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Sensitivity Analysis of Coupled Resonator Filters
Smain Amari, Member, IEEE

Abstract—Expressions for the sensitivity of coupled resonator
filters with respect to the entries of the coupling matrix and the re-
sistive terminations are presented. It is shown that the sensitivities
of the network are all determined from a single analysis at a given
frequency. The approach allows the elimination of the potentially
time-consuming Monte Carlo analysis, which is used in tolerance
analysis of this type of microwave structures. The technique can be
applied to the sensitivity analysis of any linear system and is more
general than the Adjoint Network Method.

Index Terms—Filters, linear systems, sensitivity, tolerance anal-
ysis.

I. INTRODUCTION

M ICROWAVE resonators are finding an increasing range
of applications in modern communication systems such

as bandpass filters with stringent requirements.
The computer-aided design of microwave resonator filters

can be divided roughly into three steps. First, a network con-
sisting of coupled lumped resonators is synthesized from the
specifications on the frequency response. This step yields a cou-
pling matrix which determines the amount of coupling between
the different resonators and can be carried out using the theories
presented in [1]-[5], for example. Second, models of physical
resonators are used to attempt to reproduce the coupling matrix
computed in the first step. Finally, a tolerance analysis to deter-
mine the sensitivity of the filter to manufacturing tolerances is
performed.

Sensitivity analysis of microwave networks can be achieved
using the concept of adjoint network as long as a network (and
its adjoint) are available [6]. A limitation of the adjoint network
approach stems from the fact that it assumes the validity of Kir-
choff’s laws. In more complex situations, such as encountered
in modern high frequency circuits, the variables under consid-
eration do not necessarily satisfy these laws. Such variables can
be expansion coefficients in Moment Method solutions, or nodal
values in the Finite Element Method; it is not obvious how the
adjoint network method can be used or extended to these impor-
tant situations.

Another popular approach in tolerance analysis is the Monte
Carlo simulation, or similar statistical methods where the re-
sponse of the filter is determined at randomly selected dimen-
sions within the assumed errors to determine the robustness of
the design. When a large number of variables are present, this
approach can be time-consuming.
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In this paper, we determine the sensitivity of resonator mi-
crowave filters directly from the matrix equations used in their
analysis. More precisely, we are concerned with the sensitivity
of the filter to variations in the entries of the coupling matrix. It
is shown that the sensitivities of the response of the filter can be
determined “analytically” from a single analysis of the network.
From these sensitivities, acceptable bounds on the errors in the
entries of the coupling matrix can be determined before an at-
tempt is made to implement the network. Based on these results,
the actual implementation can be either pursued or abandoned.

Although the technique is applied here only to the case of
coupled resonator filters, it can be used to determine the sensi-
tivities of any linear system whose responseto an excitation

is given by a linear equation of the form where
is a linear operator representing the system.

II. THEORY

A typical structure considered in this paper is shown in Fig. 1.
It consists of coupled lossless resonators. The resonant fre-
quency is assumed to be unity. The frequency-independent
coupling coefficient between resonatorsand is denoted by

. Possible shifts in the resonant frequencies of the
resonators are included in the diagonal elements of the coupling
matrix . A voltage source of magnitude equal to unity and
internal resistance excites the structure at resonator 1. The
load at the output is a resistor connected to resonator .
The loop currents in the different resonators are grouped in the
vector . The same model was used in [1].

Following the analysis in [1], the loop currents are governed
by the following matrix equation:

(1)

Here, is the normalized frequency, is a matrix whose only
nonzero entries are , and and are a
symmetric square coupling matrix (with zero diagonal elements
when only synchronously tuned resonators are considered). The
excitation vector is given by , where

is the transposition operator. The discussion of the limitations
of this model to narrow-band filters is well presented in [1] and
is not repeated here.

The response functions we are interested in are the insertion
and return loss of the filter as a function of frequency.

Using (1), we get the loop currents as

(2)
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Fig. 1. Model of a general cross-coupled resonator bandpass filter.

From a simple analysis of the circuit, we get the following ex-
pressions for the transmission and reflection coefficients:

(3)

and

(4)

The coupling matrix and the termination resistances are as-
sumed already determined using the theories in [1]–[5]. The
basic question addressed in this paper is then the following:
Given the coupling matrix and the resistive terminations

and , determine the sensitivities of and with
respect to the entries of the matrix and the terminations.
Obviously, it is possible to determine these sensitivities using
finite differences whereby a separate analysis is carried out for
each nonzero entry in the coupling matrix. Such a process can
be time-consuming and may not be accurate unless exceedingly
small increments are used. It is shown in this paper that these
sensitivities can be determined from a single analysis, i.e., from
the knowledge of the inverse of the matrix in (2).

