Chap7. Component-based Development

Part 7.2 CCM Component Definition

1. CCM Component M odel

2. Extended IDL

3. Equivalence

4. Component mplementation Definition
L anguage (CIDL)

5. Implementinga CCM Component

6. Extending the Basic Example

1. CCM Component Modéel

Component Features

vye

QﬂQa

Container

Component
Home

Components Assembly

@

Reference

Component T

N ¢

Container

0 :
(%/ﬂ 9\% Middleware Bus
o S
o 6 g - | | | |
g (:th O— 7 O 4@ 9 (%) Replication Security Persistence |||Notification
3 = % =
n o A/V Streamin Schedulin Load Balancin
> D gD g% g g :
® 1l g9 Y
5 O
~ 0 ¢5
DN I
\ Attributes
— L[

2. Extended DL

Overview

-The CCM (CORBA 3.x) introduces new |DL constructs that support
component types. This comes in addition of features already available
for interface definitions (CORBA 2.X).

-However component instances are accessed through regular CORBA
object references. That is made possible by defining what is called the
Component Equivalent Interface.

-Component equivalent interface isaregular CORBA interface,
generated automatically, that carries all the operations associated
with the component.

+These include custom operations from supported interfaces as well as generic operations
derived from and associated with the components ports (e.g., facets, receptacles, etc.)

Components Definition
-Component types are declared using the keyword component.

-The equivalent interface supported by the component may inherit from
some user-defined interfaces. Thisrelationship is expressed using
a supports clause on the component declaration.

+That’ s the single way component definitions may introduce new operations.

+ A support clause may refer to asingle interface or to several interfaces
related by inheritance.

-Exampl € /[1DL Code
Clock
ﬁ) module vehicle {
interface Clock {
Time getTime ();
Car void ResetTime (in Timet);

1§

component Car supports Clock {} 4

I

Components Facets

-Facets correspond to the interfaces provided by a component. Facets
are declared using the keyword provides.

-Notation
component XXX {
provides <interface type> <facet name>;
%
-Example
module motors {
interface Engine({};
interface Panel {};

component Car supports Clock{
provides Engine _engine;
provides Panel panel;

};

1

Components Receptacles

-Correspond to the interfaces required by a component to function in
agiven environment.

-A receptacle is defined by using the keyword uses followed by the
name of the receptacle.

-There are 2 kinds of receptacles: simplex receptacle and multiplex
receptacle.

Simplex Receptacle
~Can be connected to only one object.

-Notation

component XXX {
uses <interface type> <receptacle name>;

%
-Example

interface Customer {};
component Account {
uses Customer owner;

1 6

Multiplex receptacle
+Can be connected to several objects.

Notation
component XXX {
uses multiple <interface type> <receptacle name>;

};

Example
component Account {
uses multiple Customer owner;

};

Event Sources and Sinks
-Event-driven communication 1S used as alternative to invocation-based

communication, in order to decouple an object from its environment.

Event Type
-Notifications values are defined using CORBA valuetype type,

which is derived from Components..EventBase; eventtypeisa
specialization of value type dedicated to asynchronous component

communication.

Notation
eventtype<name> {
[[attributes

|3
Example

modul e stockbrocker {
eventtype AlertSgnal{
public string reason;

¥
8

Publishers
-The keyword publishesis used to define an event source named

publisher that allows only 1-to-n communication,which makes it
equivalent to amultiplex receptacle.

Notation

component XXX {
publishes <event type> <source name>,

I

Example

modul e stockbroker {
eventtype AlertSgnal{
public string reason;

I

component Broker {
publishes AlertSgnal alert_source;

1
};

Emitters
-Correspond to event sources involved in point-to-point

communications with only one consumer; they are defined using

keyword emits.

Notation
component XXX {
emits <event_type> <source name>;

%
Example
modul e stockbrocker {

eventtype StockLimit {
public long stock value;

I

component Broker {
emits StockLimit limitAlert;

1
};

10

Event Sink

-An event sink (or consumer) is declared using the keyword consumes.

