Chap 3. Architectural Views
Part 3.3 Implementation, Process, and

Deployment Views

. Motivation
. Process View

. Deployment View
. ATM Example

1
2
3. Implementation View
|
5

2 Logical |mplementation3

A Process Deployment O
View View

1. Motivation

+Complex software systems involve a wide range of functionality, deployed on

Independent processing nodes, involving awide variety of languages, platforms,
and technologies.

+Example: (a complex web-based system)

Dynamic HTML, JavaScript, Java
Client plug-ins, source code enhancements

Java, C, C++, JavaScript, CGI

Server
Java, C, C++, JavaBeans, CORBA, DCOM
Application
Server
Fulfillment Inventory RDBMS
Native languages System Financial System Server
System

The process, implementation, and deployment views capture this complexity by:

-Describing runtime entities: the threads and processes that form the system’s concurrency
and synchronization.
- Describing source and executable components, their organization, and their dependencies.

- Describing hardware topology and mapping software components to processing nodes
-Describing build procedures

. Derives from the Logical view the
2_ Pr ocess V| an concurrency and synchronization
mechanisms underlying the software
. product.
Overview

«Consists of the processes and threads that form the system’s
concurrency and synchronization mechanisms, as well as their

Interactions

*Addresses issues such as.
-Concurrency and parallelism (e.g., synchronization, deadlocks etc.)

-System startup and shutdown
-Performance, scalability, and throughput of the system.

o|s captured using class, interaction and state transition diagrams
with afocus on active classes and objects.

Processes and Threads

*Process. a heavyweight flow of control that can execute
Independently and concurrently with other processes.

*Thread: alightweight flow that can execute independently and
concurrently with other threads within the same process.

Independent flows of control such asthreads and processes are
model ed as active objects. An active object is an instance of an active

class. You may specify aprocess using the stereotype process and a
thread using the stereotype thread.

<<process>> An Active Object is an object that owns a process or thread
ReservationAgent and can initiate control activity.

-Graphically an Active Classis represented as a class
with thick lines.

location

Plain classes are called passive because they cannot
independently initiate control.

Communication
*Y ou model interprocess communication using interaction
diagrams:

- Synchronous communication
- Asynchronous communication

*Two approaches. RPC (synchronous) and message passing
(asynchronous)

Synchronization
* Modeled by adding constraints to the operations; there are
three kinds of synchronization:

-Sequential
-Guarded <<thread>>
-Concurrent Buffer

size: Integer

add() { concurrent}
remove() { concurrent}

sequential
+Callers must coordinate outside the object so that only one flow isin the object at atime.

If ssimultaneous calls occur, then the semantics and integrity of the system cannot be
guaranteed.

guarded

+The semantics and integrity of the object is guaranteed in the presence of multiple flows
of control by sequentializing all callsto all objects guarded operations. In effect, exactly
one operation at a time can be invoked on the object, reducing this to sequential semantics.

concurrent

~Multiple calls from concurrent threads may occur simultaneoudly to one | nstance (on any
concurrent Operations). All of them may proceed concurrently with correct semantics.
The semantic and integrity of the object is guaranteed in the presence of multiple flows of
control by treating the operation as atomic.

Note: Java usethe
Synchronized modifier,
which mapsto UML
Concurrent property. 6

Example

Consider a trading system, where trading decisions are based on information collected from
three different sources: a stock ticker, an index watcher, and a CNNNewsFeed. Information

from the stock ticker and the index watcher are first analyzed and then forwarded to the

trading manager via an alert manager. The CNNNewsFeed communicates directly with the
Trading manager.

s. StockTicker

sl:postVaue()
—>

i:IndexWatcher

s2:postAlert() l

i1:postValue()
—>

al:Analyst

m:AlertM anager

cl:postBreakingStory() l

ml:postAlert()
—>

C:CNNNewsFeed

al:Analyst

T 12:postAlert()

t: TradingM anager

®|nteraction diagrams such as these are useful in helping you to visualize where two flows

of control might cross paths, and therefore where special attention must be paid to

communication and synchronization problems.

