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Abstract—Privacy-preserving average consensus aims to guar-
antee the privacy of initial states and asymptotic consensus on the
exact average of the initial values. In this paper, it is achieved
by adding variance-decaying and zero-sum random noises to the
consensus process. However, there is lack of theoretical analysis to
quantify the degree of the data privacy protection. In this paper, we
introduce the maximum disclosure probability that other nodes can
infer one node’s initial state within a given small interval to quan-
tify the data privacy. We utilize a novel privacy definition, named
(α, β)-data-privacy, to depict the relationship between the maxi-
mum disclosure probability and the estimation accuracy. Then, we
prove that the general privacy-preserving average consensus pro-
vides (α, β)-data-privacy, and obtain the closed-form expression
of the relationship between α and β given the noise distribution.
We reveal that the added noise with a uniform distribution is opti-
mal in terms of achieving the highest (α, β)-data-privacy. We also
prove that under what condition, the data-privacy will be compro-
mised. Finally, an optimal privacy-preserving average consensus
algorithm is proposed to achieve the highest (α, β)-data-privacy.
Simulations verify the analytical results.

Index Terms—Data privacy, average consensus, optimal distri-
bution, noise adding mechanism.

I. INTRODUCTION

CONSENSUS has attracted extensive attention over the past
decades for distributed computing and control. A consen-

sus algorithm refers to the action that nodes in the network
reach a global agreement regarding a certain opinion by ex-
changing information with local neighbors only [1]. Thanks to
the robustness and scalability, consensus has been applied in
a variety of areas, e.g., coordination and cooperation [2]–[4],
distributed estimation and optimization [5], [6], sensor fusion
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[7], distributed energy management [8], sensing scheduling [9],
and time synchronization [10]–[13].

Average consensus is the most commonly adopted consensus
algorithm, where the agreement reached by the algorithm equals
the average of all nodes’ initial states. For traditional average
consensus algorithms, each node will broadcast its real state to
neighbor nodes during a consensus process. Hence, with the tra-
ditional average consensus algorithms, the state information of
each node is disclosed to its neighbor nodes. However, in some
applications, the initial states of nodes are private information,
so nodes do not want to release their real initial states to other
nodes [18]. For example, a consensus algorithm can be adopted
in social networks for a group of members to compute the com-
mon opinion on a subject [19]. In this application, each member
may want to keep his/her personal opinion on the subject secret
to other members. Also, in the multi-agent rendezvous problem
[20], a group of nodes want to eventually rendezvous at a certain
location, while the participators may not want to release their ini-
tial locations to others. This means that when the privacy is con-
cerned, each node’s real state may not be available to others, and
thus the traditional consensus algorithm becomes undesirable.

Recently, researchers have investigated the privacy preserving
average consensus problem, which aims to guarantee that the
privacy of initial state is preserved while the average consensus
can still be achieved. It can be addressed using cryptographic
techniques, e.g., homomorphic encryption [27]–[30]. When ap-
plying cryptographic solutions is unfeasible or unfavorable, this
problem can also be solved by using a noise adding mecha-
nism [14]–[18]. The basic idea is to add random noises to the
real states during the communication to protect the privacy, and
then carefully design the noise adding process such that average
consensus is achieved.

However, how to quantify the degree of the data privacy pro-
tection in terms of the probability of an estimate within a given
range by an eavesdropper is an open issue. To fill this gap, in
this paper, we develop a theoretical privacy analysis framework
for the average consensus algorithm with a general noise adding
process, aiming to bound the disclosure probability that other
nodes can infer a node’s initial state within a given small interval
(a given estimation accuracy range). A privacy definition, named
(α, β)-data-privacy, which was first introduced in our work [23],
[24], is exploited to depict the maximum disclosure probability.
This privacy definition reveals the relationship between privacy
and estimation accuracy. Based on the analytical framework, we
quantify the degree of the privacy preservation and reveal the
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quantitative relationship of the estimation accuracy and the pri-
vacy under GPAC algorithm. Based on the analysis, it is found
that uniform distribution noise is the optimal one in achieving
the highest (α, β)-data-privacy. On the other hand, the exact
initial state of a node can be perfectly inferred, i.e., privacy is
compromised with existing GPAC algorithms, if one node has
all the information used in the consensus process. To solve this
problem, a novel OPAC algorithm is designed to achieve ex-
act average consensus as well as ensure data-privacy. The main
contributions of this paper are summarized as follows.

� We show that the GPAC algorithm provides (α, β)-data-
privacy. A closed-form expression of the relationship
between the estimation accuracy and the privacy (the rela-
tionship between α and β given the noise distribution) is
obtained.

� We prove that for the added random noises, the uniform
distribution is optimal in the sense that the GPAC algo-
rithm can achieve the highest privacy when the mean and
variance of noises are fixed.

� We prove that with GPAC, if all the information used in the
consensus process is available for the estimation, the max-
imum disclosure probability will converge to one, i.e., the
initial state of a node is disclosed. This result also reveals
how to infer the exact initial state under this condition.

� We design a novel OPAC algorithm to achieve average con-
sensus while guaranteeing the highest (α, β)-data-privacy.
It is also proved that the OPAC algorithm can achieve the
exact average consensus, and avoid the privacy to be com-
promised even if all the information used in the consensus
process is available for estimation.

The remainder of this paper is organized as follows. Related
works are given in Section II. Section III introduces the pre-
liminary results and problem formulation. In Section IV, we
provide theoretical results on the degree of privacy protection.
The OPAC algorithm is proposed in Section V. Section VI ver-
ifies the main results and conclusions are given in Section VII.

II. RELATED WORKS

Many efforts have been devoted to investigating privacy pre-
serving average consensus problem.

