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LSE- and LSM-Mode Sheet

Impedances of Thin Conductors

Smain Amari and Jens Bomemann

Abstract— The sheet resistance of very thin conductors is commonly

taken as R = 1/at. We show that the sheet impedance, defined as the

ratio of the tangential electric field at the surface of the conductor to
the conduction current per unit length in the conductor, depends on the
field distribution. The LSE (TE-to-y) and ,LSM (TM-to-y) modes used in

the spectral domain immittance approach have sheet impedance which
are dktinct for vanishingly small or latge values of the wavenumber v
in the medkm surrounding a thh conductor. In the limit -y ~ O and

t/6 << 1, Zjy approaches R = 1/ut while Z~~M s 2/et. In the
timit v -i m and t/r5 << 1, Z~~E approaches R = 2/crt and Z~~M

approaches R = 1/at. When t/8 >> 1, the sheet impedance approaches
the surface impedance Z. = (1 + j) /u6 and is independent of the field
distribution.

I. INTRODUCTION

Recently there has been a rising interest in the concept of surface

impedance of thin conducting layers. This concept has been used to

account for metallic losses in planar circuits at microwave frequencies

where the skin effect plays a major role, The convenience of the

approach using the surface impedance resides in the simplicity in
including the boundary conditions [1 ]–[5]. In fact, it allows one to

avoid solving the problem in numerous subregions, which can be

numerically intensive. The method has, however, its shortcomings. In

addition to being approximate, a problem arises when the thickness

of the conducting strip is much smaller than the skin depth in the

material. The situation where the thickness is much larger (4 times,

say) than the skin depth is well handled using a surface impedance

given by

(la)

where u is the bulk conductivity of the material and 6 the skin depth

(lb)

As the thickness t of the conducting layer is decreased, Z. is replaced

by the sheet resistance R, which reflects the fact that the cross section

is the dominant property, hence leading to the singular dependence [1]

R=;. (2)

However, this expression neglects the dependence of the sheet

resistance on the field distribution and the remaining characteristics

of the structure.

Therefore, in this paper, we propose to show that the sheet

impedance, which we define as the ratio of the tangential component

of the electric field at the surface of the conductor to the conduction

current per unit length, namely

~=qy=o)

J
(3)

(cf., Fig. 1) depends on the field distribution. The LSE- and LSM-

mode sheet impedances depend on the spatiaJ variation, in the
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Fig. 1. A conducting strip on top of an infinite dielectric substrate.

direction normrd to the conductor, of the fields in the medium under

the conductor. When the field in the medium is changing either too

slowly or too fast, as a function of y, the sheet impedances of the two

modes have the ratio of two in the limit t -+ O. For thick conductors,

the sheet impedance is inahendent of the field distribution and the

medium, as it approaches th~ usual surface impedance given by (1).

The analysis focuses on the LSE and LSM modes because of their

importance in the spectral domain immittance approach.
Since the surface im

%

ante Zs, which is usually defined as the

ratio of the tangential elec “c an$ magnetic fields of the conductor,

also shows a dependence ‘on th@ field distribution and the medium

surrounding the conductor, especl~ly for thin conductors, we adopted

the term sheet impedance Z.sh in this paper to distinguish between

the two quantities which coincide only for thick conductors. In order

to clarify the difference between the two terms, consider a conductor

of thickness t and conductivity a on top of a thick conductor of

conductivity al. According to [6, p. 300], the surface impedance Z,

is found as

R.,

z,
sinh (t~) +

—=(l+j)
Rs cosh (t~)

R, RSI
(4)

cosh (t~) +
R, sinh (tT)

where R, and R, 1 are given by

.

and 6 is the penetration depth. If, in this expression, one lets the

conductivity al approach zero (as in the case of a dbnductor on a

substrate) such that the conduction current is nonzero only in the thin

conductor, one gets [7, p. 128], [8, p. 154]

Zsh = (1 +.j)R, coth(t7). (7)

The notation Z,k is used to emphasize the fact that it is equal to

the ratio of the tangential electric field to the conduction current per

unit length in the conductor. From this last equation it can be seen

that, in the limit t/6 << 1, the sheet impedance indeed depends on

t according to (3).

