
1

1. Introduction
2. Pattern Description and Application
3. Design Patterns
4. Architectural Patterns
5. Appendix: Other Patterns

Chap 5. Patterns

2

1. Introduction
Motivating Example

Problem: You are building a quote application, which contains a class that is
responsible for managing all of the quotes in the system. It is important that all quotes
interact with one and only one instance of this class. How do you structure your
design so that only one instance of this class is accessible within the application?

public class QuoteManager { //NOTE: For single threaded applications only
private static QuoteManager _Instance = null;
private QuoteManager() {}
public static QuoteManager GetInstance() {

if (_Instance==null) {
_Instance = new QuoteManager ();

}
return _Instance;

}
//... functions provided by QuoteManager
}

Simple solution:
÷Create a QuoteManager class with a private constructor so that no other class
can instantiate it.
÷This class contains a static instance of QuoteManager that is returned
with a static method named GetInstance().

Recurring problems like this kind have
been observed by experienced developers
and a common solution has been distilled,

as the Singleton pattern.

3

Pattern Overview
- A classical engineering rule of thumb consists of reusing

extensively available knowledge base for any kind of problem
solving that occurs during system design.

÷ When the knowledge doesn't exist for the problem at hand,
then intuition takes the lead.

÷ Architectural styles or patterns define experience-based
classes of designs along with their known characteristics.

- A pattern is a solution to a problem in a context
•A pattern codifies specific knowledge collected from

experience in a domain

Theft
Method

Intuition

Classical system

Unprecedented system

Theft
Method

Intuition

•There are three kinds of patterns
–Idioms: provide a solution for specific programming issues in given language.
–Design patterns: provide solutions to commonly recurring design issues.
–Architectural patterns: provide templates for designing entire architectures.

4

Pattern Description

-The solution can be further described by providing UML models.

Solution
-Components/connectors
-Run-time behaviour

Problem
- Design issues

Context
- Quality/Risk factors giving rise to design issue(s)

Pattern Name

-A pattern can be described by using a three-part schema:
÷Context: description of situations in which the problem arise.
÷Problem: general description of the design issues that need to be

solved by the pattern, and the driving forces or
(risk, quality) factors behind these issues.

÷Solution: the solution consists of two aspects: a static aspect that
describes the structural components involved, a dynamic

aspect that describes their run-time behaviour.

2. Pattern Description and Application

5

Example of Pattern Description

÷Notice that unlike the previous source code, the Singleton pattern description does not
mention a Quote or a QuoteManager class.

÷Instead, the pattern description illustrates a generalized problem-solution pair, while
the application of the pattern yields a very specific solution to a very specific problem.

Singleton
Context
Control access to a class by controlling instantiation process.

Problem
An application contains a certain type of data that needs to be globally accessed
and maintained. At the same time, this type of data is often unique in the system.
How do you provide an accessible interface to a class, but control the number of
instances within the system?

Solutions
The class itself is responsible for creating a single instance and providing global
access to that instance. Create a class that contains a static instance of the
Singleton that is returned with a static method name getinstance().

Singleton

-SingleInstance

+GetInstance()

SingleInstance: Singleton

6

Pattern Application: Example- the Command Pattern

public class UI {
public void actionPerformed(ActionEvent e) {

Object obj = e.getSource();
if (obj==mnuOpen) fileOpen(); //open file
if (obj==mnuExit) exitClicked(); //exit from program
if (obj==mnuClose) fileClose(); //close file

…
}
private void exitClicked() {System.exit(0); }
private void fileOpen() {…}

}

÷The actionPerformed code can get pretty unwieldy as the number
of menu items and buttons increases.

-The command pattern forwards client requests to corresponding objects.
÷Its main purpose is to keep the program and user interface objects
completely separate from the actions they initiate.

÷This decouples the UI class from the execution of specific commands,
thereby making it possible to modify the action code independently.

-Suppose that we build a simple program allowing users to edit files:

÷To avoid this, possible solution consists of using the Command pattern.

