

determined by solving the following optimization problem:

min
D(t),Gs(t)

Gs(t)[ηsE(t) + VCe(t)] − D(t)[E(t) + VCe(t)]

(44)

subject to 0 ≤ B(t) ≤ θ + Cchar (45)

where

θ = VCe,max

ηs
+ min

{
Dmax, Le,max

}
(46)

E(t) = B(t) − θ, 0 < ηs ≤ 1. (47)

To obtain the behavior of this simplified system, we consider
the following cases.

1) B(t) ≥ θ : To minimize (44), we have Gs(t) = 0, and
D(t) = Dmax. In other words, the battery will always
discharge.

2) B(t) ≤ min{Dmax, Le,max}: To minimize (44), we have
Gs(t) = Cchar, and D(t) = 0. In other words, the battery
will always charge.

3) θ − VCe(t)/ηs ≤ B(t) ≤ θ − VCe(t): To minimize (44),
we have Gs(t) = 0, and D(t) = 0. In other words,
the battery will remain idle, i.e., neither charge nor
discharge.

4) θ − VCe(t) ≤ B(t) < θ : To minimize (44), we have
Gs(t) = 0. In other words, the battery will discharge or
remain idle.

5) min{Dmax, Le,max} < B(t) ≤ θ − VCe,min(t)/ηs: To mini-
mize (44), we have D(t) = 0. In other words, the battery
will charge or remain idle.

Notice that Gs(t) and D(t) cannot be positive at the same
time. We can prove it by contradiction. If Gs(t) and D(t) are
both greater than 0, from (44) we have ηsE(t)+VCe(t) < 0 and
E(t) + VCe(t) > 0. Therefore, it must be ηsE(t) < E(t) < 0.
Since 0 < ηs ≤ 1, we know it is impossible.

Fig. 2(b) illustrates the physical meaning of the above cases.
The whole battery can be divided into five regions. In the upper
two regions, the battery will not charge, while in the lower
two regions, the battery will not discharge. If the SoC of the
battery stays in the middle region, we can control the charging
or discharging process of the simplified system by setting an
appropriate electricity price between Ce,min and Ce,max.
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We use superscript i to represent the ith user. In each time
slot, the amount of electricity bought from the grid for user i is
Gi

l(t)+Gi
s(t) = Li

e(t)−Di(t)+Gi
s(t). Then, the total electricity

load in that time slot is
∑

Li
e(t)−

∑
Di(t)+∑

Gi
s(t). Assume

that the target load of the load shaping service is Lt(t), at
the beginning of each time slot, the control center obtains the
total electricity demand of all users

∑
Li

e(t) through two-way
communications. The amount of load shaping service should
be Lt(t)−∑

Li
e(t). Our objective is to set an appropriate RTP

Ce(t) so that the amount of demand response from the simpli-
fied battery system in time slot t (

∑
Gi

s(t) − ∑
Di(t)) should

be as close to the amount of load shaping service needed
(Lt(t)−∑

Li
e(t)) as possible. Therefore, we can formulate the

following optimization problem:

min
Di(t),Gi

s(t)

∣∣∣
∑

Li
e(t) −

∑
Di(t) +

∑
Gi

s(t) − Lt(t)
∣∣∣ (48)

where Li
e(t) and Lt(t) are already known, and Di(t) and Gi

s(t)
are determined by solving the optimization problem (44).

This is a nested optimization problem. Since the objective
function of the CHP system is nonconvex, we cannot use the
existing bilevel programming to solve it. However, we can uti-
lize some unique features of this problem to obtain the solution
with a time complexity of O(log(n)), where n is the number
of RTPs Ce(t) can be chosen from.

Notice that Gs(t) is a nonincreasing function of Ce(t), and
D(t) is a nondecreasing function of Ce(t), thus −∑

Di(t) +∑
Gi

s(t) in (48) is a nonincreasing function of Ce(t). To prove
it, we first look at (44). If Ce(t) increases, since V > 0, both
ηsE(t) + VCe(t) and E(t) + VCe(t) will increase. Therefore,
to minimize the objective function, Gs(t) will remain the
same when ηsE(t) + VCe(t) ≤ 0 or Gs(t) = Cchar when
ηsE(t) + VCe(t) > 0, D(t) will remain the same when
E(t) + VCe(t) ≤ 0, and D(t) = 0 when E(t) + VCe(t) > 0.

Since
∑

Li
e(t)−Lt(t) in (48) is already known at the begin-

ning of each time slot,
∑

Li
e(t) − ∑

Di(t) + ∑
Gi

s(t) − Lt(t)
in (48) is a nonincreasing function of Ce(t) in each time slot.
Therefore, we can find the appropriate RTP by using a binary
search. Let g(Ce(t)) = ∑

Li
e(t) − ∑

Di(t) + ∑
Gi

s(t) − Lt(t)
when the current electricity price is Ce(t), the searching
algorithm is described in Algorithm 1.

