Lecture Slides for Programming in C++
[The C++ Language, Libraries, Tools, and Other Topics]

(Version: 2020-02-29)

@oge

Michael D. Adams

Department of Electrical and Computer Engineering
University of Victoria
Victoria, British Columbia, Canada

To obtain the most recent version of these lecture slides (with functional hyperlinks) or for additional
information and resources related to these slides (including errata and lecture videos), please visit:

http://
If you like these lecture slides, please consider posting a review of them at:

7.ece.uvic.ca/~mdadams/cppbook

https://play.google.com/store/search?q=ISBN: 9781550586640 or
http://books.google.com/books?vid=ISBN9781550586640

E youtube.com/iamcanadian1867 E github.com/mdadams u @mdadams16

http://www.ece.uvic.ca/~mdadams/cppbook
https://play.google.com/store/search?q=ISBN:9781550586640
http://books.google.com/books?vid=ISBN9781550586640
http://youtube.com/iamcanadian1867
http://github.com/mdadams
http://twitter.com/mdadams16

The author has taken care in the preparation of this document, but makes no expressed or implied warranty of any kind and assumes no
responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use
of the information or programs contained herein.

Copyright © 2015-2020 Michael D. Adams

Published by the University of Victoria, Victoria, British Columbia, Canada

This document is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) License. A copy
of this license can be found on page iii of this document. For a simple explanation of the rights granted by this license, see:

http

UNIX and X Window System are registered trademarks of The Open Group. Windows is a registered trademark of Microsoft Corporation.
Fedora is a registered trademark of Red Hat, Inc. Ubuntu is a registered trademark of Canonical Ltd. MATLAB is a registered trademark of The
MathWorks, Inc. OpenGL is a registered trademark of Hewlett Packard Enterprise. The YouTube logo is a registered trademark of Google, Inc.
The GitHub logo is a registered trademark of GitHub, Inc. The Twitter logo is a registered trademark of Twitter, Inc.

This document was typeset with IATEX.

ISBN 978-1-55058-663-3 (print)
ISBN 978-1-55058-664-0 (PDF)

http://creativecommons.org/licenses/by-nc-nd/3.0/

License |

Creative Commons Legal Code
Attribution-NonCommercial-NoDerivs 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be
recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a
Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered an
Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or
broadcasts, or other works or subject matter other than works listed

2020 Michael D. Adam:

License I

in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this
License.

c. "Distribute" means to make available to the public the original and
copies of the Work through sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

e. "Original Author" means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the Work
or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim,
play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer
being the person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms
of this License including without limitation any production in the
literary, scientific and artistic domain, whatever may be the mode or
form of its expression including digital form, such as a book
pamphlet and other writing; a lecture, address, sermon or other work
of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are
assimilated works expressed by a process analogous to cinematography;
a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied
art; an illustration, map, plan, sketch or three-dimensional work
relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the
extent it is protected as a copyrightable work; or a work performed by
a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this

020 Michael D. Adam: C++

License Il

License who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous
violation.

h. "Publicly Perform" means to perform public recitations of the Work and
to communicate to the public those public recitations, by any means or
process, including by wire or wireless means or public digital
performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a
place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs,
sounds or images.

i. "Reproduce" means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of
fixation and reproducing fixations of the Work, including storage of a
protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce
limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License
Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated
in Collections.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights in
other media and formats, but otherwise you have no rights to make
Adaptations. Subject to 8(f), all rights not expressly granted by Licensor

020 Michael D. Adam: C++

License IV

are hereby reserved, including but not limited to the rights set forth in
Section 4(d)

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms
of this License. You must include a copy of, or the Uniform Resource
Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of
the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the
Work. You must keep intact all notices that refer to this License and
to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological
measures on the fork that restrict the ability of a recipient of the
Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection
apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You
must, to the extent practicable, remove from the Collection any credit
as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3
above in any manner that is primarily intended for or directed toward
commercial advantage or private monetary compensation. The exchange of
the Work for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation, provided
there is no payment of any monetary compensation in connection with
the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You
must, unless a request has been made pursuant to Section 4(a), keep
intact all copyright notices for the Work and provide, reasonable to
the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or if the
Original Author and/or Licensor designate another party or parties
(e.g., a sponsor institute, publishing entity, journal) for
attribution ("Attribution Parties") in Licensor’s copyright notice

020 Michael D. Adam: C++

License V

terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work unless such URI does not
refer to the copyright notice or llcenslng information for the Work.
The credit required by this Section 4(c) may be implemented in any
reasonable manner; provided, however, that in the case of a
Collection, at a minimum such credit will appear, if a credit for all
contributing authors of Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only
use the credit required by this Section for the purpose of attribution
in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author
Licensor and/or Attribution Parties, as appropriate, of You or Your
use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution
Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor reserves
the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License if Your exercise of
such rights is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b) and otherwise waives
the right to collect royalties through any statutory or compulsory
licensing scheme; and

iii. Voluntary License Schemes. The Licensor reserves the right to
collect royalties, whether individually or, in the event that the
Licensor is a member of a collecting society that administers
voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License that is for a
purpose or use which is otherwise than noncommercial as permitted

020 Michael D. Adam: C++

License VI

under Section 4 (b).

e. Except as otherwise agreed in writing by the Licensor or as may be
otherwise permitted by applicable law, if You Reproduce, Distribute or
Publicly Perform the Work either by itself or as part of any
Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial
to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION
OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR
ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Collections from You under
this License, however, will not have their licenses terminated
provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to
withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this

2020 Michael D. Adam:

License VII

License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

a.

Each time You Distribute or Publicly Perform the Work or a Collection
the Licensor offers to the recipient a license to the Work on the same
terms and conditions as the license granted to You under this License.
If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and
enforceable.

. No term or provision of this License shall be deemed waived and no

breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.
This License constitutes the entire agreement between the parties with
respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.
The rights granted under, and the subject matter referenced, in this
License were drafted utilizing the terminology of the Berne Convention
for the Protection of Literary and Artistic Works (as amended on
September 28, 1979), the Rome Convention of 1961, the WIPO Copyright
Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996
and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced
according to the corresponding provisions of the implementation of
those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law
includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this
License is not intended to restrict the license of any rights under
applicable law.

Creative Commons Notice

020 Michael D. Adam: C++

License VIlI

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

020 Michael D. Adam: C++

Other Textbooks and Lecture Slides by the Author |

M. D. Adams, Multiresolution Signal and Geometry Processing: Filter
Banks, Wavelets, and Subdivision (Version 2013-09-26), University of
Victoria, Victoria, BC, Canada, Sept. 2013, xxxviii + 538 pages, ISBN
978-1-55058-507-0 (print), ISBN 978-1-55058-508-7 (PDF). Available
from Google Books, Google Play Books, University of Victoria Bookstore,
and author’s web site
http://www.ece.uvic.ca/~mdadams/waveletbook

M. D. Adams, Lecture Slides for Multiresolution Signal and Geometry
Processing (Version 2015-02-03), University of Victoria, Victoria, BC,
Canada, Feb. 2015, xi + 587 slides, ISBN 978-1-55058-535-3 (print),
ISBN 978-1-55058-536-0 (PDF). Available from Google Books, Google
Play Books, University of Victoria Bookstore, and author’s web site
http://www.ece.uvic.ca/~mdadams/waveletbook

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/waveletbook
http://www.ece.uvic.ca/~mdadams/waveletbook

Other Textbooks and Lecture Slides by the Author Il

M. D. Adams, Continuous-Time Signals and Systems (Version
2013-09-11), University of Victoria, Victoria, BC, Canada, Sept. 2013, xxx
+ 308 pages, ISBN 978-1-55058-495-0 (print), ISBN 978-1-55058-506-3
(PDF). Available from Google Books, Google Play Books, University of
Victoria Bookstore, and author’s web site
http://www.ece.uvic.ca/~mdadams/sigsysbook.

B M. D. Adams, Lecture Slides for Continuous-Time Signals and Systems
(Version 2013-09-11), University of Victoria, Victoria, BC, Canada, Dec.
2013, 286 slides, ISBN 978-1-55058-517-9 (print), ISBN
978-1-55058-518-6 (PDF). Available from Google Books, Google Play
Books, University of Victoria Bookstore, and author’s web site
http://www.ece.uvic.ca/~mdadams/sigsysbook.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/sigsysbook
http://www.ece.uvic.ca/~mdadams/sigsysbook

Other Textbooks and Lecture Slides by the Author

M. D. Adams, Lecture Slides for Signals and Systems (Version
2016-01-25), University of Victoria, Victoria, BC, Canada, Jan. 2016, xvi +
481 slides, ISBN 978-1-55058-584-1 (print), ISBN 978-1-55058-585-8
(PDF). Available from Google Books, Google Play Books, University of
Victoria Bookstore, and author’s web site
http://www.ece.uvic.ca/~mdadams/sigsysbook.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/sigsysbook

Part 0

Preface

2015-2020 Michael D. Adams C++

About These Lecture Slides

B This document constitutes a detailed set of lecture slides on the C++
programming language and is current with the C'++17 standard.

B Many aspects of the C++ language are covered from introductory to more
advanced.

B Some aspects of the C++ standard library are also introduced.

B |n addition, various general programming-related topics are considered.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/full

Acknowledgments

B The author would like to thank Robert Leahy for reviewing various drafts of
many of these slides and providing many useful comments that allowed
the quality of these materials to be improved significantly.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Disclaimer

B Many code examples are included throughout these slides.

B Often, in order to make an example short enough to fit on a slide,
compromises had to be made in terms of good programming style.

B These deviations from good style include (but are not limited to) such
things as:
H frequently formatting source code in unusual ways to conserve vertical
space in listings;
not fully documenting source code with comments;
using short meaningless identifier names;
omitting include guards from headers; and
engaging in various other evil behavior such as: using many global
variables and employing constructs like “using namespace std;”.

EEEN

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Typesetting Conventions

In a definition, the term being defined is often typeset

To emphasize particular text, the text is typeset like this.

To show that particular text is associated with a hyperlink to an internal
target, the text is typeset

To show that particular text is associated with a hyperlink to an external
document, the text is typeset

URLs are typeset like http://www.ece.uvic.ca/~mdadams.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams
http://www.ece.uvic.ca/~mdadams

Companion Web Site

B The author of the lecture slides maintains a companion web site for the
slides.
B The most recent version of the slides can be downloaded from this site.
B Additional information related to the slides is also available from this site,
including:
o errata for the slides; and

o information on the companion web site, companion Git repository, and
companion YouTube channel for the slides.

B The URL of this web site is:
o http://www.ece.uvic.ca/~mdadams/cppbook

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppbook

Companion Git Repository

These lecture slides have a companion Git repository.
Numerous code examples and exercises are available from this repository.
This repository is hosted by GitHub.
The URL of the main repository page on GitHub is:
o https://github.com/mdadams/cppbook_companion
The URL of the actual repository itself is:
o https://github.com/mdadams/cppbook_companion.git

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

https://github.com/mdadams/cppbook_companion
https://github.com/mdadams/cppbook_companion.git

Companion YouTube Channel

B Video lectures for some of the material covered by these lecture slides
can be found on the author’s YouTube channel.
B The URL of the author’s YouTube channel is:

o0 https://www.youtube.com/user/iamcanadianl867

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

https://www.youtube.com/user/iamcanadian1867

Software Development Environment (SDE)

B The Software Development Environment (SDE) is a collection of tools that
can be used to provide a basic up-to-date environment for C++ code
development.

B The SDE should work with most Linux distributions, provided that the
necessary software dependencies are installed.

B Amongst other things, the SDE software provides a collection of scripts for
installing packages like:

o Boost, Catch2, CGAL, Clang, CMake, GCC, Gcovr, GDB, GSL, Lcov,
Libcxx, TeX Live, Vim, Vim LSP, and YCM
B The SDE software has a Git repository hosted by GitHub.
B The URL of the main repository page on GitHub is:
0 https://github.com/mdadams/sde
B The URL of the actual repository itself is:
o https://github.com/mdadams/sde.qgit
B For more information about the SDE, refer to the main repository page on
GitHub.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

https://github.com/mdadams/sde
https://github.com/mdadams/sde.git

Part 1

2020 Michael D. Adal

Why |Is Software Important?

B almost all electronic devices run some software

B gutomobile engine control system, implantable medical devices, remote
controls, office machines (e.g., photocopiers), appliances (e.g.,
televisions, refrigerators, washers/dryers, dishwashers, air conditioner),
power tools, toys, mobile phones, media players, computers, printers,
photocopies, disk drives, scanners, webcams, MRI machines

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Why Software-Based Solutions?

B more cost effective to implement functionality in software than hardware
B software bugs easy to fix, give customer new software upgrade

B hardware bugs extremely costly to repair, customer sends in old device
and manufacturer sends replacement

B systems increasingly complex, bugs unavoidable
B allows new features to be added later

B implement only absolute minimal functionality in hardware, do the rest in
software

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Software-Related Jobs

B many more software jobs than hardware jobs
B relatively small team of hardware designers produce platform like iPhone
B thousands of companies develop applications for platform

B only implement directly in hardware when absolutely necessary (e.g., for
performance reasons)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

B created by Dennis Ritchie, AT&T Bell Labs in 1970s
B international standard ISO/IEC 9899:2018 (informally known as “C18”)

B available on wide range of platforms, from microcontrollers to
supercomputers; very few platforms for which C compiler not available

B procedural, provides language constructs that map efficiently to machine
instructions

B does not directly support object-oriented or generic programming

B gpplication domains: system software, device drivers, embedded
applications, application software

B greatly influenced development of C++

B when something lasts in computer industry for more than 40 years
(outliving its creator), must be good

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

C++

B created by Bjarne Stroustrup, Bell Labs
B originally C with Classes, renamed as C++ in 1983

B most recent specification of language in ISO/IEC 14882:2017 (informally
known as “C++17”)

procedural

loosely speaking is superset of C

directly supports object-oriented and generic programming
maintains efficiency of C

application domains: systems software, application software, device
drivers, embedded software, high-performance server and client
applications, entertainment software such as video games, native code for
Android applications

B greatly influenced development of C# and Java

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Java

B developed in 1990s by James Gosling at Sun Microsystems (later bought
by Oracle Corporation)

de facto standard but not international standard

usually less efficient than C and C++

simplified memory management (with garbage collection)
direct support for object-oriented programming

application domains: web applications, Android applications

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

B designed by John Backus, IBM, in 1950s

B international standard ISO/IEC 1539-1:2010 (informally known as "Fortran
2008")

B application domain: scientific and engineering applications, intensive
supercomputing tasks such as weather and climate modelling, finite
element analysis, computational fluid dynamics, computational physics,
computational chemistry

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

B developed by Microsoft, team led by Anders Hejlsberg
B ECMA-334 and ISO/IEC 23270:2006

B most recent language specifications not standardized by ECMA or
ISO/IEC

B intellectual property concerns over Microsoft patents
B object oriented

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Objective C

B developed by Tom Love and Brad Cox of Stepstone (later bought by NeXT
and subsequently Apple)

used primarily on Apple Mac OS X and iOS
strict superset of C
no official standard that describes Objective C

authoritative manual on Objective-C 2.0 available from Apple

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

MATLAB

proprietary language, developed by The MathWorks
not general-purpose programming language
application domain: numerical computing

used to design and simulate systems

not used to implement real-world systems

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Why Learn C++7?

vendor neutral
international standard

]
]

B general purpose
B powerful yet efficient
]

loosely speaking, includes C as subset; so can learn two languages (C++
and C) for price of one

easy to move from C++ to other languages but often not in other direction
many other popular languages inspired by C++
popular language

consistently ranks amongst top languages in TIOBE Software
Programming Community Index
(https://www.tiobe.com/tiobe-index/)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

https://www.tiobe.com/tiobe-index/

Part 2

C++

2015-2020 Michael D. Adams C++

Section 2.1

History of C++

2015-2020 Michael D. Adams C++ Version: 2020-02-29

B developed by Bjarne Stroustrup starting in 1979 at Computing Science
Research Center of Bell Laboratories, Murray Hill, NJ, USA

B doctoral work in Computing Laboratory of University of Cambridge,
Cambridge, UK

B study alternatives for organization of system software for distributed
systems

B required development of relatively large and detailed simulator

B dissertation:

B. Stroustrup. Communication and Control in Distributed Computer
Systems. PhD thesis, University of Cambridge, Cambridge, UK, 1979.

B in 1979, joined Bell Laboratories after having finished doctorate

B work started with attempt to analyze UNIX kernel to determine to what
extent it could be distributed over network of computers connected by LAN

B needed way to model module structure of system and pattern of
communication between modules

B no suitable tools available

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

B had bad experiences writing simulator during Ph.D. studies; originally
used Simula for simulator; later forced to rewrite in BCPL for speed; more
low level than C; BCPL was horrible to use

B notion of what properties good tool would have motivated by these
experiences

B suitable tool for projects like simulator, operating system, other systems
programming tasks should:

o support for effective program organization (like in Simula) (i.e., classes,
some form of class hierarchies, some form of support for concurrency,
strong checking of type system based on classes)

o produce programs that run fast (like with BCPL)

o be able to easily combine separately compilable units into program (like
with BCPL)

o have simple linkage convention, essential for combining units written in
languages such as C, Algol68, Fortran, BCPL, assembler into single
program

o allow highly portable implementations (only very limited ties to operating
system)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline for C with Classes (1979-1983) |

May 1979 work on C with Classes starts

Oct 1979 Iinitial version of Cpre, preprocessor that added Simula-like
classes to C; language accepted by preprocessor later started
being referred to as C with Classes

Mar 1980 Cpre supported one real project and several experiments (used
on about 16 systems)
Apr 1980 first internal Bell Labs paper on C with Classes published (later
to appear in ACM SIGPLAN Notices in Jan. 1982)
B. Stroustrup. Classes: An abstract data type facility for the

C language. Bell Laboratories Computer Science Technical
Report CSTR-84, Apr. 1980.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline for C with Classes (1979-1983) II

1980 initial 1980 implementation had following features:

classes

derived classes

public/private access control

constructors and destructors

call and return functions (call function implicitly called before
every call of every member function; return function implicitly
called after every return from every member function; can be
used for synchronization)

friend classes

type checking and conversion of function arguments

1981 in 1981, added:

inline functions
default arguments
overloading of assignment operator

Jan 1982 first external paper on C with Classes published

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline for C with Classes (1979—-1983) Ili

B. Stroustrup. Classes: An abstract data type facility for the
C language. ACM SIGPLAN Notices, 17(1):42-51, Jan.
1982.

Feb 1983 more detailed paper on C with Classes published
B. Stroustrup. Adding classes to the C language: An
exercise in language evolution. Software: Practice and
Experience, 13(2):139-161, Feb. 1983.
B C with Classes proved very successful; generated considerable interest

B first real application of C with Classes was network simulators

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline for C84 to C++98 (1982—1998) |

B started to work on cleaned up and extended successor to C with Classes,
initially called C84 and later renamed C++

Spring 1982 started work on Cfront compiler front-end for C84;
initially written in C with Classes and then transcribed to C84;
traditional compiler front-end performing complete check of
syntax and semantics of language, building internal
representation of input, analyzing and rearranging
representation, and finally producing output for some code
generator;
generated C code as output;
difficult to bootstrap on machine without C84 compiler; Cfront
software included special “half-processed” version of C code
resulting from compiling Cfront, which could be compiled with
native C compiler and resulting executable then used to compile
Cfront

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline for C84 to C++98 (1982—-1998) Il

Dec 1983 C84 (C with Classes) renamed C++;
name used in following paper prepared in Dec. 1983

B. Stroustrup. Data abstraction in C. Bell Labs Technical
Journal, 63(8):1701-1732, Oct. 1984.
(name C++ suggested by Rick Mascitti)
1983 virtual functions added

Note: going from C with Classes to C84 added: virtual functions,
function name and operator overloading, references, constants
(const), user-controlled free-store memory control, improved
type checking
Jan 1984 first C++ manual
B. Stroustrup. The C++ reference manual. AT&T Bell Labs
Computer Science Technical Report No. 108, Jan. 1984.

Sep 1984 paper describing operator overloading published

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline for C84 to C++98 (1982—-1998) Il

B. Stroustrup. Operator overloading in C++. In Proc. IFIP
WG2.4 Conference on System Implementation Languages:
Experience & Assessment, Sept. 1984.

1984 stream I/O library first implemented and later presented in

B. Stroustrup. An extensible 1/O facility for C++. In Proc. of
Summer 1985 USENIX Conference, pages 57-70, June
1985.

Feb 1985 Cfront Release E (first external release); “E” for “Educational”;
available to universities
Oct 1985 Cfront Release 1.0 (first commercial release)
Oct 1985 first edition of C++PL written
B. Stroustrup. The C++ Programming Language. Addison
Wesley, 1986.
(Cfront Release 1.0 corresponded to language as defined in this
book)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline for C84 to C++98 (1982—-1998) IV

Oct 1985 tutorial paper on C++
B. Stroustrup. A C++ tutorial. In Proceedings of the ACM
annual conference on the range of computing: mid-80’s
perspective, pages 56—64, Oct. 1985.

Jun 1986 Cfront Release 1.1; mainly bug fix release

Aug 1986 first exposition of set of techniques for which C++ was aiming to
provide support (rather than what features are already
implemented and in use)

B. Stroustrup. What is object-oriented programming? In
Proc. of 14th Association of Simula Users Conference,
Stockholm, Sweden, Aug. 1986.

Sep 1986 first Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) conference (start of OO hype centered
on Smalltalk)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline for C84 to C++98 (1982-1998) V

Nov 1986 first commercial Cfront PC port (Cfront 1.1, Glockenspiel [in
Ireland])

Feb 1987 Cfront Release 1.2; primarily bug fixes but also added:

B pointers to members
B protected members

Nov 1987 first conference devoted to C++:
USENIX C++ conference (Santa Fe, NM, USA)

Dec 1987 first GNU C++ release (1.13)
Jan 1988 first Oregon Software (a.k.a. TauMetric) C++ release
Jun 1988 first Zortech C++ release

Oct 1988 first presented templates at USENIX C++ conference (Denver,
CO, USA) in paper:
B. Stroustrup. Parameterized types for C++. In Proc. of
USENIX C++ Conference, pages 1-18, Denver, CO, USA,
Oct. 1988.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline for C84 to C++98 (1982—1998) VI

Oct 1988 first USENIX C++ implementers workshop (Estes Park, CO,
USA)

Jan 1989 first C++ journal “The C++ Report” (from SIGS publications)
started publishing
Jun 1989 Cfront Release 2.0 major cleanup; new features included:

B multiple inheritance

type-safe linkage

better resolution of overloaded functions

recursive definition of assignment and initialization
better facilities for user-defined memory management
abstract classes

static member functions

const member functions

protected member functions (first provided in release 1.2)
overloading of operator ->

pointers to members (first provided in release 1.2)

1989 main features of Cfront 2.0 summarized in

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline for C84 to C++98 (1982—1998) VI

B. Stroustrup. The evolution of C++: 1985-1989. USENIX
Computer Systems, 2(3), Summer 1989.

first presented in
B. Stroustrup. The evolution of C++: 1985-1987. In Proc. of
USENIX C++ Conference, pages 1-22, Santa Fe, NM,
USA, Nov. 1987.
Nov 1989 paper describing exceptions published

A. Koenig and B. Stroustrup. Exception handling for C++. In
Proc. of “C++ at Work” Conference, Nov. 1989.

followed up by

A. Koenig and B. Stroustrup. Exception handling for C++. In
Proc. of USENIX C++ Conference, Apr. 1990.

Dec 1989 ANSI X3J16 organizational meeting (Washington, DC, USA)
Mar 1990 first ANSI X3J16 technical meeting (Somerset, NJ, USA)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline for C84 to C++98 (1982—-1998) VIII

Apr 1990 Cfront Release 2.1; bug fix release to bring Cfront mostly into
line with ARM

May 1990 annotated reference manual (ARM) published

M. A. Ellis and B. Stroustrup. The Annotated C++
Reference Manual. Addison Wesley, May 1990.

(formed basis for ANSI standardization)
May 1990 first Borland C++ release
Jul 1990 templates accepted (Seattle, WA, USA)
Nov 1990 exceptions accepted (Palo Alto, CA, USA)
Jun 1991 second edition of C++PL published

B. Stroustrup. The C++ Programming Language. Addison
Wesley, 2nd edition, June 1991.

Jun 1991 first ISO WG21 meeting (Lund, Sweden)
Sep 1991 Cfront Release 3.0; added templates (as specified in ARM)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline for C84 to C++98 (1982—-1998) IX

Oct 1991 estimated number of C++ users 400,000
Feb 1992 first DEC C++ release (including templates and exceptions)
Mar 1992 run-time type identification (RTTI) described in

B. Stroustrup and D. Lenkov. Run-time type identification for
C++. The C++ Report, Mar. 1992.

(RTTI in C++ based on this paper)

Mar 1992 first Microsoft C++ release (did not support templates or
exceptions)

May 1992 first IBM C++ release (including templates and exceptions)
Mar 1993 RTTI accepted (Portland, OR, USA)
Jul 1993 namespaces accepted (Munich, Germany)

1993 further work on Cfront Release 4.0 abandoned after failed
attempt to add exception support

Aug 1994 ANSI/ISO Committee Draft registered

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline for C84 to C++98 (1982—-1998) X

Aug 1994 Standard Template Library (STL) accepted (Waterloo, ON, CA);
described in

A. Stepanov and M. Lee. The standard template library.
Technical Report HPL-94-34 (R.1), HP Labs, Aug. 1994.

Aug 1996 export accepted (Stockholm, Sweden)
1997 third edition of C++PL published

B. Stroustrup. The C++ Programming Language. Addison
Wesley Longman, Reading, MA, USA, 3rd edition, 1997.

Nov 1997 final committee vote on complete standard (Morristown, NJ,
USA)

Jul 1998 Microsoft releases VC++ 6.0, first Microsoft compiler to provide
close-to-complete set of ISO C++

Sep 1998 ISO/IEC 14882:1998 (informally known as C++98) published

ISO/IEC 14882:1998 — programming languages — C++,
Sept. 1998.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline for C84 to C++98 (1982—1998) XI

1998 Beman Dawes starts Boost (provides peer-reviewed portable
C++ source libraries)

Feb 2000 special edition of C++PL published

B. Stroustrup. The C++ Programming Language. Addison
Wesley, Reading, MA, USA, special edition, Feb. 2000.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline After C++98 (1998—Present) |

Apr 2001 motion passed to request new work item: technical report on
libraries (Copenhagen, Denmark); later to become ISO/IEC TR
19768:2007

Oct 2003 ISO/IEC 14882:2003 (informally known as C++03) published;
essentially bug fix release; no changes to language from
programmer’s point of view

ISO/IEC 14882:2003 — programming languages — C++,
Oct. 20083.

2003 work on C++0x (now known as C++11) starts
Oct 2004 estimated number of C++ users 3,270,000
Apr 2005 first votes on features for C++0x (Lillehammer, Norway)
2005 auto, static_assert, and rvalue references accepted in
principle
Apr 2006 first full committee (official) votes on features for C++0x (Berlin,
Germany)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline After C++98 (1998—Present) I

Sep 2006 performance technical report (TR 18015) published:

ISO/IEC TR 18015:2006 — information technology —
programming languages, their environments and system
software interfaces — technical report on C++ performance,
Sept. 2006.
work spurred by earlier proposal to standardize subset of C++
for embedded systems called Embedded C++ (or just EC++);
EC++ motivated by performance concerns

Apr 2006 decision to move special mathematical functions to separate 1ISO
standard (Berlin, Germany); deemed too specialized for most
programmers

Nov 2007 ISO/IEC TR 19768:2007 (informally known as C++TR1)
published;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline After C++98 (1998—Present) Il

ISO/IEC TR 19768:2007 — information technology —
programming languages — technical report on C++ library
extensions, Nov. 2007.
specifies series of library extensions to be considered for
adoption later in C++
2009 another particularly notable book on C++ published
B. Stroustrup. Programming: Principles and Practice Using
C++. Addison Wesley, Upper Saddle River, NJ, USA, 2009.
Aug 2011 ISO/IEC 14882:2011 (informally known as C++11) ratified
ISO/IEC 14882:2011 — information technology —
programming languages — C++, Sept. 2011.
2013 fourth edition of C++PL published
B. Stroustrup. The C++ Programming Language. Addison
Wesley, 4th edition, 2013.
2014 1SO/IEC 14882:2014 (informally known as C++14) ratified

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Timeline After C++98 (1998—Present) IV

ISO/IEC 14882:2014 — information technology —
programming languages — C++, Dec. 2014.

2017 ISO/IEC 14882:2017 (informally known as C++17) ratified

ISO/IEC 14882:2017 — information technology —
programming languages — C++, Dec. 2017.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Additional Comments

B reasons for using C as starting point:
o flexibility (can be used for most application areas)
o efficiency
o availability (C compilers available for most platforms)
o portability (source code relatively portable from one platform to another)

B main sources for ideas for C++ (aside from C) were Simula, Algol68,
BCPL, Ada, Clu, ML; in particular:
o Simula gave classes
o Algol68 gave operator overloading, references, ability to declare variables
anywhere in block
o BCPL gave // comments
o exceptions influenced by ML
o templates influenced by generics in Ada and parameterized modules in Clu

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

C++ User Population

Time Estimated Number of Users

Oct 1979 | 1

Oct 1980 | 16

Oct 1981 | 38

Oct 1982 | 85

Oct 1983 | ??+2 (no Cpre count)

Oct 1984 | ??+50 (no Cpre count)

Oct 1985 | 500

Oct 1986 | 2,000

Oct 1987 | 4,000

Oct 1988 | 15,000

Oct 1989 | 50,000

Oct 1990 | 150,000

Oct 1991 | 400,000

Oct 2004 | over 3,270,000

B above numbers are conservative

B 1979 to 1991: C++ user population doubled approximately every 7.5
months

B stable growth thereafter

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Success of C++

B C++ very successful programming language
B not luck or solely because based on C

B efficient, provides low-level access to hardware, but also supports
abstraction

B non-proprietary: in 1989, all rights to language transferred to standards
bodies (first ANSI and later ISO) from AT&T

B multi-paradigm language, supporting procedural, object-oriented, generic,
and functional (e.g., lambda functions) programming

B does not force particular programming style
B reasonably portable

B has continued to evolve, incorporating new ideas (e.g., templates,
exceptions, STL)

B stable: high degree of compatibility with earlier versions of language

B very strong bias towards providing general-purpose facilities rather than
more application-specific ones

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Application Areas

banking and financial (funds transfer, financial modelling, teller machines)

classical systems programming (compilers, operating systems, device
drivers, network layers, editors, database systems)

small business applications (inventory systems)

desktop publishing (document viewers/editors, image editing)
embedded systems (cameras, cell phones, airplanes, medical systems,
appliances, space technologies)

entertainment (games)

graphics programming

hardware design and verification

scientific and numeric computation (physics, engineering, simulations,
data analysis, geometry processing)

servers (web servers, billing systems)

telecommunication systems (phones, networking, monitoring, billing,
operations systems)

middleware

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.1.1

References

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Evolution of C++

B B. Stroustrup. A history of C++: 1979-1991. In Proc. of ACM History of
Programming Languages Conference, pages 271-298, Mar. 1993

B B. Stroustrup. The Design and Evolution of C++. Addison Wesley, Mar.
1994.

B B. Stroustrup. Evolving a language in and for the real world: C++
1991-2006. In Proc. of the ACM SIGPLAN Conference on History of
Programming Languages, pages 4—1-4-59, 2007.

B Cfront software available from Computer History Museum’s Software
Preservation Group http://www.softwarepreservation.org.

(See http://www.softwarepreservation.org/projects/c_plus_
plus/cfront).

B |SO JTC1/SC22/WG21 web site.
http://www.open-std.org/jtcl/sc22/wg2l/.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.softwarepreservation.org
http://www.softwarepreservation.org/projects/c_plus_plus/cfront
http://www.softwarepreservation.org/projects/c_plus_plus/cfront
http://www.open-std.org/jtc1/sc22/wg21/

Standards Documents |

B [SO/IEC 14882:1998 — programming languages — C++, Sept. 1998.
B |SO/IEC 14882:2003 — programming languages — C++, Oct. 2003.

B |SO/IEC TR 18015:2006 — information technology — programming
languages, their environments and system software interfaces —
technical report on C++ performance, Sept. 2006.

B |ISO/IEC TR 19768:2007 — information technology — programming
languages — technical report on C++ library extensions, Nov. 2007.

B |SO/IEC 29124:2010 — information technology — programming
languages, their environments and system software interfaces —
extensions to the C++ library to support mathematical special functions,
Sept. 2010.

B |SO/IEC TR 24733:2011 — information technology — programming
languages, their environments and system software interfaces —
extensions for the programming language C++ to support decimal
floating-point arithmetic, Nov. 2011.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Standards Documents I

ISO/IEC 14882:2011 — information technology — programming
languages — C++, Sept. 2011.

ISO/IEC 14882:2014 — information technology — programming
languages — C++, Dec. 2014.

ISO/IEC TS 18822:2015 — programming languages — C++ — file system
technical specification, July 2015.

ISO/IEC TS 19570:2015 — programming languages — technical
specification for C++ extensions for parallelism, July 2015.

ISO/IEC TS 19841:2015 — technical specification for C++ extensions for
transactional memory, Oct. 2015.

ISO/IEC TS 19568:2015 — programming languages — C++ extensions
for library fundamentals, Oct. 2015.

ISO/IEC TS 19217:2015 — programming languages — C++ extensions
for concepts, Nov. 2015.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Standards Documents Il

B |SO/IEC TS 19571:2016 — programming languages — technical
specification for C++ extensions for concurrency, Feb. 2016.

B [SO/IEC TS 19568:2017 — programming languages — C++ extensions
for library fundamentals, Mar. 2017.

B |SO/IEC TS 21425:2017 — programming languages — C++ extensions
for ranges, Nov. 2017.

B [SO/IEC TS 22277:2017 — technical specification — C++ extensions for
coroutines, Nov. 2017.

B |SO/IEC 14882:2017 — information technology — programming
languages — C++, Dec. 2017.

B [SO/IEC TS 19216:2018 — programming languages — C++ extensions
for networking, Apr. 2018.