It is also worth emphasizing that the derivation of (4) assumes no

spatial variation of the fields in the plane parallel to the conducting

sheet. We will show that our expressions for the sheet impedance

reduce to (7) under these conditions. In [8, p. 154] it is mentioned

that (7) is a good approximation as long as the wave impedance

of the medium under the conductor is much larger that the intrin-

sic impedance of the conductor. The conditions

approximation holds are examined in this paper.

under which this
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II. SHEET IMPEDANCE OF A CONDUCTING STRIP

Thestrncture under consideration isshown in Fig. 1. It consists of

a conducting strip of thickness t. which we assume much smaller than

its width W, and conductivity a on top of an ideal (al = 0) dielectric

substrate ofpermittivity cl. The substrate isassumed infinitely thick,

although this is not necessary. The finite thickness determines the

wave impedance at the conductor-dielectric interface and does not

affect the conclusions of the analysis.

In the spectral domain approach, the tangential electric field at the

conductor-dielectric interface is related to the current density through

the Green’s impedance dyadics [9], [10]. In applying the method of

moments (Galerkin method), itisnecessary to establish an additional

relationship, in the metallized region, between the current in the

conductor and the tangential electric field [11]. Such a relationship

should reflect Ohm’s law and states that the current is, indeed, a

conduction current and is related to the electric field by

J = oE. (8)

Since the field distribution m this and similar multilayered structures

can be decomposed into LSE and LSM modes, it is sufficient to

analyze each one separately since they are decoupled [9], [10]. The

field components are Fourier transfomed inthe~zplane. Let~ and

/3 denote the arguments of the Fourier transforms. The ~-dependence

is then of the form

(9)

where ~ is a generic field component, Tz = C2 + ~z – k: and

k: = J261floto.

It is convenient to carry out the analysis in a system of axes which

is rotated in the .r; plane by an angle @given by

()O= tan-l ~ (lo)

as shown in Fig. 2. In the new system of axes (u, v, y), the LSE

mode has components (HY, Eu, Hu) and is generated only by the

current in the u direction. Similarly, the LSM mode has components

(E,, Hu. l?u)and isgenerated only bythecurrent inthev direction.

It is this decoupling of the modes mthe new system of coordinates

which allows us to treat the LSE and LSM modes separately. For

convenience we introduce the quantity a such that

0,2+82
a2=—

k:
(11)

The electrlc tield component Eu inthe conductor is of the form

E.(y) = Ae-’cy + Be’c’. (12)

Where A and B are constants to redetermined from the boundary

conditions and -~~ = C~2 + {)2 + jwwo(m + jweu). For a good

conductor, -yC can be approximated by

l+j——
6’

(13)

The magnetic field component Hu then follows from Maxwell’s

equations

Hu(y) = ~(Ae–””y – lte~cv) (14)
~c

where z, is the intrinsic impedance of the conductor. z. = ( 1+j )/uti.

Fig. 2. Axes transformation to decouple the LSE and LSM modes,

In the medium under the conductor, the field component

similarly be expressed as

1996

can

E.(y) =Ce-”Y (15)

and

Ht.(y) = }~LsECe-y’y (16)

where 171LsE = w /j~pO. The current per unit length in the

conducting strip is equal to the integral of mEu (y) over the thickness

of the strip or

.lU = : [A(1 – e-’”) + 13(e7’t – 1)].
7’.

(17)

The sheet impedance is then given by

Eu(y = O)
Z:;E = ~

u

_ -jC
:+1

. (18)

a # (l–c-v”)+ (e’” – 1)”

Requiring the continmty of the tangential electric and magnetic field

components at the interface y = t gives the ratio A/B

‘4 = e,,=, 1 + YILSE%
B 1 – Y:SE;C “

(19)

Combining (18 ) and (19) we get the final expression of the sheet

impedance of the LSE mode

Z$~E (a, T=, t) =

l+j ‘SEZ. tanh (~,t)l+Y1

U6
(20)

taILh (net) +
cosh (“,,t) – 1 ~.Ls~ - ‘

cosh (yCt) 1 “

The expression for Z~~M 1s obtained similarly and m given by

Zj’y(fl, qc. t) =

l+j 1 + l~LsMzC tanh (qCt)

Ub
(21)

tanh (-,ct) +
Cosh (qLt) – 1 .r,s~

1’1 z.
cosh ( -jcf )

where 1~L‘hl = jdElell/~1.

