
1

Chapter 6. CORBA-based Architecture
6.1 Introduction to CORBA
6.2 CORBA-IDL
6.3 Designing CORBA Systems
6.4 Implementing CORBA Applications

2

Part 6.1 Introduction to CORBA
1. Introduction
2. Distributed Architecture
3. Middleware Systems
4. CORBA Architecture

Chapter 6. CORBA-based Architecture

3

1. Introduction
•CORBA is a software standard that is defined and maintained by
the Object Management Group (OMG).
•The OMG:

-Founded in 1989 by eight companies as a non-profit organization.
-The consortium now includes over 800 members.
-Charter: establishment of industry guidelines and detailed object management

specifications to provide a common framework for application development.

•OMG produces specifications, not implementations
-Implementations of OMG specifications can be found on over 50 operating systems

•CORBA is the acronym for Common Object Request Broker
Architecture. It consists of a standard framework for developing and
maintaining distributed software systems. Specifically, it provides

-A RPC mechanism allowing the invocation of operations across different programming languages,
hardware, and operating system platforms, achieving portability and interoperability.
-A component model, the CORBA Component Model (CCM), for reusable component development.

4

2. Distributed Architecture

Definition
A distributed architecture is an architecture supporting the development of applications and services
that can exploit a physical architecture consisting of multiple, autonomous processing elements.
Those elements do not share primary memory but cooperate by sending messages over the network.

Example-Distributed System
Key Characteristics:

•Multiple autonomous components
•Components are not shared by all users
•Resources may not be accessible
•Software runs in concurrent processes
on different processors
•Multiple points of control
•Multiple points of failure

5

÷÷÷÷Failure
-Independent failure: often we want the system to keep working after one or more have failed.
-Unreliable communication: connections may be unavailable; messages may be lost.

Underlying Issues

÷÷÷÷Heterogeneity
-Heterogeneous hardware, OS, languages, protocols etc.

÷÷÷÷Costly Communication
-The interconnections among the computers usually provide lower bandwidth, higher

latency and higher cost communication compared to independent processes in a single
machine

÷÷÷÷Insecure communication
-The interconnections among the computers may be exposed to unauthorized eavesdropping

and message modification.

-Some of the key challenges involved in designing,
implementing and operating a distributed system
include:

÷÷÷÷Concurrency
-Resource sharing and concurrent access to data pose the issue of data integrity.

6

Transparency

•Distributed systems should be perceived by users and application
programmers as a whole rather than as a heterogeneous collection
of cooperating components: this is referred to as transparency.

Dimensions of Transparency in Distributed Systems

S c a l a b i l i t y
T r a n s p a r e n c y

M i g r a t i o n
T r a n s p a r e n c y

A c c e s s
T r a n s p a r e n c y

P e r f o r m a n c e
T r a n s p a r e n c y

R e p l i c a t i o n
T r a n s p a r e n c y

L o c a t i o n
T r a n s p a r e n c y

F a i l u r e
T r a n s p a r e n c y

C o n c u r r e n c y
T r a n s p a r e n c y

-Transparency has different dimensions that were identified by ANSA
as part of the International Standard of Open Distributed Processing (ODP).

-These represent various properties that distributed systems should have.

7

3. Middleware Systems
Definition: Middleware is software that enables interprocess communication.
It provides an API that isolates the application code from the underlying network
communication formats and protocols (FAPs).

-Middleware systems implement the various forms of distribution transparencies
by creating the illusion of unity and homogeneity within the network, what is
called in other words the “single-system image”.

÷They act as glue between autonomous components and processes (e.g., clients,
server) by providing generic services on top of the OS.