Example
Consider a trip planning service (e.g., expedia) that is used by travelersto
Identify and book all at once the best deal in terms of flight, hotel, car rental etc.

Model a basic scenario where a customer uses the system to book flight and
hotel room by highlighting the concurrency and synchronization involved.

{CORBA ORB}---______ Server
T T e <<process>>
/ _ . r:ReservationAgent r2:make()
,’, t1:planTrip() {location=reservation server} \
! Client /
<<process>> / <<process>>
t: TripPlanner 3 pogtReslt t: TicketingManager
{location=client} P S0 {location=airline server}
r1:make()
Communicate
across Beans
<<process>> Messaging services
h:Hotel Agent
8

{location=hotel server}

3. I m pl em entat | On Vl a/V Concentrates on taking the Logical view and

dividing the logical entities into actual software
components.

Overview

-Describes the organization of static software modules (source code,
data files, executables, documentation etc.) in the devel opment
environment in terms of:

*Packaging and layering
«Configuration management (ownersnip, release strategy etc.)

-Are modeled using UML Component Diagrams.

UML components are physical and replaceable parts of a system that
conform to and provide the realization of a set of interfaces

Three kinds of components:

-Deployment components. components necessary and sufficient to

form an executable system, such as DLLS, executables etc.

-Work product components: residue of development process such as

source code files, datafiles etc.

-Execution components:. created as a consequence of executing system

such as COM+ which isinstantiated from aDLL. 9

UML Components

Notation
L iless [T <<library>>
agent.java system::dialog.dll
] .] {version=2.0.1}

Standard Component Stereotypes
-executable: a component that may be executed on a node
-library: a static or dynamic object library
-table: acomponent that represents a database table
-file: a component that represents a document source code or data
-document: a component that represents a document

Components and Classes

*There are significant differences between components and classes:
classes represent logical abstractions
scomponents represent physical entities that live on nodes

A component is aphysical element that provides the implementation of
logical elements such as classes (that is shown using a dependency
relationship)

<<library>>
. fraudagent.dll — <<library>>
= fraudagent.dll
[]
e Yy
FraudAgent FraudPolicy

11

Component I nterfaces

*An interface is a collection of operationsthat are used to specify a
service of a class or a component.

oI nterfaces provide the glue that binds components together

A component may provide the implementation of an interface
(realization) or may access its services (dependency).

I J
[1 ImageViewer.java [1'magejava

- G —

| mageObserver

<<interface>>
[1 ImageViewer.java | mageObserver [1 Imagejava

|

] imageUpdate() [

12

Examples

*Executable Release (for a web-based application)

page

index.html

-
-
-

-
-

Eﬁyperlinkn

o

component

—

dbacs.dll

find.html

executable

library

find.exe

nateng.dll

13

«Source Code (showing different versions of the same program)

L S gnal .h <<parent>> S gnal .h <<parent>> S gnal .h
{version=3.5} [T {version=4.0} [T {version=4.1}
[L] L]
TR
— interp.cpp | — signal.cpp
{version=3.5} {version=4.1}
[[
w\\
K/// \\
— irq.h —n device.cpp
— L]

®Based on this component diagram, it is easy to trace the impact of changes. For example, changing the

source code file signal.h will require recompilation of three other files: signal.cpp, interp.cpp, and
transitively device.cpp. However, fileirg.h is not affected. 14

4. Deployment View

Concentrates on how the
software is deployed into
that somewhat important
layer we call ‘hardware'.

Overview

-Shows how the various executables and other runtime entities are
mapped to the underlying platforms or computing nodes.

-Addresses 1ssues such as:
*Deployment
| nstallation
Maintenance

Exposes:
*System performance
*ODbject/data distribution
*Quality of Service (QoS)
*Maintenance frequency
and effects on uptime
*Computing nodes within
the system

15

Deployment Diagram

Notation
*A nodeisaphysical element representing a computational resource,

generally having some memory and processing capability.