To solve this problem, a widely used approach is adding ran-
dom noises to traditional average consensus algorithms. For
example, Huang et al. [15] designed a differentially private iter-
ative synchronous consensus algorithm by adding independent
and exponentially decaying Laplacian noises to the consensus
process. Their algorithm can guarantee differential privacy. As
the algorithm may converge to a random value, the exact average
consensus may not be guaranteed. Nozari et al. [16] pointed out
and proved that it is impossible to achieve average consensus
and differential privacy simultaneously. Hence, they designed a
novel linear Laplacian-based consensus algorithm, which guar-
antees that an unbiased estimate of the average consensus can
be achieved almost surely and with differential privacy. Mani-
tara and Hadjicostis [17] proposed a privacy preserving average
consensus algorithm by adding correlated noises to the consen-
sus process. The proposed algorithm guarantees that the initial
state of each node cannot be perfectly inferred by other “mali-

cious” nodes. More recently, Mo and Murray in [18] addressed
the privacy-preserving average consensus (PPAC) problem by
designing a PPAC algorithm, where exponentially decaying and
zero-sum normal noises are added to the traditional consensus
process, so that the exact average consensus can be achieved
in the mean-square sense. Braca et al. in [25] examined the
interplay between learning and privacy over multi-agent con-
sensus networks. They provided an analytical characterization
of the interplay between learning and privacy for the consensus
perturbing and preserving strategy, respectively.

On the other hand, there are several cryptography based
privacy-preserving consensus protocols [27]–[30]. For instance,
homomorphic encryption was used for private average consen-
sus [27], [28]. [29] proposed a secret sharing protocol for per-
forming privacy preserving computation of sum, where the used
secure multi-party computation technique can be viewed as a
special setting of the secret function used in OPCA. [30] ex-
ploited a secure multi-party computing strategy to perform pri-
vate distributed optimization, which extended the sharing pro-
tocol proposed in [29] to a distributed network. Different from
the above approaches, with the proposed OPCA, each node can
apply different secret functions to the message to different neigh-
bor nodes, and a simple secret function, e.g., linear function, can
be used to largely decrease the commutation complexity.

III. PRELIMINARIES AND PROBLEM FORMULATION

The network is abstracted as an undirected and connected
graph, G = (V,E), where V is the set of nodes and E is the set
of the communication links (edges) between nodes. (i, j) ∈ E
if and only if (iff) nodes i and j can communicate with each
other. Let Ni be the neighbor set of node i, where j ∈ Ni iff
(i, j) ∈ E, i.e., Ni = {j|j ∈ V, (i, j) ∈ E, j �= i}.

A. Average Consensus

Suppose that there are n (n ≥ 3) nodes in the network (i.e.,
|V | = n), and each node i has an initial scalar state xi(0), where
xi(0) ∈ R. For an average consensus algorithm, each node will
communicate with its neighbor nodes and update its state based
on the received information to obtain the average of all initial
states’ values. Hence, the traditional average consensus algo-
rithm is given as follows,

xi(k + 1) = wiixi(k) +
∑

j∈Ni

wijxj (k), (1)

for ∀i ∈ V , which can be written in the matrix form as

x(k + 1) = Wx(k), (2)

where wii and wij are weights, and W is the weight matrix.
It is well known from [21] that if, 1) wii > 0, and wij > 0 for
(i, j) ∈ E and wij = 0 for otherwise; and 2) W1 = 1T W = 1,
i.e., W is a doubly stochastic matrix, then average consensus
can be achieved by (1), i.e.,

lim
k→∞

xi(k) =
∑n

�=1 x�(0)
n

= x̄. (3)

When the privacy of nodes’ initial states are concerned, all
nodes are unwilling to release its real state to the neighbor nodes
at each iteration. It means that each xj (k) is unavailable in (1).
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To preserve the privacy of nodes’ initial states, a widely used
approach is to add a random noise to the real state when a node
needs to communicate with its neighbor nodes at each iteration.
We define a new state as

x+
i (k) = xi(k) + θi(k), i ∈ V, (4)

where θi(k) is the added random noise for privacy preservation
at iteration k. With the noise adding process, the update equation
(1) is changed to,

xi(k + 1) = wiix
+
i (k) +

∑

j∈Ni

wijx
+
j (k) (5)

= wii [xi(k) + θi(k)] +
∑

j∈Ni

wij [xj (k) + θj (k)],

(6)

for ∀i ∈ V . Therefore, a privacy-preserving average consensus
algorithm is to design the added noises (including the distribu-
tion and the correlations among them), such that the goal of (1) is
achieved under (5). Note that in (4), the noise θi(k) is a general
random noise (where its distribution is not fixed), the algorithm
(4)–(6) is thus named as the general privacy-preserving average
consensus (GPAC) algorithm in the rest part of this paper.

B. Privacy Definitions

Privacy Attack: Under (4), the broadcast information se-
quence of node i is x+

i (0), x+
i (1), . . . , x+

i (k), which will be
received by its neighbor nodes. Hence, each neighbor node j
can infer/estimate the initial state xi(0) with the received infor-
mation sequence from node i. Note that each of the information
output, x+

i (k), equals the weighted sum of the received informa-
tion in the previous round plus noises. Based on the information
output, neighbor node j will take the probability over the space
of all noises {θi(k)}∞k=0 (denoted by Θ ⊆ R) to estimate the
values of the added noises, where the probability distribution and
the space depend on the observable information. It then can infer
xi(0) by using the difference between each information output
and the estimated noises, i.e., x̂i(0) = x+

i (k) − η̂k
i , where η̂k

i is
the estimation of random noise ηk

i (ηk
i = x+

i (k) − xi(0)). This
state inference is named privacy attack. The attacker is a node
who knows the basic rule of the state updating and noise adding
process, and can eavesdrop its neighbor nodes’ information out-
put. It is assumed that each attacker cannot collude with other
nodes to attack. Under this privacy attack, we have

Pr {|x̂i(0) − xi(0)| ≤ α} = Pr
{|η̂k

i − ηk
i | ≤ α

}
, (7)

where α ≥ 0 is a small constant.
Privacy Definition: To quantify the relationship between the

estimation accuracy (α) and privacy (β), a privacy definition,
named (α, β)-data-privacy, where 0 ≤ α and 0 ≤ β ≤ 1, is de-
fined as follows.

Definition 3.1: A GPAC algorithm provides (α, β)-data-
privacy, if and only if (iff),

β = max
η̂ k

i ∈Θ ,k≥0,i∈V
Pr{|η̂k

i − ηk
i | ≤ α}, (8)

where ηk
i = x+

i (k) − xi(0) and η̂k
i is the estimation of ηk

i .

