
1

1. Introduction
2. IEEE Recommended Practice for Architecture

Modeling
3. Architecture Description Language: the UML
4. The Rational Unified Process (RUP)

Chap 1. Introduction to Software
Architecture

2

1. Introduction
Preamble

“Conventional wisdom has been to use terms like ‘software architecture’,
‘software architectural design’, or ‘coarse-grained design’ for the high-level
structural subdivision of a system, and ‘design’ or ‘detailed design’ for more
detailed planning… we denote the whole activity of constructing a software
system as ‘software design’ and the resulting artifacts as ‘software architecture’.”

“Many developers nowadays prefer the term ‘software architecture’ to ‘software
design’ for denoting all the artifacts that result from design activities.”

“In doing so, they want to express the fact that they do not just decompose the
functionality of a system into a set of cooperating components, but rather that
they construct a software architecture… They no longer agree that high-level
design decisions can be made independently of lower-level decisions.”

From “Pattern-Oriented Software Architecture, A System of Patterns”
By F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal

3

Software Architecture as a Design Plan
�Software architecture provides a design plan, a blueprint of a system,

an abstraction to help manage the complexity of a system, and also a
communication medium between stakeholders.

�Critical factor for a product’s success: good software architecture
that is understood by the stakeholders and by the developers.

�Structural plan that describes the elements of the system, how they
fit together, and how they work together to fulfill the system’s
requirements.

•Used to negotiate system requirements, and to set expectations
with customers, marketing and management personnel.

•Used as a blueprint during the development process
•Guides the implementation tasks, including detailed design,
coding, integration, and testing.

4

Domain Analysis,
Requirements Analysis,

Risk Analysis

Software
Architecture

Design

Hardware
Architecture

Design

Detailed Design,
Coding,

Integration,
Testing

requirements,
desired qualities

modifications to
requirements

software
architecture

implementation
constraints

hardware
architecture

modifications to
hardware architecture

feed forward
feedback

�Key inputs to software architecture design:
•The requirements produced by the analysis tasks
•The hardware architecture (the software architect in turn provides

requirements to the system architect, who configures the hardware
architecture)

�Comes after the domain analysis, requirements analysis, and risk
analysis, and before detailed design, coding, integration and testing.

5

2. IEEE Recommended Practice
�Unfortunately, software architecture is still an emerging discipline

within software engineering; limitations:
•lack of standardized ways to represent architecture
•lack of analysis methods to predict whether an architecture will
result in an implementation that meets the requirements.

�So far, the most advanced efforts towards the development of
a standard have been made by the IEEE Working Group on
Software Architecture, giving rise to the IEEE Recommended
Practice for Software Architecture Development.

�The IEEE Recommended practice for Software Architecture
Development:
÷Define a conceptual framework for architecture development.
÷Goal: evolve into a standard

6

Conceptual Framework

-An architectural description consists of a collection of views:
÷each view describes one or more concerns involved in the system.

-A viewpoint defines the modeling and analysis techniques and
conventions used to create a view that describes the concerns addressed
by the viewpoint.
÷Viewpoint definitions may be provided either as starting point of the

AD or by reusing existing viewpoints also referred to as library viewpoints.
÷A view may be associated to exactly one viewpoint within the same
AD, and consists of one or more architectural models.

-Every stakeholder's concerns must be addressed by at least one
viewpoint

÷Viewpoints may be overlapping, in which case potential inconsistencies must be
analyzed and recorded.

-Every system has an inherent architecture.
÷The concrete document that is associated with the architecture actually provides a

specific description of the architecture, also referred to as an architectural description (AD).

7

Examples:

÷Viewpoints and Views in Structured Analysis (SA)

÷Viewpoints and Views in Object-Oriented Analysis (OOA)

Note:
-DFD: Data Flow Diagram
-ERD: Entity-Relation Diagram
-STD: State Transition Diagram

8

Conceptual Model
of Architectural Description

9

Conformance
An architecture description that conforms to the IEEE guidelines
encompasses at least six different kinds of information:

-Architectural documentation
÷provides reference and overview information about the AD: version number, issue date,

issuing organization, summary, scope and context of the AD etc.

-Identification of system stakeholders and their concerns.

-Specification of the viewpoints selected to represent the AD and the
motivation for the choice of these viewpoints.

-Architectural views derived from the viewpoints. A view is associated
to exactly one viewpoint, to which it must conform.

-Potential inconsistencies among the views and the underlying models
must be analyzed, recorded and if necessary resolved.

-The rationale behind the architectural concepts selected.

10

Booch method OMT

Unified Method 0.8OOPSLA ´95

OOSEOther methods

UML 0.9Web - June ´96

public
feedback

Final submission to OMG, Sep ‘97

First submission to OMG, Jan ´97
UML 1.1

OMG Acceptance, Nov 1997
UML 1.3

UML 1.0UML partners

-Creating the UML

-The UML is a language for visualizing, specifying, constructing and
documenting the artifacts of a software-intensive system.

