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Introduction

P
ERIODIC structures have been investigated
by many researchers due to their importance

in slow wave and backward-wave devices [1], [2].
One of the salient features of propagation in

periodic structures is the presence of passbands,
where undamped waves propagate, separated by
stopbands where no energy transport takes place.
The spatial periodicity of the structure is reflected
in the field distribution through the Floquet condi-
tion which we express in the following form

F (z + p) = e��pF (z): (1)

Here,p is the period of the structure,� is the prop-
agation constant andF (z) is a generic component
of the electromagnetic field.

The analysis of propagation in periodically
loaded waveguides requires the enforcement of
the Floquet condition in addition to the other
boundary conditions of the waveguide. Avail-
able methods of analysis of these structures are
mainly based on expansions in space-harmonics
to account for the Floquet condition [2]. Within
this framework the propagation constants of the
Floquet modes are determined as the zero of a
determinant following iterative root-finding algo-
rithms. Such an approach can be time consum-
ing, especially when a large number of modes are
needed, and suffers from the risk of missing phys-
ical solutions when two or more roots coincide.
Simplifications of the approach, such as the sur-
face impedance approach, are often used in in-
vestigating propagation in corrugated waveguides

and horns, for example. An alternative approach
consists in deriving equivalent lumped elements
for the loading sections followed by a circuit anal-
ysis. Within this framework, the propagation con-
stants are determined from the eigenvalues of a
square matrix whose size is given by the num-
ber of accessible modes. The main shortcoming
of this approach resides in its limitation to the
branches of the fundamental mode for which the
equivalent lumped element is derived in addition
to the arbitrariness in determining the appropriate
number of accessible modes.

In this paper, we present an analysis of propa-
gation in a circular waveguide periodically loaded
with dielectric disks. The approach is based on an
extension of the Coupled-Integral-Equation Tech-
nique (CIET) [3]. The propagation constants are
determined from theclassical eigenvalues of a
non-Hermitian matrix instead of a determinant
thereby considerably reducing CPU times. The
Floquet condition which is viewed asa priori in-
formation on the exact solution, is included in the
integral equations from the outset. Other relevant
a priori information, such as the edge conditions
or other symmetries can also be accommodated
through appropriate basis functions.

Theory

The structure under consideration is depicted in
Figure 1. It consists of a lossless circular waveg-
uide of radiusa periodically loaded with dielectric
disks of radiusb and dielectric constant�r. The
thickness of the disks ist and the period of the
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structure isp.
We focus attention only on the TE modes with

no angular dependence. This situation is of prac-
tical interest in TE01� resonator filters. Due to the
periodicity of the structure it is sufficient to con-
centrate one one unit cell.

In regions I (dielectric loaded) and II we expand
the transverse components of the electromagnetic
field in series of the normal modes, i.e,
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Here,kizm is the propagation constant of modem,
Y i
m = ki

zm

!�0
and i

m(�) are the normal modes of the
ith region. The modal constantsF i

m andBi
m are

unknown expansion coefficients.
The boundary conditions of the problem can be

written in the form

EI
�(�; z = t) = EII

� (�; z = t); 0 � � � a (6)

HI
� (�; z = t) = HII

� (�; z = t); 0 � � � a (7)

EII
� (�; z = p) = e��pEI

�(�; z = 0); 0 � � � a
(8)

HII
� (�; z = p) = e��pHI

� (�; z = 0); 0 � � � a
(9)

Let us assume that the transverse electric field
at z = 0, z = t andz = p are given by three un-
known functionsX1(�),X2(�) andX3(�), respec-
tively. The Floquet condition on the electric field
is satisfied by requiring the following relationship

X3(�) = e��pX1(�): (10)

To derive integral equations for the functions
X1(�) andX2(�), we use the continuity ofE� at
z = 0 and z = t to express the modal expan-
sion coefficients in terms of integrals ofX1(�) and

X2(�) and then enforce the continuity of the mag-
netic field atz = t and its Floquet condition. After
some mathematical manipulations, we obtain the
following two coupled integral equations
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Here,s = p� t and

~X i(m) =
Z a

0
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(13)
These coupled integral equations are solved by
the moment method starting from expansions of
X1(�) andX2(�) in series of basis functions

X1(�) =
MX
i=1

ciQi(�) (14)