In the above definition, the estimation accuracy is denoted
by parameter α and the privacy is expressed by parameter β.
From (8), it follows that β is the maximum probability that each
neighbor node j can successfully estimate the initial state xi(0)
in a given interval [xi(0) − α, xi(0) + α] with the information
output of node i only. β is thus named as the maximum disclo-
sure probability. Note that when x+

i (k) is released, the value of
random variable ηk

i is fixed. However, for the other nodes, ηk
i

is still viewed as a random variable with the probability den-
sity function (PDF) fηk

i |I(k)(y) when it is estimated/inferred by
those nodes, where I(k) is the information that is available to
the inference at iteration k. Therefore, given an estimation η̂k

i ,
it is assumed that

Pr
{|η̂k

i − ηk
i | ≤ α|x+

i (k)
}

=
∫ η̂ k

i +α

η̂ k
i −α

fηk
i |I(k)(y)dy.

Definition 3.2: If there exists an α̃ > 0 so that for any given
α ∈ (0, α̃), algorithms A1 and A2 provide (α, β1)-data-privacy
and (α, β2)-data-privacy, respectively, and β1 < β2 , then A1
achieves a higher (α, β)-data-privacy than A2 .

C. Problem Formulation

In this paper, we investigate the privacy of the GPAC algo-
rithm (4)–(6) based on the definition of (α, β)-data-privacy, and
then design an optimal privacy-preserving average consensus
(OPAC) algorithm in terms of (α, β)-data-privacy protection.
In summary, we consider the following four critical problems:
i) how to quantify and analyze the privacy of the GPAC al-
gorithm; ii) how will the distributions and correlations of the
added random noises affect the privacy; iii) when and how will
a node’s exact initial state be inferred by the other nodes; iv)
how to achieve the optimal (α, β)-data-privacy and the exact
average consensus, and to avoid the privacy of nodes’ initial
states to be disclosed.

IV. PRIVACY ANALYSIS OF GPAC

Before presenting the main results, we first give the basic
assumptions and the information set used for state estimation.
Assume that the distribution and the correlation of the random
variable θi(k), k = 0, 1, . . ., and the update rule of the GPAC
algorithm are available to all nodes. The full topology infor-
mation and n are assumed to be unknown to any node, which
means that each node cannot know the set of its neighbor nodes
and the number of nodes in the whole network. Suppose that
each node has no information about the other nodes’ states ini-
tially. For estimation, if there is no information of a variable,
then the variable is viewed with domain R. For simplicity, we
assume that θi(k) and θj (k) are independently and identically
distributed (i.i.d) ∀k ≥ 0 and i �= j. Let X be the output of a ran-
dom variable whose distribution is unknown and with domain
R. Without the knowledge of the distribution, one can randomly
guess over all possible values of the random variable to estimate
the values of X , and then the probability Pr{|X̂ − X| ≤ α}
would be very small. Therefore, it is reasonable to assume that

Pr{|X̂ − X| ≤ α} ≤ ε, (9)
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where ε is a small constant and satisfies

ε 
 max
ω∈Θ

∫ ω+α

ω−α

fθi (0)(y)dy.

Then, we define two information sets of node i up to iteration
k as follows,

I0
i (k) = {x+

i (0), . . . , x+
i (k)}, (10)

and

I1
i (k) = {Ni,wii , wij , x

+
i (0), x+

j (0),

. . . , x+
i (k), x+

j (k)|j ∈ Ni}. (11)

The information set I0
i (k) only includes the states x+

i (�), � =
0, 1, . . . , k, which are used for communication at iteration �.
Thus, its neighbor nodes can easily obtain I0

i (k) by storing
the information received from node i at each iteration. The
information setI1

i (k) includes all information used in consensus
process (6) for node i. Other nodes may obtain these information
by an eavesdropping attack.

A. Privacy of the Algorithm

In this subsection, based on the definition of (α, β)-data-
privacy, we first analyze the privacy of the GPAC algorithm
and reveal the relationship between the privacy and estimation
accuracy, when I0

i (k) is available only.
Theorem 4.1: If I0

i (k) is the only information available to
node j to estimate the value of xi(0) at iteration k, then

β(k) = max
η̂ k

i ∈Θ ,k∈N+
Pr{|η̂k

i − ηk
i | ≤ α|I0

i (k)}

= max
η̂ 0

i ∈Θ
Pr{|η̂0

i − η0
i | ≤ α|I0

i (0)} (12)

= max
θ̂ i (0)∈Θ

∫ θ̂ i (0)+α

θ̂i (0)−α

fθi (0)(y)dy, (13)

i.e., the relationship between the privacy and the estimation
accuracy always satisfies (13), and the maximum disclosure
probability does not increase with iteration.

Proof: We first prove that, under I0
i (0), (13) holds. With

I0
i (0), node j can estimate xi(0) based on the fact that

x+
i (0) = xi(0) + θi(0) = xi(0) + η0

i , (14)

and the corresponding estimation x̂i(0) satisfies

x̂i(0) = x+
i (0) − η̂0

i = x+
i (0) − θ̂i(0). (15)

Then, for any estimation θ̂i(0), we have

Pr
{
|η̂0

i − η0
i | ≤ α|I0

i (0)

}

= Pr
{

θi(0) ∈ [θ̂i(0) − α, θ̂i(0) + α]|I0
i (0)

}

=
∫ θ̂ i (0)+α

θ̂i (0)−α

fθi (0)|I0
i (0)(y)dy

≤ max
θ̂ i (0)∈Θ

∫ θ̂ i (0)+α

θ̂i (0)−α

fθi (0)(y)dy, (16)

which means that (13) holds under informationI0
i (0) at iteration

k = 0.
Then, we prove that (13) holds under I0

i (1). With I0
i (1),

node j can estimate xi(0) by using the fact of both (14) and the
following equation for estimation,

x+
i (1)
wii

=
xi(1) + θi(1)

wii

= x+
i (0) +

∑

l∈Ni

wil

wii
x+

l (0) +
1

wii
θi(1)

= xi(0) + θi(0) +
1

wii
θi(1) +

∑

l∈Ni

wil

wii
x+

l (0). (17)

Using (14) only, we have

Pr
{
|η̂0

i − η0
i | ≤ α|I0

i (1)

}
=

∫ η̂ 0
i +α

η̂ 0
i −α

fθi (0)|I0
i (1)(y)dy

≤ max
θ̂ i (0)∈Θ

∫ θ̂ i (0)+α

θ̂i (0)−α

fθi (0)(y)dy.