Notation

component XXX {
consumes <event_type> <sink_name>;

|3
Example

module stockbrocker {
eventtype AlertSgnal {
public string reason;
%
component Trader {
consumes AlertSgnal alert_sink;

}

|3
Attributes
-Attributes ports are defined and used for component configuration.

+They are defined in the same way as for interface, but are primarily and typically used for
configuration purposes. The equivalent interface will carry pairs of get and set methods.

component Broker {
attribute string broker _name;
emits SockLimit limitAlert; 11

b

Component Homes

-A CORBA component is managed by a special entity called a home,
which provides life cycle and additional services on behalf of the
component.

~-Homes provide factory operations that are used to create instances of
the components they manage. They also provide some operations that
are used to locate and retrieve pre-existing component instances.

-A home manages component instances of a specific type.

+~Multiple home types can manage the same component type; however
a component instance is associated to a unique home instance.

-A home is declared using the home keyword.
home Brocker Home manages Brocker { };

- Equivalent interfaces are generated for homes as well.

12

3. Equivalence

-The cidl compiler generates from the IDL 3.x definition equivalent
IDL 2.X code, and the supporting Component | mplementation
Framework (ClF) necessary to develop and deploy the component.

Component Equivalent I nterface
-A component equivalent interface is generated for every component.

-Component equivalent interface is aregular CORBA interface,
that carries equivalent operations associated with the features
(e.q., facets, receptacles, events etc.) of the component.

component Car supports Clock{

Example:

}
The equivalent interface for Car component would be:

interface Car: Components.: CCMODbject, Clock{
//equivalent operations definitions for ports and interfaces

I

13

Facets
Notation
provides <interface type> <facet_name> ();

Equivalence
<interface type> provide <facet name> ();

-Clients of a component instance can invoke corresponding method to
obtain a reference to the facet.

Example
-The equivaent interface for Car component, would
be asfollows: module motors
interface Engine{};
interface Car: Components:: CCMODbject, Clock{ interface Panel {};
Engine provide_enging();
Pand provi de _pane| ()’ component Car supports Clock{
}; provides Engine _engine;

provides Panel _panel;
|3

h
14

Receptacles

Simplex Receptacles
Notation

uses <interface type> <receptacle name>;

Equivalence

-Equivalent IDL will contain methods that clients can use to
connect/disconnect to the given receptacle.

void connect_<receptacle name> (in <interface type> cnxn)
raises (Components: : AlreadyConnected, Components: : I nvalidConnection);

<interface type> disconnect_<receptacle name>() raises(Components::NoConnection);

<interface type> get_connection_<receptacle name> ();

Exampl e interface Customer {};
component Account {
interface Account { uses Customer owner:
/[connections operations for receptacle owner; Y

void connect_owner (in Customer conxn) raises(Components:: AlreadyConnected,
Components: : InvalidConnection);
Customer disconnect_owner () raises(Components:: NoConnection);

Customer get_connection_owner (); 15

1

Multiplex Receptacles

Notation
uses multiple <interface type> <receptacle name>;

Equivalence

struct <receptacle name>Connection {
<interface type> objref;
Components:.: Cookie ck;

|3
sequence <<receptacle name>Connection> <receptacle name>Connections;

Components: : Cookie connect_<receptacle name> (in <interface type> cnxn)
raises (Components: : ExceededConnectionLimit,Components:: InvalidConnection);

<interface type> disconnect_<receptacle name>(in Components:.: Cookie ck)
raises(Components: : NoConnection);

<receptacle _name>Connections get_connections <receptacle name> ();

16

Event Sources and Sinks

Publisner

Notation
publishes <event_type> <source name>;

Equivalence

Components:.: Cookie subscribe _<source name> (in <event_type>Consumer consumer)
rai ses(Components: : ExceededConnectionLimit);

