
1

7.3 CORBA Event Service

1. Overview of CORBA Event Service
2. Communication Styles
3. Event Channel
4. Event Service Class Structure
5. An Event Channel Use Example
Appendix: CORBA Time Service



2

1. Overview of CORBA Event Services

Publisher

Publisher

Subscriber

Subscriber

Subscriber

Mediator

-Standard CORBA method invocations result in synchronous execution
of an operation provided by an object

÷For many applications, a more decoupled communication model between objects is
required (i.e., asynchronous communication with multiple callers and receivers)

-CORBA standard defines a set of interfaces that enable decoupled, 
asynchronous communication between objects, called event service.

÷CORBA Event model is based on the observer pattern also known as
“publish/subscribe” pattern.



3

Event Service Participants
-The OMG event service defines three roles:
÷The Supplier role: Suppliers generate event data
÷The Consumer role: Consumers process event data
÷Event Channel: A “mediator” that encapsulates the queuing and
propagation semantics

Supplier

Supplier

Consumer

Consumer

Consumer

Event Channel

-Event data are communicated between suppliers and consumers by
issuing standard CORBA (two-way) requests.



4

2. Communication Styles 

-CORBA Event service supports push and pull communication
models.

Push Communication Model

Supplier

Supplier

Consumer

Consumer

Consumer

Event Channel
push()

push()

push()

push()

push()

-The supplier pushes event data to an event channel
-The event channel, in turn, pushes event data to all consumers: note that
an event channel need not make a complex routing decision, e.g., it can
simply deliver the data to all consumers.



5

Pull Communication Model 

Supplier

Supplier

Consumer

Consumer

Consumer

Event Channel
pull()

pull()

pull()

pull()

pull()

-The consumer pulls event data from the event channel
-The event channel, in turn, pulls event data from the suppliers: this can 
be optimized by adding a queuing mechanism in the Event Channel



6

3. Event Channel 
Overview
-The CORBA Event channel:
÷is an object that allows multiple suppliers to communicate with

multiple consumers in a highly decoupled, asynchronous manner.

÷plays the roles of both a consumer and supplier of event data that it receives; 
it acts in its simplest form as “broadcast repeater”

÷is a standard CORBA object, and communicates with an event using 
standard CORBA requests.

÷However, an event channel need not supply the incoming event data to
its consumer(s) at the same time it consumes data from its supplier(s)

(i.e., it may buffer data).



7

Multiple Consumers and Multiple Suppliers
-An event channel may provide many-to-many communication
-The channel consumes events from one or more suppliers, and 
supplies events to one or more consumers

-Subject to the quality of service of a particular implementation, 
an event channel provides an event to all consumers

Mixed-style Communication with an Event Channel
-An event channel can communicate with a supplier using one style of
communication, and communicate with a consumer using a different
style of communication
-How long an event channel must buffer events is defined as a
“quality of implementation" issue.



8

:Event Channel:Consumer Admin :Supplier Admin

:Proxy Push
Supplier

:Proxy Pull
Supplier

:Proxy Push
Consumer

:Proxy Pull
Consumer

:Push Supplier :Pull Supplier :Push Consumer :Pull Consumer

Event Channel Admin Module

Event Comm Module

4. Event Service Class Structure
-There are two orthogonal approaches that CORBA event-based 
communication may take:

÷Generic: all communication is by means of generic push or pull operations; these
operations involve single parameters or return values that package all the events
into a generic CORBA any data structure.
÷Typed: communication is via operations defined in OMG IDL; Event data is passed
by means of typed parameters, which can be defined in any desired manner.

Class Structure



9

The EventComm Module
-The event communication module EventComm illustrated below 

defines a set of CORBA interfaces for event-style communication

module CosEventComm {
exception Disconnected {};

interface PushConsumer {
void push (in any data) raises (Disconnected);
void disconnect_push_consumer ();

};

interface PushSupplier {
void disconnect_push_supplier ();

};

interface PullSupplier {
any pull() raises (Disconnected);
any try_pull() (out boolean has_event) raises (Disconnected);
void disconnect_pull_supplier ();

};

interface PullConsumer {
void disconnect_pull_consumer ();

};



10

Event Channel Administration Module

Overview
-An event channel is built up incrementally (i.e., when a channel is 
created no suppliers or consumers are connected).
-An EventChannelFactory object is used to return an object reference
that supports the EventChannel interface.