(18)

Then, we consider the estimation using (17) only. Let

η1
i = x+

i (1) − xi(0)

=
x+

i (1)
wii

− xi(0) +
(

x+
i (1) − x+

i (1)
wii

)

=θi(0) +
1

wii
θi(1) +

(
x+

i (1) − x+
i (1)
wii

)
+

∑

l∈Ni

wil

wii
x+

l (0)

= η1
i (0) + η1

i (1), (19)

where η1
i (1) =

∑
l∈Ni

wi l

wi i
x+

l (0). For any η̂1
i , we have

max
η̂ 1

i ∈Θ
Pr

{
|η̂1

i − η1
i | ≤ α|I0

i (1)

}

≤ max
η̂ 1

i ∈Θ
Pr

{
|η1

i − η̂1
i | ≤ α|I0

i (1),wi i ,θi (1),θi (0)

}

≤ max
η̂ 1

i ∈Θ
Pr

{
|η1

i − η1
i (0) − η̂1

i + η1
i (0)| ≤ α|I0

i (1),wi i ,η 1
i (0)

}

≤ max
η̂ 1

i (1)∈Θ
Pr

{
|η1

i (1) − η̂1
i (1)| ≤ α|I0

i (1),wi i

}
, (20)

where η̂1
i (1) = η̂1

i − η1
i (0) can be viewed as one of the esti-

mation of η1
i (1). Since the topology information is unavailable

for estimating/inferrence, there is at least one variable included
in η1

i (1) which is unknown to the other nodes. Hence, η1
i (1)

is viewed as a random variable in (20) and its distribution is
unavailable to the estimation. It follows that

max
η̂ 1

i (1)∈Θ
Pr

{
|η1

i (1) − η̂1
i (1)| ≤ α|I0

i (1)

}

≤ max
ω∈Θ

∫ ω+α

ω−α

fθi (0)(y)dy, (21)

where we have used (9). Meanwhile, note that one node can
combine (14) and (17) together for estimation. In this case,
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we have

Pr{x̂i(0) ∈ [xi(0) − α, xi(0) + α]|I0
i (1)}

≤ max
t1 ,t2 ∈Θ

∫ t1 +α

t1 −α

∫ t2 +α

t2 −α

fη 0
i ,η 1

i
(y, z)dzdy

≤ max
t1 ,t2 ∈Θ

∫ t1 +α

t1 −α

∫ t2 +α

t2 −α

fη 1
i |η 0

i
(z|y)fη 0

i
(y)dzdy

≤ max
ω∈Θ

∫ ω+α

ω−α

fθi (0)(y)dy. (22)

From (18), (21), and (22), one concludes that (13) holds under
information I0

i (1) at iteration k = 1.
Following the similar analysis, we prove that (13) holds under

information set I0
i (k) at any iteration k. It means that β(k) is

not an increasing function of the number of iterations, although
there is more information of I0

i (k) than I0
i (0) for k > 0, i.e.,

I0
i (0) ⊂ I0

i (k).
We thus have completed the proof. �
From the above proof, it is observed that the privacy does

not decrease with iteration when only the information set I0
i (=

{I0
i (k)|k = 0, 1, . . . ,∞}) is available for estimation. The main

reason is that based on I0
i , node j cannot know the neighbor

set information of node i, so that after one iteration there is
unknown information embedded into x+

i (k) for k ≥ 1. Hence,
after one iteration, using x+

i (k) for k ≥ 1 cannot improve the
estimation accuracy. Also, one can see that the value of β does
not depend on the estimation approaches. Hence, we state the
following theorem.

Theorem 4.2: If I0
i is the only information available to the

other nodes to estimate the value of xi(0), the GPAC algorithm
achieves (α, β)-data-privacy, where α and β satisfy

β = max
θ̂ i (0)∈Θ

∫ θ̂ i (0)+α

θ̂i (0)−α

fθi (0)(y)dy (23)

and limα→0 β = 0.
Remark 4.1: It should be noticed that the results in the above

two theorems are obtained under the assumption that the topol-
ogy information is unknown to the nodes. If the assumption is
relaxed, the above results could not be true for the GPAC algo-
rithm in some cases. For example, if the topology information
is available and Ni ⊆ Nj , then x+

i (0),
∑

l∈Ni

wi l

wi i
x+

l (0), and
x+

i (1)
wi i

in (17) are available to node j. It leads to the value of
θi(1) being released, which may decrease the uncertainty of
θi(0) due to the correlation between them. Then, fθi (0)|I0

i (1)(y)
in (18) will have a smaller variance than fθi (0)(y), such that β
increases w.r.t. k in this case. Therefore, (12) and (13) are no
longer guaranteed.

From the above theorem, it is observed that given any dis-
tribution of the additive noises, there always exists β ≥ 0. β
depends on fθi (0)(y) and α only since the estimation θ̂i(0)
can be any value in the domain of θi(0). Thus, β is a func-
tion of fθi (0)(y) and α, i.e, β = β(fθi (0)(y), α). Based on
Definition 3.2, a smaller β can provide a higher (α, β)-data-
privacy for any given α. We aim to find the optimal distribution

of θi(0) to minimize β such that the algorithm achieves the
highest (α, β)-data-privacy.

B. Optimal Noise Distribution

In this subsection, we find an optimal distribution for the noise
adding process in the sense of achieving the highest (α, β)-data-
privacy for the GPAC algorithm. Note that a smaller α means
a higher accuracy estimation. It means that when α becomes
smaller, the value of β is more important for the privacy preser-
vation. Hence, we define the optimal distribution for privacy
concerns as follows.

