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Abstract—We propose a general approach to the synthesis of
cross-coupled resonator filters using an analytical gradient-based
optimization technique. The gradient of the cost function with re-
spect to changes in the coupling elements between the resonators
is determined analytically. The topology of the structure is strictly
enforced at each step in the optimization thereby eliminating the
need for similarity transformations of the coupling matrix. For the
calculation of group delays, a simple formula is presented in terms
of the coupling matrix. A simple recursion relation for the compu-
tation of the generalized Chebychev filtering functions is derived.
Numerical results demonstrating the excellent performance of the
approach are presented.

Index Terms—Bandpass filters, elliptic filters, filters, optimiza-
tion methods, resonator filters.

I. INTRODUCTION

COUPLED microwave resonators are essential components
in modern communication systems. Filtering structures

with increasingly stringent requirements can often be met only
by using cross-coupled resonators to generate finite transmis-
sion zeros.

A general theory of cross-coupled resonator bandpass filters
was developed in the 1970s by Atia and Williams [1]–[3]. Low-
order filters, up to four, were solved analytically by Kurzrok
[4], [5] and Williams [6]. The more general theory presented
by Atia and Williams [1] is still widely used in the synthesis
of these types of structures. A slightly different approach was
advanced by Cameron in a series of papers [7]–[9]. Cameron
also gives a scheme to determine the filtering function with ar-
bitrarily placed transmission zeros [7]. Once the system func-
tion is obtained the synthesis of the filter proceeds by extracting
element values [8] to obtain a coupling matrix. Other excellent
techniques were also presented by many researchers, most no-
tably by groups around Rhodes [10]–[15]. The literature on this
subject is too extensive to list here; the reader is referred, e.g.,
to a special issue [16].

The theory of Atia and Williams leads to a coupling matrix
which reproduces the system function to be synthesized but
which often includes unwanted or unrealizable coupling
elements. Repeated similarity transformations are then used
to cancel the unwanted couplings [1], [9]. Unfortunately, the
process does not always converge [17]. The same approach was

Manuscript received April 14, 1999.
The author is with the Department of Electrical and Computer Engineering,

University of Victoria, Victoria, B.C. V8W 3P6 Canada.
Publisher Item Identifier S 0018-9480(00)07403-2.

also used in a recent publication by Cameron [18] to reduce a
potentially full coupling matrix to a folded form; a method of
reducing a full matrix to an arbitrary form is still not known.
Recently, optimization was also used in synthesizing this type
of microwave structure. An interesting approach in which
the entries of the coupling matrix were used as independent
variables was presented in [17]. A simple cost function along
with a standard unconstrained gradient optimization technique
was used and excellent results were reported [17].

In this paper, we propose a comprehensive theory of the syn-
thesis problem of these structures. We first present a simple re-
cursion formula to determine the low-pass prototype with arbi-
trarily placed transmission zeros. The resulting recursion rela-
tion is much simpler than that given by Cameron [7], [18]. Once
the transmission function is obtained, a coupling matrix which
enforces a given topology is synthesized by optimization. An-
alytical expressions for the gradient of the scattering parame-
ters are derived without recourse to the concept of the adjoint
network which was widely used in optimization and sensitivity
analysis of linear circuits [19].

II. COMPUTATION OF LOW-PASS PROTOTYPEFILTERING

FUNCTION

We start from a low-pass prototype in the frequency variable
where the transmission function is given by

(1)

where is a constant related to the passband return lossby
. The filtering function is given

by [7]

(2)
Here, is the location of the th transmission zero in
the complex -plane [7]. Note that for all
values of .

It can be shown that the function is a rational function
whose denominator is given by the product
[7]. The function can therefore be written as

(3)
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Fig. 1. Model of a general cross-coupled resonator bandpass filter.

where . To compute the numer-
ator a simple recursion relation is established between

, and .
Using the identity

, we can write

(4)

Similarly

(5)

Eliminating the quantity from
these last two equations and using simple hyperbolic identities,
we get the following recursion relation:

(6)

The polynomials and are given by

(7)

From (6) it is obvious that is a polynomial of degree
if and are polynomials of degree

and , respectively.