-The EventChannel interface defines three administrative operations:
÷ConsumerAdmin: a factory for adding consumers
÷SupplierAdmin: a factory for adding suppliers
÷An operation for destroying the channel

-The ConsumerAdmin factory operation returns a proxy supplier
÷A proxy supplier is similar to a normal supplier; it inherits the supplier interface; however,

it includes a method for connecting a consumer to the proxy supplier.

-The SupplierAdmin factory operation returns a proxy consumer
÷A proxy consumer is similar to a normal consumer; it inherits the interface of a consumer; 

however, it includes an additional method for connecting a supplier to the proxy consumer.



11

Supplier and Consumer Registration

-Likewise, registering a consumer with an event channel is also a 
two-step process

1. An event-receiving application first obtains a proxy supplier from a
channel

2. It then “connects” to the proxy supplier by providing it with a
consumer object reference

-Registering a supplier with an event channel is a two-step process:
1. An event-generating application first obtains a proxy consumer

from a channel
2. It then “connects” to the proxy consumer by providing it with a 

supplier object reference



12

The EventChannelAdmin Module
-The EventChannelAdmin module defines the interfaces for making
connections between suppliers and consumers

#include "EventComm.idl"
module CosEventChannelAdmin {

exception AlreadyConnected {};
exception TypeError {};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(in CosEventComm::PushSupplier push_supplier)

raises (AlreadyConnected);
};

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(in CosEventComm::PullConsumer pull_consumer)

raises (AlreadyConnected);
};

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_consumer(in CosEventComm::PullSupplier pull_supplier)

raises (AlreadyConnected, TypeError);
};



13

// module CosEventChannelAdmin ctd.

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(in CosEventComm::PushConsumer push_consumer)

raises (AlreadyConnected, TypeError);
};

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier ();
ProxyPullSupplier obtain_pull_supplier ();

};

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer ();
ProxyPullConsumer obtain_pull_consumer ();

};

interface EventChannel {
ConsumerAdmin for_consumers ();
SupplierAdmin for_suppliers ();
void destroy ();

};
};



14

The EventChannel Interface
-The EventChannel interface defines three administrative operations
1. Adding consumers
2. Adding suppliers
3. Destroying the channel
interface EventChannel {
ConsumerAdmin for_consumers ();
SupplierAdmin for_suppliers ();
void destroy ();
};

-Consumer administration and supplier administration are defined as
separate objects so that the creator of the channel can control the
addition of suppliers and consumers:

÷An event channel creator might wish to be the sole supplier of event
data, but might allow many consumers to be connected to the
channel
÷In this case, the creator would simply export the ConsumerAdmin
object. Example:

interface Document {
ConsumerAdmin title_changed ();

};



15

Connecting a Consumer to an Event Channel



16

Connecting a Consumer To an Event Channel (ctd)

PushConsumer psconsumer;
EventChannel channel;

//Obtain a ConsumerAdmin Factory
ConsumerAdmin cadmin = channel.for_consumers();

//Obtain a proxy supplier
ProxyPushSupplier proxyps = cadmin.obtain_push_supplier();

//Connect to the channel and register QOS requests
proxyps.connect_push_consumer(psconsumer);

//Receive notifications
psconsumer.push(event);



17

5. An Event Channel Use Example

-This section illustrates an example use of the event channel,
including the following:

–Creating an event channel
–Consumers and/or suppliers finding the channel
–Suppliers using the event channel
–In this example, the document object creates event channels and defines
operations in its interface to allow consumers to be added.



18

- The Document interface defines two operations to return 
event channels:

interface Document {

ConsumerAdmin title_changed();

ConsumerAdmin new_section();

:

};

÷The title_changed operation causes the document to generate an event when its title

is changed; 

÷The new_section operation causes the document to generate an event when a new

section is added. 

÷Both operations return ConsumerAdmin object references. This allows consumers

to be added to the event channel.



