
1

Part 6.3 Designing CORBA Systems

1. General Approach
2. From OO Design to IDL
3. UML Profile for CORBA
4. Refinement of UML models-IDL Generation

Chap 6. CORBA-based Architecture

2

1. General Approach

Requirements

Translation into IDL

Stubs and skeletons codes

Implementation (Java,C++) (Java,C++)
Code

Specification (UML)

Design (UML)

Compilation (IDLtoJava/IDLtoC++)

÷The design of a CORBA
system fits in regular Software
Development Process

÷The IDL code generated from the
logical view serves as baseline for
implementing CORBA mechanisms

3

2. From OO Design to IDL
�IDL model is a refinement of OO design product:
•doesn’t capture all the semantics of an OO design, however it expands

the details of features such as attributes and operations in the static model.
•captures only the interface information included in OO models
•is not intended to represent implementation characteristics such as
dynamic behavior, object interactions etc.

�IDL is useful to capture a key subset of OO static models:
•public attributes and public operations
•inheritance relationships
•associations may be represented indirectly as attributes
•expands the attributes and operations definitions by providing detailed types
definitions, strongly typed operation signatures, and exception definitions.

�Refinement from OO to IDL may be conducted systematically
using UML profile for CORBA:

•allows partial automation of the IDL generation process.

4

Using Associations to Represent User-Defined Types

Example - UML Class Diagram

Example IDL

interface A {};
interface B {

attribute A myA;
};

3. UML Profile for CORBA
•The UML Profile for CORBA specification was designed to provide a standard
means for expressing the semantics of CORBA IDL using UML notation and thus
to support generation of these semantics using UML tools.

5

UML Namespace Containment Notation for Nested CORBA Constructs

Example - Nested Struct

struct A {
struct B {

short k;
long j;

} p;
string q;

};

6

This example shows the explicit “IDLOrder” TaggedValues on

each of the Attributes, Associations, and Namespace containments

for preserving the ordering given in the IDL.

Example - Interface Containing a Struct

interface TestInterface {
struct TestStruct {

string Member1;
};
attribute string MyStringAttr;
attribute TestStruct MyStructAttr;
void MyOp1(in string str, inout TestStruct t);
boolean MyOp2(inout TestStruct t);

};

7

Example - Module Namespace Containment

Module Package Notation

Module Declaration
module Parent {

module Child1 {};
module Child2 {

module Grandchild {};
};

};

8

Type Definition Using UML Profile for CORBA
-You can map Corba constructs to UML model elements in two ways:

÷by defining the elements within an interface (as nested element), in
which case the element is referenced in terms of the interface.

÷by defining an independent class that represent the types; in that case
other elements can reference the type directly.

InterfaceInterface

Bounded Role Type set to Sequence and
Cardinality set to dimension of sequence.

(Association to supplier) Sequence

Bounded Role Type of supplier set to Array;
cardinality set to array dimension.

(Association to supplier)Array

Implementation Type for the switchCORBAUnionUnion

Implementation TypeCORBATypedefType renaming

CORBAStructStructure

CORBAEnumEnumeration

implementation type and valueCORBAConstantConstant

Set Raises property for relevant operations.CORBAExceptionException

Properties in Rational RoseSterotypeFeatures

9

module myModule {
interface Person {
attribute string name;

};

interface Customer::Person {
attribute short sin;

};

exception BalanceException {
boolean status;
Customer myCustomer;

};

interface Account {
attribute float balance;
attribute Customer owner;
void deposit(float amount);
void withdraw(float amount)

raises BalanceException;
};

<<Interface>>
Customer

sin:short

<<Interface>>
Account

balance: float

withdraw(amount:float)
deposit(amount: float)

<<CORBAException>>
BalanceException

status:boolean

<<Interface>>
Person

name: string

myException

myCustomerowner

typedef short ZipCode;
struct Address {

string street;
short number;
ZipCode zip[6]; //single-dimension array

};

<<CORBATypedef>>
ZipCode

<<CORBAStruct>>
Address

street: string
number: short

zip

1..6

•Examples

10

union AccountCategory switch(short) {
case 0: Account RetailAccts;
case 1: Account CorporateAccts;

};

<<CORBAStruct>>
Transaction
amount:short
number: short

<<Interface>>
History volume

1..10

<<CORBAUnion>>
AccountCategory

RetailAccts: Account
CorporateAccts:Account

<<CORBAEnum>>
TaxationType

Personal
Corporate
Non-profit

interface History {};
struct Transaction {
long amount;
short number;
sequence <History,10> volume; // sequence definition
};
}

enum TaxationType {
Personal,
Corporate,
Non-profit

};

•Examples (ctd)

11

4. Refinement of UML models-IDL Generation
-Necessary step for systematic IDL generation consists of refining the
UML design model based on UML profile for CORBA

÷Refinement involves deriving a concrete UML model by adding type information
(for attributes and operations), and exceptions, forward references and include.
÷Based on the refined UML model, IDL code can be generated automatically using

tools such as Rational Rose.

1. Define for each class one or several interfaces that support the public features
(e.g. attributes, operations) of the class. Protected and private features

remain in the class.

2. Convert the relationships between classes into equivalent relationships between
interfaces. Optionally eliminate the implementation classes for clarity.

3. Define precisely operations and attributes by specifying their types and signatures.
Define precisely corresponding types and exceptions using CORBA stereotypes
whenever applicable.

Refinement Rules

12

Example
÷ Design Diagram

Course

+subject:string
+semester:SchoolSemesters

+register(s:Student)
+cancel()

registeredFor

GraduateStudent

+thesis:string
+supervisor:string
#underGradGPA:long

Student
+personalInfo:StudentRecord
+major:string
-number:long
+enroll(c: Course)
+graduate()

13

<<interface>>
Course

+subject:string
+semester:SchoolSemesters

+register(s:Student)
+cancel()

registeredFor

<<interface>>
GraduateStudent

+thesis:string
+supervisor:string

<<interface>>
Student

+personalInfo:StudentRecord
+major:string
+enroll(c: Course)
+graduate()

CourseImpl

GraduateStudentImpl

#underGradGPA:long

StudentImpl

-number:long

÷ Refinement (first level): separation of interfaces and implementations

14

÷ Refinement (second level): types definitions

<<interface>>
Course

+subject:string

+register(s:Student)
+cancel()

registeredFor

<<interface>>
GraduateStudent

+thesis:string
+supervisor:string

<<interface>>
Student

+major:string
+enroll(c: Course)
+graduate()

<<type>>
StudentRecordpersonalInfo

CourseImpl

GraduateStudentImpl

#underGradGPA:long

StudentImpl

-number:long

<<type>>
SchoolSemesters

semester

<<exception>>
HasNotCompletedReqts

<<exception>>
ClassFull

15

<<interface>>
Course

+subject:string

+register(in s:Student)
+cancel()

registeredFor

<<interface>>
GraduateStudent

+thesis:string
+supervisor:string

<<interface>>
Student

+major:string
+enroll(in c: Course)
+graduate()

personalInfo semester

<<CORBAException>>
HasNotCompletedReqts

<<CORBAException>>
ClassFull

÷ Refinement (third level): CORBA profile/model simplification

<<CORBAStruct>>
StudentRecord

name:string
address:string
studentNo:unsigned long

<<CORBAEnum>>
SchoolSemesters

FALL,
SPRING
SUMMER