B |SO/IEC TS 21544:2018 — programming languages — extensions to C++
for modules, May 2018.

B |SO JTC1/SC22/WG21 web site.
http://www.open-std.org/jtcl/sc22/wg21/.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.open-std.org/jtc1/sc22/wg21/

Section 2.2

Getting Started

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

hello Program: hello.cpp

#include <iostream>

int main()
{

std::cout << "Hello, world!\n";

o o A W N o=

}

B program prints message “Hello, world!” and then exits

B starting point for execution of C++ program is function called main; every
C++ program must define function called main

B #include preprocessor directive to include complete contents of file

B iostream standard header file that defines various types and variables
related to I/O

B std::cout is standard output stream (defaults to user’s terminal)
B operator << is used for output

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Software Build Process

Source Code Compile
File
(-cpp, -hpp)

Object File Link Executable
(.0) Program

Source Code Compile
File
(-cpp, .hpp)

Object File
(.0)

Source Code Compile
File
(-cpp, .hpp)

Object File
(0)

start with C++ source code files (. cpp, . hpp)
compile: convert source code to object code
object code stored in object file (. o)

link: combine contents of one or more object files (and possibly some
libraries) to produce executable program

B executable program can then be run directly

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

GNU Compiler Collection (GCC) C++ Compiler

g++ command provides both compiling and linking functionality

command-line usage:
g++ [options] input_file . ..

many command-line options are supported

some particularly useful command-line options listed on next slide

compile C++ source file file.cpp to produce object code file file.o:
g++ -c file.cpp

link object files file_1.0, file_2.0, ... to produce executable file executable:
gt++ -o executable file_l.0 file_ 2.0 ...

web site:
http://www.gnu.org/software/gcc

C++ standards support in GCC:
https://gcc.gnu.org/projects/cxx-status.html

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.gnu.org/software/gcc
https://gcc.gnu.org/projects/cxx-status.html

Common g++ Command-Line Options

H

o compile only (i.e., do not link)
B —ofile

o use file file for output
B g

o include debugging information
® -On

o set optimization level to n (0 almost none; 3 full)
B -std=c++17
o conform to C++17 standard

B -Idir

o specify additional directory dir to search for include files
B -Ldir

o specify additional directory dir to search for libraries
B -1/ib

o link with library lib

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Common g++ Command-Line Options (Continued 1)

B -pthread

o enable concurrency support (via pthreads library)
B -pedantic-errors

o strictly enforce compliance with standard

B -Wall
o enable most warning messages
B -Wextra

o enable some extra warning messages not enabled by -Wall
B -lpedantic

o warn about deviations from strict standard compliance
B -Werror

o treat all warnings as errors

-fno-elide-constructors

o in contexts where standard allows (but does not require) optimization that
omits creation of temporary, do not attempt to perform this optimization

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Common g++ Command-Line Options (Continued 2)

B -fconstexpr-loop-limit=n

o set maximum number of iterations for loop in constexpr functions to n
B -fconstexpr-depth=n

o set maximum nested evaluation depth for constexpr functions to n

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Clang C++ Compiler

B clang++ command provides both compiling and linking functionality
B command-line usage:
clang++ [options] input_file . ..
B many command-line options are supported
B command-line interface is largely compatible with that of GCC g++
command
B web site:
http://clang.llvm.org
B C++ standards support in Clang:
http://clang.llvm.org/cxx_status.html

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://clang.llvm.org
http://clang.llvm.org/cxx_status.html

Common clang++ Command-Line Options

B many of more frequently used command-line options for clang++
identical to those for g++
B consequently, only small number of clang++ options given below
B -fconstexpr-steps=n
o sets maximum number of computation steps in constexpr functions to n
B -fconstexpr-depth=n
o sets maximum nested evaluation depth for constexpr functions to n

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Manually Building hello Program

B numerous ways in which hello program could be built

B often advantageous to compile each source file separately
B can compile and link as follows:
H compile source code file hello.cpp to produce object file hello.o:
g+t -c hello.cpp
link object file hello.o to produce executable program hello:
g+t -0 hello hello.o

B generally, manual building of program is quite tedious, especially when
program consists of multiple source files and additional compiler options
need to be specified

B in practice, we use tools to automate build process (e.g., CMake and
Make)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.3

C++ Basics

2015-2020 Michael D. Adams C++

The C++ Programming Language

B created by Bjarne Stroustrup of Bell Labs
B originally known as C with Classes; renamed as C++ in 1983

B most recent specification of language in ISO/IEC 14882:2017 (informally
known as “C++17”)

B next version of standard expected in approximately 2020 (informally
known as “C++20")

procedural

loosely speaking is superset of C

directly supports object-oriented and generic programming
maintains efficiency of C

application domains: systems software, application software, device
drivers, embedded software, high-performance server and client
applications, entertainment software such as video games, native code for
Android applications

B greatly influenced development of C# and Java

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Comments

B two styles of comments provided
B comment starts with // and proceeds to end of line
B comment starts with /+ and proceeds to first */

// This is an example of a comment.
/* This is another example of a comment. */
/* This 1is an example of a comment that
spans
multiple lines. #*/

B comments of /x --- */ style do not nest

/ *

/* This sentence is part of a comment. x/
This sentence is not part of any comment and
will probably cause a compile error.

*

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Identifiers

B identifiers used to name entities such as: types, objects (i.e., variables),
and functions
B valid identifier is sequence of one or more letters, digits, and underscore
characters that does not begin with a digit
B identifiers that begin with underscore (in many cases) or contain double
underscores are reserved for use by C++ implementation and should be
avoided
B examples of valid identifiers:
0 event_counter
o eventCounter
0 sqrt_2
o f o o b ar 4?2

B identifiers are case sensitive (e.g., counter and cOuNtEr are distinct
identifiers)

B identifiers cannot be any of reserved keywords (see next slide)

u of identifier is context in which identifier is valid (e.g., block,
function, global)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/lex.name#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/lex.name#3

Reserved Keywords

alignas
alignof
and
and_eq
asm
auto
bitand
bitor
bool
break
case
catch
char
charlé_t
char32 t
class
compl
const
constexpr
const_cast
continue
decltype

*Note: context sensitive

default
delete
do
double
dynamic_cast
else
enum
explicit
export
extern
false
float
for
friend
goto

if
inline
int

long
mutable
namespace
new

noexcept
not

not_eq
nullptr
operator
or

or_eq
private
protected
public
register
reinterpret_cast
return
short
signed
sizeof
static
static_assert
static_cast
struct
switch
template

Copyright © 2015-2020 Michael D. Adams C++

Version: 2020-02-29

this
thread local
throw
true

try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar_ t
while
Xor
Xor_eq
override*
final*®

Section 2.3.1

Preprocessor

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The Preprocessor

prior to compilation, source code transformed by preprocessor
preprocessor output then passed to compiler for compilation

preprocessor behavior can be controlled by preprocessor directives
preprocessor directive occupies single line and consists of:
H hash character (i.e., “#”)
preprocessor instruction (i.e., define, undef, include, if, ifdef,
ifndef, else, elif, endif, line, error, and pragma)
arguments (depending on instruction)
line break
B preprocessor can be used to:
o conditionally compile parts of source file
define macros and perform macro expansion
include other files
force error to be generated

a

]

(m]

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Source-File Inclusion

B can include contents of another file in source using preprocessor
#include directive
B syntax:
#include <path_specifier>
or
#include "path_specifier"
B path_specifier is pathname (which may include directory) identifying file
whose content is to be substituted in place of include directive
B typically, angle brackets used for system header files and double quotes
used otherwise
B example:

#include <iostream>

#include <boost/tokenizer.hpp>

#include "my_header_file.hpp"

#include "some_directory/my_header_file.hpp"

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Defining Macros

B can define macros using #define directive
B syntax:
#define name value
B name is name of macro and value is value of macro
B example:
#define DEBUG_LEVEL 10

B macros can also take arguments

B generally, macros should be avoided when possible (i.e., when other
better mechanisms are available to achieve desired effect)

B for example, although macros can be used as way to accomplish inlining

of functions, such usage should be avoided since language mechanism
exists for specifying inline functions

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Conditional Compilation

B can conditionally include code through use of if-elif-else construct
B conditional preprocessing block consists of following (in order)
0 #if, #ifdef, or #ifndef directive
B optionally any number of #elif directives
at most one #else directive
B #endif directive
B code in taken branch of if-elif-else construct passed to compiler, while
code in other branches discarded

B example:

#if DEBUG_LEVEL ==
/..
#elif DEBUG_LEVEL ==

#else
S/ ..
#tendif

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Preprocessor Predicate __has_include

B preprocessor predicate __has_include can be used in expressions for
preprocessor to test for existence of header files

B example:

#ifdef _ has_include

if _ has_include (<optional>)
include <optional>
define have_optional 1

elif _ has_include (<experimental/optional>)
include <experimental/optional>
define have_optional 1
define experimental_optional

else
define have_optional 0

endif

#endif

HHHHHHHHHH

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.3.2

Objects, Types, and Values

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Fundamental Types

B boolean type: bool

B character types:
o char (may be signed or unsigned)
o signed char
o unsigned char
o charl6é_t
o char32_t
o wchar t

B char is distinct type from signed char and unsigned char

B standard signed integer types:

0 signed char

0 signed short int

0 signed int

o signed long int

o signed long long int

B standard unsigned integer types:
0 unsigned char
0 unsigned short int
0 unsigned int
0 unsigned long int
o unsigned long long int

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.fundamental#2

Fundamental Types (Continued)

B “int” may be omitted from names of (non-character) integer types (e.g.,
“unsigned” equivalent o “unsigned int” and “signed’ equivalent
to “signed int”)

B “signed’ may be omitted from names of signed integer types, excluding
signed char (e.g., “int” equivalent to “signed int”)

B boolean, character, and (signed and unsigned) integer types collectively
called

B integral types must use binary positional representation; two’s
complement, one’s complement, and sign magnitude representations
permitted

B floating-point types:

o float

o double
0 long double

B void (i.e., incomplete/valueless) type: void
B null pointer type: std: :nullptr_t (defined in header file cstddef)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.fundamental#7

u (a.k.a. literal constant) is value written exactly as it is meant to be
interpreted

B examples of literals:
"Hello, world"
"Bjarne"

4 al

IAI

123

123U
17000"000"000
3.1415

1.0L
1.23456789e-10

Copyright (© 2015-2020 Michael D. Adams Version: 2020-02-29

Character Literals

B character literal consists of optional prefix followed by one or more
characters enclosed in single quotes

B type of character literal determined by prefix (or lack thereof) as follows:

Prefix | Literal Type
None | ordinary | normally char (in special cases int)
u8 UTF-8 char
u ucCs-2 charlé_t
U UCS-4 char32_t
L wide wchar_t
B special characters can be represented by escape sequence:
Escape Escape
Character Sequence ch t S P
newline (LF) n aracter . Squenee
horizontal tab (HT) | \t 2#197201321‘, § ?) i;
vertical tab (VT) \v dogbleq bote (° N
backspace (BS) \b tal a b \
carriage return (CR) | \r octal number 000 000
form feed (FF) \f hex num_ber hhh \xhhh
alert (BEL) \a code point nnnn \unnnn
backslash (\) \\ code point nnnnnnnn | \Unnnnnnnn
B examples of character literals:
lal Ill ’ !I l\nl ulal Ulal Llal u8,a’

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Character Literals (Continued)

B decimal digit characters guaranteed to be consecutive in value (e.g., ' 1’
must equal ' 0’ + 1)

B in case of ordinary character literals, alphabetic characters are not
guaranteed to be consecutive in value (e.g., ' b’ is not necessarily
Ial + l)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/lex.charset#3

String Literals

B (non-raw) string literal consists of optional prefix followed by zero or more
characters enclosed in double quotes

B string literal has character array type

B type of string literal determined by prefix (or lack thereof) as follows:
Prefix | Literal Type
None | narrow const char]]

u8 UTF-8 const char|]

u UTF-16 | const charlé6_t][]
U UTF-32 | const char32_t[]
L wide const wchar_t/[]

B examples of string literals:

"Hello, World!\n"
"123"
"ABCDEFG"

B adjacent string literals are concatenated (e.g., "Hel" "1o" equivalent to
"Hello")

B string literals implicitly terminated by null character (i.e., ' \0")
B so, for example, "Hi" means 'H' followed by ' i’ followed by " \0’

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Raw String Literals

interpretation of escape sequences (e.g., “\n”) inside string literal can be
avoided by using raw literal
raw literal has form:

o prefix R"delimiter (raw_characters) delimiter"

B optional prefix is string-literal prefix (e.g., u8)

B optional delimiter is sequence of characters used to assist in delimiting

string
raw_characters is sequence of characters comprising string
escape sequences not processed inside raw literal
raw literal can also contain newline characters
examples of raw string literals:
R" (He said, "No.")"
u8R" (He said, "No.")"

R"foo (The answer is 42.)foo"
R"((+]-)?[[:digit:]]+)"

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Integer Literals

B can be specified in decimal, binary, hexadecimal, and octal

B number base indicated by prefix (or lack thereof) as follows:

Prefix Number Base
None decimal
Leading 0 | octal

Ob or 0B binary

Ox or 0X hexadecimal

B various suffixes can be specified to control type of literal:
o uorU
o lorL
bothuorUand 1 orL
11 or LL
both uorUand 11 or LL
B can use single quote as digit separator (e.g., 1/ 000’ 000)
B examples of integer literals:
42
1700070007000" 000ULL
OxdeadU
B integer literal always nonnegative; so, for example, -1 is integer literal 1
with negation operation applied

(]

[m]

a

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/lex.icon
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/lex.fcon

Integer Literals (Continued)

Suffix Decimal Literal Non-Decimal Literal
None int int
long int unsigned int
long long int long int
unsigned long int
long long int
unsigned long long int
uorU unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int | unsigned long long int
lorL long int long int
long long int unsigned long int
long long int
unsigned long long int
Bothuorvu unsigned long int unsigned long int
andlorL unsigned long long int | unsigned long long int
1lorLL long long int long long int
unsigned long long int
Bothuorvu unsigned long long int | unsigned long long int
and 11 or LL

Copyright (© 2015-2020 Michael D. Adams

Version: 2020-02-29

Floating-Point Literals

B type of literal indicated by suffix (or lack thereof) as follows:

Suffix | Type

None | double

forF | float

lorlL | long double

B examples of double literals:
1.414
1.25e-8
B examples of £loat literals:
1.414f
1.25e-8f
B examples of long double literals:

1.5L
1.25e-20L

B floating-point literals always nonnegative; so, for example, -1.0 is literal
1.0 with negation operator applied

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Hexadecimal Floating-Point Literals

B hexadecimal floating-point literal has general form:

H prefix 0x or 0X

hexadecimal digits for integer part of number (optional if at least one digit
after radix point)

period character (i.e., radix point)

hexadecimal digits for fractional part of number (optional if at least one digit
before radix point)

p character (which designates exponent to follow)

@ one or more decimal digits for base-16 exponent

optional floating-point literal suffix (e.g., £ or 1)

B examples of hexadecimal floating-point literals:

| Literal | Type | Value (Decimal) |
0x.8p0 double 0.5
0x10.cp0 | double 16.75
0x.8p0f float 0.5
0xf.fp0f | float 15.9375
0x1plOL long double | 1024

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Boolean and Pointer Literals

B boolean literals:

true
false

B pointer literal:
nullptr

Copyright (© 2015-2020 Michael D. Adams Version: 2020-02-29

Declarations and Definitions

u introduces identifier for type, object (i.e., variable), or function
(without necessarily providing full information about identifier)
o in case of object, specifies type (of object)
o in case of function, specifies number of parameters, type of each
parameter, and type of return value (if not automatically deduced)
B each identifier must be declared before it can be used (i.e., referenced)
u provides full information about identifier and causes entity
associated with identifier (if any) to be created

o in case of type, provides full details about type

o in case of object, causes storage to be allocated for object and object to be
created

o in case of function, provides code for function body

B in case of objects, in most (but not all) contexts, declaring object also
defines it

B can declare identifier multiple times but can define only once

B above terminology often abused, with “declaration” and “definition” being
used interchangeably

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Examples of Declarations and Definitions

int count; // declare and define count
extern double alpha; // (only) declare alpha

void func() { // declare and define func
int n; // declare and define n
double x = 1.0; // declare and define x
//

}

bool isOdd(int); // declare isOdd
bool is0dd(int x); // declare is0Odd (x ignored)

bool is0dd(int x) { // declare and define 1isOdd
return x % 2;

}
struct Thing; // declare Thing

struct Vector2 { // declare and define Vector?2
double x;
double y;

}i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Variable Declarations and Definitions

u (a.k.a. object declaration) introduces identifier that
names object and specifies type of object

u (a.k.a. object definition) provides all information
included in variable declaration and also causes object to be created (e.g.,
storage allocated for object)

B example:

int count;
// declare and define count
double alpha;
// declare and define alpha
extern double gamma;
// declare (but do not define) gamma

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

L is collection of one or more objects of same type that are stored
contiguously in memory

B each element in array identified by (unique) integer index, with indices
starting from zero

B array denoted by []

B example:

double x[10]; // array of 10 doubles
int data(512]([512]; // 512 by 512 array of ints

B elements of array accessed using subscripting operator []
B example:

int x[10];
// elements of arrays are x[0], x[1], ..., x[9]

B often preferable to use user-defined type for representing array instead of
array type

B for example, std::array and std: :vector types (to be discussed later)
have numerous practical advantages over array types

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Array Example

B code:

int af4] = {1, 2, 3, 4};
B assumptions (for some completely fictitious C++ language
implementation):
0 sizeof(int) is4
o array a starts at address 1000

B memory layout:

Address Name
1000 1 al0]
1004 2 alll]
1008 3 al2]
1012 4 al3]

Copyright (© 2015-2020 Michael D. Adams Version: 2020-02-29

u is object whose value is address in memory where another object
is stored

B pointer to object of type T denoted by T*

is special pointer value that does not refer to any valid
memory location

null pointer value provided by nullptr keyword
accessing object to which pointer refers called
dereferencing pointer performed by indirection operator (i.e., “*”)

if p is pointer, *p is object to which pointer refers

if x is object of type T, &x is (normally) address of object, which has type
T*
B example:

char c;
char* cp = nullptr; // cp is pointer to char
char* cp2 = &c; // cp2 is pointer to char

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Pointer Example

B code:
int i = 42;
int* p = &i;
assert (*p == 42);

B assumptions (for some completely fictitious C++ language
implementation):
0 sizeof (int) is4
o sizeof (int*) is4
o &iis ((int*)1000)
o gpis ((int*)1004)

B memory layout:

Address Name
1000 42 i
1004 1000 p

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

References

L is alias (i.e., nickname) for already existing object
two kinds of references:

H Ivalue reference
rvalue reference

Ivalue reference to object of type T denoted by T&
rvalue reference to object of type T denoted by Ts&
initializing reference called

Ivalue and rvalue references differ in their binding properties (i.e., to what

kinds of objects reference can be bound)

B in most contexts, Ivalue references usually needed

B rvalue references used in context of move constructors and move
assignment operators (to be discussed later)

B example:

int x;
ints v = x; // y is lvalue reference to int
intes tmp = 3; // tmp is rvalue reference to int

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

References Example

B code:
int 1 = 42;
ints § = i;
assert (j == 42);
B assumptions (for some completely fictitious C++ language
implementation):

0 sizeof(int) is4
o &iis ((int*)1000)

B memory layout:

Address Name

1000 i,3

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

References Versus Pointers

B references and pointers similar in that both can be used to refer to some
other entity (e.g., object or function)

B two key differences between references and pointers:

E reference must refer to something, while pointer can have null value
(nullptr)

references cannot be rebound, while pointers can be changed to point to
different entity

B references have cleaner syntax than pointers, since pointers must be
dereferenced upon each use (and dereference operations tend to clutter
code)

B yse of pointers often implies need for memory management (i.e., memory
allocation, deallocation, etc.), and memory management can introduce
numerous kinds of bugs when done incorrectly

B often faced with decision of using pointer or reference in code

B generally advisable to prefer use of references over use of pointers unless
compelling reason to do otherwise, such as:

o must be able to handle case of referring to nothing
o must be able to change entity being referenced

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Unscoped Enumerations

u provides way to describe range of values that are
represented by named constants called

object of enumerated type can take any one of enumerators as value
enumerator values represented by some integral type

enumerator can be assigned specific value (which may be negative)
if enumerator not assigned specific value, value defaults to zero if first
enumerator in enumeration and one greater than value for previous
enumerator otherwise

B example:

enum Suit {
Clubs, Diamonds, Hearts, Spades

i
Suit suit = Clubs;

B example:

enum Suit {
Clubs = 1, Diamonds = 2, Hearts = 4, Spades = 8
i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Scoped Enumerations

B scoped enumeration similar to unscoped enumeration, except:

[m]

]

]

all enumerators are placed in scope of enumeration itself

integral type used to hold enumerator values can be explicitly specified
conversions involving scoped enumerations are stricter (i.e., more type
safe)

B class or struct added after enum keyword to make enumeration

sco
B sco
B sco
B exa

ped

pe resolution operator (i.e., “: :”) used to access enumerators

ped enumerations should probably be preferred to unscoped ones
mple:

enum struct Season {
spring, summer, fall, winter

i

enum struct Suit : unsigned char
clubs, diamonds, hearts, spades

i

Season season = Season::summer;

Suit suit = Suit::spades;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Type Aliases with typedef Keyword

B typedef keyword used to create alias for existing type
B example:

typedef long long BigInt;
BigInt i; // 1 has type long long

typedef char* CharPtr;
CharPtr p; // p has type charx

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Type Aliases with using Statement

B using statement can be used to create alias for existing type
B probably preferable to use using statement over typedef
B example:

using BigInt = long long;
BigInt i; // i has type long long

using CharPtr = char*;
CharPtr p; // p has type charx

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The extern Keyword

u : basic unit of compilation in C++ (i.e., single source code

file plus all of its directly and indirectly included header files)

B extern keyword used to declare object/function in separate translation
unit
B example:

extern int evil_global_variable;
// declaration only
// actual definition in another file

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The const Qualifier

B const qualifier specifies that object has value that is constant (i.e.,
cannot be changed)

B qualifier that applies to object itself said to be

B following defines x as int with value 42 that cannot be modified:
const int x = 42;

B example:
const int x = 42;
x = 13; // ERROR: x 1is const
const ints x1 = x; // OK
const int* pl = &x; // OK
int& x2 = x; // ERROR: x const, x2 not const
int* p2 = &x; // ERROR: x const, #p2 not const

B example:
int x = 0;
const ints y = x;
x = 42; // OK
// vy also changed to 42 since y refers to x
// y cannot be used to change x, however
// i.e., the following would cause compile error:
// y = 24; // ERROR: y is const

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The const Qualifier and Non-Pointer/Non-Reference Types

B with types that are not pointer or reference types, const can only be
applied to object itself (i.e., top level)

B that is, object itself may be const or non-const

B example:
int i = 0; // object i is modifiable
i =142; // OK: i can be modified
const int ci = 0; // object ci is not modifiable
ci = 42; // ERROR: ci cannot be modified

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: const Qualifier and Non-Pointer/Non-Reference

Types

// with types that are not pointer or reference types, const
// can only be applied to object itself (i.e., top level)
// object itself may be const or non-const

int i = 0; // non-const int object
const int ci = 0; // const int object

® N O RN =

i =42; // OK: can modify non—-const object
42; // ERROR: cannot modify const object

23 o
Q
-
1]

i =ci; // OK: can modify non—-const object
ci = 1i; // ERROR: cannot modify const object

)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The const Qualifier and Pointer Types

B every pointer is associated with two objects: pointer itself and pointee (i.e.,
object to which pointer points)

B const qualifier can be applied to each of pointer (i.e., top-level qualifier)

and pointee

Address

int i = 42; // pointee
ointer

// p is pointer to int i l(gogj 2000 (pointer)
// for example: p
// int+ p = &i;
// const intx p = &i;
// intx const p = &i; . 2000)
// const intx const p = &i; (81) 4 ~(pointee)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: const Qualifier and Pointer Types

N O s W N =

o ©

o=

o~ W

~N o

© ®

NN
=o

NN
ENERNIN Y

[LSEN]
o a

NN
® N

// with pointer types, const can be applied to each of:
// pointer and pointee

// pointer itself may be const or non-const (top-level)
// pointee may be const or non—-const

int 1 = 0;
int j = 0;

int* pi = &i; // non-const pointer to a non-const int
pi = &3; // OK: can modify non-const pointer
*pi = 42; // OK: can modify non-const pointee

const int* pci = &i; // non-const pointer to a const int
// equivalently: int const+ pci = &i;

pci = &3j; // OK: can modify non-const pointer

*pci = 42; // ERROR: cannot modify const pointee

int* const cpi = &i; // const pointer to a non-const int
cpl = &J; // ERROR: cannot modify const pointer
*cpi = 42; // OK: can modify non—-const pointee

const int* const cpci = &i; // const pointer to a const int
// equivalently: int const#* const cpci = &i;

cpci = &3; // ERROR: cannot modify const pointer

*cpci = 42; // ERROR: cannot modify const pointee

pci = pi; // OK: adds const to pointee
pi = pci; // ERROR: discards const from pointee

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The const Qualifier and Reference Types

B reference is name that refers to object (i.e., referee)

B in principle, const qualifier can be applied to reference itself (i.e.,
top-level qualifier) or referee

B since reference cannot be rebound, reference itself is effectively always
constant

B for this reason, does not make sense to explicitly apply const as
top-level qualifier for reference type and language disallows this

B const qualifier can only be applied to referee

B example:
int § = 0;
int k = 42;
ints 1 = 3;

// 1 is reference; j 1is referee
// referee is modifiable
const ints ci = j;
// ci 1s reference; j 1s referee
// referee is not modifiable
const ints ci = k; // ERROR: cannot redefine/rebind
ints const r = j;
// ERROR: reference itself cannot be specified as const

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: const Qualifier and Reference Types

// with reference types, const can only be applied to referee
// reference itself cannot be rebound (i.e., 1s constant)

// referee may be const or non-const

int i = 0; const int ci 0;

int il = 0; const int cil 0;

® N O bW N =

// reference to non—-const int

ints ri = 1i;

ri = ci; // OK: can modify non-const referee

int&¢ ri = i1; // ERROR: cannot redefine/rebind reference

- o ©

12
13 // reference to const int

14 const int& rci = ci;

15 rci = i; // ERROR: cannot modify const referee
16 const inté& rci = cil;

17 // ERROR: cannot redefine/rebind reference

19 // ERROR: reference itself cannot be const qualified
20 int& const cri = i; // ERROR: invalid const qualifier

22 // ERROR: reference itself cannot be const qualified
23 const ints const crci = ci; // ERROR: invalid const qualifier
24 // also: int const& const crci = ci; // ERROR

26 const ints rl = ci; // OK: adds const to referee
27 inté& r2 = ci; // ERROR: discards const from referee

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The const Qualifier and Pointer-to-Pointer Types

B for given type T, cannot implicitly convert T** to const T**

B although such conversion looks okay at first glance, actually would create
backdoor for changing const objects

B can, however, implicitly convert T** to const T* const*

B for example, code like that shown below could be used to change const
objects if T** to const T** were valid conversion:

const int i = 42;
int* p;
const int** g = &p;
// Fortunately, this line is not valid code.
// ERROR: cannot convert Intx+ to const 1intxx*
*q = &1
// Change p (to which g points) to point to 1.
// OK: xq 1s not const (only #+*g 1s const)
p=0;
// Set 1 (to which p points) to 0.
// OK: #p 1s not const
// This line would change i, which is const.

*

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The volatile Qualifier

B volatile qualifier used to indicate that object can change due to agent
external to program (e.g., memory-mapped device, signal handler)

B compiler cannot optimize away read and write operations on volatile
objects (e.g., repeated reads without intervening writes cannot be
optimized away)

B volatile qualifier typically used when object:

o corresponds to register of memory-mapped device
o may be modified by signal handler (namely, object of type
volatile std::sig_atomic_t)

B example:

volatile int x;
volatile unsigned char* deviceStatus;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The auto Keyword

B in various contexts, auto keyword can be used as place holder for type
B in such contexts, implication is that compiler must deduce type

B example:
auto i = 3; // i has type int
auto j = 1i; // j has type int

autos k = 1; // k has type inté
const autos n = i; // n has type const inté&
auto x = 3.14; // x has type double

B very useful in generic programming (covered later) when types not always
easy to determine

B can potentially save typing long type names
B can lead to more readable code (if well used)

B if overused, can lead to bugs (sometimes very subtle ones) and difficult to
read code

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Inline Variables

u : variable that may be defined in multiple translation units
as long as all definitions are identical

B potential for multiple definitions avoided by having linker simply choose
one of identical definitions and discard others (if more than one exists)

B can request that variable be made inline by including inline qualifier in
variable declaration

B inline variable must have static storage duration (e.g., static class member
or namespace-scope variable)

B inline variable typically used to allow definition of variable to be placed in
header file without danger of multiple definitions

B inline variable has same address in all translation units

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Inline Variable: Example

inline_variable_1_1.hpp

1 inline int magic = 42;

main.cpp

1 #include <iostream>

2 #include "inline_variable_1_1.hpp"
3 int main() {

4 std::cout << magic << "\n";

5}

other.cpp

1+ #include "inline_variable_1_1.hpp"
2 void func() {/* ... *x/}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.3.3

Operators and Expressions

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Arithmetic Operators

Operator Name | Syntax

addition. atbh Bitwise Operators

z:ztrr;l:tlf: ia_ b O.pe.rator Name Syntax

unary minus s bitwise NOT ~a
M bitwise AND a&b

multiplication a*b -

division a /b bitwise OR a1

Modulo (e.remainden | @ % b blt.WISe).(OR . a’ b

pre-increment ia arithmetic left shift a<<b
. arithmetic right shift | a >> b

post-increment at++

pre-decrement --a

post-decrement | a--

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Operators (Continued 1)

Assignment and
Compound-Assignment Operators

Operator Name Syntax

assignment a=">o

addition assignment a+=b
subtraction assignment a-=>n
multiplication assignment a*=>b
division assignment a/=b
modulo assignment as%=b
bitwise AND assignment a &=>b
bitwise OR assignment al=bo
bitwise XOR assignment a”"=b
arithmetic left shift assignment a <<=b
arithmetic right shift assignment | a >>= b

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Operators (Continued 2)

Logical/Relational Operators

Operator Name Syntax Member and Pointer Operators
equal a==> Operator Name Syntax
not equal al!l=b array subscript alb]
greater than a>b indirection *a

less than a<hb address of &a
greaterthanorequal | a >= Db member selection | a.b

less than or equal a<=b member selection | a->b
logical negation la member selection | a.*b
logical AND a & b member selection | a->*b
logical OR allb

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Operators (Continued 3)

Other Operators

Operator Name Syntax
function call a(...)
comma a, b

ternary conditional a?b:c
scope resolution a::b

sizeof sizeof (a)
parameter-pack sizeof sizeof... (a)
alignof alignof (T)
allocate storage new T
allocate storage (array) new T[a]
deallocate storage delete a
deallocate storage (array) | delete[] a

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Operators (Continued 4)

Other Operators (Continued)

Operator Name | Syntax

type ID typeid(a)

type cast (T) a

const cast const_cast<T>(a)

static cast static_cast<T> (a)
dynamic cast dynamic_cast<T>(a)
reinterpret cast | reinterpret_cast<T>(a)
throw throw a

noexcept noexcept (e)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Operator Precedence

Precedence | Operator | Name | Associativity
1 HE scope resolution none
2 . member selection (object) | left to right
-> member selection (pointer)
[] subscripting
() function call
++ post-increment
-- post-decrement

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Operator Precedence (Continued 1)

| Precedence | Operator | Name | Associativity |
3 sizeof size of object/type right to left
++ pre-increment
-= pre-decrement
~ bitwise NOT
! logical NOT
- unary minus
+ unary plus
& address of
* indirection
new allocate storage
new/] allocate storage (array)
delete deallocate storage
delete]] | deallocate storage (array)

()

cast

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

Operator Precedence (Continued 2)

| Precedence | Operator | Name | Associativity |

4 Lx member selection (objects) | left to right
—>* member selection (pointers)

5 * multiplication left to right
/ division
% modulus

6 + addition left to right
- subtraction

7 << left shift left to right
>> right shift

8 < less than left to right
<= less than or equal
> greater than
>= greater than or equal

9 == equality left to right
= inequality

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Operator Precedence (Continued 3)

Precedence \ Operator | Name Associativity
10 & bitwise AND left to right
11 A bitwise XOR left to right
12 \ bitwise OR left to right
13 && logical AND left to right
14 | logical OR left to right
15 ? ternary conditional | right to left

Copyright (© 2015-2020 Michael D. Adams

C++

Version: 2020-02-29

Operator Precedence (Continued 4)

| Precedence | Operator | Name | Associativity |
16 = assignment right to left
*= multiplication assignment
/= division assignment
%= modulus assignment
+= addition assignment
-= subtraction assignment
<<= left shift assignment
>>= right shift assignment
&= bitwise AND assignment
|= bitwise OR assignment
N= bitwise XOR assignment
17 throw | throw exception right to left
18 ' comma left to right

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Alternative Tokens

Alternative | Primary
and &&
bitor \
or ||
Xor
compl ~
bitand &
and_eq &=
or_eq |=
xXor_eq A=
not !
not_eq =
B alternative tokens above probably best avoided as they lead to more
verbose code

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Expressions

® An is a sequence of operators and operands that specifies a
computation.

B An expression has a type and, if the type is not void, a value.