19

-The title_changed implementation contains instance variables 
for using and administering the event channels.

/* Factory for creating event channels. */

EventChannelFactoryRef ecf;

/* For title changed event channel */

EventChannelRef event_channel;

ConsumerAdminRef consum_admin;

SupplierAdminRef supplier_admin;

ProxyPushConsumerRef proxy_push_consumer;

PushSupplierRef doc_side_connection;



20

-At some point, the document implementation creates the event 
channel, gets supplier and consumer administrative references, 
and adds itself as a supplier.

event_channel = ecf->create_eventchannel(env);

supplier_admin = event_channel->for_suppliers(env);

consumer_admin = event_channel->for_consumers(env);

proxy_push_consumer = 

supplier_admin->obtain_push_consumer(env);

proxy_push_consumer->connect_push_supplier(env,

doc_side_connection)



21

-The title_changed operation returns the ConsumerAdmin
object reference.

return consumer_admin;

Clients of this operation can add consumers.

-When the title changes, the document implementation pushes the 

event to the channel.

proxy_push_consumer->push(env,data);



22

-The OMG has chosen to use only the Universal Time Coordinated (UTC) 
representation from the X/Open DCE Time Service.

÷Global clock synchronization time sources, such as the UTC signals broadcast by the 
WWV radio station of the National Bureau of Standards, deliver time, which is 
relatively easy to handle in this representation. 

Appendix: CORBA Time Service

-UTC time is defined as follows.

Time units 100 nanoseconds (10-7 seconds)

Base time 15 October 1582 00:00:00.

Approximate range AD 30,000

÷UTC time in this service specification always refers to time in Greenwich Time Zone.

-The corresponding binary representations of relative time is the same one as for

absolute time, and hence with similar characteristics:

Time units 100 nanoseconds (10-7 seconds)

Approximate range +/- 30,000 years



23

The service interface provides 
operations for creating the 
objects that the service 
manages and, if appropriate, 
also provides operations for 
getting rid of them.

General Object Model for Service



24

Time Service

•The Time Service object consists of two services, and 
hence defines two service interfaces:

•Time Service manages Universal Time Objects (UTOs) and Time 
Interval Objects (TIOs), and is represented by the TimeService 
interface.

•Timer Event Service manages Timer Event Handler objects, and is 
represented by the TimerEventService interface.



25

-The Time Service object manages 
Universal Time Objects (UTOs) 
and Time Interval Objects (TIOs). 

-It does so by providing methods 
for creating UTOs and TIOs. 

-Each UTO represents a time, and 
each TIO represents a time interval, 
and reference to each can be freely 
passed around.

Object Model for Time Service



26

The TimerEventService
object manages Timer Event 
Handlers represented by Timer 
Event Handler objects as 
shown in figure. Each Timer 
Event Handler is immutably 
associated with a specific event 
channel at the time of its 
creation. The Timer Event 
Handler can be passed around 
as any other object. It can be 
used to program the time and 
content of the events that will 
be generated on the channel 
associated with it. The user of 
a Timer Event Handler is 
expected to notify the Timer 
Event Service when it has no 
further use for the handler.

Object Model of Timer Event Service



27

•In a typical usage scenario of this service, the user must first create an 
event channel of the “push” type (see the Event Service Specification). 

•The user must then register this event channel as the sink for events 
generated by the timer event handler that is returned by the registration 
operation. The user can then use the timer event handler object to setup 
timer events as desired. 

•The service will cause events to be pushed through the event channel 
within a reasonable interval around the requested event time. 

•The implementor of the service will document what the expected interval 
is for their implementation. 

•The data associated with the event includes a timestamp of the actual 
event time with the error envelope including the requested event time.

Timer Event Service Usage



28

Two possible ways of preventing proxy latency are:

• Prohibit proxies of the time server object (i.e., require a Time Service implementation in every 
address space that will need to make Time Service calls).

• Create a special time server proxy, which measures latency between the Time Service object and 
the proxy, recalculates the time interval’s uncertainty, and adjusts the interval value before 
returning the timestamp to the caller.

Proxies and Time Uncertainty