*Nodes are used to model the topology of the hardware on which the
system executes. processor or device on which components may be

deployed.

server::backup
kiosk-7 { remoteAdministrationOnly}

*Y ou may organize nodes by specifying relationsnips among them.

16

Nodes and Components
*Nodes are |ocations upon which components are deployed.
A set of objects or components that are allocated to anode asagroup is

cdled adistribution unit.

sales
sales

Deploys
pos.exe
Vs A contacts.exe

:‘3 pos.exe :‘3 contacts.exe
1] 1]

*Y ou may also specify attributes and S wver

operations for them: speed, memory orocessorSpeed=300mHz
memory=1Gb

Deploys
dbadmin.exe
tktmstr.exe

17

Deployment Diagram
*Y ou use a deployment diagram to model the static deployment view
of a system.

- Example 1

Internet node
Modem bank

/\ ~ N

connection «Processors «Processor»
caching server caching server
.
) node
-
«network» local network o«
|
«processor» «Processors «Processor» «Processor»
primary saerver server server server

18

- Example 2

kiosk

console

<<10-T Ethernet>>

RAID farm

<<processor=>>
server

<<RS-232>>

19

e Distribution of Components

‘kiosk

*

c.console

<<10-T Ethernet>>

‘RAID farm

S server

<<RS-232>>

processor Speed=300mHz
memory=1Gb

/

Deploys
dbadmin.exe
tktmstr.exe

20

5.ATM Example

Customer

CardReader

% / Display \
\ KeyPad -

Client
Manager
Dispenser /
Feeder
Dispenser
Sensor Cash

Counter

Transaction
Manager
Persistent
Withdrawal Class
Service JAN
\ 4

Account

Manager
Account

21

Process View

Class diagram

. <<rmi>>
<rmi>>

<<process>> <<process>> <<process>>

ClientMgr TransactionMgr AccountMgr
Classes Processes
Display, KeyPad, ClientMqgr
CardReader,
ClientMgr,
DispenserFeeder,
DispenserSensor,
CashCounter
Transaction Mgr, TransactionMgr
Withdrawal Service
AccountMgr, AccountMgr
Account, Persistent
class

22

| mplementation View

-Source Components
Classes Sour ce Components
CardReader, Display.java

Display, KeyPad

DispenserFeeder, | DispenserFeeder.java
DispenserSensor,

CashCounter

ClientMgr ClientMgr.java

TransactionMgr

TransactionMgr.java

AccountMgr AccountMgr.java
Withdrawal Servic | Withdrawal Servicejava
e

Account, Account.java

Persistent class

<<source>> o <<SOl|J:reCeeg>.
Display.java I Spenser er.java
“eximports> <<import>>
<<source>>
ClientMgr.java
L <<import>>
RSN
<<source>>
TransactionMgr.java
<<imp0rt>> /’,/"’// <<imp0rt>>
<<source>> " hd<<s<;|u;re>_> |
AccountMgr.java Ithdrawal Servicejava
<<import>>

<<source>>
Account.java

-Executable Release

<<binary>> o <<b|r|laere3:j>> |
Display.class Ispenser er.class
S 7
N cdlinks>
=~ <<link>>
<<executable>>
ClientMgr.exe
<<link>>
AN

<<executable>>
TransactionMgr.class

- - \ -
<<link>> Pt N <<link>>

- \

<<binary>>
Withdrawal Service.class

<<executable>>
AccountMgr.class

<<link>> _
<<binary>>

Account.class

Deployment View

- Deployment Diagram

SNA intranet
_ ATM ATM Data
ATM Client Application Server
Server
Customer
- Deployment of Active Objects

:ATM Client :ATM Application Servef :ATM Data Server
:ClientM anager “TransactionM anaqer‘ ‘ : AccountM anager

25