X2(�) =
MX
i=1

diQi(�) (15)

Using these expansions in the two coupled inte-
gral equations, and applying Galerkin’s method,
we get the following matrix eigenvalue equation �

A C
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The entries of the matrices are given by
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and

Dij =
1X
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Y II
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Equation (16) is not in a convenient form. We first
eliminate the vector[d] to get a reduced equation
in terms of[c] only, or

[R][c] + [U ][c]e�p + [U ]t[c]e��p = 0 (20)

The matrices in this equation are given by

[R] = AC�1A+DC�1D � C (21)

and

[U ] = AC�1D; [U ]t = DC�1A: (22)

Let � = e�p and note thate��p = 1

�
, then we have

the following eigenvalue problem

[U ]�1[R]�[c] + �2[c] + [U ]�1[U ]t[c] = 0 (23)

Let us introduce a vector[v] of the same dimen-
sion as[c] such that

[v] = �[c] (24)

The eigenvalue equation can finally be rewritten
in the more convenient form�

U�1R U�1U t

�I 0

� �
v
c
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�
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�
= 0: (25)

Here,I is the identity matrix of orderM �M .
In the numerical solution the modes of the di-

electrically loaded section are used as basis func-
tions for simplicity. The last equation shows that
the propagation constants of the Floquet modes
are indeed determined from theclassicaleigenval-
ues of a matrix eigenvalue problem; standard soft-
ware packages can be used to straightforwardly
determine the dispersion of a large number of
modes instead of iterative process which would re-
sult from a non-linear determinantal equation.

Results

To establish the validity of the approach, we
determine the dispersion diagram of a structure
where the dielectric constant of the disks ap-
proaches unity and compare with the analytical

results of an empty circular waveguide. Figure 2
shows both numerical and analytical results with
�r = 1. The agreement between the two is ex-
cellent. These results were obtained from 3 basis
functions and 30 terms where used in computing
the sums. Note that both diagrams are plotted us-
ing the reduced Brillouin zones [4].
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Fig. 1. Circular waveguide of radius a periodically loaded
with dielectric disks (permittivity�, radius b) of thick-
ness t. The period is p
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Fig. 2. k0 � � diagram (circles) of the structure in Figure 1
when� = 1.01, b= 0.5 a, p=0.5 and t = 0.5p. Also shown
is the analyticalk0�� diagram (*) of an empty circular
waveguide of the same dimensions.

In the limit t ! p, the dispersion diagram of
the periodic structure should approach that of a
circular waveguide loaded with a dielectric rod of
dielectric constant�r. Figure 3 shows that the nu-
merical results obtained whent = 0:99p indeed
satisfy this observation.
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Fig. 3. k0 � � diagram when�=10, b=0.5a, p=0.5 a and
t =0.99p. The diagram agrees very well with that of a
circular waveguide loaded with a dielectric rod of the
same characteristics.
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Fig. 4. k0 � � diagram when�=10, b=0.5a, p=0.5 a and
t =0.5p. The diagram agrees very well with that of a
circular waveguide loaded with a dielectric rod of the
same characteristics.

A more practical situation corresponding to a
disk with dielectric constant�r = 10 was also
analyzed; itsk0 � � diagram is shown in Figure
4. The presence of stop-bands separated by pass-
bands is clearly visible. There is no propagation
in the range of frequencies2:144 � k0p � 3:124
and3:436 � k0p � 3:767 although other modes
with different angular dependence might be prop-
agating in this frequency range. The effect of
the dielectric loading on the dispersion diagram

is also visible when compared with the empty
waveguide of Figure 2. The addition of the di-
electric disk lowers the cutoff frequency and flat-
tens the branches of the dispersion diagram result-
ing in slowly changing group velocities. Although
the first branch exhibits a positive group velocity,
other higher branches support waves with nega-
tive group velocities which are essential to devices
such as backward wave oscillators.

Conclusions

The propagation properties of angular indepen-
dent modes in a circular waveguide periodically
loaded with thick dielectric disks were accurately
determined using the Coupled-Integral-Equation
Technique (CIET). The propagation constants of
the Floquet modes are determined from theclas-
sicaleigenvalues of square matrix thereby consid-
erably reducing CPU times. The approach allows
efficient determination of propagating, evanescent
as well as complex modes in this type of struc-
tures.
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