M i d d l e w a r e

N e t w o r k O p e r a t i n g S y s t e m

H a r d w a r e

C o m p o n e n t C o m p o n e n t

H o s t

M i d d l e w a r e

N e t w o r k O p e r a t i n g S y s t e m

H a r d w a r e

C o m p o n e n t C o m p o n e n t

H o s t

M i d d l e w a r e

N e t w o r k O p e r a t i n g S y s t e m

H a r d w a r e

C o m p o n e n t C o m p o n e n t

H o s t

M i d d l e w a r e

N e t w o r k O p e r a t i n g S y s t e m

H a r d w a r e

C o m p o n e n t C o m p o n e n t

H o s t

N e t w o r k

8

-There are three kinds of middleware systems: transaction-oriented
middleware, message-oriented middleware, and object-oriented
middleware.

÷ Transaction-oriented middleware supports distributed computing
involving database applications.

÷ Message-oriented middleware supports reliable, asynchronous
communications among distributed components.

÷Object-oriented middleware systems are based on object-oriented
paradigm, and primarily supports synchronous communications
among distributed components.

-The most popular object-oriented middleware paradigms include
CORBA, DCOM, DotNET, and EJB (which is based on RMI).
÷All these middleware systems, also referred to as Object-Oriented middleware,
are based on the Remote Procedure Call (RPC) framework foundation.

÷ They extend RPC framework by introducing object-oriented mechanisms.

9

Example - Middleware

Example - Distributed Middleware with CORBA

10

Remote Procedure Call (RPC)

-RPC allows the invocation of operations across different hardware
and operating system platforms.
÷ Provide the same mechanism as local procedure call but at the interprocess level.
÷ Support a common Interface Definition Language (IDL).

-The RPC mechanism is provided by a RPC software, which handles
transparently all the steps involved. The functionality of the RPC
software include:

÷ Location of the server functions, and
and concurrent requests.

÷ Parameters passing and data
representation.

÷ Failure management
÷ Security management

-The RPC software provides an implementation of the session
and presentation layer. Note that the transport layer (below) is
implemented as a socket.

11

Presentation layer
-Heterogeneous data conversion
-Marshalling/unmarshalling (client and
server stubs)

Session layer
-Server location (portmap daemon)
-Server activation/deactivation (inetd
daemon)

Transport layer

IDL

RPC

-The presentation layer implementation enables data conversion and
formatting (e.g., marshalling/unmarshalling).

-The session layer implementation enables clients to locate RPC servers
statically or dynamically, and activates or deactivates RPC servers
when requests arrive.

With OO middleware such as CORBA:

-The presentation layer fulfills the same functions
as corresponding layer for RPC. It is also in charge
of mapping object references to suitable format for
the transport layer.

-The session layer is in charge of mapping object
references to hosts, activating and deactivating
objects, executing the requested services,
and synchronizing client and server.

12

Network
Directory
Service

Client

2. locate server
(Start Up)

3. call function
(Client Application)

4. pack arguments
(Client stub)

5. Make RPC
(Client runtime)

Server

1. publish
(Start Up)

6. Receive RPC
(Server runtime)

7. unpack arguments
(Server stub)

8. Execute function
(Server application)

RPC

RPC Mechanism

13

Client Object
Implementation

Object Request Broker (ORB)

Request

IDL stub IDL
skeleton

CORBA in a Nutshell
÷In CORBA the services that an object provides are expressed in a contract that serves as
the interface between it and the rest of the system.
÷The Object interface is expressed using a special language named Interface Definition

Language (IDL).
÷For objects to communicate across the network, they need a communication infrastructure
named Object Request Broker (ORB).

÷Both client and object implementation are isolated from the ORB by an IDL interface.
Clients see only the object’s interface, never the implementation.
÷To communicate, the request does not pass directly from client to object implementation;
instead every request is passed to the client’s local ORB, which manages it.

4. CORBA Architecture

14

O b j e c t R e q u e s t B r o k e r (O R B)

A p p l i c a t i o n
O b j e c t s

C O R B A
D o m a i n s

C O R B A
F a c i l i t i e s

C O R B A S e r v i c e s

CORBA Reference Model Architecture
-The CORBA standard relies on a reference model named the
Object Management Architecture (OMA).