Definition 4.3: Let f ∗
θi (0)(y) be the optimal distribution of

θi(0), which means that for any given distribution f 1
θi (0)(y),

there exists an α1 such that β(f ∗
θi (0)(y), α) < β(f 1

θi (0)(y), α)
holds for ∀α ∈ (0, α1 ].

To obtain the optimal distribution described in Definition 4.3,
we define arg min

fθ i ( 0 ) (y )
β = f ∗

θi (0)(y). Then, we formulate the

following minimization problem,

min
fθ i ( 0 ) (y )

β

s.t. E{θi(0)} = 0,

Var{θi(0)} = σ2 . (24)

The solution of (24) is the optimal distribution for the added
noises with a given mean and variance in terms of (α, β)-data-
privacy for the GPAC algorithm.

Theorem 4.4: If I0
i is the only information available to node

j to estimate the value of xi(0), then the optimal solution of
problem (24) is that

f ∗
θi (0)(y) =

⎧
⎪⎨

⎪⎩

1
2
√

3σ
, if y ∈ [−

√
3σ,

√
3σ],

0, otherwise,

(25)

i.e., given the finite variance of noises, the uniform distribution
is optimal in the sense of (α, β)-data-privacy.

Proof: We prove this theorem by contradiction. Without loss
of generality, we assume that σ2 = 1

3 . Let f1(y) and f2(y) be the
PDF of two random variables with mean 0 and variance σ2 =
1
3 , and they follow a uniform and non-uniform distribution,
respectively. Clearly, we have

f1(y) =

⎧
⎪⎨

⎪⎩

1
2
, if y ∈ [−1, 1],

0, otherwise.

(26)

Suppose that the non-uniform distribution f2(y) is the optimal
distribution. From Definition 4.3, there exists an α2 , such that

max
t∈R

∫ t+α

t−α

f1(y)dy > max
t∈R

∫ t+α

t−α

f2(y)dy, (27)

holds for ∀α ∈ (0, α2 ]. Since the above equation holds for arbi-
trarily small value of α, we infer that

max
y∈R

f1(y) > max
y∈R

f2(y).
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Since f1(y) is a uniform distribution satisfying (26),

f1(y) − f2(y) > 0, y ∈ [−1, 1].

It directly follows that
∫ 1

−1
f1(y)dy −

∫ 1

−1
f2(y)dy > 0. (28)

From the definition of a PDF, we have
∫ 1
−1 f1(y)dy = 1. Then,

we infer from (28) that
∫ 1

−1
f2(y)dy < 1. (29)

Since both f1(y) and f2(y) have mean 0 and variance σ2 = 1
3 ,

we have
∫ +∞

−∞
f1(y)y2dy −

∫ ∞

−∞
f2(y)y2dy = 0, (30)

which means that
∫ 1

−1
(f1(y) − f2(y)) y2dy =

(∫ −1

−∞
+

∫ +∞

1

)
f2(y)y2dy.

(31)

For the left hand side of (31), we have
∫ 1

−1
(f1(y) − f2(y)) y2dy <

∫ 1

−1
(f1(y) − f2(y)) dy

= 1 −
∫ 1

−1
f2(y)dy. (32)

For the right hand side of (31), since we have
∫ +∞
−∞ f2(y)dy = 1

and (29), it holds that
(∫ −1

−∞
+

∫ +∞

1

)
f2(y)y2dy >

(∫ −1

−∞
+

∫ +∞

1

)
f2(y)dy

= 1 −
∫ 1

−1
f2(y)dy. (33)

Combining (31), (32), and (33) renders a contradiction that

1 −
∫ 1

−1
f2(y)dy <

∫ 1

−1
(f1(y) − f2(y)) y2dy

< 1 −
∫ 1

−1
f2(y)dy. (34)

Hence, we cannot find a non-uniform distribution f2(y) such
that the value of β is smaller than that under uniform distribu-
tion f1(y). It means that, given the finite variance, the uniform
distribution is the optimal solution of (24). Then, based on the
definition of uniform distribution, we obtain (25).

We thus have completed the proof. �
For the PPAC algorithm proposed in [18], normal distribution

noises are used in the noise adding process. It follows from
Theorem 4.2 that the GPAC algorithm provides (α, β)-data-
privacy with

β =
1

σ
√

2π

∫ α

−α

exp
(
− y2

2σ2

)
dy.

If we use the uniform distribution noises to substitute the nor-
mal distribution noises, it can still provide (α, β)-data-privacy,
where β = α√

3σ
. Therefore, when

α√
3σ

<
1

σ
√

2π

∫ α

−α

exp
(
− y2

2σ2

)
dy,

the privacy of PPAC is enhanced by using uniform distribution
for substitution, where the possible values of α are obtained
from solving the above equation.

C. Privacy Compromise

In this subsection, we reveal that for the GPAC algorithm,
when I1

i (k) (including more information than I0
i (k), e.g., the

topology information and information used in consensus pro-
cess) is available to other nodes for estimation, the exact initial
state of node i can be perfectly inferred, and thus the privacy of
the initial state is compromised.

Theorem 4.5: If the information set I1
i (k) of node i is avail-

able to the other nodes for estimation, then

β(k) ≥ max
θ̂ i (0)∈Θ

∫ θ̂ i (0)+α

θ̂i (0)−α

fθi (0)|θi (1),...,θi (k)(y)dy,∀k ≥ 0,

(35)

where fθi (0)|θi (1),...,θi (k)(y) is the conditional PDF of θi(0)
given conditions θi(1), . . . , θi(k). Then, if

∑∞
�=0 θi(�) = 0,

we have β = 1, i.e., xi(0) is disclosed and the privacy is
compromised.

Proof: Based on I1
i (k), the information of weights and

states used in (5) is available. That is, the state sequence
xi(1), xi(2), . . . , xi(k) of node i is released to other nodes.
Then, with (4), one obtains the values of θi(1), θi(2), . . . ., θi(k).
Thus, when k > 0, all the additive noises and the states of node
i are available to other nodes, except xi(0) and θi(0).