7

-The Command pattern provides an alternative by creating individual
Command objects and ensuring that every object receives its own
command directly.

UI
(invoker)

Command
(request)

Object
(receiver/

action)

÷Command objects implement the Command interface
÷UI elements (menu, button etc.) implement a CommandHolder interface, which

provides a place holder for Command objects.

CmdButton ExitCommand OpenCommandCmdMenu

<<interface>>
CommandHolder

getCommand()
setCommand()

<<interface>>
Command

execute()

8

/*Command objects implement the Command interface*/

public interface Command {
public void execute();

}

-Example of command implementation:

/*Example of Command object implementation*/

public class OpenCommand implements Command {
JFrame frame;
public OpenCommand(JFrame fr) {frame=fr;}
public void execute() {

FileDialog fdlg = new FileDialog(frame, “Open file”);
fdlg.show(); //show file dialog

}
}

÷Command objects:

9

/*UI elements (menu, button etc.) implement a CommandHolder interface*/

public interface CommandHolder{
public void setCommand(Command cmd);
public Command getCommand();

}

public class CmdMenu extends JMenuItem implements CommandHolder {
protected Command menuCommand; //internal copies
protected JFrame frame;

public CmdMenu(String name,JFrame frm) {
super(name); //menu string
frame=frm; //containing string

}
public void setCommand(Command cmd) {

menuCommand=cmd; //save the command
}

public Command getCommand() {
return menuCommand; //return the command

}
}

/*Example of CommandHolder Implementation*/

÷CommandHolder objects:

10

public class UI {
public void actionPerformed(ActionEvent e) {

CommandHolder obj = (CommandHolder) e.getSource();
Command cmd = obj.getCommand();
cmd.execute();

}

public UI () {
…

/*Create instances of the menu and pass them different command objects*/
mnuOpen = new CmdMenu(“Open…”,this);
mnuOpen.setCommand(new OpenCommand(this));
mnuFile.add(mnuOpen);

…
}

…
}

÷UI objects implementation:

Traditional Design without the Command Pattern
public class UI {

public void actionPerformed(ActionEvent e) {
Object obj = e.getSource();
if (obj==mnuOpen) fileOpen(); //open file
if (obj==mnuExit) exitClicked(); //exit from program
if (obj==mnuClose) fileClose(); //close file

…
}
private void exitClicked() {System.exit(0); }
private void fileOpen() {…}

}

11

Modeling a Design Pattern Using the UML

•Design patterns are modeled by providing both external and internal
views:

-From outside: as a parameterized collaboration.
-From inside: as a collaboration with its structural (class diagrams)

and behavioral parts (sequence diagrams).

Example: The Command Pattern
� Collaboration:

12

� Class Diagram:

� Interactions:

13

3. Design Patterns
-Design patterns: provide solutions to commonly recurring design issues.

Categories
-Three categories of design patterns: creational, structural, and
behavioral.

•Creational patterns: create instances of objects for your
application

•Structural patterns: compose groups of objects into larger
structures

•Behavioral patterns: define the communication and flow of
control in a complex program.

14

Example of Creational Pattern
- Factory pattern: provides a decision-making class that returns

selectively one of several possible subclasses of an abstract base class.

DrawingFactory

getDrawing(): Drawing

public class DrawingFactory {
public Drawing getDrawing(int criteria) {

if (criteria = 0) return new Triangle();
else return new Circle();

}
}

Drawing

draw()
getDimension(): Dimension

Circle

Circle()

Triangle

Triangle() Benefits of factory pattern:

-Code is made more flexible and reusable
by the elimination of instantiation of
application-specific classes

-Code deals only with the interface of the
Product class and can work with any
ConcreteProduct class that supports
this interface

15

Example of Structural Pattern

Façade Pattern:
-Is used to wrap a set of complex classes into a simpler enclosing
interface.
-Provides a unified and higher-level interface that makes a
subsystem easier to use.

