Chap 3. Architectural Views
Part 3.2 Logical View

Overview

Static Structures

| nteractions

Dynamic Behavior

Example: Logical View for the ATM

asroLbdPE

Process View

Logical View

-

T - -
Se cases

Use Case View

Implementation
View

Deployment View

Source, hinary, executable components

1. Overview

-The purpose of the logical view isto specify the functional
requirements of the system. The main artifact of the logical view
IS the design modé!.:

+The design model gives a concr ete description of the functional
behavior of the system. It is derived from the analysis model.
+The analysis model gives an abstract description of the system
behavior based on the use case model.

+In general only the design model is maintained in the logical view,
since the analysis model provides a rough sketch, which is |ater
refined into design artifacts.

Design Model

-The design model consists of collaborating classes, organized
INto subsystems or packages.

-Artifacts involved in the design model may include:
+class, interaction, and state diagrams
+the subsystems and their interfaces described using package diagrams 2

2. Static Structures

Notion of Class
= adescription of a group of objects with:

-common properties (attributes)
--common behavior (operations)
-~common relationships to other objects, and common semantics.

= In the UML classes are represented as compartmentalized rectangles:
stop compartment contains the name of the class
*middle compartment contains the structure of the class (attributes)
*bottom compartment contains the behavior of the class (operations)

Class Interface
“a"\"f objects are underlined
i abstract elements are in italics.

+ origin : Point &——

isibilitv: & move(p: Point)
Visibility: _ [%resize(s *Scale) | signature N
+ pUb“C visibility | + display() .—-h_\ ()

invalidateRegion .-
protected 9ol | erations |Application

) . Responsibilities
prlvate -- manage shape
state |
-- handle basic shape| extra compartment
transformations

Extensibility Mechanisms

«Stereotype
*Tagged value
eConstraint
/—--1 «container» tagged value
ActionQueue
stereotype {version=3.2)@—
add(a : Action) {add runs in O(1) time}
remove(n : Integer)
o s 4
length() : Integer constraint
® <helper functions»
reorder()

Notion of Stereotype
provides the capability to create a new kind of modeling element.
s\we can create new kinds of classes by defining stereotypes for classes.
the stereotype for a class is shown below the class name enclosed in
guillemets (<< >>).
sexamples of class stereotypes. exception, utility etc.

Boundary, Entity, and Control Classes

= The Rational Unified Process advocates for finding the classes for a
system by looking for boundary, control, and entity classes.

Entity classes:
*model information and associated behavior that is generally long lived
emay reflect a real-world entity, or may be needed to perform tasks internal
to the system
sare application independent: may be used in more than one application.

Boundary classes:
*handle the communication between the system surroundings and the inside
of the system
«can provide the interface to a user or another system

Control classes:
*model sequencing behavior specific to one or more use cases.
stypically are application-dependent classes.

Relationships

= Provide the conduit for object interaction

= Several kinds of relationships: Vehicle
eAssociation <
Dependency| <-------------- T
*Realization |
*Aggregation | <> Truck
| nheritance
Association
name multiplicity ~ hayigation
0.1 Employs)
end — >" end
e : employer employee nfilled diamond for aggregation
/. /‘ filled diamond for composition
interface specifier role name

Car

Class Diagram

= Purpose

*Provide apicture or view of some or all the classes/interfacesin the model

«Static design view of the system

e ampany

aggregation

class 1 ?._ -

. | 1.* & Multiplicity
‘ Department Location
name : Mame [— -

l Mgime
1 -

CHfice r"'{

0.1

address : String
woice ; Mumber

constraint
. . =
rale | e o
enaralization
| s isubset} | H!iaiciaﬁnn %_ g____[.ﬂ' '
'.,\‘ —
miember | 1..* 1| manager | Headguartars |
Perzon
narme ; Marms —— attributas
amployeelD : Intager &
title : String _ operations
getPhotodp: Photo) :
getSoundBite() . Contactinformation
getContactinformation(] | - - 24 address : String
getPersonalRecords() - |

interface
PersonnelRecond

dEpEI‘;dEﬁE'gI'

™,
?r:::ul:lrurmEntHish:\ry 4@‘]

salary I5acurelnfaormation

Object Diagram

= Shows a set of objects and their relationships at apoint in time
<= Shows instances and links
= Built during analysis and design (address the static design view)
= Purpose

o|[lustrate data/object structures

c: Company

*Specify snapshots
d1 : Department d2 : Department
name = “Sales” sname = "R&D"
link &
object S d3 : Department attribute value
name = “US Sales”

anonymous object
manager
p : Person / (
- Contactinformation

name = “Erin® ‘
employeelD = 4362 address = “1472 Miller St.”

title = “VP of Sales”

Package Diagrams

= Package: Independent unit of functionality that consists of a

collection of related classes and/or other subsystems.

«Offer interfaces and uses interfaces provided by other subsystems.
In the UML, packages or subsystems are represented as folders:

= Dependency Relationships: provides and uses relationships

<<package>>
People
| nformation

sUses relationship, shown as a dashed arrow to the used interface.