III. B ASIC MODEL AND ITS GOVERNING EQUATIONS

We propose to synthesize a network consisting ofcou-
pled lossless resonators as shown in Fig. 1. The resonant fre-
quency of resonatoris where is the center fre-
quency of the filter and corresponds to the angular frequency.
The frequency-independent coupling coefficient between res-
onators and is denoted by . A voltage source
of internal resistance and of magnitude equal to unity ex-
cites the structure at resonator 1. The load at the output is a
resistor connected to resonator. The normalized angular
frequency is related to and the bandwidth by

. For narrow-band filters, the shift
in the resonant frequencies of the resonators is absorbed in fre-
quency-indepedent diagonal elements of the coupling matrix

.
In the remainder of the paper, we set and ;

these quantities act as scaling factors on the network parameters
[1, footnote, p. 34]. Following the analysis in [1], the loop cur-
rents, which are grouped in the vector, are governed by the
following matrix equation:

(8)
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Here, is the identity matrix, is a matrix whose only
nonzero entries are and , and is a
symmetric square coupling matrix. The excitation vectoris
given by where is the transposition
operator. The discussion of the limitations of this model to
narrow-band filters is well presented in [1] and is not repeated
here.

From (8), we see that the vector current is given by the
formal solution

(9)

Using this equation, the scattering parameters are given by

(10)

and

(11)

At this point, the synthesis problem can be formulated simply:
determine the coupling matrix and the resistors and
such that the scattering parameters given by (12) and (13) repro-
duce the insertion and return loss given by the prototype.

We propose to solve this problem by optimization for the fol-
lowing reasons.

1) We can strictly enforce the desired topology; this elimi-
nates the need for similarity transformations.

2) We can synthesize both symmetric and asymmetric re-
sponses. If the structure is symmetric, this information
can be used to reduce the numerical effort.

3) We can synthesize filters of arbitrary even or odd orders.
4) We can constrain specific coupling elements to be of a

given sign or within a magnitude range if the intended
implementation calls for such a constraint.

5) The resulting solution, if one is obtained, is not affected
by the problem of round off errors which plagues extrac-
tion methods.

6) If an exact solution is not found, an approximate one
which maybe acceptable, is always given. This happens
when the desired prototype response is not within the
range of the chosen topology.

7) We could formulate the problem as a set of nonlinear
equations similarly to the technique presented by Orchard
[20], for example. It is, however, much easier to find a
minimum than a zero when the number of variables is
large [21, p. 272].

IV. COST FUNCTION

Keeping in mind that the filtering functions under consider-
ation, generalized Chebychev prototypes, are rational functions
of frequency; they are uniquely specified by the location of their
poles and zeros and an additional scaling constant. Since the
zeros of the filtering function are identical to those of and
its poles coincide with the zeros of , the original analytic
structure is recovered from the vanishing of and at the
corresponding frequency points. To determine the scaling con-
stant, we evaluate the return loss at to get

. Consequently, the following cost func-
tion is used in this work:

(12)

Here, and are the zeros and poles of the filtering func-
tion , respectively. It is assumed that has poles and
zeros.

Except for the last two terms, this cost function is identical
to that given in [17]. However, this seemingly trivial difference
allows us to use the analytical gradient of the cost function.

V. GRADIENT CALCULATION

It this work, the entries of the coupling matrix will be used
as independent variables in the optimization process. The same
approach was used in [17]. To make the process more efficient,
both the values of the error function and its gradient are used.

We first note that the gradient of the error function with
respect to an independent variableinvolves the derivatives

and . It can be shown that [22]

(13)

with a similar expression for .
Using the expressions of and in terms of the coupling

matrix [equations (10) and (11)] we get

(14)

and

(15)

To calculate these derivatives, we take the derivative of the ma-
trix equation to get

(16)

The last term is zero since is a constant vector. Here, the
derivative of a matrix is a matrix whose entries are the deriva-
tives of the corresponding entries in the original matrix.

Taking the derivative of the identity , where
is the identity matrix, we get

(17)

Combining equations (16) and (17), we get

(18)

Let us define the topology matrix of the network by
if and if . The topology of the
network can be specified beforehand and will be enforced at
each step in the optimization.
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When the generic variableis replaced by a generic element
of the coupling matrix in (18) which is then used
in equations (14) and (15), we get the simple results

(19)

and

(20)

Here, the symmetry of the matrices and was used. The
gradient of the scattering parameters with respect to the diagonal
elements of the coupling matrix is obtained from the previous
expressions by simply setting and dividing by a factor
of two. The factor of two accounts for the fact that the diagonal
elements of a symmetric matrix occur only once whereas off-
diagonal elements occur twice. Thus

(21)

and

(22)

Although the values of the terminations and can be de-
termined from the theory of Atia and Williams [1], we prefer to
determine them along with the coupling coefficients using opti-
mization.