HA is an expression that can be evaluated at compile
time (e.g., 1 + 1).
B Example:
Expression Type Value
X int 0
; -0 y = X ints reference to y
int oo o X+ 1 int 1
int*p=£ix‘ X * x + 2 * x| int 0
double d = 0.0; y = x *x ints reference to y
// Evaluate some x == 42 bool false
// expressions here. | *P ints reference to x
p == &x bool true
X >2 *y bool false
std::sin(d) double | 0.0

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.fundamental#9

Operator Precedence/Associativity Example

Expression Fully-Parenthesized Expression
a+b+c ((a +b) +¢)

a=b=c (a = (b=2c))

c=a+b (c = (a + b))

d=as&& b || c (d= ((a && (!b)) |l ¢))
HH*ptt (++(* (pt+)))

al ~b&c”d (@l (((~b) & c) ~d))
al0]++ + a[l]++ (((a[0])++) + ((a[l])++))
atb*c/d%-g (@a+ (((b*c)/ d % (-9)))
++p[i] (++(p[i]))

——*++p (== (*(++p)))

a+t=b +=c¢c +=d (a += (b += (c +=d)))
z=a==Db? ++c : ——d | (z = ((a == b) ? (++c) (==d)))

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Division/Modulus Operator and Negative Numbers

B for integral operands, division operator yields algebraic quotient with any
fractional part discarded (i.e., round towards zero)

B if quotient a / Db is representable in type of result,
(a /b) *b+ a % bisequaltoa

B so, assuming b is not zero and no overflow, a $ b equals
a-(a/b) *b

B result of modulus operator not necessarily nonnegative

B example:
1 static_assert (5 % 3 == 2);
2 static_assert (5 % (-3) == 2);
3 static_assert((-5) % 3 == -2);
4 static_assert((-5) % (-3) == -2);

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Short-Circuit Evaluation

B |ogical-and operator (i.e., &&):
o groups left-to-right
o result true if both operands are true, and false otherwise
o second operand is not evaluated if first operand is false (in case of built-in
logical-and operator)
B |ogical-or operator (i.e., | |):
o groups left-to-right
o result is true if either operand is true, and false otherwise
o second operand is not evaluated if first operand is true (in case of built-in
logical-or operator)

B example:
int x = 0;
bool b = (x == 0 || ++x == 1);
// b equals true; x equals 0
b= (x!=0 && ++x == 1);

// b equals false; x equals 0

B above behavior referred to as short circuit evaluation

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.log.and
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.log.or

Short-Circuit Evaluation Example:a || b || ¢

B for three values a, b, c of type bool, consider evaluation of expression
allbllc

B code showing short-circuit evaluation and associated control-flow graph
given below

a
bool _result;
if (a) l

goto _true;
if (b) T b
goto _true;
if (c)
goto _true; T
_result = false;
goto done; c

_true: T F
_result = true;
done:

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

a && b && c

given below

bool _result;
if ('a)

goto _false;
if (!'b)

goto _false;
if ('c)

goto _false;
_result = true;
goto done;
_false:

done:

_result = false;

Copyright (© 2015-2020 Michael D. Adams

Short-Circuit Evaluation Example: a && b && c

B for three values a, b, c of type bool, consider evaluation of expression

B code showing short-circuit evaluation and associated control-flow graph

C++

Version: 2020-02-29

Short-Circuit Evaluation Example: (a || b) && c

B for three values a, b, c of type bool, consider evaluation of expression
(a || b) && c

B code showing short-circuit evaluation and associated control-flow graph
given below ()

a
bool _result;
if (a) J
goto _second;
if (!b)
goto _false; T b
_second:
if (!c) J
goto _false;
_result = true; c
goto done;
_false: F
_result = false; T

done:

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The static_ assert Statement

B static_assert allows testing of boolean condition at compile time
B used to test sanity of code or test validity of assumptions made by code

B static_assert has two arguments:

H boolean constant expression (condition to test)
string literal for error message to print if boolean expression not true

B second argument is optional
B failed static assertion results in compile error

B example:

static_assert (sizeof(int) >= 4, "int is too small");
static_assert(l + 1 == 2, "compiler is buggy");

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The sizeof Operator

B sizeof operator is used to query size of object or object type (i.e.,
amount of storage required)

B for object type T, sizeof (T) yields size of T in bytes (e.g.,
sizeof (int), sizeof (int[10]))

B for expression e, sizeof e yields size of object required to hold result of
e in bytes (e.g., sizeof (&x) where x is some object)

B sizeof (char), sizeof (signed char), and
sizeof (unsigned char) guaranteed to be 1

B byte is at least 8 bits (usually exactly 8 bits except on more exotic
platforms)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The constexpr Qualifier for Variables

B constexpr qualifier indicates object has value that is constant
expression (i.e., can be evaluated at compile time)

B constexpr implies const (but converse not necessarily true)

B following defines x as constant expression with type const int and
value 42:

constexpr int x = 42;

B example:

constexpr int x 42;

int y = 1;

x = 0; // ERROR: x 1s const

const ints x1 = x; // OK

const int* pl = &x; // OK

ints& x2 = x; // ERROR: x const, x2 not const
int* p2 = &x; // ERROR: x const, #p2 not const
int al[x]; // OK: x 1s constexpr

int a2[y]; // ERROR: y is not constexpr

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.3.4

Control-Flow Constructs: Selection and Looping

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The if Statement

B allows conditional execution of code
B syntax has form:

if (expression)
statement

else
Statement;

B if expression expression is true, execute statement statement; ; otherwise,
execute statement statement,
B else clause can be omitted leading to simpler form:

if (expression)
statement

B conditional execution based on more than one condition can be achieved
using construct like:

if (expressiony)
statement;

else if (expressiony)
statementy

else
statement,

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The if Statement (Continued 1)

B to include multiple statements in branch of 1 £, must group statements
into single statement using brace brackets

if (expression) {
statement |
statement|
statement 3

} else {
statementy |

statement; >
statement; 3

}

B advisable to always include brace brackets even when not necessary, as
this avoids potential bugs caused by forgetting to include brackets later
when more statements added to branch of 1 £

Version: 2020-02-29

Copyright (© 2015-2020 Michael D. Adams C++

The if Statement (Continued 2)

B if statement may include initializer:

if (initializer; expression)
statement; ;

else
statementy ;

B above construct equivalent to:
{
initializer;
if (expression)
Statement ;

else
statementy;
}

B if condition in if statement is constant expression, constexpr keyword
can be added after i £ keyword to yield what is called constexpr-if
statement

B constexpr-if statement is evaluated at compile time and branch of if
statement that is not taken is discarded

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The if Statement: Example

B example with else clause:

int x = someValue;
if (x % 2 == 0) {

std::cout << "x 1is even\n";
} else {

std::cout << "x is odd\n";
}

B example without else clause:

int x = someValue;
if (x % 2 == 0) {
std::cout << "x is divisible by 2\n";

}

B example that tests for more than one condition:

int x = someValue;
if (x > 0) {

std::cout << "x is positive\n";
} else if (x < 0) {

std::cout << "x is negative\n";
} else {

std::cout << "x 1is zero\n";

}

Copyright (© 2015-2020 Michael D. Adams Version: 2020-02-29

The if Statement: Example

B example with initializer:

int execute_command();

if (int ret = execute_command(); ret == 0) {
std::cout << "command successfull\n";
} else {

std::cout << "command failed with status " <<
ret << '\n’;

}

B example constexpr-if statement:

constexpr int x = 10;
if constexpr (x < 0) {
std::cout << "negative\n";
} else if constexpr(x > 0) {
std::cout << "positive\n";
} else {
std::cout << "zero\n";
}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The switch Statement

B allows conditional execution of code based on integral/enumeration value

B syntax has form:

switch (expression) {

case const_expry:
statements|

case const_expry:
statements;

case const_expry:
statementsy,

default:
statements

}

B expression is expression of integral or enumeration type or implicitly
convertible to such type; const_expr; is constant expression of same type
as expression after conversions/promotions

B if expression expression equals const_expr;, jump to beginning of
statements statements;; if expression expr does not equal const_expr; for
any i, jump to beginning of statements statements

B then, continue executing statements until break statement is
encountered

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The switch Statement (Continued)

B switch statement can also include initializer:
switch (initializer; expression)
statement

B above construct equivalent to:
{

initializer;
switch (expression)
statement

}

B remember that, in absence of break statement, execution in switch
statement falls through from one case to next; if fall through not

considered, bugs will result, such as in following code:
unsigned int x = 0;

;
2 switch (x & 1) {

3 case (:

4 std::cout << "x is even\n";

5 // BUG: missing break statement
6 case 1:

7 std::cout << "x is odd\n";

8 break;

9

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The switch Statement: Example

B example without initializer:

int x = someValue;
switch (x) {
case 0:
// Note that there 1is no break here.
case 1:
std::cout << "x is 0 or 1\n";
break;
case 2:
std::cout << "x 1is 2\n";
break;
default:
std::cout << "x is not 0, 1, or 2\n";
break;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The switch Statement: Example (Continued)

B example with initializer:

int get_value();
switch (int x
case (:
case 1:
std::cout << "x is 0 or 1\n";
break;
case 2:
std::cout << "x is 2\n";
break;
default:
std::cout << "x is not 0, 1, or 2\n";
break;

=

get_value(); x) {

Copyright (© 2015-2020 Michael D. Adams Version: 2020-02-29

The while Statement

B |ooping construct
B syntax has form:

while (expression)
Statement

B if expression expression is true, statement statement is executed; this
process repeats until expression expression becomes false

B to allow multiple statements to be executed in loop body, must group
multiple statements into single statement with brace brackets

while (expression) {
statement
statementy
statements

}

B advisable to always use brace brackets, even when loop body consists of
only one statement

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The while Statement: Example

// print hello 10 times

int n = 10;

while (n > 0) {
std::cout << "hello\n";

--n;
}
// loop forever, printing hello

while (true) {
std::cout << "hello\n";

}

C++ Version: 2020-02-29

Copyright (© 2015-2020 Michael D. Adams

The for Statement

B |ooping construct
B has following syntax:

for (statement|; expression; statement;)
statements

B first, execute statement statement,; then, while expression expression is
true, execute statement statements followed by statement statement,

B statement| and statement, may be omitted; expression treated as true if
omitted

B to include multiple statements in loop body, must group multiple
statements into single statement using brace brackets; advisable to always
use brace brackets, even when loop body consists of only one statement:

for (statement|; expression; statementy) {
Statements |
statements >

}
B any objects declared in statement; go out of scope as soon as for loop
ends

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The for Statement (Continued)

B consider for loop:

for (statement|; expression; statementy)
statements

B above for loop can be equivalently expressed in terms of while loop

as follows (except for behavior of cont inue statement, yet to be
discussed):

{
statement ;
while (expression) {
statements
statementy;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The for Statement: Example

B example with single statement in loop body:

// Print the integers from 0 to 9 inclusive.
for (int i = 0; 1 < 10; ++i)
std::cout << i << "\n’;

B example with multiple statements in loop body:
int values[10];

//
int sum = 0;
for (int i = 0; i < 10; ++i) {
// Stop if value 1is negative.
if (values[i] < 0) {
break;
}

sum += values[i];

}

B example with error in assumption about scoping rules:

for (int i = 0; 1 < 10; ++1i) {
std::cout << i << ’"\n’;

}
++i; // ERROR: 1 no longer exists

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Range-Based for Statement

B variant of for loop for iterating over elements in range
B example:

int array[4] = {1, 2, 3, 4};
// Triple the value of each element in the array.
for (auto&s x : array) {
x *= 3;
}

B range-based for loop nice in that it clearly expresses programmer intent
(i.e., iterate over each element of collection)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The do Statement

B |ooping construct
B has following general syntax:

do
statement
while (expression);

B statement statement executed,;
then, expression expression evaluated;
if expression expression is true, entire process repeats from beginning
B to execute multiple statements in body of loop, must group multiple
statements into single statement using brace brackets

do {
statement|
statementy

} while (expression);

B advisable to always use brace brackets, even when loop body consists of
only one statement

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The do Statement: Example

B example with single statement in loop body:

// delay by looping 10000 times
int n = 0;
do

+4n;

while (n < 10000);

B example with multiple statements in loop body:

// print integers from 0 to 9 inclusive
int n = 0;
do {
std::cout << n << '\n’;
+4n;
} while (n < 10);

Version: 2020-02-29

Copyright © 2015-2020 Michael D. Adams C++

The break Statement

B break statement causes enclosing loop or switch to be terminated
immediately
B example:

// Read integers from standard input until an
// error or end-of-file is encountered or a
// negative integer is read.

int x;
while (std::cin >> x) {
if (x < 0) {

break;

std::cout << x << '\n’;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The continue Statement

B continue statement causes next iteration of enclosing loop to be
started immediately
B example:
int values[10];

// Print the nonzero elements of the array.
for (int 1 = 0; 1 < 10; ++1) {

if (values[i] == 0) {
// Skip over zero elements.

continue;

// Print the (nonzero) element.
std::cout << values[i] << '\n’;

Version: 2020-02-29

Copyright © 2015-2020 Michael D. Adams C++

The goto Statement

B goto statement transfers control to another statement specified by label
B should generally try to avoid use of goto statement

B well written code rarely has legitimate use for goto statement

B example:

int 1 = 0;
loop: // label for goto statement
do {
if (1 == 3) {
++i;
goto loop;
}
std::cout << 1 << '\n’;
++1;
} while (i < 10);
B some restrictions on use of goto (e.g., cannot jump over initialization in
same block as goto)
goto skip; // ERROR
int i = 0;

skip:
++1;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.3.5

Functions

015-2020 Michael D. Adams C++ Version: 2020-02-29

Function Parameters, Arguments, and Return Values

B argument (a.k.a. actual parameter): argument is value supplied to
function by caller; appears in parentheses of function-call operator

B parameter (a.k.a. formal parameter): parameter is object/reference
declared as part of function that acquires value on entry to function;
appears in function definition/declaration

B although abuse of terminology, parameter and argument often used
interchangeably

B return value: result passed from function back to caller
B example:

int square(int i) { // i is parameter
return 1 * i; // return value 1is 1 * 1
}

void compute() {
int 1 = 3;
int j = square(i); // 1 is argument

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/defns.argument
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/defns.parameter

Function Declarations and Definitions

u introduces identifier that names function and
specifies following properties of function:

o number of parameters
o type of each parameter
o type of return value (if not automatically deduced)

B example:

bool is0dd(int); // declare 1isOdd
bool is0dd(int x); // declare isOdd (x ignored)

u provides all information included in function
declaration as well as code for body of function
B example:

bool is0dd(int x) { // declare and define 1isOdd
return x % 2;
}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Basic Syntax (Leading Return Type)

B most basic syntax for function declarations and definitions places return
type at start (i.e., leading return-type syntax)

B basic syntax for function declaration:

return_type function_name (parameter_declarations) ;

B examples of function declarations:
int min(int, int);
double square(double);

B basic syntax for function definition:

return_type function_name (parameter_declarations)

statements
}
B examples of function definitions:

int min(int x, int y) {return x <y ? x : y;}
double square (double x) {return x * x;}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Trailing Return-Type Syntax

B with trailing return-type syntax, return type comes after parameter
declarations and auto used as placeholder for where return type would
normally be placed

B trailing return-type syntax for function declaration:
auto function_name (parameter_declarations) -> return_type;

B examples of function declarations:
auto min(int, int) -> int;
auto square (double) -> double;
B trailing return-type syntax for function definition:
auto function_name (parameter_declarations) -> return_type

{
}

statements

B examples of function definitions:

auto nmin(int x, int y) -> int
{return x <y ? x : y;}
auto square (double x) -> double {return x * x;}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The return Statement

B return statement used to exit function, passing specified return value (if
any) back to caller

B code in function executes until return statement is reached or execution
falls off end of function

B if function return type is not void, return statement takes single
parameter indicating value to be returned

B if function return type is void, function does not return any value and
return statement takes either no parameter or expression of type void

B falling off end of function equivalent to executing return statement with

no value
B example:
double unit_step(double x) {
if (x >= 0.0) {

return 1.0; // exit with return value 1.0

}

return 0.0; // exit with return value 0.0

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Automatic Return-Type Deduction

B with both leading and trailing return-type syntax, can specify return type
as auto

B in this case, return type of function will be automatically deduced

B if function definition has no return statement, return type deduced to be
void

B otherwise, return type deduced to match type in expression of return
statement or, if return statement has no expression, as void

B if multiple return statements, must use same type for all return
expressions

B when return-type deduction used, function definition must be visible in
order to call function (since return type cannot be determined otherwise)

B example:

auto square (double x) {
return x * x;
// x * x has type double
// deduced return type is double

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The main Function

B entry point to program is always function called main

B has return type of int

can be declared to take either no arguments or two arguments as follows
(although other possibilities may also be supported by implementation):

int main();
int main(int argc, char* argv[]);

two-argument variant allows arbitrary number of C-style strings to be
passed to program from environment in which program run

argc: number of C-style strings provided to program
argv: array of pointers to C-style strings

argv[0] is hame by which program invoked
argv[argc] is guaranteed to be 0 (i.e., null pointer)

argv[l],argv[2],...,argvargc - 1] typically correspond to
command line options

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.start.main#2

The main Function (Continued)

B suppose that following command line given to shell:

program one two three

B nain function would be invoked as follows:

int argc = 4;
char* argv[] = {
"program", "one", "two", "three", 0
7
main(argc, argv);

B return value of main typically passed back to operating system

B can also use function void exit (int) to terminate program, passing
integer return value back to operating system

B return statement in main is optional

B if control reaches end of main without encountering return statement,
effect is that of executing “return 0;”

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.start.main#5

u of object is period of time in which object exists (e.g., block,

function, global)

int x;

void wasteTime ()

{
int j = 10000;
while (7 > 0) {
——Ji
}
for (int 1 = 0; 1 < 10000; ++i) {

}
}

B in above example: x global scope and lifetime; j function scope and
lifetime; 1 block scope and lifetime

Copyright © 2015-2020 Michael D. Adams C++

Version: 2020-02-29

Parameter Passing

function parameter can be passed by value or by reference
: function given copy of object from caller
: function given reference to object from caller

to pass parameter by reference, use reference type for parameter

example:

void increment (inté& x)
// x 1s passed by reference

{
}
double square (double x)
// x 1s passed by value
{

}

++x;

return x * x;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Pass-By-Value Versus Pass-By-Reference

B f function needs to change value of object in caller, must pass by
reference
B for example:

void increment (inté& x)
// x refers to object in caller

{
}

+x;

B if object being passed to function is expensive to copy (e.g., a very large
data type), always faster to pass by reference

B for example:

double compute (const std::vector<double>& x)
// x refers to object in caller
// object is not copied
{
double result;
// ... (initialize result with value computed from x)
return result;

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Increment Example: Incorrectly Using Pass By Value

B consider code:

void increment (int x) {
++x;
}

void func() {
int i = 0;
increment (i); // i is not modified
// 1 is still 0

© ® N O oA W N

}

B when func calls increment, parameter passing copies value of i in func
to local variable x in increment:

iin Co xin
func Py increment
Value

B when code in increment executes, local variable x is incremented (not i
in func):
iin xin
func increment

Lo 1 [z]

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Increment Example: Correctly Using Pass By Reference

B consider code:

void increment (inté& x) {
++x;

}

void func() {
int i = 0;
increment (i); // 1 1s incremented
// 1 is now 1

© ® N O ;AW N

}

B when func calls increment, reference x in increment is bound to object
iin func (i.e., x becomes alias for 1i):
iin func
. and
x in increment

B when code in increment executes, x is incremented, which is alias for 1
in func:

Copyright (© 2015-2020 Michael D. Adams

The const Qualifier and Functions

B const qualifier can be used in function declaration to make promises
about what non-local objects will not be modified by function
B for function parameter of pointer type, const-ness of pointed-to object (i.e.,
pointee) extremely important
B if pointee is const, function promises not to change pointee; for example:
int strlen(const char*); // get string length
B for function parameter of reference type, const-ness of referred-to object
(i.e., referee) extremely important
B if referee is const, function promises not to change referee; for example:
std::complex<double>
square (const std::complex<double>¢);
// compute square of number
B not making appropriate choice of const-ness for pointed-to or referred-to
object will result in fundamentally incorrect code
B if function will never modify pointee/referee associated with function
parameter, parameter type should be made pointer/reference to const
object

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

String Length Example: Not Const Correct

// ERROR: parameter type should be const charx*

1
2 int string_length(char* s) {

3 int n = 0;

4 while (*s++ != "\0') {++n;}

5 return n;

6 }

7

8 int main() {

9 char buf[] = "Goodbye";

10 const char* const ml = "Hello";

char* const m2 = &buf[0];
int nl = string_length(ml);
// must copy argument ml to parameter s:
// char+x s = ml;
// convert from const char* const to charx*
// ERROR: must discard const from pointee
int n2 = string_length(m2);
// must copy argument m2 to parameter s:
// char* s = m2;
// convert from char* const to charx*
// OK: constness of pointee unchanged

NN = = o 4 o
N =4 0 ©oow~No O wwN =

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

String Length Example: Const Correct

// OK: pointee is const

1
2 int string_length(const char* s) {
3 int n = 0;
4 while (*s++ != "\0') {++n;}
5 return n;
6 }
7
8 int main() {
9 char buf[] = "Goodbye";

10 const char* const ml = "Hello";

char* const m2 = &buf[0];

int nl = string_length(ml);
// must copy argument ml to parameter s:
// const char* s = ml;
// convert from const char* const to const charx*
// OK: constness of pointee unchanged

int n2 = string_length(m2);
// must copy argument m2 to parameter s:
// const charx s = m2;
// convert from char* const to const charx*
// OK: can add const to pointee

NN = = o4 4
N = 0 © o~ o b wN

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Square Example: Not Const Correct

#include <complex>
using Complex = std::complex<long double>;

// ERROR: parameter type should be reference to const
Complex square (Complex& z) {

return z * z;
}

10 int main() {
11 const Complex cl(1.0, 2.0);

©O N O AW D=

12 Complex c2(1.0, 2.0);

13 Complex rl = square(cl);

14 // must bind parameter z to argument cl

15 // Complex& z = cl;

16 // convert from const Complex to Complex&
17 // ERROR: must discard const from referee
18 Complex r2 = square(c2);

19 // must bind parameter z to argument c2
20 // Complex& z = c2;

21 // convert from Complex to Complexé&

22 // OK: constness of referee unchanged

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Square Example: Const Correct

#include <complex>
using Complex = std::complex<long double>;

// OK: parameter type is reference to const
Complex square(const Complex& z) {

return z * z;
}

10 int main() {
11 const Complex cl(1.0, 2.0);

©O N O AW D=

12 Complex c2(1.0, 2.0);

13 Complex rl = square(cl);

14 // must bind parameter z to argument cl

15 // const Complex& z = cl;

16 // convert from const Complex to const Complexé&
17 // OK: constness of referee not discarded
18 Complex r2 = square(c2);

19 // must bind parameter z to argument c2
20 // const Complex& z = c2;

21 // convert from Complex to const Complex&
22 // OK: can add const to referee

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Function Types and the const Qualifier

// top-level qualifiers of parameter types are
// not part of function type and should be omitted
// from function declaration

// BAD: const not part of function type
// (nothing here to which const can refer)
bool is_even(const unsigned int);

9 // OK
10 bool is_odd(unsigned int);

[N I N

12 // OK: parameter with top-level const qualifier
13 // 1is ok in function definition
14 bool is_even(const unsigned int x) {

15 // cannot change x in function
16 return x % == 0;

17}

18

19 // OK

20 bool is_odd(unsigned int x) {

21 // x can be changed if desired
22 return x % 2 != 0;

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Inline Functions

B in general programming sense, is function for which
compiler copies code from function definition directly into code of calling
function rather than creating separate set of instructions in memory

B since code copied directly into calling function, no need to transfer control
to separate piece of code and back again to caller, eliminating
performance overhead of function call

B inline typically used for very short functions (where overhead of calling
function is large relative to cost of executing code within function itself)

B can request function be made inline by including inline qualifier along
with function return type (but compiler may ignore request)

B inline function must be defined in each translation unit in which function is
used and all definitions must be identical; this is exception to
one-definition rule

B example:
inline bool isEven(int x) {
return x 5 2 == 0;

}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.inline#6

Inlining of a Function

B inlining of 1sEven function transforms code fragment 1 into code
fragment 2

B Code fragment 1:

inline bool isEven(int x) {

return x % 2 == 0;

}

void myFunction() {
int 1 = 3;
bool result = isEven(i);

}
B Code fragment 2:
void myFunction() {

int 1 = 3;
bool result = (1 % 2 == 0);

Copyright (© 2015-2020 Michael D. Adams Version: 2020-02-29

The constexpr Qualifier for Functions

B constexpr qualifier indicates return value of function is constant
expression (i.e., can be evaluated at compile time) provided that all
arguments to function are constant expressions

B constexpr function required to be evaluated at compile time if all
arguments are constant expressions and return value used in constant
expression

B constexpr functions are implicitly inline

B constexpr function very restricted in what it can do (e.g., no external state,
can only call constexpr functions, variables must be initialized)

B example:

constexpr int factorial (int n)
{return n >= 2 ? (n * factorial(n - 1)) : 1;}

int u[factorial(5)];
// OK: factorial (5) is constant expression

int x = 5;

int v[factorial(x)];
// ERROR: factorial(x) 1s not constant
// expression

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.constexpr#1

Constexpr Example

constexpr int square(int i) {

1
2 return i * i;

3}

4

5 constexpr int func(int n) {

6 int sum = 0;

7 for (int i = 1; 1 <= n; ++1i) {
8 sum += square (1i);

9 }

10 return sum;

1}

13 int main() {

14 // at compile time, compute sum of the squares of
15 // 1, 2, 3 (i.e., 14)

16 constexpr int result = func(3);

17 static_assert (result == 14);

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Constexpr Function Example: square

#include <iostream>

1
2

3 constexpr double square (double x) ({

4 return x * x;

5)

6

7 int main() {

8 constexpr double a = square(2.0);

2 // must be computed at compile time

11 double b = square(0.5);

1% // might be computed at compile time
14 double t;

15 if (! (std::cin >> t)) {

16 return 1;

17 }

18 const double c = square(t);

10 // must be computed at run time

21 std::cout << a << ' f Kb <K< << ¢ << "\n';

2 |}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Constexpr Function Example: power_int (Recursive)

® N OGO~ W =

©

—o

w N

S

o

®~

SN
= o ©

NN
w N

SN
[$ N

#include <iostream>

constexpr double power_int_helper (double x, int n)

return (n > 0) ? x * power_int_helper(x, n - 1)

}

constexpr double power_int (double x, int n) {
return (n < 0) ? power_int_helper (1.0 / x, -n)
power_int_helper (x, n);

}

int main() {
constexpr double a = power_int (0.5, 8);
// must be computed at compile time

double b = power_int (0.5, 8);
// might be computed at compile time

double x;
if (!(std::cin >> x)) {return 1;}
const double c = power_int (x, 2);

// must be computed at run time

std::cout << a << / 7 KK b <K< ' 7 <K< ¢ << '\n’;

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

1;

Constexpr Function Example: power_int (lterative)

® N O~ W =

N = o ©

s w

o o

®~

©

NN
=o

NN
5w N

NN
oo

NN
® N

#include <iostream>

constexpr double power_int (double x, int n) {

}

double result = 1.0;

if (n < 0) {
x =1.0/ x;
n = -n;
}
while (--n >= 0) {

result *= x;

}

return result;

int main() {

constexpr double a = power_int (0.5, 8);
// must be computed at compile time

double b = power_int (0.5, 8);
// might be computed at compile time

double x;
if (!(std::cin >> x)) {return 1;}
const double c = power_int(x, 2);

// must be computed at run time

std::cout << a << ' f KK b <K< << ¢ << "\n';

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Compile-Time Versus Run-Time Computation

B constexpr variables and constexpr functions provide mechanism for
moving computation from run time to compile time
B benefits of compile-time computation include:
H no execution-time cost at run-time
can facilitate compiler optimization (e.g., eliminate conditional branch if
condition always true/false)
can reduce code size since code used only for compile-time computation
does not need to be included in executable
can find errors at compile-time and link-time instead of at run time
no concerns about order of initialization (which is not necessarily true for
const objects)
@ no synchronization concerns (e.g., multiple threads trying to initialize object)
B when floating point is involved, compile-time and run-time computations
can yield different results, due to differences in such things as

o rounding mode in effect
o processor architecture used for computation (when cross compiling)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Function Overloading

L] : multiple functions can have same name as long as
they differ in number/type of their arguments
B example:

void print (int x) {
std::cout << "int has value " << x << '\n’;
}

void print (double x) {
std::cout << "double has value " << x << '\n’;

}

void demo () {

int i = 5;

double d = 1.414;

print (i); // calls print (int)

print (d); // calls print (double)
print (42); // calls print (int)
print(3.14); // calls print (double)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Default Arguments

B can specify default values for arguments to functions
B example:

// Compute log base b of x.

double logarithm(double x, double b) ({
return std::log(x) / std::log(b);

}

// Declaration of logarithm with a default argument.
double logarithm(double, double = 10.0);

void demo () {

double x =
logarithm(100.0); // calls logarithm(100.0, 10.0)

double y =
logarithm (4.0, 2.0); // calls logarithm (4.0, 2.0)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Argument Matching

B call of given function name chooses function that best matches actual
arguments

B consider all functions in scope for which set of conversions exists so
function could possibly be called

B best match is intersection of sets of functions that best match on each
argument

B matches attempted in following order:
H exact match with zero or more trivial conversions (e.g., Tto T&, T& to T,
adding const and/or volatile); of these, those that do not add const
and/or volatile to pointer/reference better than those that do
match with promotions (e.g., int to long, £loat to double)
match with standard conversions (e.g., £loat to int, double to int)
match with user-defined conversions
match with ellipsis
B if set of best matches contains exactly one element, this element chosen
as function to call

B if set of best matches is either empty or contains more than one element,
function call is invalid (since either no matches found or multiple
equally-good matches found)

o]~ o [

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/over.best.ics

Argument Matching: Example

int max(int, int);

1
g double max (double, double);

4 int main() {

5 int i, 3, k;

6 double a, b, c;

7 //

8 k = max (i, 73);

9 // viable functions: max(int, 1int), max (double, double)
10 // best match on first argument: max(int, 1int)

11 // best match on second argument: max (int, 1int)

12 // best viable function: max (int, int)

13 // OK: calls max(int, 1int)

14 c = max(a, b);

15 // viable functions: max(int, int), max (double, double)
16 // best match on first argument: max (double, double)

17 // best match on second argument: max (double, double)

18 // best viable function: max (double, double)

19 // OK: calls max (double, double)

20 c = max (i, b);

21 // viable functions: max(int, 1int), max(double, double)
22 // best match on first argument: max(int, int)

23 // best match on second argument: max (double, double)
24 // no best viable function

25 // ERROR: ambiguous function call

n
o

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The assert Macro

assert macro allows testing of boolean condition at run time
typically used to test sanity of code (e.g., test preconditions,
postconditions, or other invariants) or test validity of assumptions made by
code
defined in header file cassert
macro takes single argument: boolean expression
if assertion fails, program is terminated by calling std: :abort
if NDEBUG preprocessor symbol is defined at time cassert header file
included, all assertions are disabled (i.e., not checked)
assert (expr) is constant expression if expr is constant expression that
evaluates to true or NDEBUG is defined
example:

#include <cassert>

double sqgrt (double x) {

assert (x >= 0);

V2R

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/assertions.assert#1

Section 2.3.6

Input/Output (I/0)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Basic I/O

B relevant declarations and such in header file 1ostream

B std::istream: stream from which characters/data can be read (i.e.,
input stream)

B std::ostream: stream to which characters/data can be written (i.e.,
output stream)

std::istream std::cin standard input stream
std::ostream std::cout standard output stream
std::ostream std::cerr standard error stream

in most environments, above three streams refer to user’s terminal by
default

B output operator (inserter) <<
B input operator (extractor) >>

B stream can be used as bool expression; converts to true if stream has
not encountered any errors and f£alse otherwise (e.g., if invalid data
read or 1/O error occurred)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Basic I/O Example

#include <iostream>

1

2

3 int main() {

4 std::cout << "Enter an integer: ";

5 int x;

6 std::cin >> x;

7 if (std::cin) {

8 std::cout << "The integer entered was "
9 << x << " \n";

10 } else {

11 std::cerr <<

12 "End-of-file reached or I/0 error.\n";

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

I/0 Manipulators

B manipulators provide way to control formatting of data values written to
streams as well as parsing of data values read from streams

B declarations related information for manipulators can be found in header
files: ios, iomanip, istream, and ostream

B most manipulators used to control output formatting
B focus here on manipulators as they pertain to output

B manipulator may have immediate effect (e.g., endl), only affect next data
value output (e.g., setw), or affect all subsequent data values output (e.g.,
setprecision)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

I/O Manipulators (Continued)

| Name | Description

setw set field width

setfill set fill character

endl insert newline and flush

flush flush stream

dec use decimal

hex use hexadecimal

oct use octal

showpos show positive sign

noshowpos do not show positive sign

left left align

right right align

fixed write floating-point values in fixed-point notation

scientific write floating-point values in scientific notation

setprecision | for default notation, specify maximum number of mean-
ingful digits to display before and after decimal point; for
fixed and scientific notations, specify exactly how many
digits to display after decimal point (padding with trail-
ing zeros if necessary)

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

Manipula Example

CO®NO U A WN =

WWNNNONNNOMNDNMN N = = = =
SO0 NOUERWN-0OO®NDOBWN =

32

#include <iostream>
#include <ios>
#include <iomanip>

int main() {
constexpr double pi = 3.1415926535;
constexpr double big = 123456789.0;
// default notation

std::cout << pi << ' 7 << big << '\n’;

// fixed-point notation

std::cout << std::fixed << pi << ' ' << big << '\n’;

// scientific notation

std::cout << std::scientific << pi << ' ’ << big << "\n’;

// fixed-point notation with 7 digits after decimal point
std::cout << std::fixed << std::setprecision(7) << pi <<’ '

<< big << "\n';
// fixed-point notation with precision and width specified
std::cout << std::setw(8) << std::fixed << std::setprecision(2

<< pi << 7 ' << std::setw(20) << big << ‘\n’;
// fixed-point notation with precision, width, and fill specified
std::cout << std::setw(8) << std::setfill(’x’) << std::fixed

<< std::setprecision(2) << pi << ' '/ << std::setw(20) << big << ’\n’;

}

/% This program produces the following output:
3.14159 1.23457e+08
3.141593 123456789.000000
3.141593e+00 1.234568e+08
3.1415927 123456789.0000000
3.14 123456789.00
xxxx3.14 xxxxxxxx123456789.00
*/

ichael D. Adams

Use of std::istream: :eof

do not use std: :istream: :eof to determine if earlier input operation
has failed, as this will not always work

B eof simply returns end-of-file (EOF) flag for stream

B EOF flag for stream can be set during successful input operation (when

input operation takes places just before end of file)

when stream extractors (i.e., operator>>) used, fields normally
delimited by whitespace

to read all data in whitespace-delimited field, must read one character
beyond field in order to know that end of field has been reached

if field followed immediately by EOF without any intervening whitespace
characters, reading one character beyond field will cause EOF to be
encountered and EOF bit for stream to be set

in preceding case, however, EOF being set does not mean that input
operation failed, only that stream data ended immediately after field that
was read

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: Incorrect Use of eof

B example of incorrect use of eof:

#include <iostream>

int main() {
while (true) {
int x;
std::cin >> x;
// std::cin may not be in a failed state.
if (std::cin.eof()) {
// Above input operation may have succeeded.
10 std::cout << "EOF encountered\n";
11 break;
12 }
13 std::cout << x << '\n’;
14 }
15}

©® N oA W N

©

B code incorrectly assumes that eof will only return true if preceding input
operation has failed

B |ast field in stream will be incorrectly ignored if not followed by at least one
whitespace character; for example, if input stream consists of three
character sequence ’1’, space, '2’, program will output:

1
EOF encountered

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: Correct Use of eof

B to determine if input operation failed, simply check if stream in failed state

B if stream already known to be in failed state and need to determine

specifically if failure due to EOF being encountered, then use eof
B example of correct use of eof:
#include <iostream>
int main() {
int x;
// Loop while std::cin not in a failed state.

while (std::cin >> x) {
std::cout << x << '\n’;

® N O W D=

}

// Now std::cin must be in a failed state.
// Use eof to determine the specific reason
// for failure.