Then, under information set I1
i (k), using (14), we have

Pr
{
|η̂0

i − η0
i | ≤ α|I1

i (k)

}

=
∫ η̂ 0

i +α

η̂ 0
i −α

fθi (0)|I1
i (k)(y)dy

=
∫ η̂ 0

i +α

η̂ 0
i −α

fθi (0)|θi (1),...,θi (k)(y)dy. (36)

According the definition of β, it follows that

β(k) ≥ max
η̂ 0

i ∈Θ
Pr

{
|θ̂i(0) − η0

i | ≤ α|I1
i (k)

}

≥ max
η̂ 0

i ∈Θ

∫ η̂ 0
i +α

η̂ 0
i −α

fθi (0)|θi (1),...,θi (k)(y)dy, (37)

which means that (35) holds.
When

∑∞
�=0 θi(�) = 0, we have

θi(0) = −
∞∑

�=1

θi(�). (38)
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Since θi(1), θi(2), . . . , θi(k) are available under I1
i (k) for any

positive integer k, θi(0) is inferred with (38) when k → ∞,
i.e., θi(0) is fixed and no longer a random variable given
θi(1), θi(2), . . . , θi(∞). It follows that

lim
k→∞

max
θ̂ i (0)∈Θ

∫ θ̂ i (0)+α

θ̂i (0)−α

fθi (0)|θi (1),...,θi (k)(y)dy = 1,

which implies that β = 1. Actually, when both x+
i (0) and θi(0)

in (14) are disclosed, xi(0) is disclosed.
We thus have completed the proof. �
Consider the existing PPAC algorithms, e.g., [18], [23]. One

obtains that the correlation of the added noises satisfies

k∑

�=0

θi(�) = θi(0) +
k∑

�=1

[
��νi(�) − ��−1νi(� − 1)

]

= νi(0) − �0νi(0) + �1νi(1) − �1νi(1) + �2νi(2)

− · · · − �k−1νi(k − 1) + �kνi(k)

= �kνi(k) = φi(k), (39)

where νi(k) is a random variable with fixed mean (= 0) and
variance (= σ2). Given θi(1), . . . , θi(k), we obtain that θi(0) =
φi(k) − ∑k

�=1 θi(�), where
∑k

�=1 θi(�) is known. Then,

Pr
{
|θ̂i(0) − θi(0)| ≤ α|I1

i (k)

}

= Pr
{
|φ̂i(k) − φi(k)| ≤ α

}

=
∫ φ̂ i (k)+α

φ̂i (k)−α

fφi (k)(y)dy, (40)

and

max
θ̂ i (0)∈Θ

∫ θ̂ i (0)+α

θ̂i (0)−α

fθi (0)|θi (1),...,θi (k)(y)dy

= max
θ̂ i (0)∈Θ

∫ φ̂ i (k)+α

φ̂i (k)−α

fφi (k)(y)dy,

which satisfies (35). When k → ∞, we have

lim
k→∞

max
θ̂ i (0)∈Θ

∫ φ̂ i (k)+α

φ̂i (k)−α

fφi (k)(y)dy = 1,

since the variance of φ̂i satisfies limk→∞ �2kσ2 = 0, and thus
β = 1. Therefore, it verifies the result given in Theorem 4.5.

D. Further Discussion on Privacy

Differential privacy is a well-known and widely used privacy
concept in computer and communication areas [22], and it has
been employed in control and network systems recently [26].
A differentially private algorithm ensures that any two simi-
lar/close inputs will have approximately the same outputs, so
that an adversary cannot infer from the data output with a high
probability whether the data is associated with a single user or
not. It has been proved by Nozari et al. in [16] that states of

nodes in a network cannot simultaneously converge to the av-
erage of their initial states and preserve differential privacy of
their initial states. However, differential privacy cannot quantify
the degree of data privacy protection in terms of the probability
of an estimate by an eavesdropper is within a given range. This
motivates us to develop the definition of the (α, β)-data-privacy.
The proposed (α, β)-data privacy can be used to reveal the rela-
tionship between the maximum data disclosure probability (β)
and the estimation accuracy range (α).

Consider the general noise addition that adding a random
noise to the initial data for data publishing. It is well known
that when the additive noise is Laplacian noise, the mechanism
ensures α-differential privacy, but if the noise is Gaussian or
Uniform distribution, the α-differential privacy cannot be guar-
anteed. Hence, the uniform noise is not good in the sense of
differential privacy. However, in term of (α, β)-data-privacy, it
is shown in this paper that both the Gaussian and Uniform noise
are (α, β)-data-private, and using the Uniform noise can achieve
the highest privacy. The privacy of (α, β)-data-privacy is dif-
ferent from that of differential privacy. It is worth to investigate
the relationship between these two kinds of privacy definitions
in theory, which beckons further investigation.

V. OPAC ALGORITHM

In this section, we design an OPAC algorithm to achieve
the highest (α, β)-data-privacy, and at the same time to avoid
privacy to be compromised even if the information I1

i (∞) of
each node i is available to other nodes.

A. Algorithm Design

From the privacy analysis in the above section, we note
that the uniform distribution is optimal for the added noise
in terms of achieving the highest (α, β)-data-privacy with
β = α√

3σ
(given variance σ). Hence, in each iteration of the

OPAC algorithm, we will use uniformly distributed noise. We
also note that privacy is compromised when I1

i (∞) is avail-
able. It is because that the nodes can use I1

i (∞) to obtain the
real values of θi(1), θi(2), . . . , θi(∞), and use the correlation∑∞

k=0 θi(k) = 0 to infer θi(0), and thus the value of xi(0) is
revealed. To avoid the privacy compromise in this case, we in-
troduce a secret continuous function Fij (z) : R → R for node
i with respect to its neighbor node j. Suppose that Fij (z) and
Fji(z) are only available to nodes i and j, and Fij (z) may or
may not equal to Fji(z). Then, the OPAC algorithm is described
as in Algorithm 1.

In OPAC, the information flow between neighboring nodes i
and j is shown in Fig. 1. The secrete functions are exchanged
at the initial stage, and at each iteration k = 0, 1, . . ., they only
exchange the x+

l (k) for l = i, j. It should be pointed out that us-
ing the secret function, the privacy can be preserved even with
the classic consensus algorithm without adding noises. How-
ever, the noise adding process is kept in OPAC for enhancing
the protection of the initial states, so that OPAC can guarantee
the same level of privacy as GPAC even when secret functions
are released.
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Fig. 1. The information flow between two neighboring nodes in OPAC.