<event_type>Consumer unsubscribe <source name> (in Components:.: Cookie ck);

Example

-The equivalent interface generated for the event supplier broker
component will include the following:

modul e stockbroker {

. ; eventtype AlertSignal{
interface Broker: Components:: CCMObject { oublic sring reason

Components:: Cookie subscribe_alert_source(in AlertSgnalConsumer consumer) .
rai ses(Components: : ExceededConnectionLimit);

AlertSgnal Consumer unsubscribe _alert_source(in Components:.: Cookie ck) component Broker {
raises (Components: : InvalidConnection); publishes AlertSignal
} . alert_source;

17

Emitter

Notation
emits <event_type> <source name>;

Equivalence
void subscribe <source name> (in <event_type>Consumer consumer)

raises(Components:. : AlreadyConnected);
<event_type>Consumer unsubscribe <source name> () raises (Components.: NoConnection);

Example

Con sumer modul e stockbrocker {
NOta“ on eventtype AlertSignal {
consumes <event_type> <sink_name>; public string reason;

. ¥
EqUI Va-l ence component Trader {
<event_type>Consumer get_consumer_< S nk_naw (), consumes AlertSignal alert_sink;
Example :

5
-The equivalent interface generated for event consumer Trader
component is as follows:

interface Trader: Components.: CCMObject {
AlertSgnal get_consumer_alert_sink(); 18

h

4. Component | mplementation Definition
L anguage (CIDL)

-CIDL isused to describe internal aspects and characteristics of component irrelevant
to clients, but essential for code generation and deployment in containers such as a
component’s category.

-In contrast, IDL isused to describe external characteristics of a component such as
its interfaces, which are relevant to clients.

-CIDL:

 Describes a component’ s composition

— Aggregate entity that associates interfaces with all artifacts required to
implement a particular component & its home executors

« Can also manage component persistence state
—ViaOMG Persistent Sate Definition Language (PSDL)
—(Not part of Lightweight CCM)

19

Component Categories

-There are four categories of CORBA components:.

+Service component: has only atransient lifetime, and may exist only
for the duration of a single operation.
+Session component: have only transient lifetime and no persistent state,
their lifetime typically correspond to the duration
of aclient interaction.
+Process component: has both a persistent lifetime and persistent state,
and is used to model business processes.
+Entity component: is used to model persistent entities; key difference
with other component typesis that it has a primary key.

Component | CORBA Object Container | Primary EJB Type
category UsageModel | Reference | APl Type | key

Service Stateless Transient session - -
Session Conversational | Transient session - session
Process Durable Persistent | entity - -

Entity Durable Persistent | entity yes entity 20

Component Executors & Home Executors

«Server-side programming artifacts

that implement components 4 Hel | oHone ser vant N |
& homes Written by
~Local CORBA objects with (el Torome_Exes | e _developers
interfaces defined by aloca \ J
server-side OMG IDL mapping T
«Component executors can be Manages
—Monoalithic, where all component v
ports implemented by one class,
or ~
_Segmented, where component Hel | oWorl d servant
ports split into several classes | v
Home executors are alway's Generated by | rellovorid_Exec |
CIDL compiler /

monolithic

21

A Monolithic Component Executor

Component container \
.AQ =

(
@ Component }@
D
D

Monolithic executor > ()1 specific
context [

S

.
o
.
. v
.
‘ £

\\ CCM context

’ Main component executor interface Or Component-oriented context interface

yvyeo

S

Q Container-oriented context interface

“SA Context use
Q SessionComponent or EntityComponent A Container interposition

‘ Facet or event sink executor interface

22

A Segmented Component Executor

’f Component container \
‘7 A’AQ .."A’

..... 1
A @
@ Main segment N
Q.. R \Q Component ﬂ—@
@ Seg?2 Seg3 Seg4 specific
me v‘ context

w
an® .
....

lllllllll
LA .

.

.
.
"
"
.®
Py
s
P
"
“““
"
.s
Py
Py
.
-
"
as
.