- o ©

12 if (std::cin.eof()) {
13 std::cout << "EOF encountered\n";
14 } else {

o

std::cout << "input error (excluding EOF)\n";

o

}

J
—

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Use of std: :endl

B std::endl is not some kind of string constant

B std::endl is stream manipulator and declared as
std::ostream& std::endl (std::ostreamé&)

B inserting endl to stream always (regardless of operating system)
equivalent to outputting single newline character ' \n’ followed by flushing
stream

B flushing of stream can incur very substantial overhead; so only flush when
strictly necessary

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Use of std: :endl (Continued)

B some operating systems terminate lines with single linefeed character
(i.e., "\n’), while other operating systems use carriage-return and
linefeed pair (i.e., " \r’ plus "\n’)

B existence of endl has nothing to do with dealing with handling new lines
in operating-system independent manner

B when stream opened in text mode, translation between newline characters
and whatever character(s) operating system uses to terminate lines is
performed automatically (both for input and output)

B above translation done for all characters input and output and has nothing
to do with end1l

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Stream Extraction Failure

B for built-in types, if stream extraction fails, value of target for stream

extraction depends on reason for failure
B in following example, what is value of x if stream extraction fails:
int x;
std::cin >> x;
if (!std::cin) {
// what is value of x?
}

in above example, x may be uninitialized upon stream extraction failure
if failure due to 1/O error or EOF, target of extraction is not modified
if failure due to badly formatted data, target of extraction is zero

if failure due to overflow, target of extraction is closest

machine-representable value

B common error: incorrectly assume that target of extraction will always be
initialized if extraction fails

B for class types, also dangerous to assume target of extraction always

written upon failure

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/facet.num.get.virtuals#3

Stream Extraction Failure (Continued)

#include <iostream>

1
2 #include <sstream>

3 #include <limits>

g #include <cassert>

6 dint main() {

7 int x;

8

9 std::stringstream s0("");

10 X = -1;

11 s0 >> x;

12 // No data; x 1s not set by extraction.

13 assert (s0.fail() && == -1);

15 std::stringstream s1("A");

16 x = -1;

17 sl >> x;

18 // Badly formatted data; x 1is zeroed.

;g assert (sl.fail() && x == 0);

21 std::stringstream

22 $2("99") ;

23 x = -1;

24 s2 >> x;

25 // Overflow; x set to closest machine-representable value.
26 assert (s2.fail() && x == std::numeric_limits<int>::max());
27}

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Testing Failure State of Streams

B consider istream or ostream object s

B !sisequivalentto s.fail()

B bool (s) is not equivalent to s.good ()

B s.good() is notthe same as !s.fail ()

B do not use good as opposite of fail since this is wrong

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/iostate.flags#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/iostate.flags#7

Section 2.3.7

Miscellany

Copyright © 2015-2020 Michael D. Adams

Namespaces

u is region that provides scope for identifiers declared inside
B namespace provides mechanism for reducing likelihood of naming
conflicts
B syntax for namespace has general form:
namespace name {
body
}
B name: identifier that names namespace
body: body of namespace (i.e., code)
B all identifiers (e.g., names of variables, functions, and types) declared in
body made to belong to scope associated with namespace name
B same identifier can be re-used in different namespaces, since each
namespace is separate scope
B scope-resolution operator (i.e., : :) can be used to explicitly specify
namespace to which particular identifier belongs
B using statement can be used to bring identifiers from other namespaces
into current scope

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Namespaces: Example

#include <iostream>

1
2

i using std::cout; // bring std::cout into current scope
5 namespace mike {

6 int someValue;

7 void initialize() {

8 cout << "mike::initialize called\n";

9 someValue = 0;

10 }

1}

13 namespace fred {

14 double someValue;

15 void initialize() {

16 cout << "fred::initialize called\n";
17 someValue = 1.0;

19 }

21 wvoid func() {

22 mike::initialize(); // call initialize in namespace mike
23 fred::initialize(); // call initialize in namespace fred
24 using mike::initialize;

25 // bring mike::initialize into current scope

26 initialize(); // call mike::initialize

27}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Nested Namespace Definitions

B name given in namespace declaration can be qualified name in order to
succinctly specify nested namespace
B consider following namespace declaration:

namespace foo {
namespace bar {
namespace impl {
VAR
}

}

B preceding declaration can be written more succinctly as:

namespace foo::bar::impl {

YV
}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Namespace Aliases

B identifier can be introduced as alias for namespace
B syntax has following form:
namespace dalias_name = ns_name;

B identifier alias_name is alias for namespace ns_name

B namespace aliases particularly useful for creating short names for
deeply-nested namespaces or namespaces with long names

B example:

#include <iostream>

4
2
3 namespace foobar {

4 namespace miscellany {

5 namespace experimental {

6 int get_meaning_of_life() {return 42;}
7 void greet () {std::cout << "hello\n";};
8

}

9 }

10 }

11

12 int main() {

13 namespace n = foobar::miscellany::experimental;
14 n::greet();

15 std::cout << n::get_meaning of_ life() << '\n’;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Inline Namespaces

B namespace can be made inline, in which case all identifiers in namespace
also visible in enclosing namespace

B inline namespaces useful, for example, for library versioning

B example:

#include <cassert>

// some awesome library
namespace awesome {
// version 1
namespace vl {
int meaning_of_life() {return 41;}

® N0 A W N

}

9 // new and improved version 2

10 // which should be default for library users
11 inline namespace v2 {

12 int meaning_of_life() {return 42;}

13 }

14}

16 int main() {

17 assert (awesome: :vl::meaning_of_life() == 41);
18 assert (awesome::v2::meaning_of_life() == 42);
19 assert (awesome: :meaning_of_life() == 42);

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Unnamed Namespaces

can create unnamed namespace (i.e., namespace without name)
unnamed namespace often referred to as anonymous namespace

each translation unit may contain its own unique unnamed namespace

entities defined in unnamed namespace only visible in its associated
translation unit (i.e., has internal linkage)

x = forty_two;
std::cout << x << '\n’;

B example:
; #include <iostream>
3 namespace {
4 const int forty_two = 42;
5 int x;
6 }
7
8 int main() {
9
0
1

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Memory Allocation: new and delete

B to allocate memory, use new statement

B to deallocate memory allocated with new statement, use delete
statement

B similartomalloc and freein C

B two forms of allocation: 1) single object (i.e., nonarray case) and 2) array
of objects

B array version of new/delete distinguished by []

B example:

char* buffer = new char[64]; // allocate

// array of 64 chars
delete [] buffer; // deallocate array
double* x = new double; // allocate single double
delete x; // deallocate single object

B important to match nonarray and array versions of new and delete:

char* buffer = new char(64]; // allocate
delete buffer; // ERROR: nonarray delete to
// delete array
// may compile fine, but crash

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

User-Defined Literals

B C++ has several categories of literals (e.g., character, integer,
floating-point, string, boolean, and pointer)

B can define additional literals based on these categories
B identifier used as suffix for user-defined literal must begin with underscore

B suffixes that do not begin with underscore are reserved for use by
standard library

B example:

#include <iostream>
#include <complex>

std::complex<long double> operator "" _i(long double d) {
return std::complex<long double> (0.0, d);
}

int main() {
auto z = 3.14_1i;
std::cout << z << '"\n’;

® N® O A W =

- o ©

}

// Program output:
// (0,3.14)

A WD

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Attributes

B attributes provide unified syntax for implementation-defined language
extensions

B attribute can be used almost anywhere in source code and can be applied
to almost anything (e.g., types, variables, functions, names, code blocks,
and translation units)

B specific types of entities to which attribute can be applied depends on
particular attribute in question

B attribute specifiers start with two consecutive left brackets and continue to
two consecutive right brackets

B example:

[[deprecated]]
void some_very_old_function() {/# ... */};

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Some Standard Attributes

Name Description
noreturn function does not return
deprecated use of entity is deprecated (i.e., allowed but

discouraged)

fallthrough | fall through in switch statement is deliberate
maybe_unused | entity (e.g., variable) may be unused
nodiscard used to indicate that return value of function
should not be ignored

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Some GCC and Clang Attributes

GCC C++ Compiler

Name Description

gnu::noinline do not inline function

gnu::no_sanitize_address do not instrument function for address
sanitizer

gnu::no_sanitize_undefined | do not instrument function for undefined-
behavior sanitizer

Clang C++ Compiler
Name Description

gnu::noinline do not inline function
clang::no_sanitize | do notinstrument function for sanitizer

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.3.8

References

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

References |

D. Saks. Placing const in declarations. Embedded Systems
Programming, pages 19-20, June 1998.

D. Saks. What const really means. Embedded Systems Programming,
pages 11-14, Aug. 1998.

D. Saks. const T vs. T const. Embedded Systems Programming, pages
13-16, Feb. 1999.

B D. Saks. Top-level cv-qualifiers in function parameters. Embedded
Systems Programming, pages 63—65, Feb. 2000.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.4

Classes

2015-2020 Michael D. Adams C++

Classes

since fundamental types provided by language are quite limiting, language
provides mechanism for defining new (i.e., user-defined) types

L is user-defined type

class specifies:

H how objects of class are represented
operations that can be performed on objects of class

not all parts of class are directly accessible to all code
is part of class that is directly accessible to its users

is part of class that its users access only indirectly
through interface

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.4.1

Members and Access Specifiers

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Class Members

B class consists of zero or more members
B three basic kinds of members (excluding enumerators):

H data member
function member
type member

B data members define representation of class object

B function members (also called member functions) provide operations on
such objects

B type members specify any types associated with class

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Access Specifiers

can control level of access that users of class have to its members
three levels of access:

H public

protected

private

: member can be accessed by any code

: member can only be accessed by other members of class and
friends of class (to be discussed shortly)

: relates to inheritance (discussion deferred until later)

public members constitute class interface

private members constitute class implementation

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Class Example

B class typically has form:

class Widget // The class is named Widget.
{
public:
// public members
// (i.e., the interface to users)
// usually functions and types (but not data)
private:
// private members
// (i.e., the implementation details only
// accessible by members of class)
// usually functions, types, and data
bi

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Default Member Access

B class members are private by default
B two code examples below are exactly equivalent:

class Widget {
/S

i

class Widget {
private:

VA
i

Version: 2020-02-29

Copyright © 2015-2020 Michael D. Adams C++

The struct Keyword

u is class where members public by default

B two code examples below are exactly equivalent:

struct Widget {
/S

i

class Widget {
public:
/7.

i

Version: 2020-02-29

Copyright © 2015-2020 Michael D. Adams C++

B class example:

class Vector_2 { // Two-dimensional vector class.
public:
double x; // The x component of the vector.
double y; // The y component of the vector.
i

void func() {
Vector_2 v;
V.x

vV.y

0; // Set data member x to 1.0
.0; // Set data member y to 2.0

}

B above class has data members x and y

B members accessed by member-selection operator (i.e., “.”)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Function Members

B class example:
class Vector_2 { // Two-dimensional vector class.
public:
void initialize (double newX, double newY);
double x; // The x component of the vector.
double y; // The y component of the vector.
i

void Vector_2::initialize (double newX, double newY) ({
x = newX; // "x" means "this->x"
y = newY; // "y" means "this->y"

}
void func() {
Vector_2 v; // Create Vector_ 2 called v.
} v.initialize (1.0, 2.0); // Initialize v to (1.0, 2.0).
B above class has member function initialize
B to refer to member of class outside of class body must use
scope-resolution operator (i.e., : :)
B for example, in case of initialize function, we use
Vector 2::initialize
B member function always has implicit parameter referring to class object

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The this Keyword

B member function always has implicit parameter referring to class object
implicit parameter accessible inside member function via this keyword
this is pointer to object for which member function is being invoked
data members can be accessed through this pointer

since data members can also be referred to directly by their names,
explicit use of this often not needed and normally avoided

B example:

class Widget {
public:
int updateValue (int newValue) {
int oldvalue = value; // "value" means "this—>value"
value = newValue; // "value" means "this—->value"
return oldvalue;

}
private:
int value;

}i

void func() {
Widget x;
x.updateValue (5);
// in Widget::updateValue, variable this equals &x

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

const Member Functions

B member function has reference to object of class as implicit parameter
(i.e., object pointed to by this)

B need way to indicate if member function can change value of object

B const member function cannot change value of object

class Counter {
public:
int getCount () const
{return count;} // count means this->count
void setCount (int newCount)
{count = newCount;} // count means this->count
void incrementCount ()
{++count;} // count means this->count
private:
int count; // counter value

® N oA W N =

- o ©

i

void func() {
Counter ctr;
ctr.setCount (0);
int count = ctr.getCount();
const Counter& ctr2 = ctr;
count = ctr2.getCount(); // getCount better be const!

© ® N o oA~ ®N

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Definition of Function Members in Class Body

B member function whose definition is provided in body of class is

automatically inline

B two code examples below are exactly equivalent:

class MyInteger {
public:
// Set the value of the integer and return the old value.
int setValue(int newValue) {
int oldValue = value;
value = newValue;
return oldValue;
}
private:
int value;
bi

class MylInteger {

public:
// Set the value of the integer and return the old value.
int setValue(int newValue);

private:
int value;

b

inline int MyInteger::setValue(int newValue) {
int oldvalue = value;
value = newValue;
return oldvalue;

}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Type Members

B example:

class Point_2 { // Two-dimensional point class.
public:
using Coordinate = double; // Coordinate type.
Coordinate x; // The x coordinate of the point.
Coordinate y; // The y coordinate of the point.
bi

void func() {
Point_2 p;
/S
Point_2::Coordinate x = p.x;
// Point_2::Coordinate same as double

}

B above class has type member Coordinate

B to refer to type member outside of class body, we must use
scope-resolution operator (i.e., : :)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

B normally, only class has access to its private members

B sometimes, necessary to allow another class or function to have access to
private members of class

B friend of class is function/class that is allowed to access private members
of class

B to make function or class friend of another class, use £riend statement

B example:
class Gadget; // forward declaration of Gadget

class Widget {
/S
friend void myFunc();
// function myFunc is friend of Widget
friend class Gadget;
// class Gadget is friend of Widget
//
Vi
B generally, use of friends should be avoided except when absolutely
necessary

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Class Example

[N I N

- o ©

w N

N o o »

© ©

NS
N = o

23

class Widget {
public:
int setValue (int newValue) { // member function
int oldvValue = value; // save old value
value = newValue; // change value to new value
return oldvalue; // return old value
}
private:
friend void wasteTime();
void doNothing() {}
int value; // data member

i

void wasteTime () {
Widget x;
x.doNothing(); // OK: friend
x.value = 5; // OK: friend

}

void func() {
Widget x; // x is object of type Widget
x.setValue(5); // call Widget’s setValue member
// sets x.value to 5
x.value = 5; // ERROR: value is private
x.doNothing(); // ERROR: doNothing is private

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.4.2

Constructors and Destructors

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Propagating Values: Copying and Moving

B Suppose that we have two objects of the same type and we want to
propagate the value of one object (i.e., the source) to the other object (i.e.,
the destination).

B This can be accomplished in one of two ways: 1) copying or 2) moving.

B Copying propagates the value of the source object to the destination
object without modifying the source object.

B Moving propagates the value of the source object to the destination
object and is permitted to modify the source object.

B Moving is always at least as efficient as copying, and for many types,
moving is more efficient than copying.

B For some types, copying does not make sense, while moving does (e.g.,
std::ostream, std::istream).

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Copying and Moving

B Copy operation. Propagating the value of the source object source to the
destination object destination by copying.

source destination source destination

Before Copy After Copy

B A copy operation does not modify the value of the source object.

B Move operation. Propagating the value of the source object source to
the destination object destination by moving.

source destination source destination

Before Move After Move

B A move operation is not guaranteed to preserve the value of the source
object. After the move operation, the source object has a value that is
valid but typically unspecified.

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Constructors

B when new object created usually desirable to immediately initialize it to
some known state

B prevents object from accidentally being used before it is initialized

B constructor is member function that is called automatically when object
created in order to initialize its value

B constructor has same name as class (i.e., constructor for class T is
function T: : T)

B constructor has no return type (not even void)

B constructor cannot be called directly (although placement new provides
mechanism for achieving similar effect, in rare cases when needed)

B constructor can be overloaded

B before constructor body is entered, all data members of class type are first
constructed in order of declaration in class definition

B in certain circumstances, constructors may be automatically provided

B sometimes, automatically provided constructors will not have correct
behavior

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Default Constructor

B constructor that can be called with no arguments known as

B example:

class Vector { // Two-dimensional vector class.
public:

Vector() // Default constructor.

{x_=10.0; y_=0.0;}

/S
private:

double x_; // The x component of the vector.

double y_; // The y component of the vector.
i

Vector v; // calls Vector::Vector(); v set to (0,0)
Vector x(); // declares function x that returns Vector

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.ctor#4

Defaulted Default Constructor

n for class T performs similar initialization as
constructor defined as
T::T() {}

B if class has no default member initializers, this corresponds to default
constructing each data member of class type and leaving data members
of built-in type uninitialized

B defaulted default constructor automatically provided (i.e., implicitly
declared) as public member if no user-declared constructors

B example:

#include <string>

// class has implicitly-defined defaulted
// default constructor
struct Widget {
void foo() {}
std::string s;
}i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.ctor#7
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.ctor#4

Copy Constructor

B for class T, constructor taking Ivalue reference to T as first parameter that
can be called with one argument known as

B used to create object by copying from already-existing object
B copy constructor for class T typically is of form T (const T&)

B example:

class Vector { // Two-dimensional vector class.
public:
Vector() {x_ = 0.0; y_=0.0;} // Default constructor
Vector (const Vector& v) // Copy constructor.
(2 =v.x_j y_=v.y_j}
V2R
private:
double x_; // The x component of the vector.
double y_; // The y component of the vector.
bi

Vector v;
Vector w(v); // calls Vector::Vector (const Vectoré&)
Vector u = v; // calls Vector::Vector (const Vectoré&)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.ctor#1

Defaulted Copy Constructor

u performs memberwise copy of its data
members (and bases), where copy performed using:
o copy constructor for class types
o bitwise copy for built-in types

B defaulted copy constructor automatically provided (i.e., implicitly defined)
as public member if none of following user declared:
o move constructor
0 move assignment operator
copy assignment operator (if not relying on deprecated behavior)
destructor (if not relying on deprecated behavior)

(m]

[m]

B example:

// class has defaulted copy constructor
class Widget {

public:

Widget (int i) {i_ = i;}

int get() const {return i_;}
private:

int i_;

}i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.ctor#14
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.ctor#6

Move Constructor

B for class T, constructor taking rvalue reference to T as first parameter that
can be called with one argument known as

B ysed to create object by moving from already-existing object
B move constructor for class T typically is of form T (T&&)

B example:

class Vector { // Two-dimensional vector class.
public:

Vector() {x_ = 0.0; y_ = 0.0;} // Default constructor
Vector (Vectors&& v) {x_ = v.x_; y_ = v.y_;} // Move constructor.
V2R

private:

double x_; // The x component of the vector.
double y_; // The y component of the vector.

bi

#include <utility>

Vector v;

Vector w(std::move(v)); // calls Vector::Vector (Vector&é&)
Vector x = std::move(w); // calls Vector::Vector (Vector&é&)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.ctor#2

Defaulted Move Constructor

members (and bases) using:
o move constructor if available and copy constructor otherwise in case of

class type

performs memberwise move of its data

o bitwise copy in case of built-in type

B defaulted move constructor automatically provided (i.e., implicitly defined)

as public member if none of following user declared:

copy constructor

move assignment operator

O
o copy assignment operator
[m]
[m]

destructor

B example:

// class has defaulted move constructor

struct Widget {
Widget ();
void foo();
i

Copyright (© 2015-2020 Michael D. Adams

C++

Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.ctor#14
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.ctor#8

Constructor Example

class Vector { // Two-dimensional vector class.

1

2 public:

3 // Default constructor.

4 Vector () {x_ = 0.0; y_ = 0.0;}

5 // Copy constructor.

6 Vector (const Vector& v) {x_ = v.X_; y_ = V.Vy_;}

7 // Move constructor.

8 Vector (Vector&& v) {x_ = v.x_; y_ = Vv.y_;}

9 // Another constructor.

10 Vector (double x, double y) {x_ = x; y_ = y;}

11 /).

12 private:

13 double x_; // The x component of the vector.
14 double y_; // The y component of the vector.

5}

B four constructors provided

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Constructor Example (Continued 1)

// include definition of Vector class here

int main() {

Vector u;
// calls default constructor

Vector v(1.0, 2.0);
// calls Vector::Vector (double, double)

Vector w(v);
// calls copy constructor

Vector x = u;
// calls copy constructor

Vector y = Vector (1.0, 0.0);
// guaranteed copy/move elision
// calls Vector: :Vector (double, double), directly
// constructing new object in y
// does not call move constructor

Vector z{Vector()};
// gquaranteed copy/move elision
// calls default constructor, directly constructing
// new object in z
// does not call move constructor

Vector f();

23 // declares function f that returns Vector

® N O WN =

DN N = = o4 4
N =20 ©ow~N®Oa~wWN-= O ©

n
EN

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

® N OsWN =

ctor Example (Continued 2)

#include <utility>
#include <cstdlib>
// include definition of Vector class here

// named RVO not possible
Vector funcl() {
Vector a(1.0, 0.0);
Vector b(0.0, 1.0);
if (std::rand() % 2) {return a;}
else {return b;}

}

// RVO required
Vector func2() {return Vector (1.0, 1.0);}

int main() {
Vector u(l.0, 1.0);
Vector v(std::move(u));

// move constructor invoked to propagate value from u

// to v

Vector w = funcl();

// move constructor invoked to propagate value of object
// in return statement of funcl to object w in main

// (named RVO not possible)
Vector x = func2();

// move constructor not invoked, due to guaranteed
// copy/move elision (return value of func2 directly

// constructed in object x in main)

Constructor Initializer Lists

B in constructor of class, often we want to control which constructor is used
to initialize each data member

B since all data members are constructed before body of constructor is
entered, this cannot be controlled inside body of constructor

B to allow control over which constructors are used to initialize individual
data members, mechanism called provided

B nitializer list forces specific constructors to be used to initialize individual
data members before body of constructor is entered

B data members always initialized in order of declaration, regardless of
order in initializer list

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Constructor Initializer List Example

class ArrayDouble { // array of doubles class

1
2 public:

3 ArrayDouble(); // create empty array

4 ArrayDouble (int size); // create array of specified size
5

6 private:

7 //

8}

9

10 class Vector { // n-dimensional real vector class

11 public:

12 Vector (int size) : data_(size) {}

// force data_ to be constructed with
// ArrayDouble: :ArrayDouble (int)
// .

o b~ W

private:
ArrayDouble data_; // elements of vector

® N o

}i

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Default Member Initializers

B can provide default values with which to initialize data members

B f initializer for data member not given in constructor initalizer list, default
member initializer used if specified

B example:
#include <string>

struct Widget {
Widget () {}
// constructor behaves as 1if it had initializer
// list:
// answer (42), message ("hello")
int answer = 42;
std::string message = "hello";

O © ® N O U AW N

i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Member Initialization Order

B recall that data members initialized in order of declaration in class
definition
B failing to consider this fact can easily leads to bugs in code
B for example, consider following code:
#include <cassert>

’
2
3 class Widget {

4 public:

5 Widget () : y_(42), x_(y_ + 1) {assert(x_ == 43);}
6 int x_;

7 int y_;

8 };

9

10 int main() {
1 Widget w;
12}

B in Widget’s default constructor, x_ initialized before y_, which results in
use of y_ before its initialization

B therefore, above code has undefined behavior

B in practice, likely x_ will simply have garbage value when body of
constructor executes and assertion will fail

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

when object reaches end of lifetime, typically some cleanup required
before object passes out of existence

destructor is member function that is automatically called when object
reaches end of lifetime in order to perform any necessary cleanup

often object may have allocated resources associated with it (e.g.,
memory, files, devices, network connections, processes/threads)

when object destroyed, must ensure that any resources associated with
object are released

destructors often serve to release resources associated with object
destructor for class T always has name T: :~T

destructor has no return type (not even void)

destructor cannot be overloaded

destructor always takes no parameters

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Defaulted Destructor

L performs no clean-up action, except to destroy
each of its data members (and bases)

B defaulted destructor automatically provided (i.e., implicitly defined) if no
user-declared destructor

B for classes that require additional clean-up, defaulted destructor will not
yield correct behavior

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.dtor#4

Destructor Example

B example:

class Widget {
public:
Widget (int bufferSize) { // Constructor.
// allocate some memory for buffer
bufferPtr_ = new char|[bufferSize];
}
~Widget () { // Destructor.
// free memory previously allocated
delete [] bufferPtr_;
}

// copy constructor, assignment operator,
private:

char* bufferPtr_; // pointer to start of buffer
i

B if defaulted destructor were used, memory associated with bufferPtr_
would not be freed

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.4.3

Operator Overloading

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Operator Overloading

B can specify meaning of operator whose operands are one or more
user-defined types through process known as

B operators that can be overloaded:

arithmetic +-* /%

bitwise N o~ << >>

logical T

relational < > <K= >= == |=
assignment =

compound assignment | += —= *= /= %= "= §= |= <<= >>=
increment/decrement ++ ——

subscript []

function call ()

address, indirection & *

others ->* , -> new delete

B not possible to change precedence/associativity or syntax of operators
B meaning of operator specified by specially named function

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Operator Overloading (Continued 1)

B operator @ overloaded via special function named operator@

B with some exceptions, operator can be overloaded as member function or
nonmember function

B if operator overloaded as member function, first operand provided as
*this and remaining operands, if any, provided as function parameters

B if operator overloaded as nonmember function, all operands provided as
function parameters

B postfix unary (increment/decrement) operators take additional dummy
parameter of type int in order to distinguish from prefix case

B expressions involving overloaded operators interpreted as follows:

Interpretation As
Type Expression | Member Function | Nonmember Function
Binary alb a.operator@(b) | operator@(a, b)
Prefix unary | Qa a.operator@/() operator@(a)
Postfix unary | a@ a.operator@(i) | operator@(a, i)

i is dummy parameter of type int

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Operator Overloading (Continued 2)

B assignment, function-call, subscript, and member-selection operators
must be overloaded as member functions

B if member and nonmember functions both defined, argument matching
rules determine which is called

B if first operand of overloaded operator not object of class type, must use
nonmember function

B for most part, operators can be defined quite arbitrarily for user-defined
types

B for example, no requirement that “++x”, “x += 1”,and “x = x + 1”be
equivalent

B of course, probably not advisable to define operators in very
counterintuitive ways, as will inevitably lead to bugs in code

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/over.ass#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/over.call#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/over.sub#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/over.ref#1

Operator Overloading (Continued 3)

B some examples showing how expressions translated into function calls
are as follows:

Expression Member Function Nonmember Function
y = X y.operator=(x) —

y += X y.operator+=(x) operator+=(y, x)
Xty x.operator+ (y) operator+(x, v)
++x x.operator++ () operator++ (x)
X++ x.operator++(int) | operator++(x, int)
X == x.operator==(y) operator==(x, vy)
x <y x.operator<(y) operator<(x, v)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Operator Overloading Example: Vector

class Vector { // Two-dimensional vector class

1
2 public:

3 Vector() : x_(0.0), y_(0.0) {}

4 Vector (double x, double y) : x_(x), v_(y) {}

5 double x() const { return x_; }

6 double y() const { return y_; }

7 private:

8 double x_; // The x component

9 double y_; // The y component

10}

11

12 // Vector addition

13 Vector operator+(const Vector& u, const Vectoré& v)
1:51 {return Vector (u.x() + v.x(), u.y() + v.y());}

b

16 // Dot product

17 double operator* (const Vector& u, const Vectoré& v)
13 {return u.x() * v.x() + u.y() * v.y();}

]

20 wvoid func() {

21 Vector u(1.0, 2.0);

22 Vector v (u);

23 Vector w;

24 w=u+v; // w.operator=(operator+(u, v))

25 double ¢ = u * v; // calls operator#(u, V)

26 // since c¢ is built—-in type, assignment operator
27 // does not require function call

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Operator Overloading Example: Array10

class Arrayl0 { // Ten-element real array class

1
2 public:

3 Arrayl0() {

4 for (int i = 0; i < 10; ++i) { // Zero array
5 data_[1i] = 0;

6 }

7 }

8 const doubles operator|] (int index) const {

9 return data_[index];

10 }

11 double¢ operator|] (int index) {

12 return data_[index];

13 }

14 private:

15 double data_[10]; // array data
16}

18 wvoid func() {

19 Arrayl0 v;

20 v[l] = 3.5; // calls ArraylO::operator[] (int)

21 double c = v[1l]; // calls Arrayl0::operator(] (int)

22 const Arrayl0 u;

23 ull] = 2.5; // ERROR: u[l] is const

24 double d = u[l]; // calls ArraylQ::operator[] (int) const

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Operator Overloading: Member vs. Nonmember Functions

B in most cases, operator can be overloaded as either member or
nonmember function

B some considerations that factor into decision of whether to use member or
nonmember function given below

B if access to private members is required, using member function may be
preferable to having nonmember friend function

B f first operand of operator is of non-class type, must use nonmember
function; otherwise, either member or nonmember could be used

B if conversions for first argument to operator are desired, must use
nonmember function; if such conversions not desired, must use member
function

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Overloading as Member vs. Nonmember: Example

® N UA W =

WWMNNMNNNNDNRNDRN % == 2 2o
SO0 ONDARWN2ATOOO®IDA D WN=O ©

class Complex { // Complex number type.
public:
Complex (double x, double y) : x_(x), y_(y) {}
double real() const {return x_;}
double imag() const {return y_;}
// Alternatively, overload operator+ as a member function.
// Complex operator+ (double b) const
// {return Complex(real () + b, imag());}
private:
double x_; // The real part.
double y_; // The imaginary part.
}i

// Overload as a nonmember function.
// (A member function could instead be used. See above.)
Complex operator+(const Complex& a, double D)

{return Complex(a.real() + b, a.imag());}

// This can only be accomplished with a nonmember function.
Complex operator+(double b, const Complexé& a)

{return Complex(b + a.real(), a.imag());}
void myFunc() {
Complex a(l.0, 2.0);
Complex b(1.0, -2.0);
double r = 2.0;
Complex ¢ = a + r; /+ could use nonmember or member function

operator+(a, r) or a.operator+(r) */
Complex d = r + a; /# must use nonmember function
operator+(r, a), since r.operator+(a) will not work */

Copyright (© 2015-2020 Michael D. Adams

Overloading as Member vs. Nonmember: Example

[N I N A

#include <string_view>

class Widget {

public:
Widget ();
Widget (std::string_view); // converting constructor
operator std::string_view() const; // conversion operator

i

// overload as nonmember function
Wiidget operator+ (Widget, std::string_view);

int main() {

Widget w;

std::string_view sv("hello");

Widget a = w + sv;
/+ OK: operator+ (Widget, std::string_view) called
with no conversions necessary #*/

Widget b = sv + w;
/* OK: operator+ (Widget, std::string view) called, where
first argument implicitly converted to Widget by
Widget’s converting constructor and second argument
implicitly converted to std::string_view by
wWidget’s conversion operator; 1f operator+ were
overloaded as member of Widget class, compiler error
would result as overload resolution would fail to
yield any viable function to call x/

Copy Assignment Operator

B for class T, T: :operator= having exactly one parameter that is Ivalue
reference to T known as

B used to assign, to already-existing object, value of another object by
copying

B copy assignment operator for class T typically is of form
T& operator=(const T&) (returning reference to *this)

B copy assignment operator returns (nonconstant) reference in order to
allow for statements like following to be valid (where %, vy, and z are of
type T and T: :modify is a non-const member function):

x =y =1z2; // x.operator=(y.operator=(z))

(x =vy) =2; // (x.operator=(y)).operator=(z)
(x y) .modify(); // (x.operator=(y)).modify()

B must be careful to correctly consider case of self-assignment

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.assign#1

Defaulted Copy Assignment Operator

L performs memberwise copy of its
data members (and bases), where copy performed using:
o copy assignment operator for class types
o bitwise copy for built-in types

B defaulted copy assignment operator automatically provided (i.e., implicitly
defined) as public member if none of following user declared:

o move constructor

o move assignment operator

o copy constructor (if not relying on deprecated behavior)
o destructor (if not relying on deprecated behavior)

B example:
// class has implicitly-defined defaulted
// copy-assignment operator
class Widget {
public:
Widget (int 1) {i_ = i;}
int get() const {return i_;}
private:
int i_;
i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.assign#12
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.assign#2

Self-Assignment Example

B in practice, self assignment typically occurs when references (or pointers)

are involved
B example:
void doSomething (SomeType& x, SomeType& y) |
x =vy; // self assignment 1if &x == &y
V2R

}

void myFunc() {
SomeType z;

doSomething(z, z); // results in self assignment

/S

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Move Assignment Operator

B forclass T, T: :operator= having exactly one parameter that is rvalue
reference to T known as

B used to assign, to already-existing object, value of another object by
moving

B move assignment operator for class T typically is of form
T¢ operator=(T&&) (returning reference to *this)

B move assignment operator returns (nonconstant) reference for same
reason as in case of copy assignment operator

B in case of move, self-assignment should probably not occur, but might be
prudent to test for this with assertion in order to protect against “insane”
code

B standard library effectively forbids self-assignment for move

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.assign#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/res.on.arguments#1.3

Defaulted Move Assignment Operator

L performs memberwise move of its
data members (and bases) where move performed using:
o if class type: move assignment operator if available and copy assignment
operator otherwise
o if built-in type: bitwise copy

B defaulted move assignment operator automatically provided (i.e., implicitly
defined) as public member if none of following user declared:
o copy constructor
o move constructor
o copy assignment operator
o destructor

B example:
#include <vector>

// class has implicitly-defined defaulted
// move-assignment operator
struct Widget {
Widget () ;
std::vector<int> v;
}i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.assign#12
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.assign#4

Copy/Move Assignment Operator Example: Complex

class Complex {

1
2 public:

3 Complex (double x = 0.0, double y = 0.0)

4 x_(x), y_(y) {}

5 Complex (const Complex& a) : x_(a.x_), y_(a.y_) {}

6 Complex (Complex&& a) : x_(a.x_), v_(a.y_) {}

7 Complex& operator=(const Complex& a) { // Copy assign
8 if (this != &a) {

9 X_ = a.X_; Yy_ = a.y_;

o

}

return *this;

e

}
Complex& operator= (Complex&& a) { // Move assign
a.x_; y_ = a.y_;
return *this;

N

o o

}

private:
double x_; // The real part.
double y_; // The imaginary part.