*Provides relationship, shown as a straight line to the provided interface.

sPackage A is dependent on package B implies that one or more
classesin A initiates communication with one or more public classes
in B: A iscaled the client and B the supplier.

<<package>>
DirectBanking

<<package>>
AccountService

3. Interactions

Use Case Realization
=the functionality of a use case is defined by describing the
scenarios involved.

+a scenario is an instance of ause case: it is one path through the flow of events
for the use case.

+each use caseis a web of scenarios. primary scenarios (the normal flow for the
use case) and secondary scenarios (the what-if logic of the use case).

+scenarios help identify the objects, the classes, and the object interactions needed
to carry out a piece of the functionality specified by the use case.

=the flow of events for a use case is captured in text, whereas
scenarios are captured in interaction diagrams.
= Main types of interaction diagrams:

+sequence diagrams
~communication diagrams

10

Seguence Diagram

*Shows object interactions arranged in time sequence
*Purpose
—Mode flow of control

—lllustrate typical scenarios
*Deypicts the objects and classes involved in the scenario and the sequence of
messages exchanged between the objects needed to carry out the functionality
of the scenario.

| .
object nteraction
K*- t: Thread . Toolkit
al:run(3) o lifeline
]
/. run() ' callbackLoop()
sequence / 1 ‘/ creation
label
message ! creates ‘
call ————— P p: Peer
|
focus of control —_| ha“d'EExWSe& .

e recursion —_|

*____.‘:“:—_—-—:-return

«destroy» o >'<
/

destruction

11

o N

Communication Diagram

*Shows obj ect interactions organized around the objects and their links
to each other (Arranged to emphasize structural organization)

*Purpose
—Modd flow of control

—lllustrate coordination of object structure and control
*Represent an alternate way to describe a scenario

¢ : Client

collaboration diagram

1 : «creates»
link —e | 2:setActions(a, d, 0)

3: «destroy»
«|local» message
w(l P
. Transaction [9 obal p : ODBDProxy
b P

{transient}
object 2.1 : setValues(d, 3.4)
2.2 : setValues(a, "CO")

*A communication diagram contains;
-objects drawn as rectangles
-links between objects shown as lines connecting the linked objects
-messages shown as text and an arrow that points from the client to the
supplier. 12

4. Dynamic Behavior

State Transition Diagram
= Use cases and scenarios provide away to describe system
behavior, that is the interaction between objects in the system.

= A state transition diagram allows the modeling of the behavior
Inside a single object.

+t shows the events or messages that cause atransition from one
state to another, and the actions that result from a state change.

Htiscreated only for classes with significant dynamic behavior,
like control classes.

13

= State:
«a condition during the life of an object when it satisfies some condition,
performs some action, or waits for an event
«found by examining the attributes and links defined for the object

srepresented as a rectangle with rounded corners

/ State Machine \
final state —»

state

.\ off / transition nested state
uard
- / R

dle Working
ready(3) [signalOK]

keepAlive / check()
event) (
action

<= Trangtions:
srepresents a change from an originating state to a successor state (that
may be the same as the originating state).
emay have an action and/or aguard condition associated with it, and
may also trigger an event. 14

initial state

internal transition
offHook / reclaimConnection()

Activity Diagram

«Captures dynamic behavior (activity-oriented)
*Behavior that occurs within the state is called an activity: starts when the state

Is entered and either completes or is interrupted by an outgoing transition.

initial state

«Purpose
. pa—
-Model business workflow v
i) Y
: _ =8 Solact site J
-Model operations _—X /
- ¥
action state e 1 i 3
/('h ._:'::Dmmﬁsll::n architect .-__,'
i ."'\-,_x.%"-\-..___.. Illllll
' , T T ™
- .
II- | \ _: Devalop plan Y,
| ., ;
|II I| KH'\-\. ll'..ll y
[Yo Bidplan e
| |
| -Ilg.aquar|l|a_l__lJ_r_anL:I1 ' (ot acceplad]
! T -
| \ (else] concurrent fork
. W/ —
\ \ activity state
\ L 3 1"' with submachine
I'|. -"'. -“\l. § T
-.__x '.‘: LA sl wark J -.LEIJ-:I Irau:l_a wt:-rh.[]:: concurrant join
\ 1 | -
E“‘x\.\, ll“ll I'l‘l l"'-.-.. [[—
— object flow
.H-\"\-\._ 'I‘.'. .-____a-'-'- L,
T ~ ~ : CenificateCiOccupanc
|?ini5h -:u;unﬁtrur:tinrﬂ- - - - 4 - ->| ||:|::-I'|'||:||ETE-::|5JD_IE

fimal state
— |

o=

-

5. Examp

le: Logical View for the ATM

- Is derived from architecturally significant use cases defined in the use case view

&

ATM System

AN

Bank Customer

Customer

Foreign

@
\ Handle Exception
N
N
N

; <<extend>>

| "
— _s<include>> Validation
=

<<include>>

Customer

Bank
Officer

Communication Diagram: Withdraw M oney Use case

:Cashierlnterface

1:identify

2:requestWithdrawal
> ‘Withdrawal Service
3:validate and
withdraw
4.authorizeDispense | v
: Account