,_'K CCM context j

’ ExecutorLocator

<
¢ @

Segmented executors are deprecated in favor of assembly-based components | 23

Composition

-Top-level construct used to describe a component.

+Defines the component category and the names of the component home and container executorsin the
target programming language.

+An executor is equivalent to the implementation in target programming language. In Java,
for instance, the executor for home and container correspond to Java classes.

Composition structure
composition <category> <composition_name> {
home executor <home_executor_name> {
implements <home_type> ;

manages <executor_name>;

24

-Example:
component Broker { composition <category> <composition_name> {
attribute string broker _name;
emits SockLimit limitAlert;
|3
home Broker Home manages Broker {}
composition process BrokerImpl { b
home executor BrokerHomelmpl { g
implements Broker Home;
manages Broker Processlmpl;

home executor <home_executor_name> {
implements <home_type> ;

manages <executor_name>;

i

+The code generator generates Broker Homel mpl and Broker Processlmpl as abstract classes.
Developers must subclass them, in order to implement the business logic.

25

Example

/I USER-SPECIFIED IDL
I
module LooneyToons {
interface Bird {
void fly (in long how_long);
I3
interface Cat {
void eat (in Bird lunch);
5
component Toon {
provides Bird tweety;
provides Cat sylvester;
5

home ToonHome manages Toon {};

/I USER-SPECIFIED CIDL
Il
import ::LooneyToons;
module MerryMelodies {
/I this is the composition:
composition session Toonlmpl {
home executor ToonHomelmpl {
implements LooneyToons::ToonHome;

manages ToonSessionimpl;

¥

26

5. Implementinga CCM Component

CCM Component Creation and Deployment: Process

-The development of atypical CCM component is carried according to
the following steps:

1. Specification

2. Design/Interface Definition

3. Implementation

4. Packaging

5. Assembling with other components

6. Deployment of components and assemblies

27

| mplementing Components. Generated Files

: : Component-
1D 10D s face ¥
[].. . 1oL . Interface - - .][L .
FILES Compiler Repository i FILES
: DL Compiler
. Component : .
Component Lrinlamantation =erver L lient
Descriptions P. Skeletons Siubs
Skeletons
Component i Ct4 Clignl
[mplementation - Compiler Compiler - source
Source Code H H e
=ource Code * ‘
Component
. . " PO Clhieni
Generated Code Program —
Proeram
{DLLy "
Executable Code

28

A Basic Example

Writing the I DL

-We consider a calculator service that provides mathematical functions:

//Calculator.idl

#include “ Components.idl”
module CalculatorModule {

interface Functions {

long factorial (in long number);
%
component CalculatorComp {provides Functions function;};
home Cal culator CompHome manages Cal culator Comp {};

|3
Compiling the IDL
-Usethe K2 CIDL compiler to convert component IDL code (CORBA 3.0) to
standard CORBA IDL (CORBA 2.3).

K2cidl --extended-components Calculator.idl
+The generated file (Calculator.idl2) can be compiled using IDL compilers provided by vendors

| |
| Component ORRB
Component Kzf:idl Hnawae specific
IDL input —m» (compilerIDL. \———p»] IDL Compiler —® <40 and
files Compiler) (java/C++) ‘:'ﬁkel;:t s
o L8 o

-Compilation of idl generates following files:

Calculator.cxx C++ Stub code

Calculator.hxx

Calculator.idl2 CORBA 2.0idl generated from .idI file,
used to generate stub files for other
languages

Calculator_skel.cxx Skeleton code

Calculator_skel.hxx

Calculator_skel tie.cxx Skeleton code for tie approach
Calculator_skel tie.hxx

CalculatorC.i Orb related files
CalculatorS.i

CalculatorS T.i
30

Writing the CIDL
-The CIDL definition supports the automatic generation of the Component

| mplementation Framework (CIF) required for deploying the component within
acontainer.