Facade

Client
classes

Subsystem
classes

16

Compiler subsystem

Example: a compiler subsystem

Compiler

compile ()

Stream

StackMachineCodeGenerator

CodeGenerator

ByteCodeStream

SymbolParser

TokenScanner

ProgramNodeProgramNodeBuilder

VariableNode

ExpressionNode

StatementNode

Some specialized applications might
need to access directly the classes
of the compiler subsystem.

But most clients don’t care about
details like parsing and so on. They
merely want to compile some code!!!

The Compiler class acts as a façade:
it offers clients a single, simple
interface to the compiler subsystem.

17

Benefits of façade pattern:

•It hides the implementation of the subsystem from clients, making the
subsystem easier to use

•It promotes decoupling between the subsystem and its clients.
This allows you to change the classes that comprise the subsystem
without affecting the clients.

•It reduces compilation dependencies in large software systems

•It simplifies porting systems to other platforms, because it's less
likely that building one subsystem requires building all others

18

Example of Behavioral Pattern
- Observer Pattern

÷Define how several objects can be notified of a change.
÷Maintain dependency between objects so that when the state of
one object changes, the other objects are automatically notified
and updated.

Subject

Observer1

Observer2

Observer3

÷ Two kinds of components:
1.Observer: component that might be interested in state changes of the subject.

The observer registers interest in specific events, and defines an updating
interface through which state change notifications are made.

2. Subject: knows its observers and is expected to provide an interface for
subscribing and unsubscribing observers.

19

public interface Observer {
//notify an individual observer that a change has taken place
public void update();

}
public interface Subject {

//tell the subject that an object is interested in changes
public void register (Observer obs);
//notify observers that a change has taken place
public void notify();

}

÷Observers and subjects may implement the following interfaces.

Stock Customer

<<interface>>
Subject

register (o:Observer)
notify()

<<interface>>
Observer

update ()

observers

notify() {
for all o

in observers
o.update ()

}

update() {
observerState:=
subject.getState()
}

Examples
•Bound properties

•Veto case
•Event handling

•JDK 1.2+
A.K.A:
•Publisher Subscriber

20

•Benefits of Observer pattern:

•Minimal coupling between the Subject and the Observer
•Can reuse subjects without reusing their observers and vice versa
•Observers can be added without modifying the subject
•All subject knows is its list of observers

•Support for event broadcasting
•Subject sends notification to all subscribed observers
•Observers can be added/removed at any time

21

-Mediator pattern

Subject1

Mediator

Observer1

Subject2

Observer2

Observer3

÷In case where observers interact with several subjects and/or vice-versa
it is more appropriate to extend the observer pattern with the mediator.

÷The pattern:
- Defines an object that encapsulates how a set of objects interact, named Mediator.
- Promotes loose coupling by keeping objects from referring to each

other explicitly and lets you vary their interaction independently.

22

÷ Example:

Stock Customer

<<interface>>
Subject

register (o:Observer)
notify()

<<interface>>
Observer

update ()

observers

notify() {
for all o

in observers
o.update ()

}

update() {
observerState:=
subject.getState()
}

StockBrokerobserver
<<interface>>
Mediator

register(o:Observer)
notify()
update()

23

4. Architectural Patterns

Overview

Examples of Architectural Patterns
�Distributed ÷÷÷÷ Layered
�Event-driven ÷÷÷÷ MVC (Model-View-Controller)
�Frame-based
�Batch
�Pipes and filters
�Repository-centric
�Blackboard
�Interpreter
�Rule-based

Definition:
An architectural style or pattern is a description of the component and connector
types involved in the style, the collection of rules that constrain and relate them,
and the advantages and disadvantages of using the style.

24

Pipes-and-Filters Pattern
Pipes and Filters

Context
Provides a structure for systems that process streams of data.

Problem
-Developing a system that processes a stream of data requires the design of several components
that correspond to the different processing stages.

-These components may be developed by different developers, and may be available at different
period in time.
-Requirements are subject to change; flexibility, changeability, and reusability are key.

Solution
-Tasks are organized into several sequential processing stages:
÷Filters implement processing stages.
÷Pipes are communication data flow between filters.
÷Data source: input to the system (e.g., file, sensor etc.).
÷Data sink: output from the system (e.g., file, terminal etc.).