Let us assume that the ratio of the two resistors is specified
as . The resistor will be used as an independent
variable. The computation of the gradient of and with
respect to follows the discussion above; we only give the
final result as

(23)

and

(24)

Expressions of the logarithmic derivatives of the transmission
coefficient of multicoupled cavity filters were also given in [23]
without derivation. The derivation presented here is more gen-
eral and can be used even in cases where the adjoint network
method is not applicable [24].

VI. COMPUTATION OF GROUPDELAY

It can be shown that the group delayis given by [22]

Im (25)

Recall that is a normalized and transformed frequency vari-
able; the actual value of the group delay should take this trans-
formation into consideration.

(a)

(b)

Fig. 2. Response of filter 1: (a) insertion and return loss and (b) group delay.

Following similar steps to those in the previous section and
using the fact that the derivative of the matrix with respect
to is equal to the identity matrix, we get the equation

Im (26)

VII. N UMERICAL RESULTS

The theory presented here is first applied to the synthesis of
an equally terminated fourth-order filter with two transmission
zeros at and a passband return loss of 20 dB (filter
1).

The network used involves direct coupling of each resonator
to but only resonators 1 and 4 are cross-coupled with
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(a)

(b)

Fig. 3. Response of filter 2: (a) insertion and return loss and (b) group delay.

a coupling coefficient . The initial guess of the
coupling matrix corresponds to setting all direct couplings to
0.5; all the remaining entries to zero and .

The nonzero entries of the obtained coupling matrix are:
, , ,

and . The insertion and return loss of the
synthesized filter are shown in Fig. 2(a). These are identical to
those of the prototype within plotting accuracy. This demon-
strates the accuracy of the approach.

The group delay was also computed using equation (26) and
is shown in Fig. 2(b). Note that this is not the actual group delay
as the normalized frequency was used in its computation. The
two are related by a simple frequency transformation [15]. The
calculated group delay agrees very well with that determined
directly from the prototype.

The next example is an equally terminated sixth-order filter
with four transmission zeros located at and

. The passband return loss is 20 dB (filter 2). We

(a)

(b)

Fig. 4. Response of filter 3: (a) insertion and return loss and (b) group delay.

introduce cross couplings between resonators 1 and 6, and 2
and 5; the remaining resonators are coupled only to their nearest
neighbors.

The starting guess corresponds to all cross couplings (
and ) set to zero, all direct couplings to 0.5, and the termina-
tions to unity and constrained to positive values in the
optimization routine. The insertion and return loss of the syn-
thesized filter are shown in Fig. 3(a) along with the prototype;
the two coincide within plotting accuracy. The group delay of
the filter was also computed and its shown in Fig. 3(a). It agrees
with that computed directly from the prototype response func-
tion. The nonzero entries of the coupling matrix are

, , ,
, , and .

The minimum value of the cost function is zero (machine accu-
racy) for both filters.

Finally, to show performance of the approach in synthesizing
filters with asymmetrically located transmission zeros, we con-
sider a fifth-order filter with two transmission zeros at
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and and a passband return loss
of 20 dB (filter 3). The starting guess consists of all direct cou-
plings set to 0.5, the terminations to unity, and all the remaining
entries of the coupling matrix to zero. Resonator 1 is coupled to
3 which is also coupled to resonator 5. The nonzero entries of
the calculated coupling matrix are as follows: ,

, , ,
, , , ,

, , and
. The corresponding return and insertion loss are

shown in Fig. 4(a). Both the response of the prototype as com-
puted from (6) and that calculated directly from the coupling
matrix are superimposed. The excellent agreement between the
two, the difference is not visible in the figure, shows the ac-
curacy of the synthesis approach. The group delay of the syn-
thesized filter was also computed from (26) and is shown in
Fig. 4(b). It agrees very well with that computed directly from
the response of the prototype.

VIII. C ONCLUSIONS

A theory for the synthesis of cross-coupled resonator filters
was presented. The coupling matrix required to reproduce a
given prototype response function is synthesized by gradient-
based optimization. Analytical expressions of the gradient of the
cost function as well as a formula for the group delay were de-
rived. Numerical results obtained from this new approach agree
well with those of the prototypes.
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