If the substrate is of finite thickness, the sheet impedance for the

two modes can be obtained by replacing YI by the appropriate wave

impedance seen from under the conductor in the positive y-direction

(Fig. 1).
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III. RESULTS AND DISCUSSION

As mentioned in the introduction, [8, p. 154] states that (7)

gives a good approximation to the sheet impedance when the wave

impedance 1/ 1’1 is much larger than the intrinsic impedance of the

conductor ZC. That (20) and (21) both reduce to (7) can be seen

straightforwardly by taking Y1 ZC ~ O.

Both (20) and (21) give a sheet impedance which approaches the

usual surface impedance in the limit of a thick conductor regardless

of the value of 1’1. A thick enough conductor attenuates the incident

wave such that no reflections between its surfaces take place.

Of more importance and interest, however, is the dependence of

the sheet impedance on the thickness of thin conductors. In the

limit t + O, the sheet impedance approaches the sheet resistance
R z l/ut as long as the quantity Y1 ZC(YI ) is not large. We now

examine the conditions under which Ii is large.
For the LSM mode, I\LsM = juJel EO /-yI. Clearly, this quantity is

large when 71 approaches zero. Under the same conditions, I;LsE

approaches zero. By expanding the hyperbolic functions in Taylor

series, (20) and (21 ) lead to the following interesting relations

Z:;M + ;, ~l+o, t+o (22)

and

Z::E + $ -yI+o, t+o. (23)

In other words, the LSM modes have a sheet resistance equal to

twice that of the LSE modes when the conductor’s thickness is much
smaller than the penetration depth and ~1 approaches zero.

The order is reversed when -yl is large where YILSM approaches

zero and YILSE is large. In this case the following relations hold

Z:;M + ~. ~~+eo, t+o (24)

and

.Z::E + :, ~,+m, t-+o. (25)

Now it is the LSE sheet impedance which is twice the sheet resistance.

When the thickness is comparable to the penetration depth, the

sheet impedance of the two sets of modes are still different. In order

to compare the sheet impedances, as given by (20) and (21), to both

the sheet resistance R = l/crt and the surface resistance R, = 1/ u6,

we plot the ratios Zsh /R and Zsh /R, as a function of t/6.
Fig. 3 shows the real and imaginary parts of these ratios for a low

value (unity) of the parameter a defined in (11). Although the case
a = 1 is a partictrlm case,the following resultshold for values of a

which are close enough to unity such that 71 approaches zero. The

conductor is assumed copper with a = 5.88(107) S/m. It is clearly

seen that the real part of the LSE-mode sheet impedance normalized

to R, approaches unity for a thick conductor and is much larger than

unity for small values of t/8. The same behavior is observed for the

ratio of the real part of Z~~M to R,, and the factor of two between

Z~~M and Z~~E, in the region of small values oft/6, is obvious. The

corresponding imaginary parts are plotted in solid lines. They vanish

in the limit of thin conductors and approach unity for t/6 larger than

about 2. However, the ratio of the imaginary part of Z~~M to R,

approaches unity faster than that of Z~$E to R,. It is interesting to
note that the inductance of the LSM mode is consistently larger than

that of the LSE mode except for thick or very thin conductors. The

dotted lines represent the ratio of the real part of Z}$E and Z!~M to

the sheet resistance R. For values oft/6 smaller than about 1, these

ratios are practically constant. Again, note the factor of two between

these curves for small values of t/6. The ratio of the real part of

Z~~M to R equals two times that of Z~~E to R.

Fig. 4 shows the same ratios for a large value of a (a = 106).