Algorithm 1: OPAC Algorithm.

1: Input: xi(0), Ni , wij , Fij (·), ∀j ∈ Ni , σ and � for each
i ∈ V .

2: Initialization: Each node i selects a uniform
distribution random variable νi(0) from interval
[−√

3σ,
√

3σ], and arbitrarily selects a constant
sequence zij (∈ R) for j ∈ Ni .

3: Let θi(0) = νi(0) and x+
i (0) = xi(0) + θi(0). Then,

each node i transmits x+
i (0) and zij to its neighbor

node j.
4: Each node i calculates ν̃i(0) by

ν̃i(0)=νi(0)−
∑

j∈Ni

[Fij (zij )−Fji(zji)] ,∀i ∈ V. (41)

5: Iteration: Each node updates its state with (5).
6: Each node generates a uniform distribution random

variable νi(k) from interval [−√
3σ,

√
3σ] for k ≥ 1.

7: Each node i uses θi(k) in (4) to get x+
i (k),

where

θi(k) =

{
�νi(1) − ν̃i(0), if k = 1;

�kνi(k) − �k−1νi(k − 1), if k ≥ 2,
(42)

where � ∈ (0, 1) is a constant for all nodes.
9: Let k = k + 1 and go to step 5.

10: Output: xi(∞) for each i ∈ V .

B. Convergence and Privacy Analysis

In this subsection, we analyze the convergence and the privacy
of the OPAC algorithm.

Theorem 5.1: Using the OPAC algorithm, we have (3) hold
for ∀i ∈ V , i.e., an exact average consensus is achieved.

Proof: From Theorem 4.1 of [23], we know that if the added
noises in (4) are bounded and decaying, and the sum of all
nodes’ added noises equals zero, then average consensus can be
achieved. In the following, we prove that the added noises used
for the OPAC algorithm satisfy these conditions.

We first prove that the added noises are bounded and expo-
nentially decaying. Clearly, θi(0) = νi(0) ∈ [−√

3σ,
√

3σ] is
bounded. Since each Fij (z) is a continuous function, its value
is bounded for any given z. Then, it follows from (41) that ν̃i(0)
is bounded. For k ≥ 1, since νi(k) is selected from interval
[−√

3σ,
√

3σ] and θi(k) is generated by (42), it is not difficult
to infer that each θi(k) is bounded. Meanwhile, it follows from
(42) that

lim
k→∞

|θi(k)| ≤ lim
k→∞

|�kνi(k) − �k−1νi(k − 1)|
≤ lim

k→∞
[�k

√
3σ + �k−1

√
3σ] = 0,

i.e., the noises decay and converge to zero.
Next, we prove that the sum of all nodes’ added noises are

equal to zero. Note that

n∑

i=1

∞∑

k=0

θi(k) =
n∑

i=1

θi(0) +
n∑

i=1

θi(1)

+
n∑

i=1

∞∑

k=2

(�kνi(k) − �k−1νi(k − 1))

=
n∑

i=1

νi(0) +
n∑

i=1

(�νi(1) − ν̃i(0))

+
n∑

i=1

(�∞νi(∞) − �1νi(1))

=
n∑

i=1

νi(0) −
n∑

i=1

ν̃i(0),

where we have used the fact that �∞νi(∞) = 0. Substituting
(41) into the above equation yields that

n∑

i=1

∞∑

k=0

θi(k) =
n∑

i=1

νi(0)

−
n∑

i=1

⎡

⎣νi(0) −
∑

j∈Ni

(Fij (zij ) − Fji(zji))

⎤

⎦

=
n∑

i=1

∑

j∈Ni

[Fji(zji) − Fij (zij )] .

Since for each pair of Fji(zji) − Fij (zij ) used in node i, there
exists a pair of Fij (zij ) − Fji(zji) with negative value used in
node j, it follows that

n∑

i=1

∑

j∈Ni

[Fji(zji) − Fij (zij )] = 0.

Hence, we have
∑n

i=1
∑∞

k=0 θi(k) = 0.
Thus, the proof is completed. �
The following theorem can be obtained from Theorem 4.2

directly, since the OPAC is one of the GPAC algorithm.
Theorem 5.2: If I0

i is the only information available to the
other nodes to estimate the value of xi(0), then the OPAC
algorithm achieves (α, β)-data-privacy, where β = α√

3σ
and

limα→0 β = 0.
Then, the following theorem shows that under I1

i , the privacy
compromise can be avoided by the OPAC.

Theorem 5.3: Suppose that the information set I1
i of node

i is available to the other nodes and each node has at least
two neighbors (i.e., |Ni | ≥ 2 for all i ∈ V ). Then, the privacy
compromise can be avoided by the OPAC.

Proof: It has been known that when I1
i of node i is available

to other nodes, its neighbor node j can obtain the real values
of θi(1), θi(2), . . . , θi(∞). Then, the value of

∑∞
k=1 θi(k) is
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Fig. 2. The convergence and privacy comparison under different random noise distribution.

released. Note that
∞∑

k=1

θi(k) = (�1νi(1) − ν̃i(0)) +
∞∑

k=2

θi(k)

= (�1νi(1) − ν̃i(0)) + (�∞νi(∞) − �1νi(1)) = ν̃i(0).

It means that the value of ν̃i(0) is released and available to node
j. From (41), one sees that ν̃i(0) �= θi(0)1 and

ν̃i(0) = θi(0) −
∑

j∈Ni

[Fij (zij ) − Fji(zji)] . (43)

Since |Ni | ≥ 2 and only Fij and Fji are known by node j,
there exists Fijo

(zijo
) − Fjo i(zjo i) for j0 ∈ Ni in (43) that is

not known by node j. It means that there are no neighbor nodes
who can know all the information used for node i’s updates.
Meanwhile, Fijo

(zijo
) − Fjo i(zjo i) has domain R, thus one in-

fers that for any c ∈ [−√
3σ,

√
3σ],

Pr{θi(0) = c|ν̃i(0)} = Pr{θi(0) = c}.
Hence, even if the value of ν̃i(0) is released, node j cannot
increase the estimation accuracy of θi(0) with (43). One thus
concludes that based on the OPAC algorithm, the privacy com-
promise is avoided.

