
1

Chap 3. Architectural Views

Logical
View

Implementation
View

Process
View

Deployment
View

Use-Case
View1

2 3

4 5

Part 3.3 Implementation, Process, and
Deployment Views
1. Motivation
2. Process View
3. Implementation View
4. Deployment View
5. ATM Example

2

1. Motivation
÷Complex software systems involve a wide range of functionality, deployed on

independent processing nodes, involving a wide variety of languages, platforms,
and technologies.

÷Example: (a complex web-based system)

RDBMS
Server

Client

Server

Application
Server

Fulfillment
System Financial

System

Inventory
System

Dynamic HTML, JavaScript, Java
plug-ins, source code enhancements

Java, C, C++, JavaScript, CGI

Java, C, C++, JavaBeans, CORBA, DCOM

Native languages

The process, implementation, and deployment views capture this complexity by:
-Describing runtime entities: the threads and processes that form the system’s concurrency

and synchronization.
- Describing source and executable components, their organization, and their dependencies.
- Describing hardware topology and mapping software components to processing nodes
-Describing build procedures

3

2. Process View
Overview
•Consists of the processes and threads that form the system’s
concurrency and synchronization mechanisms, as well as their
interactions

•Addresses issues such as:
-Concurrency and parallelism (e.g., synchronization, deadlocks etc.)
-System startup and shutdown
-Performance, scalability, and throughput of the system.

•Is captured using class, interaction and state transition diagrams
with a focus on active classes and objects.

Derives from the Logical view the
concurrency and synchronization
mechanisms underlying the software
product.

4

Processes and Threads

<<process>>
ReservationAgent

location

•Process: a heavyweight flow of control that can execute
independently and concurrently with other processes.
•Thread: a lightweight flow that can execute independently and
concurrently with other threads within the same process.

An Active Object is an object that owns a process or thread
and can initiate control activity.

-Graphically an Active Class is represented as a class
with thick lines.

Plain classes are called passive because they cannot
independently initiate control.

•Independent flows of control such as threads and processes are
modeled as active objects. An active object is an instance of an active
class. You may specify a process using the stereotype process and a
thread using the stereotype thread.

5

Communication
•You model interprocess communication using interaction
diagrams:
- Synchronous communication
- Asynchronous communication

•Two approaches: RPC (synchronous) and message passing
(asynchronous)

<<thread>>
Buffer

size: Integer

add() {concurrent}
remove() {concurrent}

Synchronization
• Modeled by adding constraints to the operations; there are
three kinds of synchronization:
-Sequential
-Guarded
-Concurrent

6

sequential
÷Callers must coordinate outside the object so that only one flow is in the object at a time.
If simultaneous calls occur, then the semantics and integrity of the system cannot be
guaranteed.

guarded
÷The semantics and integrity of the object is guaranteed in the presence of multiple flows
of control by sequentializing all calls to all objects’ guarded operations. In effect, exactly

one operation at a time can be invoked on the object, reducing this to sequential semantics.

concurrent
÷Multiple calls from concurrent threads may occur simultaneously to one Instance (on any
concurrent Operations). All of them may proceed concurrently with correct semantics.

The semantic and integrity of the object is guaranteed in the presence of multiple flows of
control by treating the operation as atomic.

Note: Java use the
Synchronized modifier,
which maps to UML
Concurrent property.

7

Example
Consider a trading system, where trading decisions are based on information collected from
three different sources: a stock ticker, an index watcher, and a CNNNewsFeed. Information
from the stock ticker and the index watcher are first analyzed and then forwarded to the
trading manager via an alert manager. The CNNNewsFeed communicates directly with the
Trading manager.

s: StockTicker

t:TradingManager

C:CNNNewsFeed

m:AlertManager

i:IndexWatcher

a1:Analyst

a1:Analyst

m1:postAlert()

s1:postValue()

c1:postBreakingStory()

s2:postAlert()

i2:postAlert()i1:postValue()

•Interaction diagrams such as these are useful in helping you to visualize where two flows
of control might cross paths, and therefore where special attention must be paid to
communication and synchronization problems.

8

Example
Consider a trip planning service (e.g., expedia) that is used by travelers to
identify and book all at once the best deal in terms of flight, hotel, car rental etc.

Model a basic scenario where a customer uses the system to book flight and
hotel room by highlighting the concurrency and synchronization involved.

<<process>>
t: TripPlanner

{location=client}

<<process>>
h:HotelAgent

{location=hotel server}

<<process>>
t: TicketingManager

{location=airline server}

<<process>>
r:ReservationAgent

{location=reservation server}t1:planTrip()
r2:make()

r1:make()

r3:postResults()

Client

CORBA ORB Server

Communicate
across Beans
Messaging services

9

3. Implementation View Concentrates on taking the Logical view and
dividing the logical entities into actual software
components.

Overview
-Describes the organization of static software modules (source code,
data files, executables, documentation etc.) in the development
environment in terms of:

•Packaging and layering
•Configuration management (ownership, release strategy etc.)

Three kinds of components:
-Deployment components: components necessary and sufficient to
form an executable system, such as DLLs, executables etc.

-Work product components: residue of development process such as
source code files, data files etc.

-Execution components: created as a consequence of executing system
such as COM+ which is instantiated from a DLL.

