IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 10, OCTOBER 2000 1017

Sensitivity Analysis of Coupled Resonator Filters

Smain Amarj Member, IEEE

Abstract—Expressions for the sensitivity of coupled resonator  In this paper, we determine the sensitivity of resonator mi-
filters with respect to the entries of the coupling matrix and the re- - crowave filters directly from the matrix equations used in their

sistive terminations are presgnted. Itis shpwn that the.sensm\{ltles analysis. More precisely, we are concerned with the sensitivity
of the network are all determined from a single analysis at a given

frequency. The approach allows the elimination of the potentially Of the filter to variations in the entries of the coupling matrix. It
time-consuming Monte Carlo analysis, which is used in tolerance iS shown that the sensitivities of the response of the filter can be

analysis of this type of microwave structures. The technique can be determined “analytically” from a single analysis of the network.
applied to the sensitivity analysis of any linear system and is more pyom these sensitivities, acceptable bounds on the errors in the
general than the Adjoint Network Method. . . T .
entries of the coupling matrix can be determined before an at-
Index Terms—Filters, linear systems, sensitivity, tolerance anal- tempt is made to implement the network. Based on these results,
ysis. the actual implementation can be either pursued or abandoned.
Although the technique is applied here only to the case of
|. INTRODUCTION coupled resonator filters, it can be used to determine the sensi-

tivities of any linear system whose respoifisgto an excitation

ICROWAVE resonators are finding an increasing range, . . . .

o I is given by a linear equation of the forfd][x] = [¢] where
of applications in modern communication systems su . ) )

] is a linear operator representing the system.

as bandpass filters with stringent requirements.
The computer-aided design of microwave resonator filters
can be divided roughly into three steps. First, a network con- Il. THEORY

sisting of coupled lumped resonators is synthesized from then typical structure considered in this paper is shown in Fig. 1.
specifications on the frequency response. This step yields a cAlgonsists of V coupled lossless resonators. The resonant fre-
pling matrix which determines the amount of coupling betweem,ency is assumed to be unity. The frequency-independent
the different resonators and can be carried out using the theoe’ggp”ng coefficient between resonatdrand j is denoted by
presented in [1]-[5], for example. Second, models of physicg}, . — A7;,. Possible shifts in the resonant frequencies of the
resonators are used to attempt to reproduce the coupling mafgXonators are included in the diagonal elements of the coupling
computed in the first step. Finally, a tolerance analysis to det@fairix [M]. A voltage source of magnitude equal to unity and
mine the sensitivity of the filter to manufacturing tolerances igternal resistanc&; excites the structure at resonator 1. The

performed. load at the output is a resistdt, connected to resonatay.

Sensitivity analysis of microwave networks can be achievéghe |oop currents in the different resonators are grouped in the
using the concept of adjoint network as long as a network (a{)gctor[l]. The same model was used in [1].

its adjoint) are available [6]. A limitation of the adjoint network Following the analysis in [1], the loop currents are governed
approach stems from the fact that it assumes the validity of Kgy the following matrix equation:
choff’s laws. In more complex situations, such as encountered

in modern high frequency circuits, the variables under consid- ) o 1
eration do not necessarily satisfy these laws. Such variables ckh— 7R+ Ml = [Alll] = —jle], °=-1 A= YT
be expansion coefficients in Moment Method solutions, or nodal (2)

values in the Finite Element Method; it is not obvious how the

adjoint network method can be used or extended to these impQgre, ) is the normalized frequency is a matrix whose only
tant situations. nonzero entries ar&;; = Ry, andRxy = R, andM are a
Another popular approach in tolerance analysis is the Mor{gmmetric square coupling matrix (with zero diagonal elements
Carlo simulation, or similar statistical methods where the rgzhen only synchronously tuned resonators are considered). The
sponse of the filter is determined at randomly selected dimegycitation vectofe] is given by[e]* = [1, 0, 0, ..., 0], where
sions within the assumed errors to determine the robustness @fhe transposition operator. The discussion of the limitations

the design. When a large number of variables are present, $ji$nis model to narrow-band filters is well presented in [1] and
approach can be time-consuming. is not repeated here.