25

-The combination of filters and pipes forms what is called a processing
pipeline.

Filter1 Filter2 Filter3

pipe
Data
source

Data
sink

-Filters are categorized in 2 groups according to their triggering events:
÷Passive filters: output data is pulled from the filter by the subsequent

pipeline or input data is pushed in the filter by the
previous pipeline.

÷Active filters: function as separate threads or processes, and as such
pull their input and push their output down the pipeline.

÷When two active filters are connected either the pipe synchronizes them, or one
of the filters control the communication, in which case the pipe can be
implemented as a direct call.

÷Data sink and source can also be modeled as either passive or active.

26

Guidelines for Developing Pipes and Filters Architectures

2. Define the format of the data flow among the processing units.

3. Decide about the model of pipes used for interconnection, either
as direct call or synchronization pipeline.

4. Design and implement the filters: whether the filters are passive or
active will depend on the interconnection mechanism selected
previously.

1. Decompose the system functionality into a sequence of processing
stages.

27

Example: Pipes-and-filters model of an invoice processing system

An invoice processing system checks issued invoices against
payments received, and accordingly, issues either receipts or
payment reminders for customers.

1. Processing Stages/Data Flow

Read issued
invoices

Identify
payments

Issue receipts

Find payments
due

Issue payment
reminderInvoices Payments

Receipts

Reminders

28

2. Data/Processing Model

Account

PaymentInvoice

* invoices
* payments

Billing

issueReceipt(p
:Payment)

Reminder

Receipt

* accounts
reader

reader

Reader

readInvoice()
readPayment() Collection

findPaymentDue()
issueReminder()

29

3. Filters/pipes Design

Account

PaymentInvoice

* invoices
* payments

Billing

issueReceipt(p
:Payment)

Reminder

Receipt

* accounts
reader

reader

Reader

readInvoice()
readPayment() Collection

findPaymentDue()
issueReminder()

<<source>>
AccountData

<<filter>>
Input

<<filter>>
Processing

<<sink>>
Correspondence

<<pipe>>
FifoBuffer

Pull_I1

Push_I2
Pull_I3

Push_I4

30

Benefits and Drawbacks of Pipes and Filters

Benefits:
÷Friendliness
÷Reusability
÷Evolvability, flexibility, and maintainability
÷Concurrency

Drawbacks:
÷Poor level of interactivity
÷Difficulty to synchronize two related but separate streams of
data

÷Difficulty of sharing state information and high cost of data
transfer

31

Model-View-Controller Pattern
Model-View-Controller

Context
Provides a flexible structure for developing interactive applications.

Problem
-User interfaces are subject to changes. As new features are added to the system, the UI must provide
appropriate command and menus to handle them.
-Different platforms support different ‘look and feel’ standards; the UI must be portable.
-Different kind of users may expect different data format from the UI (bar char, spreadsheet etc.).

Solution
-Divide the system into three parts: processing, output, and input:
÷Model: contains the processing and the data involved.
÷View: presents the output; each view provides specific presentation of the same model.
÷Controller: captures user input (events-> mouse clicks, keyboard input etc.). Each view is associated
to a controller, which captures user input.

32

-Main goal: facilitate and optimize the implementation of interactive
systems, particularly those that use multiple synchronized presentations
of shared information.

Controller

Data Model

View

-Controllers typically implement event-handling mechanisms that are
executed when corresponding events occur.

-Changes made to the model by the user via controllers are directly
propagated to corresponding views. The change propagation
mechanism can be implemented using the observer (design) pattern.

-Key idea: separation between the data and its presentation, which is
carried by different objects.

33

Example: A Stock Trading Application
The stock trading application must allow users to buy and sell stocks, watch the activity of
stocks. The user is presented with a list of available stocks identified by their stock symbols.

The user can select a stock and then press a View stock button. That results in a report
about the stock: a spreadsheet or a graph that shows the stock price over some interval.
The report is automatically updated as new stock data becomes available.