- A typical CORBA implementation includes:
• An Object Request Broker (ORB) implementation
• An Interface Definition Language (IDL) compiler
• Implementations of Common Object Services (COS), also called
CORBA Services

• Common Frameworks, also called CORBA facilities
• An Internet Inter ORB Protocol (IIOP) implementation

15

Interface Definition Language (IDL)
-IDL provides a programming language neutral way to define how a
service is implemented.

÷It is an intermediary language between specification languages such
as the UML and programming languages such as C, C++ etc.
÷It provides an abstract representation of the interfaces that a client will use and a server

will implement.
÷Clients and object implementation are then isolated by three mechanisms: an IDL stub on
the client end, an ORB, and a corresponding skeleton on the object implementation end.

16

-The ORB is responsible for:
÷finding the object implementation for the request,
÷preparing the object implementation to receive the request,
÷communicating the data making up the request.

Object Request Broker
-The interface the client sees is completely independent of where the
object is located, what programming language it is implemented in,
or any other aspect that is not reflected in the object’s interface.

17

Structure of Object Request Interfaces

18

•An object adapter is the primary means for an object implementation
to access ORB services such as object reference generation.
•Object adapters are responsible for the following functions:

–Generation and interpretation of object references
–Method invocation
–Security of interactions
–Object and implementation activation and deactivation
–Mapping object references to the corresponding object implementations
–Registration of implementations

Object Adapter

19

Common Object Services (COS)
-Up to 15 services are currently available that assist the ORB.

÷They are defined on top of the ORB, as standard CORBA objects with
IDL interfaces

ORB
Factory NamingContext EventChannel

-Popular services include:
•Naming Service: provides a way for CORBA clients (and servers) to

find objects on the network.
•Event Service: stores and delivers events sent by clients or servers to

their target objects.
•Security Service: provides a means to authenticate messages, authorize

access to objects, and provide secure communications.
•Transaction Service: defines a means to control an action against a

database or other subsystem.

20

-One of the goals of the CORBA specification is that client and
object implementations are portable.

-Interoperability is more important in a distributed system than
portability.

-CORBA 2.0 added interoperability as a goal in the specification,
under the form of interoperability protocols:

ORB Interoperability Architecture

÷Inter-ORB Bridge Support
÷General Inter-ORB Protocol (GIOP)
÷Internet Inter-ORB Protocol (IIOP)
÷Environment-Specific Inter-ORB Protocols (ESIOPs)

21

Inter-ORB Bridge Support
-The role of a bridge is to ensure that content and semantics are mapped from the
form appropriate to one ORB to that of another, so that users of any given ORB
only see their appropriate content and semantics.

-The General Inter-ORB Protocol (GIOP) specifies a standard transfer syntax
(low-level data representation) and a set of message formats for communications
between ORBs.

÷The protocol is specifically built for ORB to ORB interactions and is designed to work directly
over any connection-oriented transport protocol that meets a minimal set of assumptions.

-IIOP (Internet Inter-ORB Protocol) is a TCP/IP implementation of GIOP.
÷IIOP is used in other systems that do not even attempt to provide the CORBA API
(e.g, “RMI over IIOP”, EJB etc.)

÷Because they all use IIOP, programs written to these APIs can
interoperate with each other and with CORBA programs.

22

Examples of CORBA Products

Netscape browsers have a version
of VisiBroker embedded in them

Netscape Communicator

Provides an ORB and two
CORBA programming models:
-RMI programming model
-IDL programming model

Sun Java 2 Platform

A popular application server with
an ORB from IBM

WebSphere

A popular Java and C++ ORB
from Iona Technologies

Orbacus

DescriptionORB

Examples ORBs implementations
•Client- and Implementation-resident ORB
•Server-based ORB
•System-based ORB
•Library-based ORB