© ®

}i

int main() {
Complex z (1.0, 2.0);
Complex v(1.5, 2.5);
v =1z; // v.operator=(z)
v = Complex (0.0, 1.0); // v.operator=(Complex (0.0, 1.0))

NN
=o

NN NN
N o o R ON

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Assignment Operator Example: Buffer

©ONOUIAWN =

class Buffer { // Character buffer class.

public:
Buffer (int bufferSize) { // Constructor.
bufSize_ = bufferSize;
bufPtr_ = new char[bufferSize];

}
Buffer (const Buffers& buffer) { // Copy constructor.
bufSize_ = buffer.bufSize_;
bufPtr_ = new char[bufSize_];
for (int i = 0; i < bufSize_; ++i)
bufPtr_[i] = buffer.bufPtr_[i];
}
~Buffer() { // Destructor.
delete [] bufPtr_;
}
Buffer& operator=(const Buffers buffer) { // Copy assignment operator.
if (this != sbuffer) {
delete [] bufPtr_;
bufSize_ = buffer.bufSize_;
bufPtr_ = new char[bufSize_];
for (int i = 0; i < bufSize_; ++i)
bufPtr_[i] = buffer.bufPtr_[i];
}
return *this;
}
/).
private:
int bufSize_; // buffer size
char* bufPtr_; // pointer to start of buffer
b

B without explicitly-provided assignment operator (i.e., with defaulted
assignment operator), memory leaks and memory corruption would result

Michael D. Adams C++

Section 2.4.4

Miscellany

Copyright © 2015-2020 Michael D. Adams

std::initializer_list Class Template

B class template std::initializer_list provides lightweight list type
B inordertouse initializer_ list, need to include header file
initializer_list
B declaration:
template <class T> initializer_ list;
B T is type of elements in list
B initializer_list is very lightweight

B can query number of elements in list and obtain iterators to access these
elements

B initializer_list often useful as parameter type for constructor

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

std::initializer_list Example

#include <iostream>

1
g #include <vector>

4 class Sequence {

5 public:

6 Sequence (std::initializer_ list<int> list) {

7 for (std::initializer_list<int>::const_iterator i =
8 list.begin(); 1 != list.end(); ++1i)

9 elements_.push_back (*i);

10 }

11 void print() const {

12 for (std::vector<int>::const_iterator 1 =

13 elements_.begin(); 1 '= elements_.end(); ++1i)

14 std::cout << *i << '\n’;

15 }

16 private:

17 std::vector<int> elements_;

8}

19

20 int main() {

21 Sequence seq = {1, 2, 3, 4, 5, 6};
seq.print();

NN
w N

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Converting Constructors

B constructor that is not declared with explicit specifier is called
converting constructor

B converting constructor can be used for implicit conversions

B example:
1 #include <string>
2 using namespace std::literals;
3
4 class Widget {
5 public:
6 Widget (const std::strings&); // converting constructor
7 Widget (const char*, int); // converting constructor
8 //
9}
10
11 int main() {
12 Widget v = "hello"s;
13 // invokes Widget::Widget (const std::string&)
14 Widget w = {"goodbye", 4};
15 // invokes Widget::Widget (const charx, int)
16 v = "bonjour"s; // invokes Widget::Widget (const std::stringé&)
17 w = {"au revoir", 2};
18 // invokes Widget::Widget (const char#*, int)
19 }

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Explicit Constructors

B converting constructor can be used in implicit conversions (e.g., when
attempting to obtain matching type for function parameter in function call)

B often, desirable to prevent constructor from being used for implicit
conversions

B to accommodate this, constructor can be marked as explicit

is constructor that cannot be used for performing
implicit conversions or

B prefixing constructor declaration with explicit keyword makes
constructor explicit

B example:

class Widget {

public:
explicit Widget (int); // explicit constructor
VA

i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example Without Explicit Constructor

#include <cstdlib>

1
2

3 // one-dimensional integer array class

4 class IntArray {

5 public:

6 // create array of int with size elements

7 IntArray(std::size_t size) { /# ... =/ };

8 /S

9)i

10

11 void processArray(const IntArrayé& x) |

12

13}

14

15 int main() {

16 // following lines of code almost certain to be
17 // incorrect, but valid due to implicit type

18 // conversion provided by

19 // IntArray::IntArray(std::size_t)

20 IntArray a = 42;

21 // probably incorrect

22 // implicit conversion effectively yields code:
23 // IntArray a = IntArray (42);

24 processArray (42);

25 // probably incorrect

26 // implicit conversion effectively yields code:
27 // processArray (IntArray (42));

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example With Explicit Constructor

#include <cstdlib>

1
2

3 // one-dimensional integer array class

4 class IntArray {

5 public:

6 // create array of int with size elements

7 explicit IntArray(std::size_t size) { /* ... */};
8 /S

9 };

10

11 void processArray(const IntArrayé& x) {

12 //

13}

14

15 int main() {

IntArray a = 42; // ERROR: cannot convert
processArray (42); // ERROR: cannot convert

® N o

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Conversion Operators

B conversion operator enables implicit or explicit conversion from class type
to another type

B conversion operator can be either explicit or non-explicit
B if conversion operator is explicit, can only be used for explicit conversions;
otherwise, can be used for both implicit and explicit conversions

B conversion operator to convert from class T to another type must be
provided as (nonstatic) member function of T

B member function takes no parameters (except implicit this parameter)
and has no explicit return type

B explicit keyword can be placed before name in declaration to make
conversion operator explicit

B requiring conversion operator to be member function likely motivated by
desire to allow code for performing conversions to be more easily
identified (i.e., only need to examine conversion operators and converting
constructors for at most two classes)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Conversion Operator Example

#include <iostream>

1

2 #include <string>

3 #include <cassert>

4 using namespace std::literals;

5

6 class Widget {

7 public:

8 explicit operator int () const {return 42;}

9 operator std::string() const {return "Widget"s;}

10 VU

11 };

12

13 int main() {

14 Widget w;

15 int 1i(w);

16 // direct initialization can use explicit conversion operator;
17 // uses conversion operator to convert Widget to int

18 assert (i == 42);

19 // int j = w;

20 // ERROR: copy initialization requires implicit conversion and
21 // conversion operator that converts Widget to int is explicit
22 int j = static_cast<int> (w);

23 // uses (explicit) conversion operator to convert Widget to int
24 std::string s(w);

25 // uses conversion operator to convert Widget to std::string
26 assert (s == "Widget"s);

27 std::string t = w;

28 // uses conversion operator to convert Widget to std::string
29 assert (t == "Widget"s);

30}

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Explicitly Deleted/Defaulted Special Member Functions

B can explicitly default or delete special member functions (i.e., default
constructor, copy constructor, move constructor, destructor, copy
assignment operator, and move assignment operator)

B can also delete non-special member functions
B example:

class Thing {
public:
Thing() = default;

// Prevent copying.
Thing (const Thing&) = delete;
Thing& operator=(const Thing&) = delete;

Thing (Thing&s&) = default;
Thing& operator=(Thing&s) = default;
~Thing() = default;
/S
}i
// Thing is movable but not copyable.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Delegating Constructors

B sometimes, one constructor of class needs to performs all work of another
constructor followed by some additional work

B rather than duplicate common code in both constructors, one constructor
can use its initializer list to invoke other constructor (which must be only
one in initializer list)

B constructor that invokes another constructor via initializer list called

B example:

class Widget {
public:
Widget (char ¢, int i) : c_(c), i_(i) {}
Widget (int 1) : Widget(’a’, i) {}
// delegating constructor
/).
private:
char c_;
9 int i_;
10}

® N Oh W N =

12 int main() {
13 Widget w('A’, 42);
14 Widget v (42);

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Static Data Members

B sometimes want to have object that is shared by all objects of class
B data member that is shared by all objects of class is called

B to make data member static, declare using static qualifier

B static data member must (in most cases) be defined outside body of class

B example:
1 class Widget {
2 public:
3 Widget () {++count_;}
4 Widget (const Widget&) {++count_;}
5 Widget (Widgeté&&) {++tcount_;}
6 ~Widget () {--count_;}
7 e
8 private:
9 static int count_;
10 // total number of Widget objects in existence

1}

13 // Define (and initialize) count member.
14 int Widget::count_ = 0;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Static Member Functions

B sometimes want to have member function that does not operate on
objects of class

B member function of class that does not operate on object of class (i.e.,
has no this variable) called

B to make member function static, declare using static qualifier

B example:

class Widget {
public:
VA
// convert degrees to radians
static double degToRad(double deg)
{return (M_PI / 180.0) * deg;}
private:

/7

® N OhWN =

©

i

11 void func() {

12 Widget x; double rad;

13 rad Widget::degToRad (45.0);

14 rad = x.degToRad(45.0); // x 1is ignored

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

constexpr Member Functions

B Jike non-member functions, member functions can also be qualified as
constexpr to indicate function can be computed at compile time
provided that all arguments to function are constant expressions

B some additional restrictions on constexpr member functions relative to
nonmember case (e.g., cannot be virtual)

B constexpr member function implicitly inline

B constexpr member function not implicitly const (as of C++14)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

constexpr Constructors

B constructors can also be qualified as constexpr to indicate object
construction can be performed at compile time provided that all
arguments to constructor are constant expressions

B many restrictions on what types can have constexpr constructors and
what such constructors can do (e.g., no virtual base classes)

B constexpr constructor implicitly inline

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: Constexpr Constructors and Member Functions

#include <iostream>

// Two-dimensional vector class.
class Vector {
public:
constexpr Vector() : x_(0), y_(0) {}
constexpr Vector (double x, double y) : x_(x), v_(y) {}
constexpr Vector(const Vector& v) : x_(v.x_), y_(v.y_) {}
constexpr Vector& operator=(const Vector& v)
{x_ = v.x_; y_ = v.y_; return *this;}
constexpr double x() const {return x_;}
constexpr double y() const {return y_;}
constexpr double squared_norm() const
{return x_ * x_ +y_ * y_;}

® N O W NS

o r N =2 O ©

private:
double x_; // The x component of the vector.
double y_; // The y component of the vector.

© ® N o

i

n
o

21 int main() {
22 constexpr Vector v (3.0, 4.0);
23 static_assert(v.x() == 3.0 && v.y() == 4.0);

n
=

constexpr double d = v.squared_norm();
std::cout << d << "\n’;

NN
o a

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Why Constexpr Member Functions Are Not Implicitly Con

class Widget {
public:
constexpr Widget () : i_(42) {}
constexpr const inté& get() const {return i_;}
constexpr inté& get() /% what if implicitly const? =/
{return i_;}
//
private:
9 int i_;
10}

® NGO AWN =

12 constexpr Widget w;

13 static_assert (w.get () == 42);

14 // invokes const member function

15 constexpr int i = ++Widget ().get();

16 // invokes non-const member function
17 static_assert (i == 43);

B in above code example, we want to have const and non-const overloads of get
member function that can each be used in constant expressions

B so both overloads of get need to be constexpr

B if constexpr member functions were implicitly const, it would be impossible to
overload on const in manner we wish to do here, since second overload of get
would automatically become const member function (resulting in multiple
conflicting definitions of const member function get)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The mutable Qualifier

B type for nonstatic data member can be qualified as mutable meaning
that member does not affect externally visible state of class object

B mutable data member can be modified in const member function

B mutable qualifier often used for mutexes, condition variables, cached
values, statistical information for performance analysis or debugging

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: Mutable Qualifier for Statistical Information

® N O A WD =

MDD NDNDRN NN = = a4 = o o
N R WN 220 00NN O ©

#include <iostream>
#include <string>

class Employee {
public:

Employee (int id, std::string& name, double salary)
id_(id), name_ (name), salary_(salary), accessCount_(0) {}
int getId() const {
++accessCount_; return id_;
}

std::string getName () const {
t++accessCount_; return name_;
}

double getSalary() const {
++accessCount_; return salary_;

}

VA

// for debugging

void outputDebugInfo(std::ostream& out) const {
out << accessCount_ << ’"\n’;

}

private:

int id_; // employee ID

std::string name_; // employee name

double salary_; // employee salary

mutable unsigned long accessCount_; // for debugging

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Pointers to Members

B pointer to member provides means to reference particular nonstatic
member of class, independent of any class object instance
B pointer to member can only be formed for nonstatic (data or function)
member of class
B can obtain pointer to member that references nonstatic member m in class
T by applying address-of operator to T: :m (i.e., using expression &T: :m)
B special value nullptr can be given to pointer to member to indicate
that pointer to member does not refer to any member
B pointer to member of class T writtenas T: : *
B type of pointer to member embodies type of class and type of member
within class
B example:
o int Widget::* is pointer to member of Widget class having type int
o const int Widget::* is pointer to member of Widget class having
type const int
o float (Gadget::*) (int) const is pointer to const member function
of Gadget class that takes single int parameter and has return type of
float

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Pointers to Members (Continued)

B since pointer to member is not associated with any class object instance,
dereferencing pointer to member requires object (or pointer to object) to
be specified

B given object x of type T, can access member through pointer to member
ptm by applying member-selection operator . * to x using expression
x.*ptm

B given pointer p to object of type T, can access member through pointer to
member ptm by applying member-selection operator —>* to p using
expression p—>*ptm

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Pointers to Members for Data Members

B conceptually, pointer to member for (nonstatic) data member can be
thought of as offset (in memory) from start of class object to start of data
member (i.e., location of data member relative to start of class object)

B since pointer to member does not identify particular object instance (i.e.,
value for this), pointer to member alone not sufficient to specify
particular instance of member in object

B consequently, when dereferencing pointer to member, must always
specify object (or pointer to object)

B example:
1 struct Widget {
2 int i;
3 inline static int j;
4)
5
6 dint main() {
7 Widget w, v;
8 int Widget::* ptm = &Widget::i; // pointer to member
9 int* jp = &Widget::j;
10 // address of static member is ordinary pointer
11 w.*ptm = 42; // w.+ptm references w.1i
12 v.*ptm = 42; // v.#ptm references v.i1
13 *jp = 42; // references Widget::j

14}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Pointers to Members and Const Example

#include <type_traits>

® NGNS

template <class Tl, class T2, class T3>
struct triplet {

i

triplet (T1 first_, T2 second_, T3 third_)
first (first_), second(second_), third(third_) {
T1 first;
T2 second;
T3 third;

int main() {

using widget = triplet<const int, int, double>;

widget w(l, 1, 1.0);

static_assert (std::is_same_v<decltype (&widget::first)
const int widget::*>);

static_assert (std::is_same_v<decltype (&widget::second),
int widget::*>);

static_assert (std::is_same_v<decltype (&widget::third)
double widget::*>);

const int widget::* cp = nullptr;

int widget::* p = nullptr;

cp = &widget::first; // OK: constness of pointee same

cp = &widget::second; // OK: adds const to pointee

// p = &widget::first; // ERROR: discards const from pointee

p = &widget::second; // OK: constness of pointee same

Copyright © 2015-2020 Michael D. Adams

Pointers to Members for Function Members

B pointer to member for (nonstatic) member function simply identifies
particular member function of class (independent of any object instance)

B since pointer to member does not identify particular object instance (i.e.,
value for this), pointer to member alone not sufficient to invoke member
function

B consequently, when dereferencing pointer to member, must always
specify object (or pointer to object) so that this parameter can be set

appropriately
B example:
1 struct Widget {
2 void func() {/* ... */}
3 static void set_verbosity(int level) {/x ... */}
4 .
5 }/
6 int main() {
7 Widget w, v;
8 void (Widget::* ptm) () = &Widget::func; // pointer to member
9 void (*pf) (int) = &Widget::set_verbosity;
10 // address of static member is ordinary pointer
11 (w.*ptm) (); // calls w.func/()
12 (v.*ptm) (); // calls v.func()
13 (*pf) (42); // calls Widget::set_verbosity ()

14}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Pointers to Members: Example

1
2
3
4
5
6
7
8

9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

#include <string>
#include <cassert>

struct Widget {

std::string s;
int i = 0;
void clear() {1 =0; s ="";}

int main() {

Widget w;
Widget* wp = &w;

// pointer to member of Widget of type int

int Widget::* iptm = nullptr;

// w.*iptm = 42; // ERROR: null pointer to member
iptm = &Widget::i; // iptm references 1 member of Widget
w.*iptm = 42; // w.#*iptm references w.1

assert (w.i == 42);

// pointer to member of Widget of type std::string
std::string Widget::* sptm = &Widget::s;

wp->*sptm = "hello"; // wp->*sptm references w.s
assert (w.s == "hello");

// pointer to member of Widget that is function that takes
// no parameters and returns void

void (Widget::* fptm) () = &Widget::clear;
(w.*fptm) (); // w.*fptm references w.clear
assert (w.1i == 0 && w.s == "");

Copyright © 2015-2020 Michael D. Adams

Pointers to Members: Example

#include <iostream>

1
2

3 class Widget {

4 public:

5 Widget (bool flag) {

6 op_ = flag ? &Widget::op_2 : &Widget::op_1l;

7 }

8 void modify() {

9 V2R

10 (this->*op_) (); // invoke member function

11 ..

12 }

13 // ..

14 private:

15 void op_1() {std::cout << "op_l called\n";}

16 void op_2() {std::cout << "op_2 called\n";}

17 void (Widget::*op_) ();

18 // pointer to member function of Widget class that
19 // takes no parameters and returns no value
20 //

21 };

22

23 int main() {

24 Widget u(false);

25 Widget v(true);

26 u.modify(); // modify invokes op_1

27 v.modify(); // modify invokes op_2

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Pointers to Members Example: Accumulate

#include <iostream>
#include <iterator>

struct Point {double x; double y;};
struct Thing {int i; float f;};

template <auto P, class Iter, class T>
T accumulate (Iter first, Iter last, T init_sum) {
for (auto i = first; 1 != last; ++1i)
{init_sum += 1i->*P;}
return init_sum;

® N O WN =

N = o ©

}

S oW

int main() {
constexpr Point p[]{{1.0, 21.0}, {0.5, 21.0}, {0.5, 0.0}};
constexpr Thing t[]{{1, 0.1f}, {2, 0.1f}, {3, 0.1f}};
std::cout
<< accumulate<g&Point::x>(std::begin(p), std::end(p), 0.0) << ' '
<< accumulate<g&Point::y>(std::begin(p), std::end(p), 0.0) << "\n’;
20 std::cout

© © N o O’

21 << accunmulate<&Thing::i>(std::begin(t), std::end(t), 0) << ' '
22 << accumulate<&Thing::f>(std::begin(t), std::end(t), 0.0f) << "\n’;
23}

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Pointers to Members Example: Statistics Calculation

®N OGO WN =

#include <iostream>

template <auto Count, auto Sum, class T, class Value>

void update_statistics(T& stats, Value value) {
++(stats.*Count); // adjust count of values
stats.*Sum += value; // adjust sum of values

}

struct Widget {
int count = 0; // count
double sum = 0; // sum
short int si;

i

struct Gadget {
int n = 0; // count
double d;
double sigma = 0; // sum
}i

int main() {
Widget w;
Gadget g;
for (auto&& x : {0.5, 1.5, 2.5}) {
update_statistics<&Widget::count, &Widget::sum>(w, x);
update_statistics<&Gadget::n, &Gadget::sigma> (g, x);

}
std::cout << w.sum / static_cast<double> (w.count) << ’'\n’;
std::cout << g.sigma / static_cast<double>(g.n) << "\n’;

Stream Inserters

B stream inserters write data to output stream
B overload operator<<

B have general form
std::ostream& operator<<(std::ostream&, T) wheretype T is
typically const Ivalue reference type

B example:

std::ostream& operator<<(std::ostreamé& outStream,
const Complexé& a)
{

outStream << a.real() << ' ' << a.imag();
return outStream;

}

B inserter and extractor should use compatible formats (i.e., what is written
by inserter should be readable by extractor)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Stream Extractors

B stream extractors read data from input stream
B overload operator>>

B have general form
std::istream& operator>>(std::istream&, T) wheretype T is
typically non-const Ivalue reference type

B example:

std::istreamé& operator>>(std::istream& inStream,
Complex& a)
{
double real = 0.0;
double imag = 0.0;
inStream >> real >> imag;
a = Complex(real, imag);
return inStream;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Structured Bindings

B structured bindings allow, with single statement, multiple variables to be
declared and initialized with values from pair, tuple, array, or struct

B declaration uses auto keyword
B variables enclosed in brackets
B multiple variables separated by commas

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Structured Bindings Example

#include <tuple>

1
2 #include <array>

3 #include <cassert>

4

5 int main() {

6 int a[3] = {1, 2, 3};

7 auto [a0, al, a2] = a;

8 assert (a0 == a[0] && al == a[l] && a2 == al2]);
9

10 int b[3] = {0, 2, 3};

1 autos [b0, bl, b2] = b;

12 ++b0;

13 assert (b[0] == 1);

14

15 std::array<int, 3> c = {1, 2, 3};

16 auto [c0, cl, c2] = ¢;

17 assert (c0 == c[0] && cl == c[1l] && c2 == c[2]);
18

19 auto t = std::tuple(true, 42, 'A");

20 auto [tb, ti, tc] = t;

21 assert (th == true && ti == 42 && tc == 'A’);
2 |}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Structured Bindings Example

#include <map>

1
2 #include <string>

i #include <iostream>

5 int main() {

6 std::map<std::string, int> m = {

7 {"apple", 1},

8 {"banana", 2},

9 {"orange", 3},

10 }i

11 for (autos&s [key, value] : m) {

12 std::cout << key << ' ' << value << "\n’;
13 }

'S

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Literal Types

B each of following types said to be
o void
o scalar type (e.g., integral, floating point, pointer, enumeration, pointer to
member)
o reference type
o class type that has all of following properties:
O has trivial destructor

O is either: aggregate type; or type with at least one constexpr constructor that
is not copy or move constructor; or closure type

all nonstatic data members and base classes are of nonvolatile literal types
o array of literal type

B examples of literal types:

o int,double[16], and std: :complex<double>
B examples of types that are not literal types:

o std::vector<int> and std::string

o

B literal types important in context of constexpr variables, functions, and
constructors

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.types#10

Example: Literal Types

// literal type
class Widget {
public:
constexpr Widget(int i = 0) : i_(i) {}
~Widget () = default; // trivial destructor
private:
int i_;

® N RN =

i

©

// not literal type
class Gadget {

- o

12 public:
13 constexpr Gadget () {}
14 ~Gadget () {} // non-trivial destructor

o

i

=)

// not literal type
// no constexpr constructor, excluding copy/move constructor
class Foo {
public:
Foo() {};
~Foo() = default; // trivial destructor

NN NN 2 o
W N = O © o

i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Constexpr Variable Requirements

B constexpr variable must satisfy following requirements:
o its type must be literal type
o it must be immediately initialized
o full expression of its initialization must be constant expression (including all
implicit conversions and constructor calls)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.constexpr#9

Example: Constexpr Variable Requirement Violations

#include <string>

constexpr std::string s("hello");
// ERROR: not literal type

constexpr int i;
// ERROR: not initialized

float func();
constexpr float f = 2.0 * func();
// ERROR: initializer expression not constant expression

- 0 © O N OB WN =

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Constexpr Function Requirements

B constexpr function must satisfy following requirements:

must not be virtual

its return type must be literal type

each of its parameters must be of literal type

there exists at least one set of argument values such that invocation of

function could be evaluated expression of core constant expression

o function body must be either deleted or defaulted or contain any statements
except:

asm declaration

goto statement

statement with label other than case and default

try block

definition of variable of non-literal type

definition of variable of static or thread storage duration

definition of variable for which no initialization is performed

o o o o

O 0O oo o o0

o if function is defaulted copy/move assignment, class of which it is member
must not have mutable member

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.constexpr#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.constexpr#5

Example: Constexpr Function Requirement Violations

N O GO RO N =

©

- o

w N

S

N oo o o
S © ® N o

27

#include <vector>
#include <string>
#include <iostream>

// ERROR: return type not literal type
constexpr std::vector<int> get_value()
{return std::vector<int>{1l, 2, 3};}

// ERROR: parameter type not literal type
constexpr void foo(std::string s) { /* ... %/}

// ERROR: no argument exists such that function can be used
// 1in constant expression
constexpr void output (int i) {std::cout << i << '\n’;}

constexpr void func() {
int i; // ERROR: variable not initialized
std::vector<int> v{1l, 2, 3};
// ERROR: definition of variable of non-literal type
/...

}

constexpr int count() {
static unsigned int i = 0;
// ERROR: definition of variable with static storage
// duration
return i++;

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Constexpr Constructor Requirements

B constexpr constructor must satisfy following requirements:

each of its parameters must be of literal type
class must not have any virtual base classes
constructor must not have function try block
constructor body must be either deleted or defaulted or satisfy following
constraints:
o compound statement of constructor body must satisfy constraints for body of
constexpr function
O every base class sub-object and every non-static data member must be
initialized
o every constructor selected to initialize non-static members and base class
must be constexpr constructor

o 0o o o

o if constructor is defaulted copy/move constructor, class of which it is
member must not have mutable member

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.constexpr#4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.constexpr#5

Example: Constexpr Constructor Requirement Violations

#include <string>

1
2

3 class Widget {

4 public:

5 constexpr Widget() {}

6 // ERROR: i_ not initialized

7 constexpr lidget (std::string s);

8 //// ERROR: parameter type not literal type
9 A

10 private:

11 int i_;

12 };

13

14 // OK

15 class Base {

16 public:

17 Base(int 1) : i_(i) {}

18 private:

19 int i_;

20 };

22 class Derived : public Base {

23 public:

24 constexpr Derived() : Base(42) {}

25 // ERROR: Base constructor not constexpr
26 //

27 };

Copyright © 2015-2020 Michael D. Adams

Example: Addresses and Constexpr

#include <cassert>

1
2

3 constexpr void func_1() {

4 char ¢ = 'A’";

5 // ¢ has automatic storage (i.e., on stack)

6 const char* p = &c;

7 // OK: address of c¢ is well defined

8 assert (*p == 'A’); // OK

9 // constexpr const charx g = &c;

10 /* ERROR: &c not constant expression;

11 address of automatic object can be different

12 for each invocation of func_1 */

13 // above results also same 1if ¢ 1is const or constexpr

14}

16 static char sc = 'A’;

17 // sc has static storage (i.e., in program image)

18 constexpr void func_2() {

19 const char* p = é≻

20 // OK: address of sc is fixed and known at compile time
21 constexpr const char* g = ≻

22 /* OK: address of static object sc 1is fixed and known
23 at compile time x*/

24 // above results also same if sc 1is const or constexpr

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: Pointers/References to Constexpr Objects

class Buffer {

1

2 public:

3 constexpr Buffer() : data_() {}

4 constexpr const charé operator|] (unsigned int i) const
5 {return data_[i];}

6 constexpr char¢ operator([] (unsigned int i)

7 {return data_[i];}

8 ionstexpr const char* data() const {return data_;}

9 /

10 private:

char data_[256];

N

i

int main() {

constexpr Buffer b; // OK

constexpr Buffer a = b; // OK

constexpr char c = b[0]; // OK

// constexpr const Buffer& br = by
// ERROR: reference to b is not a constant expression

// constexpr const char& cr = b[0];
// ERROR: reference to subobject of b is not constant
// expression

// constexpr const char+ cp = b.data();
// ERROR: pointer to subobject of b is not constant
// expression

// constexpr const Buffer* bp = &b;
// ERROR: pointer to b 1is not constant expression

NN NNRNNDIND = = 2 2 o
® N OREWN -0 0 ®NOM®

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: Constexpr and Accessing External State

// ERROR: static object not allowed in constexpr function
// (since function would have state the persists across
// invocations)
constexpr unsigned int get_count () {

static int count = 0;

return count++;

}

int global_count = 0;

// ERROR: constexpr function cannot modify state outside
// that function that might be used at run time
constexpr int get_global_count () {return global_count++;}

double alpha = 2.0;

// ERROR: constexpr function cannot access state outside
// that function that can be modified at run time.
constexpr double foo(double x) {return alpha * x + 3.0;}

N OGO AW N =

- o ©

w N

N o o b

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: Constexpr and Immediate Initialization

#include <iostream>
#include <cstddef>

template <class T, std::size_t Size>

class Buffer {

public:
// ERROR: data_ data member 1is constructed without
// being (immediately) initialized
// constexpr Buffer() f{

® N O W =

©

10 // for (std::size t i1 = 0; 1 < size(); ++1i)
11 // {data_[i] = 0;}
12 /7)

// OK: all data members are initialized when constructed
// (array data_ 1s initialized to all zero)

S oW

15 constexpr Buffer() : data_{} {}

16 static constexpr std::size_t size() {return Size;}

17 const T& operator|] (std::size_t i) const {return data_[i];}
18 //

19 private:

T data_[size()];

SN
= o

i

23 int main() {

N
N

24 constexpr Buffer<char, 16> b;
25 for (int i = 0; 1 < 16; ++i)
26 {std::cout << static_cast<int>(b[i]) << "\n’;}

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Debugging Constexpr Functions

B debugging constexpr code can often be somewhat tricky

B cannot generate output to assist in debugging (e.g., by writing to standard
output/error stream) since cannot perform 1/O at compile time

B use of source-level debugger not practical, since compiler would need to
be run in debugger

B could first debug code without constexpr qualifier and then add constexpr
qualifier after code is working, but this may not be practical if code must
fundamentally execute at compile time (e.g., due to return value of
function being assigned to constexpr variable)

B can use assert to test for conditions indicative of bugs (since
assert (expr) is constant expression if expr is true)

B can throw exception if condition indicative of bug is detected (since still
constant expression as long as throw statement not executed)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: Debugging Strategies for Constexpr Functions

#include <stdexcept>
#include <cassert>

constexpr double sqgrt (double x) {
// 1f assertion fails, sqrt function will not yield
// constant expression
assert(x >= 0.0);
double result = 0.0;
// ... (correctly initialize result)
return result;

® N OR N =

- o ©

}
12
13 constexpr int foo(unsigned x) {

14 unsigned i = 0;

15 // ... (code that changes 1)

16 // assume odd 1 indicative of bug

17 // 1f 1 is odd (which would result in exception
18 // being thrown), foo function will not yield
19 // constant expression

20 if (1 & 1) {throw std::logic_error("i is odd");}

21 return 0;

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Proxy Classes

B proxy class provides modified interface to another class

B classic example of proxy class is type returned by nonconst overload of
subscript operator in std: :vector<bool> class

B in this case, proxy type serves as stand-in for single bool element in
vector

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Proxy Class Example: BoolVector

B in this example, we consider simple container class called BoolVector
that provides dynamically-sized array of boolean values, where booleans
are packed into bytes

B want to provide only very basic functionality for class:

o member function for querying size of container
o subscript operator for accessing elements in container

B return type of nonconst overload of subscript operator is proxy type (called

Proxy) in order to handle fact that bits are packed into bytes

B BoolVector is essentially greatly simplified version of
std::vector<bool>

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Proxy Class Ex

mple: BoolVec

1 #include <cstddef>

2 #include <utility>

3

4 class BoolVector;

5

6 class Proxy {

7 public:

8 ~Proxy() = default;

9 Proxy& operator=(const Proxyé&);

10 Proxy& operator=(bool b);

11 operator bool() const;

12 private:

13 friend class BoolVector;

14 Proxy (const Proxy&) = default;

15 Proxy (BoolVector* v, std::size_t i) : v_(v), i_(i) {}

16 BoolVector* v_;

17 std::size_t i_;

18}

19

20 class BoolVector {

21 public:

22 BoolVector (std::size_t n) : n_(n), d_(new unsigned char[(n + 7) / 8]) {std::fill n(d_, (n + 7) / 8, 0);}
23 ~BoolVector() {delete [] d_;}

24 std::size_t size() const {return n_;}

25 bool operator(] (std::size_t i) const {return getElem(i);}
26 Proxy operator|[] (std::size_t i) {return Proxy(this, i);}
27 private:

28 friend class Proxy;

29 bool getElem(std::size_t i) const {return (d_[i / 8] >> (i % 8)) & 1;}
30 void setElem(std::size_t i, bool b) {(d_[i / 8] &= ~(1 << (1 % 8))) |= (b << (1 % 8));}
31 std::size_t n_;

32 unsigned char* d_;

33 }i

34

35 inline Proxy& Proxy::operator=(const Proxy& other) {v_->setElem(i_, other); return *this;}
36 inline Proxy& Proxy::operator=(bool b) {v_->setElem(i_, b); return *this;}
37 inline Proxy::operator bool() const {return v_->getElem(i_);}