The parameter τ represents the minimum price resolution
in our search. Lines 5–7 mean that we return the price range
if g(Ce(t)) does not change within that range.

There are three points we need to notice. First, since the
amount of charging or discharging of each simplified sys-
tem is discrete, we cannot guarantee that the total load will
be exactly the same as the target load. However, since all
the variables in (48) are bounded, the difference between the
two loads are also bounded. Second, the electrical price Ce(t)
obtained from Algorithm 1 may not be the only solution,
because the value of

∑
Li

e(t) − ∑
Di(t) + ∑

Gi
s(t) − Lt(t)

in (48) may remain the same even with different electricity
price. For example, assuming there is only one simplified
system, and we need it to discharge. Any electricity price
which can make E(t) + VCe(t) > 0 will reach this goal.
Therefore, Algorithm 1 will also return the price range if
found. With different electricity price within that range, the

Algorithm 1 Searching the Electricity Price
Require: Ce,min, Ce,max

1: Ce,high = Ce,max
2: Ce,low = Ce,min
3: Ce,mid = (Ce,high + Ce,low)/2
4: while Ce,mid − Ce,min > τ OR Ce,max − Ce,mid > τ do
5: if g(Ce,min) = g(Ce,max) then
6: return Ce,low and Ce,high

7: end if
8: if g(Ce,mid) < 0 then
9: Ce,high = Ce,mid

10: else
11: Ce,low = Ce,mid

12: end if
13: Ce,mid = (Ce,high + Ce,low)/2
14: end while
15: return min{g(Ce,max), g(Ce,mid), g(Ce,min)} and the cor-

responding Ce

operation decisions of each CHP will not change. Since the
amount charged or discharged is fixed once the operation deci-
sion is made, the amount of demand response will be the same.
Therefore, there will be no influence on the system states if the
price is different within the range. However, this may lead to
another problem: the utility company may always choose the
highest price to maximize its profit. Therefore, how to design
an appropriate mechanism to effectively restrict the behav-
ior of the utility company is an interesting problem left for
future research. Third, there are some tricks to simplify the
calculation of g(Ce(t)). From the previous discussion of the
behavior of the simplified system, the battery will remain idle
if θ − VCe(t)/ηs ≤ B(t) ≤ θ − VCe(t). In other words, given
B(t), the battery will remain idle if Ce(t) changes between a
certain range [Ce,l(t), Ce,h(t)]. If Ce(t) < Ce,l(t), the battery
will charge by Cchar. On the other hand, if Ce(t) > Ce,h(t),
the battery will discharge by Dmax. Therefore, with the value
of Ce,l(t) and Ce,h(t) calculated beforehand, we can obtain the
value of −Di(t) + Gi

s(t) in O(1) time.
With respect to the CHP system, we have a more com-

plicated model with a dependent hot water queue. However,
the fundamental idea to find the RTP to coordinate all the
CHP systems is similar. The higher the price is, the more
likely the CHP system will sell the electricity to the grid
and use the electricity stored in the battery. Let V(Ce(t)) =∑

[Gi
s(t) + Gi

l(t) − (1 − ri(t))ηcoPi
c(t)] − Lt(t) represent the

difference between the total electricity demand and the tar-
get load. Then, V(Ce(t)) is a nonincreasing function of the
RTP Ce(t). The proof is straightforward and is omitted due to
the space limit. Therefore, we can use a similar binary search
algorithm to find the appropriate RTP. The algorithm is exactly
the same as Algorithm 1 by replacing g(Ce(t)) with V(Ce(t)).

Notice that Le(t), Lw(t), and Gl(t) are not needed to solve
Problem 3. Therefore, instead of solving the optimization
problem for each CHP system in every time slot, we can build
a lookup table with only three input parameters Ce(t), E(t),
and X(t) and five outputs Gs(t), Pc(t), Pa(t), r(t), and D(t) for
quick search, assuming homogeneous CHP systems.
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TABLE II
AVERAGE COST WITH DIFFERENT QUEUE WEIGHTS

VI. PERFORMANCE EVALUATION

In this section, the parameters for the CHP systems are the
same as those in [18], except the electricity and hot water
demand in each time slot, which will be specified later. The
effectiveness of CHP systems on cost saving comparing to a
benchmark algorithm has been demonstrated in [18], and is
omitted due to the space limit. In addition, because of the
key differences between the proposed system model and the
system models in existing work discussed in Section II, only
the load with fixed electricity price and that without CHP are
illustrated to show the effectiveness of the proposed algorithm.