StockData

company
price
symbol

* stocks

controller

observers *StockExchange

register(o:Observer)
notify()
getStock(symbol)
service(r:Request) StockView

init(e:StockExchange)
display()
activate()
update()

StockHandler

init(e:StockExchange,
v:StockView)

viewStock(symbol)
update()

Observer

update()

Class Diagram

34

:StockHandler :StockView:StockExchange

viewStock()

service()

notify()

update()

display()

update()

Interaction Diagram

35

<<model>>
Stock

<<view>>
Display

<<controller>>
Handler

IService

IUpdate

IUpdate

MakeController

* stocks

controller

observers *StockExchange

register(o:Observer)
notify()
getStock(symbol)
service(r:Request) StockView

init(e:StockExchange)
display()
activate()
update()

StockHandler

init(e:StockExchange,
v:StockView)

viewStock(symbol)
update()

Observer

update()

StockData

company
price
symbol

Static Structure

36

-Assuming that customers may trade through a stock broker, which may
trade stocks at several stock exchanges, it is more practical to extend
the observer with the mediator pattern.

<<interface>>
Mediator

register(o:Observer)
notify()
update()
service(r:Request)

* stocks

controller

observers *StockExchange

register(o:Observer)
notify()
getStock(symbol)
service(r:Request) StockView

init(e:StockExchange)
display()
activate()
update()

StockHandler

init(e:StockExchange,
v:StockView)

viewStock(symbol)
update()

Observer

update()

StockData

company
Price
symbol

StockBrocker

observer

37

:StockHandler :StockView:StockExchange

viewStock()
service()

notify()

update()
display()

update()

:StockBroker

service()

update()

notify()

38

Benefits and Drawbacks of the MVC Pattern

Benefits:
-Decouple the underlying computation from the information
presentation

-Possibility to associate multiple views to a single data model
-Increased flexibility, and reusability

Drawback:
-Increased complexity
-Intimate connection between view and controller
-Difficulty of using MVC with modern user-interface tools

39

Layers
Context
You are working with a large, complex system and you want to manage
complexity by decomposition.

Problem
How do you structure an application to support such operational requirements as
maintainability, scalability, extensibility, robustness, and security?

Solutions
-Compose the solution into a set of layers. Each layer should be cohesive and at
Roughly the same level of abstraction. Each layer should be loosely coupled
to the layers underneath. <<layer>>

Layer 1

<<layer>>
Layer 2

<<subsystem>>
Subsystem 1

<<subsystem>>
Subsystem 3

<<subsystem>>
Subsystem 2

Layered Pattern

40

-Layering consists of a hierarchy of layers, each providing service to
the layer above it and serving as client to the layer below.
÷Interactions among layers are defined by suitable communication protocols.
Interactions among non-adjacent layers must be kept to the minimum possible.

-Layering is different from composition
÷higher-layers do not encapsulate lower layers
÷lower layers do not encapsulate higher layers (even though

there is an existence dependency)

41

Application-specific layer

Application-general layer

Middleware layer

System-software layer

Example of Layered Architecture

42

<<subsystem>>
ATM Interface

<<subsystem>>
Transaction Mgt

<<subsystem>>
Account Mgt

<<subsystem>>
Java Virtual Machine

<<subsystem>>
Java.rmi

<<subsystem>>
Java.awt

<<subsystem>>
TCP/IP

Application-specific layer

Application-general layer

System-software layer

Middleware layer

43

Three-Layered Pattern
Context
You are building a business solution using layers to organize your application.

Problem
How do you organize your application to reuse business logic, provide deployment flexibility and
conserve valuable resource connections?

Solutions
-Create three layers: presentation, business logic
and data access.

÷Locate all database-related code, including database clients
access and utility components, in the data access layer.

÷Require the data access layer to be responsible for
connection pooling when accessing resources.

÷Eliminate dependencies between business layer
components and data access components.

÷Either eliminate the dependencies between
the business layer and the presentation layer or
manage them using the Observer pattern.