2020 Michael D. Adams

Proxy Class Example: BoolVector.cpp

® N OA®N =

NN = = = o o
N =20 ©0W®»NO®UuhWN-= 0 ©

#include <cassert>
#include <iostream>
#include "BoolVector.hpp"

int main() {

constexpr int bits([] = {0, 0, 1, 1, 0, 1, 0, 1};
constexpr int n = sizeof (bits) / sizeof (int);
BoolVector v(n);
BoolVector w(n);

assert (v.size() == n && w.size() == n);
for (int 1 = 0; 1 < n; ++i) {
w(i] = v[i] = bits[i];

}
const BoolVector& cv = v;
for (int i = 0; 1 < n; ++i) {

assert (v[i] == bits[i]);
assert (w[i] == bits[i]);
assert (cv[i] == bits[i]);

std::cout << (v[i] 2 '1" : '0");
}

std::cout << ’"\n’;

Copyright © 2015-2020 Michael D. Adams

Implementing Postfix Increment/Decrement Operator

B often, good idea to implement postfix increment/decrement operator in
terms of prefix increment/decrement operator

B ensures that prefix and postfix versions of operator always consistent

B example:
1 class Counter ({
2 public:
3 Counter (int count = 0) : count_(count) {}
4 Counter& operator++() {
5 ++count_;
6 return *this;
7 }
8 Counter operator++(int) ({

©

Counter old(*this);
++(*this);
return old;

N = o

}

// similarly for prefix/postfix decrement
private:

int count_;

o 0o A w

i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Pointer-to-Implementation (Pimpl) Idiom

idiom splits interface and
implementation across two classes, namely, handle class and
implementation class

B all implementation details placed in implementation class

B handle class provides only interface functions which simply forward calls

through to implementation class

B handle object has pointer that owns implementation object

B only handle class is exposed to client

B consequently, changes to implementation class do not require client code

to be recompiled (since interface has not changed)

thus, pimpl idiom useful for reducing compile-time dependencies (which
can facilitate faster compiles) and maintaining stable class ABls

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Pimpl and std: :expe gate_const

® N O RN =

#include <experimental/propagate_const>
#include <memory>
#include <iostream>

class WidgetImpl {
public:

void foo() {std::cout << "WidgetImpl::foo()\n";}

void foo() const {std::cout << "WidgetImpl::foo() const\n";}
i

class Widget {
public:
void foo() {p_->foo();}
void foo() const {p_->foo();}
private:
std::experimental::propagate_const<std::unique_ptr<WidgetImpl>> p_;
/# const or non-const member functions of WidgetImpl invoked
as appropriate based on constness of *this; using
std: :unique_ptr<const WidgetImpl> would cause only const member
functions of WidgetImpl to be invoked; using
std::unique_ptr<WidgetImpl> would cause only non—-const member
functions of WidgetImpl to be invoked =/
bi

int main() {
Widget w;
const Widget cw;
w.foo(); // calls WidgetImpl:foo ()

cw.foo(); // calls WidgetImpl:foo() const

Section 2.4.5

Functors

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Functors

L (also known as) is object that can be invoked or
called as if it were ordinary function

B class that provides member function that overloads operator () is
called and object of that class is

B functors more flexible than functions as functors are objects and can
therefore carry arbitrary state information

B when ordinary function used, function often invoked through pointer
whose value cannot be determined at compile time, which makes inlining
impossible

B when functor used, function to be called is fixed and always known at
compile time (namely, function-call operator for functor class)

B moreover, definition of function-call operator very likely to be visible at
point of use, especially if functor created from lambda expression

B consequently, functors often more amenable to inlining

B functors are extremely useful, especially in generic programming

B as we will see later, standard library makes heavy use of functors

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Functor Example: Less Than

struct LessThan { // Functor class

1

2 bool operator () (double x, double y) const {
3 return x < y;

4 }

5 };

6

7 woid myFunc() {

8 double a = 1.0;

9 double b = 2.0;

10 LessThan lessThan; // Functor

11 bool result = lessThan(a, b);

12 // calls LessThan: :operator () (double, double)
13 // lessThan is functor, not function

14 // result == true

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Functor Example With State

© o N O O~ W N =

class IsGreater { // Functor class
public:
IsGreater (int threshold) : threshold_(threshold) {}
bool operator() (int x) const {
return x > threshold_;
}

private:

// state information for functor

int threshold_; // threshold for comparison
i

void myFunc () {
IsGreater isGreater(5); // functor
int x = 3;
bool result = isGreater (x);
// calls IsGreater::operator () (int)
// result == false

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Ordering Relations

B often, need arises to impose some ordering on data

B for example, ordering relation needed for any sorting algorithm or ordered
container (such as ordered set, multiset, map, or multimap)

B to define ordering relation, sufficient to specify either less-than (i.e.,
“precedes”) relation or greater-than (i.e., “follows”) relation

B typically, in C++ (such as in standard library) less-than relation is used to
define all other relational operators

B less(x,y) is true if x precedes y in sorted order and false otherwise
B can synthesize all other relational operators from less as follows:

greater(x,y) = less(y,x)

equal(x,y) = —less(x,y) A —less(y,x)
notEqual(x,y) = less(x,y) Vless(y,x)
lessEqual(x,y) = —less(y,x)

o greaterEqual(x,y) = —less(x,y)

O o o o

B note: “—” denotes logical NOT, “A” denotes logical AND, and “V” denotes
logical OR

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Selection Sort Example

® N OrWN =

WWNMNNNNNNNRDN = = 2
SO 0W®NDUREWN=-OO©O®ONODA R WN =0 ©

#include <algorithm>
#include <cassert>
#include <forward_list>
#include <functional>

// reverse digits in decimal representation of integer
constexpr unsigned int reverse (unsigned int x) {
unsigned int y = 0;
for (; x; x /= 10)
fauto d = x % 10; x —=d; y =10 * y + d;}
return y;

}

constexpr bool rev_less(unsigned int x, unsigned int vy)
{return reverse(x) < reverse(y);}

template <class ForwardIterator, class Compare>
void selection_sort (ForwardIterator first, ForwardIterator last, Compare less) {
for (auto i = first; i != last; ++i)
{std::iter_swap (i, std::min_element (i, last, less));}

}

int main() {
std::forward_list<unsigned int> values{12, 21, 123, 321, 1234, 4321};
selection_sort (values.begin(), values.end(), std::greater<unsigned int>());
assert ((values == std::forward_list<unsigned int>{
4321, 1234, 321, 123, 21, 12}));
selection_sort (values.begin(), values.end(), rev_less);
assert ((values == std::forward_list<unsigned int>{
21, 12, 321, 123, 4321, 1234}));

Copyright © 2015-2020 Michael D. Adams

Bubble Sort Example

® N s WD =

#include <algorithm>
#include <cassert>
#include <forward_list>
#include <functional>

template <class ForwardIterator, class Compare>
void bubble_sort (ForwardIterator first, ForwardIterator last, Compare less) {

for (auto sorted = first; first != last; last = sorted) {
sorted = first;
for (auto cur = first, prev = first; ++cur != last; ++prev) ({

if (less(*cur, *prev)) f{
std::iter_swap(cur, prev);
sorted = cur;

int main() {

std::forward_list<int> values{7, 0, 6, 1, 5, 2, 4, 3};

bubble_sort (values.begin(), values.end(), std::less<int>());

assert ((values == std::forward_list<int>{0, 1, 2, 3, 4, 5, 6, 7}));
bubble_sort (values.begin(), values.end(), std::greater<int>());
assert ((values == std::forward_list<int>{7, 6, 5, 4, 3, 2, 1, 0}));

Copyright © 2015-2020 Michael D. Adams

Comparison Object Example

® N O RW N =

#include <cassert>
#include <algorithm>
#include <set>

template <class T> class compare {

public:
constexpr compare (bool less = true) : less_(less) {}
constexpr bool operator() (const T¢ x, const T&¢ y) const
{return less_ ? (x <y) : (x> vy);}
private:

bool less_;
}i

constexpr bool even_then_odd(int x, int vy)

{if ((x % 2) !'= (y % 2)) {return !(x % 2);} else {return x < y;}}
int main() {

constexpr int values[] = {0, 7, 6, 1, 2, 5, 3, 4};

std::set<int, compare<int>> sl(std::begin(values), std::end(values));

constexpr int dl[] = {0, 1, 2, 3, 4, 5, 6, 7};

assert (std::equal (sl.begin(), sl.end(), std::begin(dl)));

std::set<int, compare<int>> s2(std::begin(values), std::end(values),
compare<int> (false));

constexpr int d2[] = {7, 6, 5, 4, 3, 2, 1, 0};

assert (std::equal (s2.begin(), s2.end(), std::begin(d2)));

std::set<int, bool (*) (int, int)> s3(std::begin(values), std::end(values),
even_then_odd);

constexpr int d3[] = (0, 2, 4, 6, 1, 3, 5, 7};

assert (std::equal (s3.begin(), s3.end(), std::begin(d3)));

Comparison Object Propagation

B invariant of ordered container: elements of container always sorted with
respect to ordering relation defined by comparison object
B thus, state for ordered container (ignoring possible allocator) consists of:
H elements in container; and
comparison object that determines order of those elements
B consider propagating value of one container to another (via copy or move)
B when propagating value of container, two choices possible:
H propagate comparison object
do not propagate comparison object
B if comparison object not propagated and source and destination
comparison objects differ, must re-sort elements (to be consistent with
destination comparison object) to avoid violating container invariant
B if no equality/inequality operator provided by comparison-object type,
must assume worst (i.e., not equal) and always re-sort

B if comparison object propagated, never any need to re-sort elements
B for efficiency, prefer solution of always propagating comparison object

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Comparison Object Propagation Example

® N OAWN =

#include <algorithm>
#include <cassert>
#include <set>
#include <utility>

template <class T> class compare {

public:
compare (bool less = true) : less_(less) {}
bool operator() (const T¢ x, const T& y) const
{return less_ ? (x <y) : (x> vVy);}
bool less() const {return less_;}
private:

bool less_;
Vi

int main() {
constexpr int values[] = (0, 7, 6, 1, 2, 5, 3, 4};
std::set<int, compare<int>> s3(values, std::end(values));
std::set<int, compare<int>> sl (std::move(s3)); // move construct
assert (sl.key_comp().less()); // comparison object was moved
std::set<int, compare<int>> s2(sl); // copy construct
assert (s2.key_comp().less()); // comparison object was copied
s3 = std::set<int, compare<int>>(values, std::end(values),

compare<int> (false));

assert (sl.key_comp().less() && !s3.key_comp().less());
sl = std::move(s3); // move assign
assert (!sl.key_comp().less()); // comparison object was moved
assert (s2.key_comp () .less() && !sl.key_comp().less());
s2 = sl; // copy assign
assert (!s2.key_comp () .less()); // comparison object was copied

Section 2.4.6

References

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Talks |

Arthur O’Dwyer. Return Value Optimization: Harder Than It Looks.
CppCon, Bellevue, WA, USA, Sept. 25, 2018. Available online at
https://youtu.be/hAIWNtNyNbo.

Jon Kalb. Copy Elision. C++Now, Aspen, CO, USA, May 9, 2018.
Available online at https://youtu.be/f£SB57PiXpRw.

Jon Kalb. Copy Elision. CppCon, Bellevue, WA, USA, Sept. 23—-28, 2018.
Available online at https://youtu.be/IZbL-RGr_mk.

B Roger Orr. Nothing Is Better Than Copy Or Move. ACCU Conference,
Bristol, UK, Apr. 11, 2018. Available online at
https://youtu.be/-dc5vqt2tgA.

Scott Schurr. constexpr: Introduction. CppCon, Bellevue, WA, USA, Sept
19-25, 2015. Available online at https://youtu.be/fZjYCQ8dzTc.

B Scott Schurr. constexpr: Applications. CppCon, Bellevue, WA, USA, Sept
19-25, 2015. Available online at https://youtu.be/q0-9yiA0Qqc.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

https://youtu.be/hA1WNtNyNbo
https://youtu.be/fSB57PiXpRw
https://youtu.be/IZbL-RGr_mk
https://youtu.be/-dc5vqt2tgA
https://youtu.be/fZjYCQ8dzTc
https://youtu.be/qO-9yiAOQqc

Section 2.5

Templates

Copyright (©) 2015-2020 Michael D. Adams

Templates

L] : algorithms written in terms of types to be
specified later (i.e., algorithms are generic in sense of being applicable to
any type that meets only some very basic constraints)

templates facilitate generic programming
extremely important language feature

avoids code duplication

leads to highly efficient and customizable code
promotes code reuse

C++ standard library makes very heavy use of templates (actually, most of
standard library consists of templates)

B many other libraries make heavy use of templates (e.g., CGAL, Boost)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.5.1

Function Templates

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Motivation for Function Templates

B consider following functions:

int max(int x, int y)
{return x >y ? x : y;}

double max (double x, double y)
{return x >y ? x : y;}

// more similar-looking max functions...

B each of above functions has same general form; that is, for some type T,
we have:
T max(T x, T y)
{return x >y ? x : y;}

B would be nice if we did not have to repeatedly type, debug, test, and
maintain nearly identical code

B in effect, would like code to be parameterized on type T

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Function Templates

n is family of functions parameterized by one or more
parameters

B each template parameter can be: non-type (e.g., integral constant), type,
template, or parameter pack (in case of variadic template)

B syntax for template function has general form:

template <parameter_list> function_declaration

B parameter_list: parameters on which template function depends

B function_declaration: function declaration or definition

B type parameter designated by class or typename keyword

B template parameter designated by template keyword

B non-type parameter designed by its type (e.g., bool, int)

B example:

// declaration of function template
template <class T> T max(T x, T y);

// definition of function template
template <class T> T max(T x, T y)
{return x >y ? x : y;}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Function Templates (Continued)

B to explicitly identify particular instance of template, use syntax:
function<parameters>
B example: for function template declaration:
template <class 7> T max(T x, T y);
max<int> refers to int max (int, int)
max<double> refers to double max (double, double)

B compiler only creates code for function template when it is instantiated
(i.e., used)

B therefore, definition of function template must be visible in place where it
is instantiated

B consequently, function template definitions usually appear in header file

B template code only needs to pass basic syntax checks, unless actually
instantiated

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Function Template Examples

® N oU AW =

o ©

oo

o~ W

~N o

©

N =
[SX%)

NN NN N
N o os N =

// compute minimum of two values

template <class T>

T min(T x, T y) {
return x <y ? X : y;

}

// compute square of value
template <typename T>
T sqr(T x) {
return x * x;
}

// swap two values
template <class T>
void swap (T& x, T& y) {

T tmp = x;
X =Y
y = tmp;

}

// invoke function/functor multiple times
template <int N = 1, typename F, typename T>
void invoke (F func, const T& value) {
for (int i = 0; 1 < N; ++1i) {
func (value);

}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Template Function Overload Resolution

B overload resolution proceeds (in order) as follows:

E look for an exact match with zero or more trivial conversions on
(nontemplate) functions; if found call it

look for function template from which function that can be called with exact
match with zero or more trivial conversions can be generated; if found, call it

try ordinary overload resolution for functions; if function found, call it;
otherwise, call is error

B in each step, if more than one match found, call is ambiguous and is error
B template function only used in case of exact match, unless explicitly forced
B example:

template <class T>
T max(T x, Ty) {return x >y ? x : y;}

void func(int i, int j, double x, double y) {
double z = max(x, y); // calls max<double>
int k = max(i, j); // calls max<int>
z = max (i, x); // ERROR: no match
z = max<double> (i, x); // calls max<double>

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

QIEITE N EINES

L] is name that specifies scope
B example:

#include <iostream>

int main(int argc, char** argv) {
for (int 1 = 0; 1 < 10; ++1) {
std::cout << "Hello, world!" << std::endl;
}

}

B in above example, names std: :cout and std: :endl are qualified, while
names main, argc, argv, and i, are not qualified

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Dependent Names

u is name that depends on template parameter
B example:

template <class T>

void func(const T& x) {
int 1 = T::magicValue;
//

}

B name T::magicValue is dependent

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/temp.dep.type#9

Qualified Dependent Names

B to avoid any potential ambiguities, compiler will automatically assume
qualified dependent name does not name type unless typename
keyword is used

B must precede qualified dependent name that names type by typename
B in following example, note use of typename keyword:

#include <vector>

template <class T>
void func(const T& x) {
std::vector<T> v (42, X);
// std::vector<T>::const_iterator 1s
// qualified dependent name
for (typename std::vector<T>::const_iterator i =
v.begin(); i !'= v.end(); ++i) {
// std::vector<T>::value_type is
// qualified dependent name
typename std::vector<T>::value_type x = *i;

® N OA W NS

a R38N0
~—
\

o
—

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Why typename is Needed

® N OA W NS

N = O ©

N

o o

™~

N o=
o ©

NN
N =

N
5]

24

int x = 42;

template <class T> void func() {
/+ The compiler must be able to check the syntactic
correctness of this template code without knowing the
type T. Without knowing the type T, however, the meaning
of the following line of code is ambiguous, unless the
compiler follows some fixed rule for resolving this
ambiguity. In particular, 1is this line of code a
declaration of a variable x or an expression consisting
of a binary operator#* with operands T::foo and x? x/
T::foo* x; // Does T::foo name a type or an object?

}

struct ContainsType {
using foo = int; // foo is type
}i

struct ContainsValue {
static int foo; // foo is value

}i

int main() {
// Only one of the following two lines should be valid.
func<ContainsValue> () ;
func<ContainsType>();

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.5.2

Class Templates

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Motivation for Class Templates

B consider almost identical complex number classes:

1 class ComplexDouble {

2 public:

3 ComplexDouble (double x = 0.0, double y = 0.0) : x_(x), y_(y) {}

4 double real() const { return x_; }

5 double imag() const { return y_; }

6 VAT

7 private:

8 double x_, y_; // real and imaginary parts

9)i

10

11 class ComplexFloat f{

12 public:

13 ComplexFloat (float x = 0.0f, float y = 0.0f) : x_(x), y_(y) {}

14 float real() const { return x_; }

15 float imag() const { return y_; }

16 ..

17 private:

18 float x_, y_; // real and imaginary parts

19)

B both of above classes are special cases of following class parameterized

on type T:

1 class Complex {

2 public:

3 Complex (T x = T(0), Ty =T(0)) : x_(x), y_(y) {}

4 T real() const { return x_; }

5 T imag() const { return y_; }

6 .

7 private:

8 T x_, y_; // real and imaginary parts

9 i

B ggain, would be nice if we did not have to repeatedly type, debug, test,
and maintain nearly identical code

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Class Templates

L is family of classes parameterized on one or more
parameters
B each template parameter can be: non-type (e.g., integral constant), type,
template, or parameter pack (in case of variadic template)
B syntax has general form:
template <parameter_list> class_declaration

B parameter_list. parameter list for class
B class_declaration: class/struct declaration or definition
B example:

// declaration of class template
template <class T, unsigned int size>
class MyArray;

// definition of class template
template <class T, unsigned int size>
class MyArray {

/S

T array_[size];
}i
MyArray<double, 100> x;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Class Templates (Continued)

B compiler only generates code for class template when it is instantiated
(i.e., used)

B since compiler only generates code for class template when it is
instantiated, definition of template must be visible at point where
instantiated

B consequently, class template code usually placed in header file

B template code only needs to pass basic syntax checks, unless actually
instantiated

B compile errors related to class templates can often be very long and
difficult to parse (especially, when template class has parameters that are
template classes which, in turn, have parameters that are template
classes, and so on)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Class Template Example

// complex number class template
template <class T>
class Complex {
public:

Complex (T x = T(0), Ty = T(0))

x_(x), y_(y) {}
T real() const {
return x_;
}

T imag() const {
return y_;
}
/).
private:
T x_; // real part
Tvy_; // imaginary part

® N D oA W =

N o o~ N = O ©

i

Complex<int> zi;
Complex<double> zd;

(ORI,
S © ®

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Class-Template Default Parameters

B class template parameters can have default values
B example:

template <class T = int, unsigned int size = 2>
struct MyArray {

T data[size];
bi

MyArray<> a; // MyArray<int, 2>
MyArray<double> b; // MyArray<double, 2>
MyArray<double, 10> b; // MyArray<double, 10>

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Qualified Dependent Names Revisited

B recall, qualified dependent name assumed not to hame type, unless
preceded by typename keyword

B in following example, note use of typename keyword:
#include <vector>

template <class T> class Vector {
public:
using Coordinate = typename T::Coordinate;
using Distance = typename T::Distance;
Vector (const std::vector<Coordinate>& coords)
coords_ (coords) {}
Distance squaredLength() const {
Distance d = Distance (0);
for (typename
std::vector<Coordinate>::const_iterator 1 =

©® N O oA W N

N = o ©

13 coords_.begin(); 1 !'= coords_.end(); ++i) {
14 typename std::vector<Coordinate>::value_type
15 X = *i;

o

d += x * x;

3

}

return d;

}
/).
private:
std::vector<Coordinate> coords_;

NN NN =
W N = O © ™

i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Why template is Needed

template<bool> struct Widget;

template<bool B> struct Gadget {
static int g() {
/+* The compiler must be able to check the syntactic
correctness of this template code without knowing the
value of B. Without knowing the value of B, however,
the meaning of the following line of code is ambiguous,
unless the compiler follows some fixed rule for
resolving this ambiguity. In particular, is this line
of code using a data member called f and evaluating
(f < 0 > 42) or is it calling a template member
function called f with the argument 42? x/
return Widget::£<0>(42);

® N O R W NS

o brWON = O ©
—

i

template<bool B> struct Widget {
template<int I> static int f(int i) {return i + I;}

~N o

© ©

}i
template<> struct Widget<false> {inline static int f = 42;};

NN
=o

N
N

23
24 int main() {

25 // Only one of the following two lines should be valid.
26 Gadget<true>::g();
27 Gadget<false>::qg();

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Template Template Parameter Example

#include <vector>
#include <list>

#include <deque>
#include <memory>

template <template <class, class> class Container, class Value>
class Stack {

public:

9 /7

10 private:

11 Container<Value, std::allocator<Value>> data_;

12}

® N oA W N =

14 int main() {

15 Stack<std::vector, int> sl;
16 Stack<std::1list, int> s2;
17 Stack<std::deque, int> s3;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Class Template Parameter Deduction

B template parameters for class template can be deduced based on
arguments passed to constructor

B example:
std::tuple t (42, 'A");
// OK: deduced as tuple<int, char>

B deduction only performed if no template arguments provided

B example:
std::tuple<int> t (1, 2);
// ERROR: missing template parameter, as
// no template parameter deduction takes place

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Class Template Parameter Deduction Example

#include <vector>
#include <tuple>
#include <set>

#include <string>

using namespace std::string_literals;

® N OR N =

auto get_tuple() {
return std::tuple("Zaphod"s, 42);
// deduces tuple<std::string, int>

- o ©

}

N

int main() {
std::vector v{1l, 2, 3};
// deduces vector<int>
std::tuple t(true, 'A’, 42);
// deduces tuple<bool, char, int>
std::pair p(42, "Hello"s);
// deduces pair<int, std::string>
std::set s{0.5, 0.25};
// deduces set<double>
22 //auto ptr = new std::tuple (true, 42);
23 // should deduce tuple<bool, int>?
24 // fails to compile with GCC 7.1.0

MR S o oo
- 0 © ® N oA~

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Template Deduction Guides

B can provide additional rules to be used to determine how class template
parameters should be deduced when not provided

such rules called deduction guides
deduction guide itself can be either template or non-template
deduction guides must be introduced in same scope as class template

example:
// class definition
template <class T> smart_ptr {/* ... */};
// deduction guide
template <class T>
smart_ptr (T*) -> smart_ptr<T>;

B example:
/// class definition
template <class T> name {/# ... */};
// deduction guide
name (const char*) -> name<std::string>;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Template Deduction Guide Example

#include <string>

1
2 #include <type_traits>

3

4 using namespace std::string_literals;

5

6 template <class T>

7 class Name {

8 public:

9 Name (T first, T last) : first_(first), last_(last) {}
10 Y

11 private:

12 T first_;

13 T last_;

'S

i

o o

// deduction guide
Name (const char*, const char*) -> Name<std::string>;

© ® N

int main() {
Name n("Zaphod", "Beeblebrox");

// deduces Name<std::string> via deduction guide
static_assert (std::is_same_v<decltype (n), Name<std::string>>);
Name n2 ("Jane"s, "Doe"s);

// deduces Name<std::string> (without deduction guide)
static_assert (std::is_same_v<decltype (n2), Name<std::string>>);

NN NN NN
o a0k ®N = O

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Auto Non-Type Template Parameters

B can use auto keyword for non-type template parameter
B in such case, type of non-type template parameter will be deduced

B example:
template <auto v>
struct constant {
static constexpr decltype(v) value = v;
}i
using forty_two_type = constant<42>;
// template parameter v deduced to have type int

B non-type template parameter type deduction probably most useful for
template metaprogramming

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example Without Auto Non-Type Template Parameter

#include <cstdlib>

1
2 #include <iostream>

3

4 template<class T, T v>

5 struct integral_constant {

6 using value_type = T;

7 static constexpr value_type value = v;

8 using type = integral_constant;

9 constexpr operator value_type() const noexcept
10 {return value;}

1 constexpr value_type operator() () const noexcept
12 {return value;}

13 };

14

15 using forty_two_type = integral_constant<int, 42>;

16

17 int main() {

18 constexpr forty_two_type x;

19 constexpr auto v = x.value;

20 std::cout << v << '\n’;

N

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example With Auto Non-Type Template Parameter

#include <cstdlib>

1
2 #include <iostream>

3

4 template<auto v>

5 struct integral_constant {

6 using value_type = decltype(v);

7 static constexpr value_type value = v;

8 using type = integral_constant;

9 constexpr operator value_type() const noexcept
10 {return value;}

1 constexpr value_type operator() () const noexcept
12 {return value;}

13 };

14

15 using forty_two_type = integral_constant<42>;

16

17 int main() {

18 constexpr forty_two_type x;

19 constexpr auto v = x.value;

20 std::cout << v << '\n’;

N

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.5.3

Variable Templates

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Variable Templates

L] is family of variables parameterized on one or more
parameters

B each template parameter can be: non-type (e.g., integral constant), type,
template, or parameter pack (in case of variadic templates)

B although less frequently used than function and class templates, variable
templates quite useful in some situations

B syntax has general form:

template <parameter_list> variable_declaration

B parameter_list: parameter list for variable template
B variable_declaration: variable declaration or definition

B example:

template <class T>
T meaning of_life = T(42);

int x = meaning_of_life<int>;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Variable Template Example: pi

#include <limits>
#include <complex>
#include <iostream>

template <typename T>
constexpr T pi =
T(3.14159265358979323846264338327950288419716939937510L);

N D O RW N =

int main() {
std::cout.precision(
std::numeric_limits<long double>::max_digitsl0);
std::cout
<< pi<int> << "\n’
<< pi<float> << ’'\n’
<< pi<double> << '\n’
<< pi<long double> << '\n’
<< pi<std::complex<float>> << '\n’
<< pi<std::complex<double>> << '\n’
<< pi<std::complex<long double>> << ’'\n’;

N & 4 4 oo
S © ® N O WN = O ©

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.5.4

Alias Templates

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Alias Templates

u is family of types parameterized on one or more
parameters

B each template parameter can be: non-type (e.g., integral constant), type,
template, or parameter pack (in case of variadic templates)

B syntax has general form:

template <parameter_list> alias_declaration

B parameter_list: parameter list for class
B glias_declaration: alias declaration (i.e., with using)
B example:

template <class Value,
class Alloc = std::allocator<vValue>>

using GreaterMultiSet =
std::multiset<Value, std::greater<Value>, Alloc>;

GreaterMultiSet<int> x{4, 1, 3, 2};

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Alias Template Example

#include <iostream>

1
g #include <set>

4 // alias template for set that employs std::greater for
5 // comparison

6 template <typename Value,

7 typename Alloc = std::allocator<Value>>

8 using GreaterSet = std::set<Value,

13 std::greater<value>, Alloc>;

11 int main() {

12 std::set x{1, 4, 3, 2};

13 GreaterSet<int> y{1, 4, 3, 2};

14 for (auto i : x) {

15 std::cout << 1 << '\n’;

16 }

17 std::cout << '\n’;

18 for (auto i : y) {

19 std::cout << 1 << '"\n’;

20 }

21}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.5.5

Variadic Templates

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Variadic Templates

B |anguage provides ability to specify template that can take variable
number of arguments
B template that can take variable number of arguments called

B alias templates, class templates, function templates, and variable
templates may be variadic

B variable number of arguments specified by using what is called parameter
pack

B parameter pack is parameter that accepts (i.e., is placeholder for) zero or
more arguments (of same kind)

B parameter pack used in parameter list of template to allow to variable
number of template parameters

B ellipsis (i.e., “. . .”) is used in various contexts relating to parameter packs

B ellipsis after designator for kind of template argument in template
parameter list designates argument is parameter pack

B cllipsis after parameter pack parameter expands parameter pack in
context-sensitive manner

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Parameter Packs

B syntax for non-type template parameter pack named Args and containing
elements of type fype (e.g., bool, int, unsigned int):

type. .. Args
B example:
template <int... Is> /% ... */

Is is (non-type) template parameter pack that corresponds to zero or
more (compile-time constant) values of type int
B syntax for fype template parameter pack named Args:
typename. .. Args
or equivalently
class... Args

B examples:
template <typename... Ts> /* ... =/
template <class... Ts> /* ... */

Ts is (type) template parameter pack that corresponds to zero or more
types

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Parameter Packs (Continued 1)

B syntax for template template parameter pack named Args:
template <parameter_list> typename... Args
or equivalently
template <parameter_list> class... Args

B example:
template <template <class T> class... Ts>
VI 4

Ts is (template) template parameter pack that corresponds to zero or
more templates

B syntax for function parameter pack named args whose elements have
types corresponding to elements of type template parameter pack Args:

Args. .. args
B example:
template <class... Ts> void func(Ts... args);

args is (function) parameter pack that corresponds to zero or more
function parameters whose types correspond to elements of type
parameter pack Ts

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Parameter Packs (Continued 2)

B in context where template arguments cannot be deduced (e.g., primary
class templates), only last template parameter can be parameter pack

B in context where template arguments can be deduced (e.g., function
templates and class template partial specializations), template parameter
pack need not be last template parameter

B example:
1 template <class U, class... Ts> class Cl { /* ... */ };
2 // OK: Ts 1s last template parameter
3
4 template <class... Ts, class U> class C2 { /+ ... #*/ };
5 // ERROR: Ts not last and U not deduced
6
7 template <class... Ts, class U> void f1l(Ts... ts)
8 { /* ... %/} // NOT OK: Ts not last and U not deduced
9
10 template <class... Ts, class U> void f2(Ts... ts, U u)
1 { / ... */} // OK: Ts not last but U is deduced
12
13 int main() {
14 fl<int, int, bool>(l, 2, true);
15 // ERROR: no matching function call
16 f2<int, int>(1, 2, true); // OK
17 f2(1, 2, true); // ERROR: one argument expected

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Parameter Pack Expansion

L : expands pack into its constituent elements

B syntax for parameter pack expansion of expression pattern, which must
contain parameter pack:

pattern. . .
B example:
1 template <class... Ts> void f(Ts... t) { /* ... */}
2
3 template <class... Us> void g(Us... u) {
4 f(u...);
5 // u... 1s pack expansion
6 // when g is called by main,
7 // u... expands to 1, 2.0, 3.0f
8}
9

10 int main() {
11 g(l, 2.0,
12}

3.0f);

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Variadic Template Examples

#include <tuple>

1
2

3 // variadic alias template

4 template <class... T>

g using My_tuple = std::tuple<bool, T...>;
7 // variadic class template

8 template <int... Values>

9 class Integer_sequence {

10 //

o}

12

13 // variadic function template

14 template <class... Ts>

15 void print (const Ts&... values) {

17}

19 // variadic variable template

20 template <typename T, T... Values>

g; constexpr T array[] = {Values...};

23 int main() {

24 Integer_sequence<l, 3, 4, 2> x;

25 auto a = array<int, 1, 2, 4, 8>;

26 My_tuple<int, double> t(true, 42, 42.0);
27 print (170007000, 1, 43.2, "Hello");

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Parameter Pack Expansion

B parameter pack expansion allowed in following contexts:
o inside parentheses of function call operator

in template argument list

in function parameter list

in template parameter list

base class specifiers in class declaration

member initializer lists

braced initializer lists

lambda captures

fold expressions

in using declarations

O o o o g

o o o a4

Copyright (© 2015-2020 Michael D. Adams Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/temp.variadic#4

The sizeof. .. Operator

B sizeof... operator yields number of elements in parameter pack

B example:
template <int... Values>
constexpr int num parms = sizeof... (Values);
static_assert (num_parms<l, 2, 3> == 3);
static_assert (num_parms<> == 0);

B example:

#include <cassert>

template <typename... Ts>
int number_of_arguments(const Ts&... args) {
return sizeof... (args);

}

int main() {
assert (number_of_arguments(l, 2, 3) == 3);
assert (number_of_arguments ()

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Variadic Function Template: sum

#include <iostream>
#include <string>

using namespace std::string_literals;

template <class T>

auto sum(T x) {
return x;

}

template <class T, class... Args>

auto sum(T x, Args... args) {
return x + sum(args...);

}

int main() {
auto x = sum(42.5, -1.0, 0.5f);
auto y = sum("The "s, "answer "s, "is "s);
std::cout << y << x << " \n";
// sum(); // ERROR: no matching function call

O ® N O UA WN =

[N

S

DD o o oo
= O © ® N o

}

/* Output:
The answer is 42.