Since the magnitude of the reflection and transmission co-
efficients can vanish for some frequency points, the definition
of the sensitivity used is theunnormalizedsensitivity defined
by [6]

(5)

with a similar expression for .
However, it can be easily shown that [7]

(6)

Using (3) and (4), we get

(7)

and

(8)

To calculate these derivatives, we take the derivative of the ma-
trix equation to get

(9)

The last term is zero, since is a constant vector. Here, the
derivative of a matrix is a matrix whose entries are the deriva-
tives of the corresponding entries in the original matrix.

To calculate the derivative of the inverse of the matrix, we
take the derivative of the identity , where is
the identity matrix, to get

(10)

Combining (9) and (10), we get

(11)

To proceed further, we need to introduce a few notations. Let
us define the topology matrix of the network by if

, and if .
When the variable is replaced by an element of the coupling

matrix in (11), which is then used in (7) and (8), we get the
simple results

(12)

and

(13)

Here, the symmetry of the matrices and was used.
The partial derivatives of the reflection and transmission co-

efficients with respect to the resistive loads can be determined
similarly

(14)

(15)

(16)
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Fig. 2. Insertion and return loss (in decibels) of a 5-pole pseudo-elliptic filter [9].

TABLE I
COUPLING MATRIX OF A FIVE-RESONATOR

FILTER, R = 20 dB,R = R = 1:025

and

(17)

To obtain the final expressions of the sensitivities, appropriate
combinations of (3), (4), and (12)–(17) are to be used in (6).

It has been brought to the attention of the author that Zaki
and Atia presented sensitivity analysis of coupled resonator fil-
ters [8]. Their results are, however, given without derivation. In
contrast, the derivation presented here can be used to establish
the sensitivities of any linear system.

III. N UMERICAL RESULTS

The theory presented here is applied to the sensitivity anal-
ysis of a fifth-order pseudo-elliptic filter with two transmission
zeros, one on each side of the passband. The response of the
low-pass prototype is shown in Fig. 2. The passband return loss
is 20 dB and the transmission zeros are located at .
This prototype can be obtained from the coupling matrix given
in Table I. Note that these values agree very well with those
given in reference [9] for the same prototype.

The sensitivities of the reflection and transmission coeffi-
cients with respect to the entries of the coupling matrix and the
resistive loads were determined from the present theory as well
as finite differences, and showed perfect agreement.

Fig. 3 shows the quantity (solid line) and
(dashed line) as a function of frequency. The

frequency range was limited to approximately the passband
since and its derivatives decrease rapidly for frequencies
outside of this range. It is interesting to observe that the
reflection coefficient is equally sensitive to variations in the
two resistive terminations. This result implies that, to first
order, the reflection coefficient is not affected by a positive
(small) error in and the opposite error in . That this is
the case is shown in Fig. 4. A 10% error was used in both
and once with the same sign (dashed-dotted line,10%)
and once with the opposite sign (dashed line, 10%,

10%). The solid line is the return loss with the exact
values of and . This example shows that, as far as the
in-band return loss is concerned, opposite errors in the resistive
terminations have little effect on the performance of the filter.

The sensitivities of the insertion loss to (solid line) and
were was also determined and are shown in Fig. 5. Since

the cross coupling term is responsible for the presence of
the transmission zeros, it is not surprising that the stopband in-
sertion loss of the filter is more sensitive to than . To a
first approximation, errors in determine the robustness of
the filter in the stopband, especially in the vicinity of the trans-
mission zeros.

The sensitivities of the reflection coefficient with respect to
the entries of the coupling matrix were also determined and are
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Fig. 3. Unnormalized sensitivities ofjS j versusR andR .

Fig. 4. Return loss (in decibels) for�R = �R = 0 (solid line),�R = +10%,�R = �10% (dashed line), and�R = �R = �10% (dashed-dotted
line).

shown in Fig. 6. The discontinuities which occur at the zeros of
are typical of the absolute value function. From the rela-

tive signs and magnitudes of these sensitivities, and those of the
transmission coefficient, the tuning of the filter can be decided
and possibly accelerated. The sensitivities can also be used to

determine the “worst” performance of the filter where all errors
contribute the same sign to the response. Although such a result
can be obtained from a potentially lengthy statistical analysis,
the analytic formulas presented in this paper allows one to de-
cide beforehand on the robustness of the filter.
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Fig. 5. Unnormalized sensitivities ofjS j versusM (solid line),M (dashed line).

Fig. 6. Unnormalized sensitivities ofjS j versusM (solid line),M (dashed line) andM (dashed-dotted line).

IV. CONCLUSION

Analytical expressions for the sensitivities of the reflection
and transmission coefficients of coupled resonator filters were

presented. All sensitivities are obtained from a single analysis of
the structure. The signs and magnitudes of these sensitivities can
be used in determining the robustness of the synthesized filter
beforehand. The obtained sensitivities agree well with those ob-



1022 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 10, OCTOBER 2000

tained from finite differencing (not shown here). The technique
can be used to establish the sensitivities of any linear system and
is more general than the Adjoint Network Method.
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