Presentation Layer

Presentation Components

Domain Layer

Business Logic Components

Data Access Layer

Data Access Components

44

Example

45

Example: Integrating (Web) Services

Problem: You built a quote application for a successful enterprise that is rapidly expanding.
Now you want to extend the application by exposing your quote engine to business partners
and integrating additional partner services (such as shipping) into the quote application.

How do you structure your business application to provide and consume service?

Solution:
÷Extend Three-Layered Application by adding additional service-related

responsibilities to each layer.
-The business layer adds the responsibility for providing a simplified set of operations to client
applications through Service Interfaces.

-The responsibilities of the data access layer broaden beyond database and host integration to include
communication with other service providers through Service Gateway components, which are
responsible for connecting to services and notifying business process components of significant
service-related events.

46

Three-Layered Services Application
Context
You are building a business solution that uses presentation, business, and data access layers to
organize your application. You want to expose some of the core functionality as services that other
applications can consume and enable your application to consume other services.

Problem
How do you organize your application to provide granular and logical elements from highly variable
sources?

Solutions
1. Decompose your application into a collaborating set of services that provide part of the system
functionality.
2. Identify in the domain layer, a Service Interface for each service that is independent from the
underlying implementation.
3. Extend the data access layer to use Service Gateways to communicate with other service providers.
4. If application navigation logic is complex, use (in the presentation layer) user interface process

components to encapsulate and reuse this logic.

47

User Interface
Component

User Interface
Component

User Interface
Component

User Interface
Process Component

Presentation Layer

Service
Interface

Business
Component

Business Logic Layer

Service
Interface

Service
Interface

Business
Component

Business
Component

Data Access
Component

Data Access Layer

Service
Gateways

Service
Gateways

(Three-layered service pattern)

48

Example

49

Benefits and Drawbacks of Layering

Benefits:
÷Suitable for complex and evolutionary problems
÷Communicability, increased reusability due to the decoupling and
strong independence between the different functionality

÷Extensibility and flexibility

Drawbacks:
÷Difficulty of structuring some systems in a layered manner,
especially when some functions require crossing several layers

÷Performance problems when high-level functions require close
coupling to low level functions

50

4. Appendix: Other Patterns

4A. Appendix: Examples of Design Patterns

�Creational patterns
•Factory Method pattern: provides a decision-making class that

returns selectively one of several possible subclasses of an
abstract base class.

•Abstract factory pattern: provides an interface to create and return
one of several families of related objects.

•Builder pattern: separates the construction of a complex object
from its representation so that different representations can be
created according to the needs of the program.

51

� Structural Patterns
-Describes how classes and objects can be combined to form larger
structures.

•Composite patterns: creates a composition of objects
•Proxy pattern: creates a simple object that takes the place of a
more complex object which may be invoked later
•Façade pattern: provides a uniform interface to a complex
subsystem.

� Behavioral Patterns
-Are concerned specifically with communication between objects.

•Chain of responsibility pattern: allows decoupling between
objects by passing a request from one object to the other until it
is recognized
•Command pattern: use simple objects to represent the execution
of software commands
•Observer pattern: defines how several objects can be notified of
a change.

52

4B. Appendix: Other Architectural Patterns
Repository Pattern
-Used for applications in which sub-systems exchange large amounts of
data during their activities.
-Provides a shared repository that can be used by the sub-systems to
exchange their data.
-Two kinds of components: a central data-store carrying the system
current state, and a set of independent components that perform
operations on the data carried by the central data-store.

Data-Store

Component 1

Component 4

Component 3

Component 5

Component 2

53

Example 1: Repository Model of a CASE Tool

Project Repository

Design Editor Code Generator

Progr. Editor

Design Transl.

Design Analy.

Report Gener.