*/

N NN
a s 0N

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Variadic Function Template: maximum

#include <type_traits>
#include <string>
#include <cassert>

using namespace std::string_literals;

template <typename T>
T maximum(const T& a) {return a;}

©o N oo AW N =

o

template <typename Tl, typename T2>

typename std::common_type_t<const Tl&, const T2&>

maximum (const Tl &a, const T2 &b) {
return a > b ? a : b;

FNIETI I

}

template <typename Tl, typename T2, typename... Args>
typename std::common_type_t<const Tl&, const T2,
const Argsé&...>

® N o O

19 maximum(const Tl& a, const T2& b, const Args&... args) f{
20 return maximum(maximum(a, b), args...);

g)

23 int main() {

24 assert (maximum (1) == 1);

25 assert (maximum (1, 2, 3, 4, -1.4) == 4);

26 assert (maximum (-1"0007000L, -42L, 10, 42.42) == 42.42);
27 assert (maximum("apple"s, "zebra"s, "c++"s) == "zebra"s);

n
®

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Variadic Function Template With Template Template

Parameter: print container

#include <iostream>

1
2 f#include <vector>

3 #include <string>

451 #include <set>

6 template <template <class, class...>

7 class ContainerType, class ValueType, class... Args>
8 bool print_container (const ContainerType<ValueType, Args...>&
9 c) f

10 for (auto i = c.begin(); i != c.end();) {

1 std::cout << *i;

12 if (++1i !'= c.end()) {std::cout << ' ';}

13 }

14 std::cout << "\n’;

15 return bool (std::cout);

16}

17

18 int main() {

19 using namespace std::string_literals;

20 std::vector vi{l, 2, 3, 4, 5};

21 std::set si{5, 4, 3, 2, 1};

22 std::set ss{"world"s, "hello"s};

23 print_container(vi);

24 print_container(si);

25 print_container(ss);

2% }

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Variadic Class Template: Integer_sequence

#include <iostream>

1

2 #include <cstdlib>

3

4 template <class T, T... Values>

5 class Integer_sequence {

6 public:

7 using value_type = T;

8 using const_iterator = const T*;

9 constexpr std::size_t size() const

10 {return sizeof... (Values);}

11 constexpr T operator(] (int i) const {return values_[i];}
12 constexpr const_iterator begin() const

13 {return s&values_[0];}

14 constexpr const_iterator end() const

15 {return &values_|[size()];}

16 private:

17 static constexpr T values_[sizeof... (Values)] =
18 {Values...};

19 };

20

21 template <class T, T... Values>

22 constexpr T

23 Integer_sequence<T, Values...>::values_[sizeof... (Values)];
24

25 int main() {

26 Integer_sequence<std::size_t, 1, 2, 4, 8> seq;

27 std::cout << seq.size() << '\n’ << seq[0] << "\n’;
28 for (auto i : seq) {std::cout << i << '\n’;}

Variadic Variable Template: int_array

#include <iostream>

template <int... Args>
constexpr int int_array[] = {Args...};

int main() {
for (auto i : int_array<l,2,4,8>) {
std::cout << 1 << '\n’;

® N Or W D=

©

}

o

}

/* Output:
1

2

4

8

*/

N o oh N =

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Variadic Alias Template: My_tuple

#include <iostream>
#include <string>
#include <tuple>

template <class... Ts>
using My_tuple = std::tuple<bool, Ts...>;

® N® O AW N =

int main() {
My_tuple<int, std::string> t(true, 42,
"meaning of life");
std::cout << std::get<0>(t) << " '/
<< std::iget<l>(t) << '
<< std::get<2>(t) << '\n’;

A W N = O ©

}

/+ Output:
1 42 meaning of life
*/

® N o O

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Fold Expressions

may want to apply binary operator (such as +) across all elements in
parameter pack

B fold expression reduces (i.e., folds) parameter pack over binary operator
B op: binary operator
[

[|

E: expression that contains unexpanded parameter pack
I: expression that does not contain unexpanded parameter pack

Fold Syntax Expansion

unary left (...0pkE) ((EyopEy) op...)opEyN

unary right | (Eop...) Eiop (...0p (Eyv—1 0OpEN))

binary left (Iop...opE) | (({opEy)opEr,)op...)opEy
binary right | (Eop ...oplI) | Efop (...0p (Ey—10p (Eyopl1)))

B unary fold of empty parameter pack:

Operator | Value for Empty Parameter Pack
&& true

Il false

, void()

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/temp.variadic#9
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/temp.variadic#9

Sum Example Without Fold Expression

#include <iostream>
#include <string>

using namespace std::string_literals;

template <class T>

auto sum(T x) {
return x;

}

template <class T, class... Args>

auto sum(T x, Args... args) {
return x + sum(args...);

}

int main() {
auto x = sum(42.5, -1.0, 0.5f);
auto y = sum("The "s, "answer "s, "is "s);
std::cout << y << x << " \n";
// sum(); // ERROR: no matching function call

O ® N O UA WN =

[N

S

DD o o oo
= O © ® N o

}

/* Output:
The answer is 42.

*/

N NN
a s 0N

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Sum Example With Fold Expression

#include <iostream>

1
2 #include <string>

451 using namespace std::string_literals;

6 template <class T, class... Args>

7 auto sum(T x, Args... args) {

8 return x + (... + args);

9 }

10

11 int main() {

12 auto x = sum(42.5, -1.0, 0.5f);

13 auto y = sum("The "s, "answer "s, "is "s);

14 std::cout << y << x << " \n";

15 // sum(); // ERROR: no matching function call
.

18 /+ Output:

19 The answer 1s 42.

20 */

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Print Example Without Fold Expression

#include <iostream>
#include <string>

using namespace std::string_literals;

std::ostream& print() {return std::cout;}

® N Oh N =

template <class T>

std::ostream& print (const T& value) {
return std::cout << value;

}

template <class T, class... Args>
std::ostream& print (const T& value, const Args&... args) {
if (!(std::cout << value)) {
return std::cout;
}

return print (args...);

o ©

o=

© ® N o O A~ ®

}

int main() {
print ("The "s, "answer "s, "is "s, 42, ".\n"s);
print(); // OK: no-op

NN
2@ mN = o

}

/* Output:
The answer is 42.

*/

NN N
® N o a

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Print Example With Fold Expression

#include <iostream>
#include <string>

using namespace std::string_literals;

template <class... Args>
std::ostream& print (const Argsé&... args) {
return (std::cout << ... << args);

O ©® N O A WN =

}

int main() {
print ("The "s, "answer "s, "is "s, 42, ".\n"s);
print(); // OK: no-op

FNEETI

}

o

16 /+ Output:
17 The answer is 42.
18 */

Copyright (© 2015-2020 Michael D. Adams Version: 2020-02-29

Fold Expression Example: All/Any/One/Even

#include <cassert>

1

2

3 template <class... Args>

4 bool all(Args... args)

5 {return (... && args);}

6

7 template <class... Args>

8 bool any(Args... args)

9 {return (... || args);}

10

11 template <class... Args>

12 bool one(Args... args)

13 {return (0 + ... + args) == 1;}

14

15 template <class... Args>

16 bool even(Args... args)

17 {return (1 + ... + args) % 2;}

18

19 int main() {

20 assert (all (false, true, true) == false);
21 assert (all (true, true, true) == true);
22 assert (any (false, false, true) == true);
23 assert (any (false, false, false) == false);
24 assert (one (tkrue, false, false) == true);
25 assert (one (tkrue, true, false) == false);
26 assert (even (true, true, false) == true);
27 assert (even (true, false, false) == false);
28 assert (even() == true && one() == false);

Constexpr-Friendly Heterogeneous List Example

#include <iostream>
#include <tuple>

// heterogeneous list of constant values
template <auto... vs> class value_list {
public:
constexpr value_list() : v_(vs...) {}
template <int n> constexpr auto get() const
{return std::get<n>(v_);}
constexpr int size() const {return sizeof... (vs);}
private:
std::tuple<decltype(vs)...> v_;

® N oA W =

w N = O ©

}i

int main() {
constexpr value_list<42, true, 'A’'> v;
constexpr auto n = v.size();
constexpr auto a v.get<0>();
constexpr auto b v.get<l>();
constexpr auto c = v.get<2>();
stdi:cout << n << 7 7 K a <K< " Kbk« k¢ << "\n;

® N o a b

NN =
N = © ©

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Constexpr-Friendly Homogeneous List Example

#include <iostream>

1

g #include <tuple>

4 // homogeneous list of constant values

5 template <auto vl, decltype(vl)... vs> class value_list {
6 public:

7 constexpr value_list() : v_(vl, vs...) {}

8 template <int n> constexpr auto get() const

9 {return std::get<n>(v_);}

10 constexpr int size() const {return 1 + sizeof...(vs);}
11 private:

)

std::tuple<decltype(vl), decltype(vs)...> v_;

w

}i

int main() {
constexpr value_list<l, 2, 3> v;
constexpr auto n = v.size();

N o o s

18 constexpr auto a = v.get<0>();
19 constexpr auto b = v.get<1>();
20 constexpr auto c = v.get<2>();
21 std:iicout << n <</ 7 K a <K< K p<K< ' ¢ < \n';

n
N

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.5.6

Template Specialization

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Template Specialization

B sometimes can be desirable to provide customized version of template for
certain choices of template parameters

B customized version of templates can be specified through language
feature known as

B two kinds of specialization: explicit and partial

(less formally known as full specialization):
customized version of template where all template parameters are fixed

u : customized version of template where only some
of template parameters are fixed

B class templates, function templates, and variable templates can all be
specialized

B alias templates cannot be specialized

B class templates and variable templates can be partially or explicitly
specialized

B function templates can only be explicitly specialized (not partially)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Explicit Specialization

B syntax for explicit specialization:

template <> declaration

B declaration: declaration of templated entity (e.g., function, class, variable)

B example:

// unspecialized template
template <class T, class U>
void func(T x, Uvy) { /* ... */}

// explicit specialization of template
// (for when template parameters are bool, bool)
template <>

void func<bool, bool>(bool x, bool y) { /* ... =%/}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Partial Specialization

B syntax for partial specialization of class template:

template <parameter_list> class_key
class_name <argument_list> declaration

B syntax for partial specialization of variable template:

template <parameter_list> type_name
variable_name <argument_list> declaration

class_key: class or struct keyword (for class template)
class_name: class being specialized (for class template)
type_name: type of variable (for variable template)
variable_name: variable being specialized (for variable template)
argument_list: template argument list
declaration: declaration of templated entity (e.g., class, variable)
example:

// unspecialized template
template <class T, int N> class Widget { /* ... #*/ };

// partial specialization of template
// (for when first template parameter 1is bool)
template <int N> class Widget<bool, N> { /+ ... */ };

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Explicitly-Specialized Function Template: printPointee

#include <iostream>

1
2

3 // unspecialized version

4 template <class T>

5 typename std::ostream& printPointee(

6 typename std::ostream& out, const T* p)

; {return out << *p << '\n’;}

9 // specialization

10 template <>

11 typename std::ostream& printPointee<void>(
12 typename std::ostream& out, const wvoid* p)
13 {return out << *static_cast<const char*>(p) << ’'\n’;}
15 int main() {

16 int 1 = 42;

17 const int* ip = &i;

18 char c = 'A’";

19 const void* vp = &c;

20 printPointee(std::cout, ip);

21 printPointee (std::cout, vp);

2 |}

23

24 /* Output:

25 42

2% A

27 */

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Explicitly-Specialized Class Template: is_void

template <class T>
struct is_void
{static constexpr bool value = false;};

template <>
struct is_void<wvoid>
{static constexpr bool value = true;};

[N R N

©

template <>
struct is_void<const wvoid>
{static constexpr bool value = true;};

o

o=

w

template <>
struct is_void<volatile void>
{static constexpr bool value = true;};

N

oo

~

template <>
struct is void<const volatile void>
{static constexpr bool value = true;};

®

N =
o ©

21 static_assert (is_void<int>::value == false);

2 static_assert (is_void<double*>::value == false);

23 static_assert (is_void<void>::value == true);

24 static_assert (is_void<const void>::value == true);

25 static_assert (is_void<volatile void>::value == true);

gg static_assert (is_void<const volatile void>::value == true);
28 int main() {}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Partially-Specialized Class Template

#include <iostream>

// unspecialized version
template <typename T, typename V>
struct Widget {
Widget () {std::cout << "unspecialized\n";}
}i

// partial specialization
template <typename T>
struct Widget<int, T> {

Widget () {std::cout << "partial\n";}

[N G B N R N

w N = o ©

}i

// explicit specialization
template <>
struct Widget<int, int> {

Widget () {std::cout << "explicit\n";}

© ©® N o O n

19 }i
21 int main() |

22 Widget<double, int> wl; // unspecialized version
23 Widget<int, double> w2; // partial specialization
24 Widget<int, int> w3; // explicit specialization

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Partially-Specialized Class Template: std: :vector

std: :vector class employs specialization
consider vector of elements of type T

most natural way to store elements is as array of T

if T is bool, such an approach makes very inefficient use of memory,
since each bool object requires one byte of storage
B if T is bool, would be much more memory-efficient to use array of, say,
unsigned char and pack multiple bool objects in each byte
B std::vector accomplishes this by providing (partial) specialization for
case that T is bool
B declaration of base template for std: :vector and its partial
specialization for case when T is bool are as follows:
template <class T, class Alloc = allocator<T>>

class vector; // unspecialized version

template <class Alloc>
class vector<bool, Alloc>; // partial specialization

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Explicitly-Specialized Variable Template:

©o N OGO A~ W =

o

o=

w

[OFS

o

17

template <class T>
constexpr bool is_void v = false;

template <>
constexpr bool is_void_v<void> = true;

template <>
constexpr bool is_void_v<const void> = true;

template <>
constexpr bool is_void_v<volatile void> = true;

template <>
constexpr bool is_void_v<const volatile void> = true;

static_assert (is_void_v<int> == false);

static_assert (is_void_v<double*> == false);
static_assert (is_void_v<void> == true);

static_assert (is_void_v<const void> == true);
static_assert (is_void_v<volatile void> == true);
static_assert (is_void_v<const volatile void> == true);

int main() {}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Explicitly-Specialized Variable Template: factorial

template <unsigned long long N>
constexpr unsigned long long
factorial = N * factorial<N - 1>;

template <>
constexpr unsigned long long
factorial<0> = 1;

XN D AW N =

int main() {
static_assert (factorial == 120,
"factorial<5> failed");
static_assert (factorial<12> == 479'001’600,
"factorial<l12> failed");

PN = IR)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Partially-Specialized Variable Template: quotient

#include <limits>

// unspecialized version
template <int X, int Y>
constexpr int quotient = X / Y;

// partial specialization (which prevents division by zero)
template <int X>

9 constexpr int quotient<X, 0> = (X < 0) ?

10 std::numeric_limits<int>::min() : std::numeric_limits<int>::max();

® N oo AW D=

12 static_assert
13 static_assert
14 static_assert
15 static_assert

quotient<4, 2> == 2);
quotient<5, 3> == 1);
quotient<4, 0> == std::numeric_limits<int>::max());
quotient<-4, 0> == std::numeric_limits<int>::min());

17 int main() {}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.5.7

Miscellany

Copyright © 2015-2020 Michael D. Adams

Overload Resolution and Substitution Failure

B when creating candidate set (of functions) for overload resolution, some or
all candidates of that set may be result of instantiated templates with
template arguments substituted for corresponding template parameters

B process of substituting template arguments for corresponding template
parameters can lead to invalid code

B if certain types of invalid code result from substitution in any of following,
substitution failure said to occur:

o all types used in function type (i.e., return type and types of all parameters)
o all types used in template parameter declarations

o all expressions used in function type

o all expressions used in template parameter declaration

B substitution failure not treated as error

B instead, substitution failure simply causes overload to be removed from
candidate set

B this behavior often referred to by term “substitution failure is not an error
(SFINAE)”

B SFINAE behavior often exploited in template metaprogramming

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Some Kinds of Substitution Failures

B attempting to instantiate pack expansion containing multiple parameter
packs of differing lengths

B attempting to create array with element type that is void, function type,
reference type, or abstract class type

B attempting to create array with size that is zero or negative
B attempting to use type that is not class or enumeration type in qualified
name

B attempting to use type in nested name specifier of qualified ID, when type
does not contain specified member, or

o specified member is not type where type is required
o specified member is not template where template is required
o specified member is not non-type where non-type is required

B attempting to create pointer to reference type
B attempting to create reference to void

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Some Kinds of Substitution Failures (Continued)

B attempting to create pointer to member of T when T is not class type

B attempting to give invalid type to non-type template parameter

B attempting to perform invalid conversion in either template argument
expression, or expression used in function declaration

B attempting to create function type in which parameter has type of void,
or in which return type is function type or array type

B attempting to create function type in which parameter type or return type
is abstract class

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

SFINAE Example: Truncate

® N oA WD =

class Real {
public:
using rounded_type = long long;
rounded_type truncate() const {
rounded_type result;
V2R
return result;

//
i

// function 1
template <class T>
typename T::rounded_type truncate(const T& x) {return x.truncate();}
// NOTE: example would not compile if return type specified as auto

// function 2
int truncate(double x) {return x;}

int main() {

Real r;

float f = 3.14f;

auto rounded_r = truncate(r);
// calls function 1 (only trivial conversions)

auto rounded_f = truncate(f);
// function 2 requires nontrivial conversions
// function 1 would only require trivial conversions but
// substitution failure occurs
// calls function 2 (with conversions)

SFINAE Example: Truncate Revisited

® N O A WD =

NNV N = = m o
N0 ©0WoONOar WN =0 ©

class Real {
public:
using rounded_type = long long;
rounded_type truncate() const {
rounded_type result;
/S
return result;

//
}i

// function 1
template <class T, class = typename T::rounded_type>
auto truncate(const T& x) {return x.truncate();}

// function 2
int truncate (double x) {return x;}

int main() {

Real r;

float f = 3.14f;

auto rounded_r = truncate(r);
// calls function 1 (only trivial conversions)

auto rounded_f = truncate(f);
// function 2 requires nontrivial conversions
// function 1 would only require trivial conversions but
// substitution failure occurs
// calls function 2 (with conversions)

std::enable_if and std::enable_if t

B to make SFINAE more convenient to exploit, class template
std::enable_if and alias template std: :enable_if_t are provided
B declaration of class template enable_if:
template <bool B, class T = void>
struct enable_if;

B if B is true, class has member type type defined as T; otherwise, class
has no type member

B possible implementation of enable_if:

1 template <bool B, class T = void>
struct enable_if {};

template <class 1>

struct enable_if<true, T> {
using type = T;

}i

B declaration of alias template enable_if_t:

template <bool B, class T = void>
using enable_if t = typename enable_ if<B, T>::type;

N o g h N

B if enable_if_t is used with its first parameter as f£alse, substitution
failure will result

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

SFINAE Example: Modulo

#include <type_traits>
#include <cassert>
#include <iostream>

// ISO-Pascal modulo operator for signed integral types
template <class T> inline
std::enable_if_ t<std::is_integral_v<T> && std::is_signed_v<T>, T>
mod(T x, T y) {

assert(y > 0);

if (x < 0) {x += (((-x) /y) + 1) *y;}

return x % y;

® N O RN =

N - o ©

}

// ISO-Pascal modulo operator for unsigned integral types
template <class T> inline
std::enable_if_ t<std::is_integral_v<T> && std::is_unsigned_v<T>, T>
mod(T x, T vy)

{return x % y;}

N o o b~

© ©

20 int main() {

21 auto si = mod(-4, 3); // uses signed version

22 auto ui = mod(5u, 3u); // uses unsigned version

23 auto slli = mod(-511, 311); // uses signed version

24 auto ulli = mod(4ull, 3ull); // uses unsigned version

n
a

// auto f = mod (3.0, 4.0);
// ERROR: no matching function call
std::cout << si << ' 7 << ul << ' 7 << slli << 77 << ulli << "\n’;

NN
® N o

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Detection Idiom Example

®NoO O R WD =

#include <iostream>
#include <experimental/type_traits>

class Widget {
public:

void foo() const {}
} //

class Gadget {
public:
void foo() {}
//
i

// helper template for testing if class has member function called
// foo that can be invoked on const object with no arguments.
template <class T>

using has_usable_foo_t = decltype(std::declval<const T&>().foo());

int main() {

std::cout
<< "Widget "
<< std::experimental::is_detected_v<has_usable_foo_t, Widget>
<< "\n’
<< "Gadget "
<< std::experimental::is_detected_v<has_usable_foo_t, Gadget>
<< "\n’;

Section 2.5.8

References

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

References |

D. Vandevoorde and N. M. Josuttis. C++ Templates: The Complete Guide.
Addison Wesley, 2002.

P. Sommerlad. Variadic and variable templates. Overload, 126:14-17,
Apr. 2015. Available online at
http://accu.org/index.php/journals/2087.

A. Sutton. Introducing concepts. Overload, 129:4-8, Oct. 2015. Available
online at http://accu.org/index.php/journals/2157.

A A. Sutton. Defining concepts. Overload, 131:4-8, Feb. 2016. Available
online at http://accu.org/index.php/journals/2198.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://accu.org/index.php/journals/2087
http://accu.org/index.php/journals/2157
http://accu.org/index.php/journals/2198

Talks |

Peter Sommerlad. Variadic Templates in C++11/C++14: An Introduction.
CppCon, Bellevue, WA, USA, Sept. 21, 2015. Available online at
https://youtu.be/R1G3P5SRXCw.

Arthur O’Dwyer. Template Normal Programming. CppCon, Bellevue, WA,
USA, Sept. 19, 2016. Available online at
https://youtu.be/vwrXHznaYLA and
https://youtu.be/VIz6xBvwYds. (This talk is split into two parts.)

Arthur O’'Dwyer. A Soupcon of SFINAE. CppCon, Bellevue, WA, USA,
Sept. 27, 2017. Available online at https://youtu.be/ybaE9glhHvw.

A Marshall Clow. The Detection Idiom: A Better Way to SFINAE. C++Now,
Aspen, CO, USA, May 19, 2017. Available online at
https://youtu.be/U3jGdnRL3KI.
Notwithstanding the talk’s title, this talk is actually about the functionality in the
Library Fundamentals TS related to is_detected, detected_or,
is_detected_exact, and is_detected_convertible.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

https://youtu.be/R1G3P5SRXCw
https://youtu.be/vwrXHznaYLA
https://youtu.be/VIz6xBvwYd8
https://youtu.be/ybaE9qlhHvw
https://youtu.be/U3jGdnRL3KI

Talks Il

Walter E. Brown. Modern Template Metaprogramming: A Compendium,
Part . CppCon, Bellevue, WA, USA, Sept. 9, 2014. Available online at
https://youtu.be/Am2is2QCvxyY

B Walter E. Brown. Modern Template Metaprogramming: A Compendium,
Part Il. CppCon, Bellevue, WA, USA, Sept. 9, 2014. Available online at
https://youtu.be/a0F1liKwcwXE.

Stephan T. Lavavej. Class Template Argument Deduction for Everyone.
CppCon, Bellevue, WA, USA, Sept. 27, 2018. Available online at
https://youtu.be/-H-ut6j1BYU.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

https://youtu.be/Am2is2QCvxY
https://youtu.be/a0FliKwcwXE
https://youtu.be/-H-ut6j1BYU

Section 2.6

Lambda Expressions

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Motivation for Lambda Expressions

extremely useful, especially for generic programming

B writing definitions of functor classes somewhat tedious, especially if many
such classes

B functor classes all have same general structure (i.e., constructor,
function-call operator, zero or more data members)

B would be nice if functor could be created without need to explicitly write
functor-class definition

B |ambda expressions provide compact notation for creating functors

B convenience feature (not fundamentally anything new that can be done

with lambda expressions that could not already have been done without
them)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Lambda Expressions

B |ambda expression consists of:
H introducer: capture list in square brackets
declarator: parameter list in parentheses followed by return type using
trailing return-type syntax
compound statement in brace brackets

B capture list specifies objects to be captured as data members

B declarator specifies parameter list and return type of function-call operator

B compound statement specifies body of function-call operator

B if no declarator specified, defaults to ()

B if no return type specified, defaults to type of expression in return
statement, or void if no return statement

B when evaluated, lambda expression yields object called (which is
essentially a functor)

B examples:

[] (double x)->int{return floor (x);}
[](int x, int y){return x < y;}
[1{std::cout << "Hello, World!\n";}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Lambda Expressions (Continued)

closure object is unnamed (temporary object)
closure type is unnamed

operator () is always inline

operator () is const member function unless mutable keyword used

B if closure type is literal type, all members of closure type automatically
constexpr

B if no capture, closure type provides conversion function to pointer to
function having same parameter and return types as closure type’s
function call operator; value returned is address of function that, when
invoked, has same effect as invoking closure type’s function call operator
(function pointer not tied to lifetime of closure object)

B although operator () in closure very similar to case of normal functor,
not everything same (e.g., operator () member in closure type cannot
access this pointer for closure type)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.lambda.closure#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.lambda.closure#4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.lambda.closure#6

Hello World Program Revisited

1 #include <iostream>

3 int main() {
4 [1{std::cout << "Hello, World!\n";}();

1 #include <iostream>

3 struct Hello {
4 void operator() () const {
5 std::cout << "Hello, World!\n";

7}
9 int main() {

10 Hello hello;
1 hello();

Copyright (© 2015-2020 Michael D. Adams Version: 2020-02-29

Linear-Function Functor Example

C©EN® UhWN =

[N I I N

#include <iostream>

auto make_linear_func(float a, float b)
{return [a, b] (float x){return a * x + b;};}

int main() {
float a = 0.5f; float b = 1.0f;
auto f = make_linear_func(a, b);
std::cout << £(1.0f) << "\n’;

#include <iostream>

class linear_func {
public:
linear_func(float a, float b) : a_(a), b_(b) {}
float operator() (float x) const {return a_ * x + b_;}
private:
float a_; float b_;
}i

linear_func make_linear_func(float a, float b)
{return linear_func(a, b);}

int main() {
float a = 0.5f; float b = 1.0f;
linear_func f = make_linear_func(a, b);
std::cout << f(1.0f) << "\n’;

Comparison Functor Example

#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <vector>

int main() {
std::vector<int> v{-3, 3, 4, 0, -2, -1, 2, 1, -4};
std::sort (v.begin(), v.end(),
[](int x, int y) {return std::abs(x) < std::abs(y);});
for (auto x : v) std::cout << x << "\n’;

- 0O © ® N O O W N =

}

#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <vector>

struct abs_less {
bool operator() (int x, int y) const
{return std::abs(x) < std::abs(y);}
i

11 int main() {

12 std::vector<int> v{-3, 3, 4, 0, -2, -1, 2, 1, -4};
13 std::sort (v.begin(), v.end(), abs_less());

14 for (auto x : v) std::cout << x << '\n’;

cCO ® N O A W N =

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Capturing Objects

locals only available if captured; non-locals always available
can capture by value or by reference

different locals can be captured differently

can specify default capture mode

can explicitly list objects to be captured or not

might be wise to explicitly list all objects to be captured (when practical) to
avoid capturing objects accidentally (e.g., due to typos)

B in member function, to capture class object by value, capture *this
B in member function, can also capture this
B this must be captured by value

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

std: :transform

B (unary version of) std: :transform applies given (unary) operator to
each element in range specified by pair of iterators and writes result to
location specified by another iterator

B definition of std: :transform would typically resemble:

template <class Inputlterator, class Outputlterator,
class UnaryOperator>
OutputIterator transform(InputIterator first,
InputIterator last, OutputIterator result,
UnaryOperator op) {
while (first != last) {
*result = op(*first);
++result;
++first;
}

return result;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Modulus Example

#include <iostream>
#include <vector>
#include <algorithm>

int main() {
int m = 2;
std::vector<int> v{0, 1, 2, 3};
std::transform(v.begin(), v.end(), v.begin(),
[m] (int x) {return x % m;});
for (auto x : v) std::cout << x << '\n’;

- 00 ®N® O AN =

}

#include <iostream>
#include <vector>
#include <algorithm>

class mod {
public:
mod(int m_) : m(m_) {}

® N OAON =

[

int operator() (int x) const {return x % m;}
9 private:

10 int m;

1}

13 int main() {

14 int m = 2;

15 std::vector<int> v{0, 1, 2, 3};

16 std::transform(v.begin(), v.end(), v.begin(), mod(m));
17 for (auto x : v) std::cout << x << '\n’;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Modulus Example: Without Lambda Expression

® N O O hW N =

o ©

o=

® N o o bW

#include <iostream>
#include <vector>
#include <algorithm>

class mod {
public:

mod(int m) : m(m_) {}

int operator() (int x) const {return x % m;}
private:

int n;

}i

int main() {
int m = 2;
std::vector<int> v{0, 1, 2, 3};
std::transform(v.begin(), v.end(), v.begin(), mod(m));
for (auto x : v) std::cout << x << '\n’;

}

B approximately 8.5 lines of code to generate functor

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Modulus Example: With Lambda Expression

#include <iostream>
#include <vector>
#include <algorithm>

int main() {
int m = 2;
std::vector<int> v{0, 1, 2, 3};
std::transform(v.begin(), v.end(), v.begin(),
[m] (int x) {return x % m;});
for (auto x : v) std::cout << x << '\n’;

- 0 © ©® N O U AW N =

}

B n captured by value
B gpproximately 0.5 lines of code to generate functor

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

std::for_each

B std::for_each applies given function/functor to each element in range
specified by pair of iterators

B definition of std: : for_each would typically resemble:

template<class InputlIterator, class Function>
Function for_each(InputIterator first,
InputIterator last, Function func) {
while (first != last) {
func (*first);
++first;
}

return move (func);

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Product Example

- 0O ©® N O RN =

® N o h® N =

#include <iostream>
#include <vector>
#include <algorithm>

int main() {
std::vector<int> v{2, 3, 4};
int prod = 1;
std::for_each(v.begin(), v.end(),
[&prod] (int x)->void{prod *= x;});
std::cout << prod << ’\n’;

}

#include <iostream>
#include <vector>
#include <algorithm>

class cum_prod {

public:

cum_prod(inté& prod_) : prod(prod_) {)

void operator() (int x) const {prod *= x;}
private:

int& prod;

}i

int main() {
std::vector<int> v{2, 3, 4};
int prod = 1;
std::for_each(v.begin(), v.end(), cum_prod(prod));
std::cout << prod << ’"\n’;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Product Example: Without Lambda Expression

#include <iostream>
#include <vector>
#include <algorithm>

class cum_prod {
public:

cum_prod (inté& prod_) : prod(prod_) {}

void operator() (int x) const {prod *= x;}
private:

int& prod;

® N O O hW N =

- o ©

}i

int main() {
std::vector<int> v{2, 3, 4};
int prod = 1;
std::for_each(v.begin(), v.end(), cum_prod(prod));
std::cout << prod << ’'\n’;

® N o b N

}

B approximately 8.5 lines of code to generate functor

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Product Example: With Lambda Expression

#include <iostream>
#include <vector>
#include <algorithm>

int main() {
std::vector<int> v{2, 3, 4};
int prod = 1;
std::for_each(v.begin(), v.end(),
[&prod] (int x)->void{prod *= x;});
std::cout << prod << ’"\n’;

- 0 © ©® N O U AW N =

}

B prod captured by reference
B gpproximately 1 line of code to generate functor

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

More Variations on Capture

double a = 2.14;
double b = 3.14;
double c = 42.0;

// capture all objects by reference (i.e., a, b, and c)
[&] (double x, double y){return a * x + b * y + c;}

// capture all objects by value (i.e., a, b, and c)
[=] (double x, double y){return a * x + b * y + c;}

// capture all objects by value, except a
// which is captured by reference
[=,&a] (double x, double y){return a * x + b * y + ¢;}

// capture all objects by reference, except a
// which is captured by value
[&,a] (double x, double y){return a * x + b * y + ¢;}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Generalized Lambda Capture

B can specify name for captured object in closure type

int a = 1;
auto f = [x = a] () {return x;};

B can capture result of expression (e.g., to perform move instead of copy or
to add arbitrary new state to closure type)
std::vector<int> v (1000, 1);

1
auto f = [v = std::move(v)] () —>
const std::vector<int>& {return v;};

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Generalized Lambda Capture Example

#include <iostream>

1

2

3 int main() {

4 int x = 0;

5 int y = 1;

6 auto f = [&count = x, inc =y + 1](){
7 return count += inc;

8 i

9 std::cout << f() << ' ';

10 std::cout << f() << "\n’;

1}
13 // output: 2 4

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Generic Lambda Expressions

B can allow compiler to deduce type of lambda function parameters
B generates closure type with templated function-call operator

B one template type parameter for each occurrence of auto in lambda
expression’s parameter declaration clause

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.lambda.closure#3

Generic Lambda Expression Example e

#include <iostream>
#include <complex>
#include <string>

int main() {
using namespace std::literals;
auto add = [] (auto x, auto y) {return x + y;};
std::cout << add(l, 2) << ' ' << add(1.0, 2.0) << " '
<< add(1.0, 2.0i) << ' ' << add("Jell"s, "o"s) << '\n’;

O © ® N O AW N =

#include <iostream>
#include <complex>
#include <string>

struct Add {
template <class T, class U>
auto operator() (T x, U y) {return x + y;};

}i

int main() {
using namespace std::literals;
Add add;
std::cout << add(l, 2) << ' ' << add(1.0, 2.0) << " 7
<< add(1.0, 2.01) << ' ' << add("Jell"s, "o"s) << '\n’;

©O N DO RN =

o hr WN = O

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Generic Lambda Expression Example wconenencel

#include <iostream>

1

2 #include <vector>

3 #include <algorithm>

4

5 int main() {

6 std::vector<int> v{0, 1, 2, 3, 4, 5, 6, 7};

7 // sort elements of vector in descending order
8 std::sort (v.begin(), v.end(),

9 [] (auto i, auto j) {return i > j;});

10 std::for_each(v.begin(), v.end(),

11 [] (auto 1) {std::cout << 1 << "\n’;});

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Dealing With Unnamed Types

B fact that closure types unnamed causes complications when need arises
to refer to closure type

helpful language features: auto, decltype
helpful library features: std::function
closures can be stored using auto or std: : function

closures that do not capture can be “stored” by assigning to function
pointer

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Using auto, decltype, and std: :function

#include <iostream>

1
2 #include <functional>

3

4 std::function<double (double)> linear (double a, double b) {
5 return [=] (double x) {return a * x + b;};

6 }

8 int main() {

// type of f is std::function<double (double)>
auto f = linear (2.0, -1.0);
// g has closure type
auto g = [] (double x){return 2.0 * x - 1.0;};
double (*u) (double) = [] (double x){return 2.0 * x - 1.0;};
// h has same type as g
decltype(g) h = g;
for (double x = 0.0; x < 10.0; x += 1.0) {

std:iicout << x <</ 7 << f(x) << 7 KL g(x) <L

"1 << h(x) << (*u) (x) << "\n';

© ® N O O BrWWN = O ©

}

l} applying function-call operator to £ much slower than in case of g and h

B when std:: function used, inlining of called function probably not
possible

B when functor used directly (via function-call operator) inlining is very likely

B prefer auto over std:: function for storing closures

n
o

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

operator () as Non-const Member

#include <iostream>

2

3 int main()

4 |

5 int count = 5;

6 // Must use mutable in order to be able to
7 // modify count member.