17

Communication Diagram: Deposit Use Case

1:ideV

S

Customer

:Cashierlnterface

ﬂitM oney

:MonheyReceptor

2:requestDeposit

:DepositService

4nevaecepti on

5: deposit

N

:Account

18

Communication Diagram: Transfer Use Case

1:ideny

:Cashierlnterface

\f:requestTran

‘TransferService

Al:Account

3:validate

4:transfer

A2:Account

19

Class Diagram

<<boundary>>
Dispenser

<<control>>
Withdrawal Service

authorizeDispensg()

requestWithdrawal ()

<<boundary>>
CashierInterface

<<control>>
TransferService

<<entity>>
Account

identify()

<<boundary>>
MoneyReceptor

requestTransfer()

validate()

deposit()
transfer()
withdraw()

<<control>>
DepositService

putMoney()

requestDeposit()
moneyReception()

20

(Refined) Classdiagram providing a view of the classesinvolved
In withdraw Money use case (design model)

CardReader

% / Display \
T [Keypad Client

Transaction

Customer — | M anager

Feeder

Dispenser
Sensor

Dispenser /

/ eneas

Cash
Counter

Persistent
Class
Withdrawal Service
/\
A 4
Account
Manager
"~ Account
Account

Account

Withdrawal Service

Traceability (Withdraw use case)
CashierInterface

Analysis

T
A =
@ ||||||||||||||||||||||||||| m 2
i G 8
eV m m
b T 3 &
e <=
...... 5. | |28
> ||||||||||||||||||||||||||||| .-ou PIV
TR T, |[IBE ke
M W © S W
D 25 |IF
f =
[
-
O © L
A4 © m o
\\\\\\ \\\\\\\\\\ D
\\\\\\\ 9 \\\\\\\\\\\\\\\ w Qrb
R - R : :
e G X
il 5 | e
D 5
G &
) w - .
P R S —
< e E;
Y x
D E— Voo | B :
e . m, 3
o %
D a
e

-Transaction|
Manager

Counter

Client

Manager

:KeyPad

:Display

Request PIN validation (PIN)

y (A)
t withdrawal (A)

availabilit

Request cash
Request amou

>
M

:CardReader

A Scenario of the Withdraw M oney Use Case (Design M odel)

:

e’ i 57 N R AT
- <
3 S =
Q < 5
o (&) W e
g z :
) o 8 <
....... e
o A nUU A
S 5
% S
a < %
= <
I Yoo Yoo
o
=
©
S
O
[}
e —
PR :
v S0] R R I
S o M m
= 3| 2 g 2
8 | 8 S| 8
> & & g &
=

State Transtion Diagram for Class Account

@{State \

debit [amount>bal ance]/bal ance-=amount

depos [amount<1-balance]/

bal agice+=amount-1 [amount/ bal ance]/bal ance-=amount

withdraw

[amountx1-balance]/ :
bal ancet+=amount- credit

\ \/ deposit/balance+=amount

public class Account {
private int balance;
public void deposit (int amount) {
if (balance x0) balance = balance + amount;
else balance = balance + amount — 1; // transaction fee
}
public void withdraw (amount) {
if (balance x0) balance = balance — amount; 24

}}

Package Diagram

Withdrawal
Q <<package>> ““—“““>© <<package>> _____________ >Q— <<paCkage>>
/\ ATM Interface ©< ___________ Transaction Mgt Trangers Account Mgt
Customer
<<package>>
ATM Interface
Classes Packages
<<package>> _ _
UDisplay CardReader, Display, UDisplay/ATM Interface
KeyPed, ClientMgr
DispenserFeeder, Dispenser/ATM Interface
<[;Pa0kage>> DispenserSensor, CashCounter
ISpenser . . .
P Withdrawal Service, TransactionMgt
TransactionMgr
Account, PersistentClass, AccountMgt
AccountMgr

25

Structuring Using Layer Architectural Pattern

<<layer>>
Application-specific

<<layer>>
Application-general

Vi

Packages Layers
ATM Interface Application-
specific
Transaction Mqt, Application-
Account Mgt general
Middleware

System-software

<<layer>>
Middleware

Vv

<<layer>>
System-software

26

1]

<<package>>
ATM Interface

AY
\
\
\

AY
\
\

A_‘

<<package>>
Transaction Mgt

1]

<<package>>

<<package>>
Java.awt

Account Mgt

o> <<packagg>>
Javarmi

<<package>>

Java Virtual Machine

<<package>>
TCP/IP

Application-specific layer

Application-general layer

Middleware layer

System-softwar e layer
27

Requirements | Design
|
i 'I
UML use case | UML Activity UML State
descriptions and diagrams i Diagrams Diagrams
i A
|
|
|
|
i
Requirements | 1 —=
Specification | UML Class UML Object
| | Diagrams Diagrams
' |
Scenarios /‘I/'
|
|
|
| VY — —
|
| Communication UML. SEGUENEE
| : Diagrams
| Diagrams
|
|
|
|
|

INTERACTIONS CLASSSTRUCTURE STATES

Coding

UML
Package
Diagrams

UML
Component
Diagrams

UML
Deployment
Diagrams