3. Architect. Description Language: the UML
UML 1.4

UML 2.0

11

Views, Models, and Diagrams
-A diagram is a model in a view; a view consists of one or more models
-A view is an instance of a viewpoint for a particular system:

•presented from the aspect of particular stakeholders
•provides a partial representation of the system
•is semantically consistent with other views

-In the UML, there are thirteen standard diagrams:
•Structure diagrams: class, object, component, deployment, composite structure, package diagrams
•Behavior diagrams: activity, state machine, use case, and interaction diagrams

- Interaction diagrams: sequence, communication, interaction overview, and timing diagrams

Use Case
Diagrams

Use Case
Diagrams

Timing
Diagrams

Use Case
Diagrams

Use Case
Diagrams

Package
Diagrams

Scenario
Diagrams

Scenario
Diagrams

Use Case
Diagrams

State
Diagrams

State
Diagrams
Component
Diagrams

Component
DiagramsComponent

Diagrams
Deployment

Diagrams

State
Diagrams

State
Diagrams

Object
Diagrams

Scenario
Diagrams

Scenario
Diagrams

Statechart
Diagrams

Use Case
Diagrams

Use Case
Diagrams

Sequence
Diagrams

State
Diagrams

State
Diagrams

Class
Diagrams

Activity
Diagrams

Use Case
Diagrams

Use Case
Diagrams

Composite Structure
DiagramsUse Case

Diagrams
Use Case
Diagrams

Communication
Diagrams

Use Case
Diagrams

Use Case
Diagrams

Interaction Overview
Diagrams

Models

12

4. The Rational Unified Process (RUP)

Process
-Software engineering process:

•A set of partially ordered steps intended to reach a goal, which is
to build a software product or to enhance an existing one.

The Rational Unified Process
-Extensive set of guidelines supporting an iterative and incremental
life cycle and focusing on requirements analysis and design.

•Development proceeds as a series of iterations that evolve into
the final system.

•Each iteration consists of one or more of the following steps:
requirements capture, analysis, design, implementation, and test.

13

Iteration N

Define iteration to address
the highest risks

Plan and develop the
iteration

Assess the iteration

Risks eliminated
Revise risk assessment

Revise project
plan

Initial risks
Initial project scope

•Risk-mitigating process: technical risks are assessed and prioritized
early in the life cycle and are revised during each iteration.

•Releases are scheduled to ensure that the highest risks are tackled first.

14

Phases of the Rational Unified Process

-Structured along two dimensions:
•time division of the life cycle into phases and iterations
•process components consisting of the production of a specific set
of artifacts with well-defined activities

-Each activity of the process component dimension typically is
applied to each phase of time-based dimension, but at a varying
degree dependent upon the specific phase.

15

time

Inception Elaboration Construction Transition

• Inception Define the scope of the project and
develop business case

• Elaboration Plan project, specify features, and
baseline the architecture

• Construction Build the product

Lifecycle Phases (Time Dimension)

÷ Transition Transition the product to its users

16

Arch
Iteration

... Dev
Iteration

Dev
Iteration

... Trans
Iteration

...

Release Release Release Release Release Release Release Release

Prelim
Iteration

...

Inception Elaboration Construction Transition

�The process component dimension includes:
• Requirements capture: a narration of what the system should do

• Analysis and design: a description of how the system will be realized
in the implementation phase

• Implementation: the production of the code that will result in an
executable system

• Test: the verification of the entire system

Phases and Iterations (Process Component Dimension)

17

Management
Environment

Business Modeling

Implementation
Test

Analysis & Design

Preliminary
Iteration(s)

Iter.
#1

Phases
Process Workflows

Iterations

Supporting Workflows

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Deployment

Configuration Mgmt

Requirements

Elaboration TransitionInception Construction

Unified Process Structure

18

Architecture Modeling
The “4+1” Views of Architecture
-RUP advocates the use of multiple perspectives to describe the various concerns.

RUP suggests a five views approach:

Organization
Package, subsystem

Dynamics
Interaction, State machine

Logical View Process View

Implementation
View

Process,Threads
Classes, interfaces,
collaborations

Source, binary, executable components

Deployment View

Nodes

Use Case View
Use cases

19

-Use case view:
÷consists of a set of key use cases or scenarios, which guide the design of the architecture

during the inception and elaboration phases and are used later to validate the other views.

-Logical view:
÷addresses the functional requirements of the system; provides an abstraction of the design

model and defines main design subsystems and classes.

-Process view:
÷defines the system’s concurrency and synchronization mechanisms at

run-time (tasks, threads, processes etc.).

-Deployment view:
÷defines the hardware topology on which the system is executed.

-Implementation view:
÷defines the parts used to assemble and release the physical system (source code, data files,
executables etc.).

20

Simple Monolithic App.
Use Case View

•Use case diagrams
Logical View

•Class diagrams
•Interaction diagrams

Process View
•None required

Implementation View
•None required

Deployment View
•None required

Complex Distributed App.
Use Case View

•Use case diagrams
•Activity diagrams

Logical View
•Class diagrams
•Interaction diagrams
•Statechart diagrams

Process View
•Class diagrams
•Interaction diagrams

Implementation View
•Component diagrams

Deployment View
•Deployment diagrams