//Calculator.cidl
#include “ Calculator.idl”
module Calculator CIDL {
composition service Calculator Complmpl {
home executor Calculator CompHomelmpl {
implements Cal culator Modul e: : Cal culator CompHome;
manages Cal culator CompServicelmpl;

Y
%
%
Compiling the CIDL
-The K2 CIDL compiler generates skeleton code, default implementations and
XML descriptors for the CIDL definition.
K2cidl --impl -all --gen-desc Calculator.cidl

lkZ2cidl
(CTIDI. Compiler)

skeletons

arcl [REEREER BN
implementations 31

-The following files are generated from CIDL compilation:

Calculator_cimpl.cpp Component implementation files (template)
Calculator_cimpl.h

Calculator_cskel.cpp Skeleton code

Calculator_cskel.h

CalculatorModule CalculatorComp.ccd CORBA Component Descriptor

CalculatorModule_CalculatorComp.cpf Component Property File

CalculatorModule_CalculatorComp.csd Component Softpack Descriptor

tmpk2d.k2d Used by K2 server

32

-Component implementation file generated after cidl compilation:

// kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkk

I/l Generated by the CIDL to .cpp Translator
/[Copyright (c) 2000 2001

Il Internet Component Management Group
I/ All Rights Reserved

// kkkhkkkkkkkkkkkkkkkkkkkkkkkkk

#include "Calculator_cimpl.h"
#include <k2/Tools.h>

/**
*IDL:CalculatorModule/Functions/factorial:1.0
*/
CORBA::Long CalculatorCIDL::Calculator CompServicelmpl _cimpl::
factorial(CORBA::Long) throw(CORBA::SystemException)

{
//ITODO Implementation
CORBA::Long tmp = 0;
return tmp;

}

33

| mplementing the Component

-Write the business logic by implementing the Functions interface:
modify corresponding methods prototypes (in Calculator _cimpl.cpp)
and provide the implementation:

CORBA::Long CalculatorCIDL::Calculator CompServicelmpl _cimpl::
factorial(CORBA::Long number) throw(CORBA::SystemException)

{
CORBA::Float tmp = 0;

iIf (number > 1) tmp = (number*factorial (number-1));
elsetmp= 1,
return tmp;

-Compile the component implementation code using make utility, which
generates a shared object (libCaculator Comp.so/Calculator Comp.dil)
that can be loaded by the container.

34

Packaging the Component

-The component implementation has to be compiled to obtain the dynamic link

library (dIl) and then archive it together with component descriptors. This gives
us the component package.

+Use nmake utility by providing makefile.mak as the input:

nnmake /f Mkefil e. mak

+Makefile.mak defines all the proceduresto create the dll for the
component, groups the dll and description files, and puts them
into azip file. The following file will be generated:
Calculator.zip

Deploying the Component

-A component is deployed under the form of a component package

In XML format, which represents the minimal deployment unit.
(see Tools Instructions Manual for details about specific platform).
35

Writing the Client
-The client accesses the deployed component using the component
home specified in the component IDL definition.

#include <k2/CompatiblePlatform.h>
#include <k2/CompatibleCorba.h>

/I nclude the stub generated after IDL compilation of theidl2 file
#include GEN_CLIENT_INCLUDE(Calculator)
/ITools.h provides a client side framework for accessing ORB and K2 services
#include <k2/Tools.h>
using namespace CalculatorModule;
int main(int argc, char* argv[]) {

CORBA::ORB var orb;

try{

/M nitialize the ORB and K2 related services; this returns a handle to access ORB
/[and K2 Trading service

K2Utils:: Tools* pK2tools= K2Utils:: Tools::init(argc,argv);

/IReturns areferenceto Trader service, the location of Trader must be specified

//in a property fileindicating HTTP host and port where K2Daemon is running
K2Trading::Lookup var lookup = pK2tools->getK2Trader();
assert(!CORBA::is_nil(lookup)); 36