A. Influence of Different Queue Weights

As mentioned in Section IV, the required size of the water
tank is related with the weight of the battery pack queue and
the water tank queue. To explore the relationship between the
queue weight w and the average cost, we assume that the
real-time electricity price, and the electricity and hot water
demand in each time slot are uniformly distributed between
the corresponding minimum value and the maximum value.
The value of V in Theorem 1 is set to 100. By running the
simulation 50 times, we obtain the average cost for 100 time
slots in Table II.1

From Table II, we notice that the required water tank size
first decreases and then increases with the increment of the
queue weight (w). However, the fluctuation of the average cost
in each time slot is quite small, less than 5%. The reason is
that the average cost achieved by using the proposed algorithm
is upper bounded by parameter V [18]. Therefore, we can
minimize the size of the water tank by adjusting the queue
weight while having almost the same average cost.

B. Load Shaping Using RTP

With battery packs and water tanks, CHP systems can be
considered as energy buffers to provide load shaping services.
In this simulation, we consider a scenario with 50 homoge-
neous CHP systems aiming to provide a 5-h load shaping
service, consisting 20 time slots with a 15-min slot duration.
The electricity and hot water demands in each time slot for
each CHP system are uniformly distributed between 0 and its
corresponding maximum value. We set the target load as a
constant value which is 30 kW below the average electricity
demand. The real-time electricity price used to coordinate all
the CHP systems is obtained using the algorithm described in
Section V. The load using CHP systems but with a constant
electricity price, which is set to the middle of the maximum
and minimum electricity price, is also simulated.

Fig. 3 shows the performance of the load shaping ser-
vice. Since the CHP systems will generate electricity using

1In this simulation, we set the capacity of the battery as fixed. If we fix
the capacity of the water tank, we can obtain similar results, which is omitted
due to the space limit.

Fig. 3. Load with different price.

natural gas, the average load using a fixed price is lower than
the average load without CHP systems. Although CHP sys-
tems can help users save money, the fluctuation of the total
load with CHP systems and a fixed electricity price is higher
than that without using CHP systems. This will add extra cost
to the power company as more frequency regulation or spin-
ning reservation services may be needed. By setting the RTP
according to the proposed algorithm, we can reduce the fluc-
tuation of the total load with CHP systems and make the total
load close to the target load. Therefore, the combination of
CHP systems and the RTP searching algorithm can help both
users and the utility company reduce their cost.

VII. CONCLUSION

In this paper, we have proposed an approach to minimize the
average energy cost for CHP systems. Different from our pre-
vious work [18], we assigned different weights to the battery
pack queue and the water tank queue. Then, we discussed how
to minimize the required size of the water tank by adjusting
the queue weight while still maintaining a similar performance.
We also considered selling the electricity stored in the battery
to the power grid. On the other hand, we discussed how to set
an appropriate RTP to coordinate all the CHP systems to pro-
vide load shaping service. Different from the existing works
which mainly determine the RTP from the perspective of game
theories, the proposed algorithm uses binary search to find the
optimal RTP with a time complexity of O(log n). Extensive
simulation shows that the use of CHP systems can reduce the
cost of both users and the utility company with the proposed
scheduling and pricing algorithms.

Although the proposed searching algorithm can help to find
the optimal RTP, there may be multiple RTPs which can
achieve the same effect. Therefore, it is possible that the utility
company will always choose the maximum RTP to maximize
its profit. How to effectively regulate the actions of the util-
ity company is a problem left for future research. Second,
since the target load will affect the RTP for all the CHP sys-
tems, and thus affect the profit of the utility company, how to
select an appropriate target load is also an interesting problem
needs further investigation. Third, in this paper, we assume
that there are enough CHP systems to provide load shaping
services. However, in the real world, we cannot make a finite
number of CHP systems provide infinite load shaping services.
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Once all the batteries of CHP systems are low or high, they
can no longer provide demand response. Therefore, we need
to monitor the status of all the CHP systems and change the
target load accordingly. This is also an important issue left
for future research. Fourth, the cost effectiveness of CHP sys-
tems has been fully analyzed and proven [5], [20]. Therefore,
in this paper, we assume that the CHP systems have already
been purchased and their costs are not affected by the opera-
tion for simplicity. How to further extend the work considering
the varying operation costs of CHP systems remains a further
research issue. Finally, similar to many existing works, such
as [15]–[17], in this paper, only one elastic appliance is con-
sidered to calculate the RTP. In real deployment, there may be
multiple elastic appliances, therefore, the proposed algorithm
needs to take their operation models into account as well to
determine an appropriate RTP.
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