We thus have completed the proof. �
If node i has only one neighbor node j, node j can infer the

value of Fij (zij ) − Fji(zji). Then, from (43), node j can obtain
the value of θi(0) and xi(0) when ν̃i(0) is known. Therefore, one
can further infer that even if the attack node has the information
of I1

i and knows the secret functions Fij for some but not all
j ∈ Ni , the privacy compromise can be avoided by the OPAC.

Remark 5.1: From the above two theorems, one sees that us-
ing OPAC algorithm, we have β = α√

3σ
, which is the optimal

privacy that can be achieved from solving problem (24). Fur-
thermore, β = α√

3σ
can be guaranteed by the OPAC algorithm

under I1
i (∞). Thus, OPAC algorithm can achieve much higher

(α, β)-data-privacy than the existing PPAC. In this paper, we
consider that the attacker can be an internal node of the network
who knows the basic rule of the state updating and noise adding
process, and can hear its neighboring nodes’ information out-
put. Hence, it is possible for the attacker to obtain the weights
(wii , wij ) or other information in I1

i through eavesdropping

1This is the main difference between the OPAC and PPAC algorithm, and the
main reason why OPAC can avoid privacy compromise.

(local observation). For example, if node i sets wij = 1
n for

each neighbor node, the attacker who can eavesdrop message
exchanges of node i can learn wij directly and infer wii using

wii = 1 − |Ni |
n . Under OPAC, attack node j knows Fij and does

not know Fij ′ for j′ �= j, j′, j ∈ Ni , and thus the privacy cannot
be compromised (This has been proved in Theorem 5.3).

VI. PERFORMANCE EVALUATION

In this section, we conduct simulations to verify the theoreti-
cal results and evaluate the performance of the OPAC algorithm.

A. Simulation Scenario

Consider the network with 50 nodes which are randomly de-
ployed in a 100 m × 100 m area, and the maximum communica-
tion range of each node is 30 m. We consider the normal distribu-
tion and uniform distribution of the added noises, respectively,
where the mean and variance of them are set as 0 and σ2 = 1.
We set � = 0.9. The initial states of the nodes are randomly
selected from [0, 10]. The function, d(t) = max

i∈V
|xi(t) − x̄|, is

defined as the maximum deviation between the nodes’ states
and the average value.

B. Verification

Fig. 2(a) compares the convergence speed of the PPAC algo-
rithm using normal and uniform distribution noises, in which
the basic design is the same as PPAC proposed in [18]. It is
observed that under the two different distributions, the PPAC
algorithm has the same convergence speed. This justifies that
the convergence speed only depends on the eigenvalues of the
weight matrix W and the value of � as proved in [18].

Fig. 2(b) compares the (α, β)-data-privacy under I0
i with nor-

mal and uniform distribution noises. In simulation, we conduct
10,000 simulation runs. For each run, one node first generates a
noise θi(0) randomly with the given distribution, and the other
nodes generate 10,000 random numbers with the same distribu-
tion and use them as the estimation of θi(0) (i.e., θ̂i(0)). Then,
one obtains the probability of |θ̂i(0) − θi(0)| ≤ α in each run,
and we use the maximum probability among these in all sim-
ulation runs as the value of β. For the theoretical results, we
use (23) to calculate the value of β under two different distri-
butions. Clearly, one can observe from Fig. 2(b) that uniform
distribution is much better than normal distribution in the sense
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Fig. 3. The performance evaluation of the OPAC algorithm.

of (α, β)-data-privacy. It is also observed that β in simulation
matches its value in theory.

Fig. 2(c) compares the (α, β)-data-privacy under I1
i using

normal and uniform distribution noises. The simulations here
are conducted similar to those in Fig. 2(b), except that when
the iteration increases, the variance of the noises is changed
to σ2 = �2k since (40) is used for estimation at iteration k.
We use (23) to calculate the value of β, and the corresponding
results are denoted by theoretical results. Both in simulation and
theory, we set α = 0.2. As shown in Fig. 2(c), the maximum
disclosure probability increases with iteration and will converge
to 1, i.e., the privacy decays with iteration and will eventually
be compromised.

C. Evaluation

In this subsection, we will evaluate the performance of the
OPAC algorithm. Using the same setting as the above subsec-
tion, the OPAC algorithm can guarantee the similar privacy as
the blue line shown in Fig. 2(b) under I1

i . This is because uni-
form distribution noise used in OPAC and the secret function
makes the subsequent (k ≥ 1) information do not increase the
disclosure probability. Therefore, the OPAC guarantees a much
stronger privacy than the GPAC, since it achieves the same pri-
vacy under I1

i as the GPAC under I0
i .

Then, we test the convergence of the OPAC algorithm. Set
Fij = i+2j

50 . As shown in Fig. 3(a), we find that nodes’ states will

converge to the exact average with the OPAC, which means that
an exact average consensus can be achieved by the proposed
algorithm. Fig. 3(b) compares the convergence speed of the
OPAC and PPAC, it is found that they almost have the same
convergence speed. Hence, the added secret function will not
affect the convergence speed.

VII. CONCLUSION

In this paper, we investigated the privacy of the GPAC al-
gorithm. We proposed a novel privacy definition, (α, β)-data-
privacy, to depict the relationship between privacy and estima-
tion accuracy, so that the degree of the privacy preservation can
be well quantified. We proved that the GPAC algorithm achieves
(α, β)-data-privacy, and obtained the closed-form expression of
the relationship between α and β. We also proved that the noise
with a uniform distribution guarantees the highest privacy when
α is small. We revealed that the privacy will be lost when the in-
formation used in each consensus iteration is available to other
nodes. To solve this problem and achieve the highest (α, β)-
data-privacy, we proposed the OPAC algorithm, followed by
the convergence and privacy analysis. Simulations were con-
ducted to verify the correctness of the theoretical results and
demonstrate the effectiveness of the proposed algorithm.
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