-Are modeled using UML Component Diagrams.
•UML components are physical and replaceable parts of a system that
conform to and provide the realization of a set of interfaces

10

UML Components

<<file>>
agent.java

<<library>>
system::dialog.dll
{version=2.0.1}

Notation

Standard Component Stereotypes
-executable: a component that may be executed on a node
-library: a static or dynamic object library
-table: a component that represents a database table
-file: a component that represents a document source code or data
-document: a component that represents a document

11

Components and Classes
•There are significant differences between components and classes:

•classes represent logical abstractions
•components represent physical entities that live on nodes

•A component is a physical element that provides the implementation of
logical elements such as classes (that is shown using a dependency
relationship)

Realizes
FraudAgent
FraudPolicy

<<library>>
fraudagent.dll

FraudPolicy

<<library>>
fraudagent.dll

FraudAgent

12

Component Interfaces
•An interface is a collection of operations that are used to specify a
service of a class or a component.

•Interfaces provide the glue that binds components together
•A component may provide the implementation of an interface
(realization) or may access its services (dependency).

ImageViewer.java

ImageObserver

Image.java

ImageViewer.java Image.java
<<interface>>
ImageObserver

imageUpdate()

13

Examples
•Executable Release (for a web-based application)

14

signal.h
{version=3.5}

signal.h
{version=4.0}

signal.h
{version=4.1}

interp.cpp
{version=3.5}

signal.cpp
{version=4.1}

irq.h device.cpp

<<parent>> <<parent>>

•Source Code (showing different versions of the same program)

•Based on this component diagram, it is easy to trace the impact of changes. For example, changing the
source code file signal.h will require recompilation of three other files: signal.cpp, interp.cpp, and
transitively device.cpp. However, file irq.h is not affected.

15

4. Deployment View
Concentrates on how the
software is deployed into
that somewhat important
layer we call 'hardware'.

Exposes:
•System performance
•Object/data distribution
•Quality of Service (QoS)
•Maintenance frequency
and effects on uptime

•Computing nodes within
the system

Overview
-Shows how the various executables and other runtime entities are
mapped to the underlying platforms or computing nodes.

-Addresses issues such as:
•Deployment
•Installation
•Maintenance

16

Deployment Diagram

Notation
•A node is a physical element representing a computational resource,
generally having some memory and processing capability.

•Nodes are used to model the topology of the hardware on which the
system executes: processor or device on which components may be
deployed.

kiosk-7
server::backup
{remoteAdministrationOnly}

•You may organize nodes by specifying relationships among them.

17

Nodes and Components
•Nodes are locations upon which components are deployed.
•A set of objects or components that are allocated to a node as a group is
called a distribution unit.

pos.exe contacts.exe

sales

•You may also specify attributes and
operations for them: speed, memory

S: server
processorSpeed=300mHz
memory=1Gb

Deploys
dbadmin.exe
tktmstr.exe

sales

Deploys
pos.exe
contacts.exe

18

Deployment Diagram
•You use a deployment diagram to model the static deployment view
of a system.
- Example 1

19

kiosk

<<processor>>
server

RAID farm

console <<RS-232>>

<<10-T Ethernet>>

- Example 2

20

:kiosk * :RAID farm

c:console

<<RS-232>>

<<10-T Ethernet>>

S: server
processorSpeed=300mHz
memory=1Gb

Deploys
dbadmin.exe
tktmstr.exe

• Distribution of Components

21

Display

KeyPad

CardReader

Dispenser
Sensor

Dispenser
Feeder

Cash
Counter

Client
Manager

Withdrawal
Service

Transaction
Manager

Account

Persistent
Class

Account
Manager

Customer

5. ATM Example

22

Process View

Class diagram

AccountMgrAccountMgr,
Account, Persistent
class

TransactionMgrTransaction Mgr,
WithdrawalService

ClientMgrDisplay, KeyPad,
CardReader,
ClientMgr,
DispenserFeeder,
DispenserSensor,
CashCounter

ProcessesClasses

<<process>>
ClientMgr

<<process>>
TransactionMgr

<<process>>
AccountMgr

<<rmi>>
<<rmi>>

23

Account.javaAccount,
Persistent class

WithdrawalService.javaWithdrawalServic
e

AccountMgr.javaAccountMgr

TransactionMgr.javaTransactionMgr

ClientMgr.javaClientMgr

DispenserFeeder.javaDispenserFeeder,
DispenserSensor,
CashCounter

Display.javaCardReader,
Display, KeyPad

Source ComponentsClasses

<<import>><<import>>

<<source>>
Display.java

<<source>>
DispenserFeeder.java

<<source>>
ClientMgr.java

<<source>>
TransactionMgr.java

<<source>>
Account.java

<<source>>
WithdrawalService.java

<<import>>

<<import>>

<<source>>
AccountMgr.java

<<import>><<import>>

<<import>>

Implementation View
-Source Components

24

-Executable Release

<<executable>>
AccountMgr.class

<<binary>>
Display.class

<<binary>>
DispenserFeeder.class

<<executable>>
ClientMgr.exe

<<executable>>
TransactionMgr.class

<<binary>>
Account.class

<<binary>>
WithdrawalService.class

<<link>> <<link>>

<<link>>

<<link>>

<<link>> <<link>>

25

Deployment View

- Deployment Diagram

- Deployment of Active Objects

ATM Client
ATM

Application
Server

ATM Data
Server

Customer

SNA intranet

*

:ATM Client

:ClientManager

:ATM Application Server

:TransactionManager

:ATM Data Server

:AccountManager