The response functions we are interested in are the insertion

Manuscript received April 1999; revised May 2000. This paper was recor‘i':}-nd return loss of the filter as a function of frequency.
mended by Associate Editor B. Leung. Using (1), we get the loop currents as
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Fig. 1. Model of a general cross-coupled resonator bandpass filter.
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From a simple analysis of the circuit, we get the following exfo calculate these derivatives, we take the derivative of the ma-

pressions for the transmission and reflection coefficients:  trix equation[I] = —j[A~!][¢] to get
oIl 9lA!] a1 0] 9[AT]
521 =2 \ R1R2 IN o =—J ar [6] —J [A ] or =7 ar [6] (9)

=—2j/Ri Ry [A™ ]y, ®)

The last term is zero, sinde] is a constant vector. Here, the

and derivative of a matrix is a matrix whose entries are the deriva-
Su =1-2R11; tives of the corresponding entries in the original matrix.
=14 2jR; [Afl]ll_ 4) To calculate the derivative of the inverse of the maltrik, we

take the derivative of the identifi][A~!] = [U], where[U] is

The coupling matrix and the termination resistances are 43¢ identity matrix, to get

sumed already determined using the theories in [1]-[5]. The A1 4014,

basic question addressed in this paper is then the following: o = AT AT (10)
Given the coupling matrix/] and the resistive terminations
R, and R,, determine the sensitivities &f;; and Ss; with
respect to the entries of the matifix/] and the terminations I
Obviously, it is possible to determine these sensitivities using or

finite differences whereby a separate analysis is carried out tlor . :
each nonzero entry in the coupling matrix. Such a process Caonproceed further, we need to introduce a few notations. Let
' define the topology matrix of the network By; = 1 if

be time-consuming and may not be accurate unless exceedinl@
g y Y £0,andP; = 0if M;; = 0.

small increments are used. It is shown in this paper that thes&%‘N : . .
e . . - hen the variable is replaced by an element of the coupling
sensitivities can be determined from a single analysis, i.e., from

the knowledge of the inverse of the matfii] in (2). matrix M, in (11), which is then used in (7) and (8), we get the

Since the magnitude of the reflection and transmission C%|_mple results

efficients can vanish for some frequency points, the definition d511

Combining (9) and (10), we get

[ A]

J[ATY oz

[A™fe]- (11)

— _ A4 —1 -1

of the sensitivity used is thennormalizedsensitivity defined OM,, 41 Ppg[ A I [A™ o (12)
by [6

y [6] and

9|51
lsial — 1l as .
Se Oz ) 8]\/[21 =2 R Ry P,

. - . pgq

with a similar expression fof3; . A Y Np[A g + A vg[A™ ). (13)

However, it can be easily shown that [7]
Here, the symmetry of the matricg4] and[A~!] was used.

d|Su| Re |S11] 9511 d|Sa1| Re |So1| OS2 The partial derivatives of the reflection and transmission co-
dr S Oz |’ dr S Oz | efficients with respect to the resistive loads can be determined
(6) similarly
. 511 _ a1 1 ra-l
Using (3) and (4), we get OR, =2j[A" Ju 2R [A A (14)
8511 1 1
— 2R [A Yin[A Yn (15)
L N ) ok e
dx dx 951 Ry
and o =7 \ & [A7 v+ 2 VR R [A7 v [A™
8521 —9 RR 8IN R R 8 a-Rl Rl
or 12 x # Ry, Rp. (8) (16)
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Fig. 2. Insertion and return loss (in decibels) of a 5-pole pseudo-elliptic filter [9].