Grammar
definition

Repository

Output
definition

Symbol
table

Abstract
Syntax tree Optimizer

Code
generator

Editor

Pretty-
printer

Semantic
analyzer

Syntax
analyzer

Lexical
analyzer

Example 2: Repository Model of a Language Processing System

54

Benefits and Drawbacks of the Repository Pattern

Benefits:
÷Efficient for sharing large amount of data

Drawbacks:
÷Performance may be seriously affected
÷Distribution of the repository may be quite complex
÷The data compatibility mechanisms selected may also impact the
extensibility of the overall system

Example Uses:
-Large IDEs
-Language processors
-Operating systems

55

Blackboard Pattern

-Variant of the repository style used for systems involving complex
problem solving (e.g. signal processing, programming environments)

-Provides a high-level organization and control of the knowledge needed
for complex problem solving.

Context: An immature domain in which no closed approach to a solution is
known or feasible.

Known Uses:
-Speech recognition
-Enemy detection
-Object monitoring
-Expert systems

A collection of independent programs
that work cooperatively on a common
data structure.
“Opportunistic problem solving”

56

-Three kinds of components involved:
÷Knowledge sources: pieces of application specific knowledge (e.g.
data, algorithms and procedures needed to solve the problem).
÷The blackboard and its data structure: describe the state of the

solution in a global data store.
÷The control component: triggered by changes in the blackboard;
decides and activates the most suitable knowledge sources.

Blackboard

Knowledge
source 1

Knowledge
source 4

Knowledge
source 3

Knowledge
source 5

Knowledge
source 2

Control

Benefits: flexibility and extensibility, and its support for concurrency.

57

Broker Pattern
-Organizes and coordinates distributed and possibly heterogeneous
software components interacting remotely.

-Three kinds of components:
÷Broker: encapsulates interactions between clients and servers.
÷Servers: provide services through the broker.
÷Clients: access servers’ services through the broker.

ClientSideProxy
ServerSideProxy

Client Server

Bridge

Broker

-Three kinds of intermediary components involved:
÷Client-side proxy: mediates between the client and broker.
÷Server-side proxy: mediates between the server and broker.
÷÷÷÷Bridge: connects local broker with remote brokers via the network.

58

Benefits and Drawbacks of the Broker Pattern

Benefits:
•Transparencies (e.g. location, time, replication, distribution etc.),
•Low coupling among components, reusability, extensibility,
portability, and interoperability.

Drawbacks:
•Lower level of fault tolerance and reduced performance.

Context: Your environment is a distributed and possibly heterogeneous
system with independent cooperating components.

Known Uses:
-CORBA
-OLE
-WWW

59

Sponsor-Selector Pattern
-Intended for dynamic changing applications, in which decision about
using specific set of resources is made transparently at run-time.
-Approach: provide a mechanism for resource selection when it is
needed. A clear separation is made between the decision about the
utility of the resource, the selection of the resource, and the use of the
resource.
-Three kinds of components:

÷Selector: decides which resource to prefer under particular
conditions.

÷Sponsor: associated to a particular resource and determines
when its resource may be used.

÷Resource: represent specific data or functionality provided in
the context of the system.

Benefits: reusability, extensibility and flexibility.
Drawback: potential for tight coupling between the client and the selector in one hand, and
the selector and the sponsors in the other hand in case the selection procedures involve large
context-specific knowledge.

60

Generalized Framework for Access Control (GFAC)
-Dedicated for systems in which there are important access control
requirements.
-Separates the access control procedure in two parts:

÷Adjudication: performed by the Access Decision facility (ADF)
÷Enforcement: made by the Access Enforcement Facility (AEF)

-Other components involved in the framework are the following:
÷Subject
÷Object
÷Access Control Information (ACI): information used by the ADF

to make access control decisions.
÷Access Control Rules (ACR): embodies access control rules.

Modus Operandi
In practice when a subject wants to access an object, it sends a request to the AEF. The AEF
then forwards the request to the ADF with additional information (related to the subject)

encapsulated in the ACI. Basing itself on the rules defined in the ACR, the ADF makes decision
about whether access shall be granted or not, and notifies the AEF about that decision. Then
accordingly the AEF will or will not grant access to the resource.

61

Subject

ADFAEF

ACRACIObject

1. Requests access

4. Responds: “yes” + set-attributes

6. enables
access

3. refers to5. updates

7. access

2. invokes policy