//Locate a Home reference by querying the K2 Trader using the component home
// name. The Trader returns a load balanced reference to a component home, which

/I is casted to obtain the Component Home reference.
K2Trading::Offer_var offer = lookup->queryBest(“ CalculatorCompHome” " ");
CalculatorCompHome_var home = Calculator CompHome:: _narrow(offer->reference);
assert(!CORBA::is_nil(home));

I/l nvoke the create method on the Home to obtain a Component instance reference.
CalculatorComp_ptr calculator_comp = home->create();

//Use the component instance; in this example, method factorial isinvoked using

// component reference.
long n=100;
cout << “I” << n<<* = << calculator_comp->factorial(n);

pK2tools-> cleanup();

}
catch (const CORBA:: Exception& ex) {
cerr << “ERROR: “ << argv[0] << “:* << endl;
return 1;
}

} /lend of main

37

Testing the Component

1. Use the Management consol e to:

+Install the package Calculator.zip

+Start a CCM server and load Calculator component into the CCM
server instance.

2. Execute the client:
client -K2PropFile=client.cfg

+The client.cfg file indicates where the K2 daemon is currently
executing (can be obtained from the k2daemon.cfg file):
#+ HTTP Daemon properties
k2. HTTPSERVER.NAME = <host name>
k2. HTTPSERVER.PORT = <port-no>

38

6. Extending the Basic Example
-We consider a new component named Generator that uses the
calculator component to generate some id.

ThelDL

/[Calculator.idl

#inlude “ Components.idl”
module CalculatorModule {

interface Functions {

long factorial (in long number);
};

interface | dGenerator {

long generate ();

}

component CalculatorComp {provides Functions function;};
home Cal culator CompHome manages Cal culator Comp {};

component GeneratorComp {
provides | dGenerator;

uses Functions;
1

home Generator CompHome manages Generator Comp {};

1

39

The CIDL
//Generator.cidl
#include Calculator.idl
module GeneratorCIDL {
composition session Generator Complmpl {
home executor Generator CompHomel mpl {
implements Cal culator: : Generator CompHome;

manages Generator CompSessionlmpl;

1
};
};

Compiling the CIDL
K2cidl --gen-desc --impl-all Calculator.cidl
K2cidl --gen-desc --impl-all Generator.cidl

40

Writing the Components | mplementations

-The Generator component uses areference to the calculator
component, which may be resolved in the constructor and stored as
private variable, in Generator CompSessionl mpl_cimpl.

//add the private reference variables to
/I Generator CompSessionl mpl_cimpl class

private;

//IORB Reference
CORBA::ORB var orb;

/[Trader reference
K2Trading::Lookup var trader;

//Reference to the calculator component
CalculatorComp_ptr comp_calculator;

41

//add the following code to the constructor of
//Generator CompSessionl mpl_cimpl

K2Utils:: Tools* pK2tools= K2ULtils:: Tools::init(argc,argv);

K2Trading::Lookup _var lookup = pK2tools->getK2Trader();

assert(! CORBA::is_nil(lookup));

K2Trading::Offer _var offer = lookup->queryBest(* CalculatorCompHome” ,” 7);
CalculatorCompHome var home = Calculator CompHome:: _narrow(offer->reference);
assert(! CORBA::is_nil(home));

//Initialize the calculator component reference
comp_calculator = home->create();

-Add the following implementations for the methods:

long generate () {
try {
long r = rand();
return comp_calculator->factorial(r);

}
catch (const CORBA:: Exception& ex) {
cerr << LINE << “ -> ERROR: * << *: " << ex << endl;
} 42

}

-Include the additional header filesin Generator_cimpl.h file

#include GEN_SERVER INCLUDE(Calculator)
#include <k2/Tools.h>

Testing the Application
-To test the application:
+Use make to compile and package the components
+Deploy the components in the following sequence: cal culator, and
then generator.
+Execute the client (The client can be written as seen previoudly):
client -K2PropFile=client.cfg

43