TABLE | The sensitivities of the reflection and transmission coeffi-
Cglt’TPELI'QN%'\":AT;JngFR’? ZV]E{;RES%’,‘ZT;R cients with respect to the entries of the coupling matrix and the
' ' ' resistive loads were determined from the present theory as well
ij 12 23 34 45 14 as finite differences, and showed perfect agreement.
M;; 1-0.863 | -0.647 | -0.632 | -0.863 | 0.020 Fig. 3 shows the quantity|S:1|/8R;1 (solid line) and
9] 1-0.863 | -0.647 | -0.632 | -0.863 | 0.020 d|S11|/8R, (dashed line) as a function of frequency. The

frequency range was limited to approximately the passband
since|S11| and its derivatives decrease rapidly for frequencies
outside of this range. It is interesting to observe that the
0521 =—74 /& [A7Y N1 +2 VR R [A7wn[A7 1. reflection coefficient is equally sensitive to variations in the
OR; Ry two resistive terminations. This result implies that, to first
17 order, the reflection coefficient is not affected by a positive

To obtain the final expressions of the sensitivities, appropriat%‘:éma”) error ik, and the opposite error i;. That this is

. o 0 .
combinations of (3), (4), and (12)—(17) are to be used in (6). e case is shown in Fig. 4. A 10% error was used in oth

: : i PP
It has been brought to the attention of the author that Za%‘d £, once with the same sign (dashed-dotted lind0%)

. L . _ 0
and Atia presented sensitivity analysis of coupled resonator |r—1d once with the OppO.S't? S1gn (dashed liad, . +10%,

) . . L Ry = —10%). The solid line is the return loss with the exact
ters [8]. Their results are, however, given without derivation. In .

o vaIHes of R; and R,. This example shows that, as far as the
contrast, the derivation presented here can be used to establlsb . ) . -
the sensitivities of any linear system In-band return loss is concerned, opposite errors in the resistive

' terminations have little effect on the performance of the filter.
The sensitivities of the insertion loss Ad, 4, (solid line) and
M, were was also determined and are shown in Fig. 5. Since
The theory presented here is applied to the sensitivity anlie cross coupling term/, 4 is responsible for the presence of
ysis of a fifth-order pseudo-elliptic filter with two transmissiorthe transmission zeros, it is not surprising that the stopband in-
zeros, one on each side of the passband. The response ofs#rtion loss of the filter is more sensitiveid, 4 thani/;,. To a
low-pass prototype is shown in Fig. 2. The passband return Idsst approximation, errors id{;, determine the robustness of
is 20 dB and the transmission zeros are locatetl at +4.25. the filter in the stopband, especially in the vicinity of the trans-
This prototype can be obtained from the coupling matrix givamission zeros.
in Table I. Note that these values agree very well with those The sensitivities of the reflection coefficient with respect to

given in reference [9] for the same prototype. the entries of the coupling matrix were also determined and are

and

I1l. NUMERICAL RESULTS
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Fig. 4. Return loss (in decibels) fa&x2; = AR, = 0 (solid line),AR; = +10%,A R, = —10% (dashed line), and R, = AR, = —10% (dashed-dotted
line).

shown in Fig. 6. The discontinuities which occur at the zeros détermine the “worst” performance of the filter where all errors
|S11] are typical of the absolute value function. From the relaontribute the same sign to the response. Although such a result
tive signs and magnitudes of these sensitivities, and those of ta@ be obtained from a potentially lengthy statistical analysis,
transmission coefficient, the tuning of the filter can be decidatle analytic formulas presented in this paper allows one to de-
and possibly accelerated. The sensitivities can also be useditte beforehand on the robustness of the filter.
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Fig. 5. Unnormalized sensitivities ¢f-; | versusiM 4 (solid line), M, (dashed line).
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Fig. 6. Unnormalized sensitivities §$+1| versusM, - (solid line), M4 (dashed line) and4,; (dashed-dotted line).

IV. CONCLUSION presented. All sensitivities are obtained from a single analysis of

the structure. The signs and magnitudes of these sensitivities can

Analytical expressions for the sensitivities of the reflectiobe used in determining the robustness of the synthesized filter
and transmission coefficients of coupled resonator filters welbeforehand. The obtained sensitivities agree well with those ob-
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tained from finite differencing (not shown here). The technique [8] K. A. Zaki and A. E. Atia, “Sensitivity analysis of multi-coupled
can be used to establish the sensitivities of any linear system and gav'ty filters,” in IEEE Int. Symp. Circuits and Systervay 1978, pp.

. s 90-793.
IS more general than the Ad]omt Network Method. [9] U. Rosenberg, “New ‘planar’ waveguide cavity elliptic function filters,”

Eur. Microwave Conf. Dig.pp. 524-527, 1995.
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