Although the plotted curves look similar to those in Fig. 3, note
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Fig. 3. Ratios of the real and imaginary parts of the sheet impedances to the
rest part of the surface impedance of thick conductors R. = 1/u6 and sheet
resistance R = 1 /at as a function of t/6 for the LSE and LSM modes when

a = 1. a = 5.88(107) S/m and F =’10 GHz.
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Fig. 4. Ratios of the real and imaginary parts of the sheet impedances to the
rest part of the surface impedance of thick conductors R. = 1/ U6 and sheet

resistance R = 1/at as a function oft/6 for the LSE and LSM modes when
a = 106, 0 = 5,88(107) S/m and F = 10 GHz.

that it is now the LSE-mode sheet impedance that leads that of the

LSM mode by a factor of two for small t/8. Moreover, the sheet

inductance of the LSE mode is now consistently larger than that of

the LSM mode as evidenced by the solid lines in Fig. 4. Therefore,

both Figs. 3 and 4 confirm the asymptotic behavior of the LSE- and

LSM-mode sheet impedances given in (22)–(25). Large value of -D

become more significant for tightly coupled and narrow lines where

the current profiles change rapidly in space. Their Fourier components

contain long tails which are significant at large values of Q and /3.
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Fig. 5. Ratios of the real and Imaginary parts of the sheet impedances to the
real part of the surface Impedance of thick conductors R, = 1/ U6 and sheet
resistance R = 1/d as a function of t/6 for the LSE and LSM modes when
a = 0. rr = 5.88(107) S/m and F = 10 GHz.

It is also interesting to note that the sheet resistance and surface

Impedance are usually derived for a field distribution which depends

only on the coordinate normal to the plane, i.e., only on y. In the

present analysis, this corresponds to the specific case where a = O.

Indeed, only under these conditions, the two sheet impedances of the

two modes are equal for all values of the thickness as shown in Fig. 5.

IV. CONCLUSION

This paper presents a detailed study of the concept of sheet

impedance, defined as the ratio of the tangential electric field at

the surface of a conductor to the conduction current per unit length

it carries. We report that the sheet resistance depends on the field

distribution in the structure. In the limit of thin conductors, the sheet

impedance of a LSM mode is twice that of a LSE mode when the field

varies slowly in the directton normal to the conductor (u ~ 1). When

the fields vary rapidly in the same direction. the sheet impedance of

a LSE mode is twice that of a LSM mode when the conductor is very

thin (f /fi << 1). In the limit of thick conductors the sheet impedance

approaches ( 1 + j )/u 6 and is independent of the field distribution.
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Accurate Analysis of Losses in Waveguide Structures

by Compact Two-Dimensional FDTD Method

Combined with Autoregressive Signal Analysis

Masafumi Fujii and Sumio Kobayashi

Abstract— An efficient two-dimensional finite-difference time-domain

(2-D FDTD) method combined with an autoregressive (AR) signal analysis

bas been proposed for analyzing the propagation properties of microwave

guiding structures. The method is especiaUy suitable for analyzing 10SSY

transmission lines; and in contrast with previons approaches. it is based

on an algorithm of a real domain only. The algorithm is verified by
comparing the numerical results with exact solutions for dielectric Ioaded
rectangular waveguides. The conductor losses in a variety of microstrip
lines and coplanar waveguides have been accurately estimated by solving
the electromagnetic fields in the conductors directly.

I. INTRODUCTION

This paper proposes a new algorithm based on two-dimensional

finite-difference time-domain (2-D FDTD) method [ 1]–[3] com-

bined with an autoregressive (AR) signal analysis [4] for predicting

the conductor losses in microwave circuits such as m monohthic

microwavelmillimeter-wave integrated circuits (MMIC’s) and mtt-

tichip modules (MCM’ s). In previous 2-D FDTD methods [1], the

wavegulde structures are assumed to be uniform and infinitely long

in the direction of wave propagation (say ;), and support modes with

propagation constants j~ independent of z. Those mean that the z

derivatwe can be replaced with j)~, and result in a formulation of

the algorithm m complex domain. Recently new algorithm have been

proposed for enabling 2-D FDTD analysis in real domain [2], [3],

however, those are restricted m the analysn of loss-less hnes

In contrast with prewous approaches, we assume that the wave-

gttide has a finite length 1i and is bounded with two infinitely large
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