8 auto get_count = [count] () mutable -> int {
9 return count++;

10 b

11

12 int c;

13 while ((c = get_count()) < 10) {

14 std::cout << ¢ << ’"\n’;

15 }

B operator () is declared as const member function unless mutable
keyword used

B const member function cannot change (non-static) data members

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Constexpr Lambdas

#include <iostream>

1

2 #include <array>

3

4+ template <typename T>

5 constexpr auto multiply by(T i) {

6 return [i] (auto j) {return i * j;};

7 // OK: lambda is literal type so members
8 // are automatically constexpr

9 }

10

11 int main() {

12 constexpr auto mult_by_ 2 = multiply by (2);
13 std::array<int, mult_by_2(8)> a;

14 std::cout << a.size() << '\n’;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Comparison Functors for Containers

#include <iostream>

std::set<int*, decltype (cmp)> s(cmp);

1
2 #include <vector>

3 #include <set>

4

5 int main() {

6 // The following two lines are the only important ones:
7 auto cmp = [] (int* x, int* y){return *x < *y;};

8

9

// Just for something to do:
// Print the elements of v in sorted order with
// duplicates removed.
std::vector<int> v = {4, 1, 3, 2, 1, 1, 1, 1};
for (auto& x : v) {
s.insert (&x);
}

for (auto x : s) {
std::cout << *x << '\n’;

© ©® N O N = O

}

n
o

}
B note that s is not default constructed

B since closure types not default constructible, following would fail:
std::set<int*, decltype (cmp)> s;

B note use of decltype in order to specify type of functor

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

What Could Possibly Go Wrong?

#include <iostream>
#include <vector>
#include <functional>

std::vector<int> vec{2000, 4000, 6000, 8000, 10000};
std::function<int (int)> func;

® N® GO AW N =

void do_stuff ()
{

o ©

int modulus = 10000;
func = [&] (int x) {return x % modulus;};
for (auto x : vec) {
std::cout << func(x) << "\n’;
}

a B~ W =

}

int main()

{

© ® N o

do_stuff();
for (auto x : vec) {
std::cout << func(x) << "\n’;

NS
N = o

}

n
w

}
B above code has very serious bug; what is it?

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Dangling References

B if some objects captured by reference, closure can hold dangling
references

B responsibility of programmer to avoid such problems

B if will not cause performance issues, may be advisable to capture by value
(to avoid problem of dangling references)

B dangling-reference example:

#include <iostream>
#include <functional>

std::function<double (double)> linear (double a, double b) {
return [&] (double x) {return a * x + b;};

}

int main() {

9 auto f = linear (2.0, -1.0);

10 // bad things will happen here
11 std::cout << £(1.0) << '\n’;

® N® O A W =

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.6.1

References

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Talks |

Herb Sutter. Lambdas, Lambdas Everywhere. Professional Developers
Conference (PDC), Redmond, WA, USA, Oct. 27-29, 2010. Available
online at https://youtu.be/rcgRY7sOAS58.

Herb Sutter. C++0x Lambda Functions. Northwest C++ Users’ Group
(NWCPP), Redmond, WA, USA, May 18, 2011. Available online at
https://vimeo.com/23975522.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

https://youtu.be/rcgRY7sOA58
https://vimeo.com/23975522

Section 2.7

Classes and Inheritance

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.7.1

Derived Classes and Class Hierarchies

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Derived Classes

B sometimes, want to express commonality between classes

B want to create new class from existing class by adding new members or
replacing (i.e., hiding/overriding) existing members

B can be achieved through language feature known as inheritance

generate new class with all members of already existing class, excluding
special member functions (i.e., constructors, assignment operators, and
destructor)

new class called and original class called

derived class said to from base class

can add new members (not in base class) to derived class

can hide or override member functions from base class with new version

syntax for specifying derived class:

class derived_class : base_class_specifiers

B derived_class is name of derived class; base_class_specifiers provide
base-class information

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Derived Classes (Continued)

B can more clearly express intent by explicitly identifying relationship
between classes

B can facilitate code reuse by leverage existing code

B interface inheritance: allow different derived classes to be used
interchangeably through interface provided by common base class

B implementation inheritance: save implementation effort by sharing
capabilities provided by base class

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Person Class

#include <string>

1
2

3 class Person {

4 public:

5 Person(const std::string& family_name,

6 const std::string& given_name)

7 family_name_ (family_name), given_name_ (given_name) {}
8 std::string family_name() const {return family_name_;}
9 std::string given_name() const {return given_name_;}
10 std::string full_name() const

1 {return family_name_ + ", " + given_name_;}

12 /S

13 private:

14 std::string family_name_;

15 std::string given_name_;

16 };

Copyright (© 2015-2020 Michael D. Adams Version: 2020-02-29

Student Class Without Inheritance

#include <string>

class Student {
public:
Student (const std::string& family_name,
const std::string& given_name)
family_name_ (family_name), given_name_(given_name) {}
// NEW
std::string family_name() const {return family_name_;}
std::string given_name() const {return given_name_;}
std::string full_name() const

® N oA W=

- o ©

12 {return family_name_ + ", " + given_name_;}
13 std::string student_id() {return student_id_;} // NEW
14 private:

o

std::string family_name_;
std::string given_name_;
std::string student_id_; // NEW

® N o

}i

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Student Class With Inheritance

// include definition of Person class here

1
2

3 class Student : public Person f{

4 public:

5 Student (const std::string& family_name,

6 const std::string& given_name,

7 const std::string& student_id)

8 Person(family_name, given_name),

9 student_id_(student_id) {}

10 std::string student_id() {return student_id_;}
11 private:

N

std::string student_id_;

w

i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Complete Inheritance Example

#include <string>

1
2

3 class Person {

4 public:

5 Person(const std::string& family_name,

6 const std::string& given_name)

7 family_name_ (family_name), given_name_ (given_name) {}
8 std::string family_name() const {return family_name_;}
9 std::string given_name() const {return given_name_;}
10 std::string full_name() const

11 {return family_name_ + ", " + given_name_;}

12 // ... (including virtual destructor)

13 private:

14 std::string family_name_;

15 std::string given_name_;

16 };
17

18 class Student : public Person {

19 public:

20 Student (const std::string& family_name,

21 const std::string& given_name,

22 const std::stringé& student_id)

23 Person(family_name, given_name),

24 student_id_ (student_id) {}

25 std::string student_id() {return student_id_;}
26 private:

27 std::string student_id_;

28 };

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Class Hierarchies

B inheritance relationships between classes form what is called

B often class hierarchy represented by directed (acyclic) graph, where nodes
correspond to classes and edges correspond to inheritance relationships

B class definitions:

class A { /* ... */ };

class B : public A { /» */ };
class C : public A { /* */)i
class D : public B { /* ... */};
class E : publiec B { /* ... =%/ };

B inheritance diagram:

HN
H/

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Class Hierarchy Example

B class definitions:

class Person { /* ... */ };

class Employee : public Person { /# ... #*/ };
class Student : public Person { /# ... */ };
class Alumnus : public Person { /* ... */ };
class Faculty : public Employee { /* ... =%/ };
class Staff : public Employee { /* ... */ };
class Grad : publiec Student { /# ... #*/ };
class Undergrad : public Student { /* ... */ };

B inheritance diagram:

Person

N fTT—

‘ Faculty ‘ ‘ Staff ‘ ‘Undergrad‘ ‘ Grad

B each of Employee, Student, and Alumnus is a Person; each of Faculty
and Staff is an Employee; each of Undergrad and Grad is a Student

Copyright (© 2015-2020 Michael D. Adams Version: 2020-02-29

Member Access Specifiers: protected

B earlier, introduced public and private access specifiers for class
members

B in context of inheritance, another access specifier becomes relevant,
namely, protected
B member declared in protected section of class can only be accessed by
o member functions and friends of that class; and
o by member functions and friends of derived classes
B protected members used to provide developers of derived classes access
to some inner workings of base class without exposing such inner
workings to everyone
B uysually, bad idea to use protected access for data members (for similar
reasons that using public access for data members is usually bad)

B protected access usually employed for function members

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Types of Inheritance

B three types of inheritance with respect to access protection: public,
protected, and private

B these three types of inheritance differ in terms of accessibility, in derived
class, of members inherited from base class

B private parts of base class are always inaccessible in derived class,
regardless of whether public, protected, or private inheritance used

B if this were not case, all access protection could simply be bypassed by
using inheritance

B access specifiers for members accessible in derived class chosen as

follows:
Access Specifier in Derived Class
Access Specifier in || Public Protected Private
Base Class Inheritance | Inheritance | Inheritance
public public protected private
protected protected protected private

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

Types of Inheritance (Continued)

B for struct, defaults to public inheritance
B for class, defaults to private inheritance

B public and protected/private inheritance have different use cases, as we
will see later

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Inheritance and Member Access Example

class Base {
public:
void f();
protected:
void g();
private:
int x;

©o N oUW N =

5
Q
[
[\
[
2}

Derived_1 : public Base {

f is public

g 1is protected

X 1s not accessible from Derived 1

a2
RN
NN\

[OFS

>
Q
=
]
«
)

Derived_2 : protected Base {

f is protected

g 1is protected

x 18 not accessible from Derived 2

© > 3
NN
NN\

NN
=o

n
N
o]
=
V]
]
0

Derived_3 : private Base {

f is private

g 1s private

// x 1s not accessible from Derived_ 3

DN N
> a8 o
RN
NN

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Public Inheritance Example

class Base {

1
2 public:

3 void func_1();

4+ protected:

5 void func_2();

6 private:

7 int x_;

8 1}

9

10 class Derived : public Base {

11 public:

12 void func_3() {

13 func_1(); // OK

14 func_2(); // OK

15 x_ = 0; // ERROR: inaccessible
16 }

17}

18

19 struct Widget : public Derived {

20 void func_4() { func_2(); } // OK
2t }i

23 int main() {

24 Derived d;

25 d.func_1(); // OK

26 d.func_2(); // ERROR: inaccessible
27 d.x_ = 0; // ERROR: inaccessible

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Protected Inheritance Example

class Base {
public:

void func_1();
protected:

void func_2();
private:

int x_;

i

class Derived : protected Base {
public:
void func_3() {
func_1(); // OK
func_2(); // OK
x_ = 0; // ERROR: inaccessible

©o N O oA WD =

N o o~ N = O
—

}i
struct Widget : public Derived {

© ©

20 void func_4() { func_2(); } // OK

21 ;

22 }

23 int main() {

24 Derived d; // OK: defaulted constructor is public

n
3]

i
d.func_1(); // ERROR: inaccessible
d.func_2(); // ERROR: inaccessible
d.x_ = 0; // ERROR: inaccessible

NN
® N o

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Private Inheritance Example

©o N O oA WD =

o> o h WK = O

®~

N o=
o ©

NN
N =

NN
E)

class Base {
public:

void func_1();
protected:

void func_2();
private:

int x_;

i

class Derived : private Base {
public:
void func_3() {
func_1(); // OK
func_2(); // OK
x_ = 0; // ERROR: inaccessible

}i
struct Widget : public Derived {

void func_4() { func_2(); } // ERROR: inaccessible
}i
int main() {

Derived d; // OK: defaulted constructor is public

i
d.func_1(); // ERROR: inaccessible
d.func_2(); // ERROR: inaccessible
d.x_ = 0; // ERROR: inaccessible

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Public Inheritance

B public inheritance is inheritance in traditional object-oriented programming
sense

B public inheritance models an is-a relationship (i.e., derived class object is
a base class object)

B most common form of inheritance

B inheritance relationship visible to all code

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Public Inheritance Example

® N AW NS

o> o hr WM = O ©

@~

NN NN
g B WN = O ©

#include <string>

class Person {

public:
Person(const std::string& family_name, const std::stringé&
given_name) : family_name_(family_name),

given_name_ (given_name) {}
std::string family_name() const
{return family_name_;}
std::string given_name ()
{return given_name_;}
std::string full_name() const
{return family_name_ + ", " + given_name_;}
private:
std::string family_name_;
std::string given_name_;

const

i

class Student : public Person {
public:

Student (const std::string& family_name, const std::stringé
given_name, const std::stringé& student_id)
Person(family_name, given_name), student_id_(student_id) {}

std::string student_id()
{return student_id_;}

private:

std::string student_id_;

}i

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Protected and Private Inheritance

B protected and private inheritance not inheritance in traditional
object-oriented programming sense (i.e., no is-a relationship)

B form of implementation inheritance

B implemented-in-terms-of relationship (i.e., derived class object
implemented in terms of a base class object)

B in case of protected inheritance, inheritance relationship only seen by
derived classes and their friends and class itself and its friends

B in case of private inheritance, inheritance relationship only seen by class
itself and its friends (not derived classes and their friends)

B except in special circumstances, normally bad idea to use inheritance for
composition

B one good use case for private/protected inheritance is in policy-based
design, which exploits empty base optimization (EBO)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Policy-Based Design Example: Inefficient Memory Usage

O ©® N O U A WN=

11

#include <mutex>

class ThreadSafePolicy {
public:
void lock () {mutex_.lock();}
void unlock () {mutex_.unlock();}
private:
std::mutex mutex_;

i

class ThreadUnsafePolicy {
public:
void lock() {} // no-op
void unlock() {} // no-op
}i

template<class ThreadSafetyPolicy>
class Widget {
ThreadSafetyPolicy policy_;
VIR
}i

int main() {
Widget<ThreadUnsafePolicy> w;
// w.policy_ has no data members, but
// sizeof (w.policy_) >= 1
// inefficient use of memory

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Policy-Based Design Example: Private Inheritance and EBO

#include <mutex>

class ThreadSafePolicy {
public:
void lock () {mutex_.lock();}
void unlock () {mutex_.unlock();}
private:
std::mutex mutex_;

i

11 class ThreadUnsafePolicy ({

12 public:

13 void lock() {} // no-op
14 void unlock () {} // no-op
15 };

W ® N O U~ W N

17 template<class ThreadSafetyPolicy>
18 class Widget : ThreadSafetyPolicy {
/S

20 };

22 int main() |

23 Widget<ThreadUnsafePolicy> w;
24 // empty-base optimization (EBO) can be applied
25 // no memory overhead for no-op thread-safety policy

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Inheritance and Constructors

B by default, constructors not inherited
B often, derived class introduces new data members not in base class

B since base-class constructors cannot initialize derived-class data
members, inheriting constructors from base class by default would be bad
idea (e.g., could lead to uninitialized data members)

B in some cases, however, base-class constructors may be sufficient to
initialize derived-class objects

B in such cases, can inherit all non-special base-class constructors with
using statement

B special constructors (i.e., default, copy, and move constructors) cannot be
inherited

B constructors to be inherited with using statement may still be hidden by
constructors in derived class

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4140/html/class.inhctor#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4140/html/class.inhctor#6

Inheriting Constructors Example 1

class Base {

1
2 public:

3 Base() : i_(0.0), J_(0) {}

4 Base(int 1) : i_(i), J_(0) {}

5 Base(int i, int j) : i_(i), J_(3) {}

6 // ... (other non-constructor members)

7 private:

8 int i_, j_;

9 };

10

11 class Derived : public Base {

12 public:

13 // inherit non-special constructors from Base
14 // (default constructor not inherited)

15 using Base::Base;

16 // default constructor is implicitly declared and
17 // not inherited

1B}

19

20 int main() {

21 Derived a;

22 // invokes non—-inherited Derived::Derived()
23 Derived b (42, 42);

24 // invokes inherited Base::Base(int, int)

25}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Inheriting Constructors Example 2

class Base {

1

2 public:

3 Base() : 1_(0), j_(0), k_(0) {}

4 Base(int i, int j) : i_(i), J_(3), k_(0) {}

5 Base(int i, int j, int k) : i_(i), J_(3), k_(k) {}

6 // (other non-constructor members)

7 private:

8 int i_, j_, k_;

9}

10

11 class Derived : public Base f{

12 public:

13 // inherit non-special constructors from Base
14 // (default constructor not inherited)

15 using Base::Base;

16 // following constructor hides inherited constructor
17 Derived(int i, int j, int k) : Base(-i, -3, -k) {}

18 // no implicitly-generated default constructor
19 };

20

21 int main() {

22 Derived b (1, 2);

23 // invokes inherited Base::Base(int, int)

24 Derived c(1, 2, 3);

25 // invokes Derived::Derived(int, int, int)

26 // following would produce compile-time error:
27 // Derived a; // ERROR: no default constructor

Inheritance, Assignment Operators, and Destructors

B by default, assignment operators not inherited (for similar reasons as in
case of constructors)

B can inherit all non-special base-class assignment operators with using
statement

B copy and move assignment operators cannot be inherited

B assignment operators to be inherited with using statement may still be
hidden by assignment operators in derived class

B cannot inherit destructor

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4140/html/class.copy#24

Inheriting Assignment Operators Example

class Base {

1
2 public:

3 explicit Base(int 1) : i_(i) {}

4 Base& operator=(int i) ({

5 i_=1i;

6 return *this;

7 }

8 // ..

9 private:

10 int i_;

"o}

12

13 class Derived : public Base {

14 public:

15 // inherit non-special constructors

16 using Base::Base;

17 // inherit non-special assignment operators
18 using Base::operator=;

19

20 };

21

22 int main() {

23 Derived d(0);

24 // invokes inherited Base::Base (int)

25 d = 42;

26 // invokes inherited Base::operator=(int)

27}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Construction and Destruction Order

B order of construction:

H if most-derived class in hierarchy, initialize all virtual base class objects in
hierarchy in order of depth-first left-to-right traversal of graph of base class
declarations, where left to right refers to order of appearance of base class
names in class definition (virtual base classes to be discussed later)

initialize non-virtual (direct) base class objects in order listed in class
definition

initialize non-static data members in order of declaration in class definition

execute constructor body

B order of destruction is exact reverse of order of construction, namely:

H execute destructor body

destroy non-static data members in reverse of construction order

destroy non-virtual (direct) base class objects in reverse of construction
order

if most-derived class in hierarchy, destroy all virtual base class objects in
hierarchy in reverse of construction order

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Order of Construction

® N R W =

#include <vector>
#include <string>

class Base {

public:
Base(int n) : v_(n, 0) {}
//

private:
std::vector<char> v_;

i

class Derived : public Base {
public:

Derived(const std::string& s) : Base(1024), s_(s)
{i_=20;}

std::string s_;
int i_;
}i
int main() {
Derived d("hello");
}

B construction order for Derived constructor: 1) Base class object, 2) data
member s_, 3) Derived constructor body (initializes data member i_)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Hiding Base-Class Member Functions in Derived Class

B can provide new versions of member functions in derived class to hide
original functions in base class

#include <iostream>

’
2

3 class Fruit {

4 public:

5 void print () const {std::cout << "fruit\n";}
6 i

8 class Apple : public Fruit {

9 public:

10 void print () const {std::cout << "apple\n";}
" i

13 class Banana : public Fruit {

14 public:

15 void print () const {std::cout << "banana\n";}
e i

18 int main() {

19 Fruit f;

20 Apple a;

21 Banana b;

22 f.print(); // calls Fruit::print

23 a.print(); // calls Apple::print

24 b.print(); // calls Banana::print

25 }

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

B derived-class object always has base-class subobject

B given reference or pointer to derived-class object, may want to find
reference or pointer to corresponding base-class object

u : converting derived-class pointer or reference to base-class
pointer or reference

B upcasting allows us to treat derived-class object as base-class object

B ypcasting always safe in sense that cannot result in incorrect type (since
every derived-class object is also a base-class object)

B can upcast without explicit type-cast operator as long as casted-to type is
accessible; C-style cast can used to bypass access protection (although
not recommended)

B example:
class Base { /* ... */};
class Derived : public Base { /# ... #*/ };
void func() {
Derived d;

Base* bp = &d;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

u : converting base-class pointer or reference to derived-class
pointer or reference

B downcasting allows us to force base-class object to be treated as
derived-class object

B downcasting is not always safe (since not every base-class object is
necessarily also derived-class object)

B must only downcast when known that object actually has derived type
(except in case of dynamic_cast)

B downcasting always requires explicit cast (e.g., static_cast,
dynamic_cast for dynamically-checked cast in polymorphic case, or
C-style cast)

B example:
class Base { /* ... (nonpolymorphic) */ };
class Derived : public Base { /* ... */ };
void func() {
Derived d;

Base* bp = &d;
Derived* dp = static_cast<Derived*> (bp);

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Upcasting/Downcasting Example

12 class Base { /#* ... (nonpolymorphic) #*/ };

2 class Derived : public Base { /* ... %/ };

5 int main() {

6 Base b;

7 Derived d;

8 Base* bp = nullptr;

9 Derived* dp = nullptr;

10 bp = &d;

11 // OK: upcast does not require explicit cast
12 dp = H

13 // ERROR: downcast requires explicit cast

14 dp = static_cast<Derived*> (bp);

15 // OK: downcast with explicit cast and

16 // pointer (bp) refers to Derived object

17 Base& br = d;

18 // OK: upcast does not require explicit cast
19 Derived& drl = *bp;

20 // ERROR: downcast requires explicit cast

21 Derived& dr2 = *static_cast<Derived*> (bp);

22 // OK: downcast with explicit cast and

23 // object (#bp) is of Derived type

24 dp = static_cast<Derived*> (&b);

25 // BUG: pointer (&b) does not refer to Derived object

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Upcasting Example

N OO AW N=

o O hr N = O ©

class Base { /* ... */ };
class Derived : publiec Base { /* ... */ };
void func_1(Base& b) { /* ... */}
void func_2(Base* b) { /* ... #x/}
int main() {
Base b;
Derived d;
func_1 (b);
func_1(d); // OK: Derived& upcast to Baseé§
func_2 (&b);
func_2(&d); // OK: Derived# upcast to Basex

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

npolymorphic Behavior

©ONDUTBWN =

#include <iostream>
#include <string>

class Person {
public:

Person(const std::string& family, const std::string& given)

family_(family), given_(given) {}

void print() const {std::cout << "person: " << family_ << ’,’ << given_ << '\n’;}
protected:

std::string family_; // family name

std::string given_; // given name
b

class Student : public Person {
public:
Student (const std::strings family, const std::string& given,
const std::string& id) : Person(family, given), id_(id) {}
void print() const {
std::cout << "student: " << family_ << ',’ << given_ << ',’ << id_ << '\n’;
}

private:
std::string id_; // student ID
bi

void processPerson(const Person& p) {
p.print(); // always calls Person::print
}

int main() {
Person p("Ritchie", "Dennis");
Student s("Doe", "John", "12345678");
processPerson(p); // invokes Person::print
processPerson(s); // invokes Person::print

}

B would be nice if processPerson called version of print that corresponds
to actual type of object referenced by function parameter p

Copyright © 2015-2020 Michael D. Adams

: copying or moving object of derived class to object of base class

(e.g., during construction or assignment), losing part of information in so
doing
B example:

4
2
3
4
5
6
7
8

9
10

11
12
13
14

class Base {
//
int x_;

i

class Derived : public Base {

//
int y_;

i

int main() {
Derived dl, d2;
Base b = di;

// slicing occurs
Base& r = dl;
r = d2;
// more treacherous case of slicing
// slicing occurs
// dl now contains mixture of dl and d2
// (i.e., base part of d2 and derived part of dIl)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Inheritance and Overloading

B functions do not overload across scopes

B can employ using statement to bring base members into scope for
overloading

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Inheritance and Overloading Example

#include <iostream>

1
2

3 class Base {

4 public:

5 double f (double d) const {return d;}

6

7}

8

9 class Derived : public Base {

10 public:

11 int f(int i) const {return i;)

12 //

13 };

14

15 int main()

16 {

17 Derived d;

18 std::cout << d.f(0) << "\n’;

19 // calls Derived::f(int) const

20 std::cout << d.f(0.5) << "\n’;

21 // calls Derived::f(int) const; probably not intended
22 Derived* dp = &d;

23 std::cout << dp->f(0) << "\n’;

24 // calls Derived::f(int) const

25 std::cout << dp->f(0.5) << "\n’;

26 // calls Derived::f(int) const; probably not intended

]
~

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Using Base Members Example

#include <iostream>

1
2

3 class Base {

4 public:

5 double f (double d) const {return d;}
6 //

7 b

8

9 class Derived : public Base {

10 public:

1 using Base::f; // bring Base::f into scope
12 int f(int i) const {return i;)

13 //

v}

15

16 int main()

17 |

18 Derived d;

19 std::cout << d.f(0) << ’"\n’;

20 // calls Derived::f(int) const

21 std::cout << d.f(0.5) << "\n’;

22 // calls Base::f (double) const

23 Derived* dp = &d;

24 std::cout << dp->f(0) << "\n’;

25 // calls Derived::f(int) const

26 std::cout << dp->f(0.5) << "\n’;

27 // calls Base::f (double) const

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Inheritance, Templates, and Name Lookup

B name lookup in templates takes place in two phases:
E at template definition time
at template instantiation time
B at template definition time, compiler parses template and looks up any
nondependent names

B result of nondependent name lookup must be identical in all instantiations
of template (since, by definition, nondependent name does not depend on
template parameter)

B at template instantiation time, compiler looks up any dependent names

B results of dependent name lookup can differ from one template
instantiation to another (since, by definition, dependent name depends on
template parameters)

B two-phase name lookup can interact with inheritance in ways that can
sometimes lead to unexpected problems in code

B may need to add “this->" or employ using statement to make name
dependent (when it would otherwise be nondependent)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Name Lookup Example (Incorrect Code)

1
2
3
4
5
6
7
8

9
10

1
12
13
14
15
16

17
18

19
20
21
22
23

24
25

26
27
28
29

#include <iostream>

template <class T>
struct Base {
using Real = T;

Base(Real x_ = Real()) : x(x_) {}
void f() {std::cout << x << "\n";};
Real x;

}i

template <class T>
struct Derived : Base<T> {
Derived(Real y_ = Real()) : y(y_) {}
// ERROR: Real (which is nondependent and looked up at
// template definition time) is assumed to be defined
// outside class
voig g() {

Yi
// ERROR: x assumed to be object outside class
£0);
// ERROR: f assumed to be function outside class
}
Real y;
i
int main() {
Derived<double> w(0.0);
w.g();

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Name Lookup Example (Correct Code)

#include <iostream>

1
2

3 template <class T>

4 struct Base {

5 using Real = T;

6 Base(Real x_ = Real()) : x(x_) {}

7 void f() {std::cout << x << "\n";};
8 Real x;

9

10

i

template <class T>
struct Derived : Base<T> {
using Real = typename Base<T>::Real;
// OK: Base<T>::Real dependent
Derived(Real y_ = Real()) : y(y_) {}
void g() {
this->x = y; // OK: this->x dependent
this->f(); // OK: this->f dependent

© ©® N o oA~ ®N =

}
Real y;

SN
= o

}i

int main() {
Derived<double> w(0.0);
w.g();

NN NN
o g r N

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.7.2

Virtual Functions and Run-Time Polymorphism

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Run-Time Polymorphism

L is characteristic of being able to assign different meaning
to something in different contexts

B polymorphism that occurs at run time called
(also known as)

B in context of inheritance, key type of run-time polymorphism is
polymorphic function call (also known as dynamic dispatch)

B when inheritance relationship exists between two classes, type of
reference or pointer to object may not correspond to actual dynamic (i.e.,
run-time) type of object referenced by reference or pointer

B that is, reference or pointer to type T may, in fact, refer to object of type D,
where D is either directly or indirectly derived from T

B when calling member function through pointer or reference, may want
actual function invoked to be determined by dynamic type of object
referenced by pointer or reference

B function call with this property said to be

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Virtual Functions

B in context of class hierarchies, polymorphic function calls achieved
through use of virtual functions

is member function with polymorphic behavior

B when call made to virtual function through reference or pointer, actual
function invoked will be determined by dynamic type of referenced object

B to make member function virtual, add keyword virtual to function
declaration

B example:

class Base {

public:
virtual void func(); // virtual function
VA

i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Virtual Functions (Continued)

B once function made virtual, it will automatically be virtual in all derived
classes, regardless of whether virtual keyword is used in derived
classes

B therefore, not necessary to repeat virtual qualifier in derived classes
(and perhaps preferable not to do so)

B virtual function must be defined in class where first declared unless pure
virtual function (to be discussed shortly)

B derived class inherits definition of each virtual function from its base class,
but may override each virtual function with new definition

B function in derived class with same name and same set of argument types
as virtual function in base class overrides base class version of virtual
function

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

©ONDU A WN =

#include <iostream>
#include <string>

class Person {
public:
Person(const std::string& family, const std::strings& given)
family_(family), given_(given) {}
virtual void print() const
{std::cout << "person: " << family_ << ',’ << given_ << '\n’;}
protected:
std::string family_; // family name
std::string given_; // given name
bi

class Student : public Person {
public:
Student (const std::strings& family, const std::string& given,
const std::string& id) : Person(family, given), id_(id) {}
void print() const {
std::cout << "student: " << family_ << ',/ << given_ << ',’ << id_ << '\n’;
}
private:
std::string id_; // student ID
b

void processPerson(const Person& p) {
p.print(); // polymorphic function call
/)

}

int main() {
Person p("Ritchie", "Dennis");
Student s("Doe", "John", "12345678");
processPerson(p); // invokes Person::print
processPerson(s); // invokes Student::print

ichael D. Adams

Override Control: The override Qualifier

B when looking at code for derived class, often not possible to determine if
member function intended to override virtual function in base class (or one
of its base classes)

B can sometimes lead to bugs where programmer expects member function
to override virtual function when function not virtual

B override qualifier used to indicate that member function is expected to
override virtual function in parent class; must come at end of function
declaration

B example:

class Person {

public:
virtual void print() const;
/).

i

class Employee : public Person {

public:
void print () const override; // must be virtual
/S

i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Override Control: The £inal Qualifier

B sometimes, may want to prevent any further overriding of virtual function
in any subsequent derived classes

B adding £inal qualifier to declaration of virtual function prevents function
from being overridden in any subsequent derived classes

B preventing further overriding can sometimes allow for better optimization
by compiler (e.g., via devirtualization)

B example:

class A {

public:
virtual void doStuff();
/)

i

class B : public A {
public:
void doStuff () final; // prevent further overriding

i

class C : public B {

public:
void doStuff(); // ERROR: cannot override
/S

i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

final Qualifier Example

1

2
3
4
5
6
7
8

o o h WM = O ©

17

class Worker {
public:
virtual void prepareEnvelope () ;
//
}i
class SpecialWorker : public Worker {
public:
// prevent overriding function responsible for
// overall envelope preparation process
// but allow functions for individual steps in
// process to be overridden
void prepareEnvelope() final {
stuffEnvelope(); // step 1
lickEnvelope(); // step 2
sealEnvelope(); // step 3
}
virtual void stuffEnvelope();
virtual void lickEnvelope ()
virtual void sealEnvelope ()

//

’
’

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Constructors, Destructors, and Virtual Functions

B except in very rare cases, destructors in class hierarchy need to be virtual

B otherwise, invoking destructor through base-class pointer/reference would

only destroy base-class part of object, leaving remainder of derived-class
object untouched

B normally, bad idea to call virtual function inside constructor or destructor

B dynamic type of object changes during construction and changes again

during destruction

final overrider of virtual function will change depending where in hierarchy
virtual function call is made

when constructor/destructor being executed, object is of exactly that type,
never type derived from it

although semantics of virtual function calls during construction and
destruction well defined, easy to write code where actual overrider not
what expected (and might even be pure virtual)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Problematic Code with Non-Virtual Destructor

class Base {

1
2 public:

3 Base () {}

4 ~Base() {} // non-virtual destructor
5 //

6 1

7

8 class Derived : public Base {

9 public:

10 Derived() : buffer_(new char[10’000]) {}
11 ~Derived() {delete[] buffer_;}

12 /] ...

13 private:

14 char* buffer_;

15}

16

17 void process (Base* bp) {

18 /] ...

19 delete bp; // always invokes only Base::~Base
2

22 int main() {

23 process (new Base);

24 process (new Derived); // leaks memory

25 }

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Corrected Code with Virtual Destructor

class Base {

1
2 public:

3 Base () {}

4 virtual ~Base() {} // virtual destructor
5 //

6 }i

7

8 class Derived : public Base {

9 public:

10 Derived() : buffer_(new char[107000]) {}

1 ~Derived() {delete[] buffer_;}

12 //

13 private:

14 char* buffer_;

15}

16

17 void process(Base* bp) {

18 ..

19 delete bp; // invokes destructor polymorphically
2)

22 int main() {

23 process (new Base);

24 process (new Derived);

25}

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Preventing Creation of Derived Classes

B in some situations, may want to prevent deriving from class
B |anguage provides means for accomplishing this

B in class/struct declaration, after name of class can add keyword £inal to
prevent deriving from class

B example:
class Widget final { /* ... */};
class Gadget : public Widget { /* ... =%/ };

// ERROR: cannot derive from Widget

B might want to prevent deriving from class with destructor that is not virtual

B preventing derivation can sometimes also facilitate better compiler
optimization (e.g., via devirtualization)

B might want to prevent derivation so that objects can be copied safely
without fear of slicing

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Covariant Return Type

B in some special cases, language allows relaxation of rule that type of
overriding function f must be same as type of virtual function f overrides

B in particular, requirement that return type be same is relaxed

B return type of derived-class function is permitted to be type derived
(directly or indirectly) from return type of base-class function

B this relaxation of return type more formally known as

B case of pointer return type: if original return type B*, return type of
overriding function may be D*, provided B is public base of D (i.e., may
return pointer to more derived type)

B case of reference return type: if original return type B& (or B&&), return
type of overriding function may be D& (or D&&), provided B is public base of
D (i.e., may return reference to more derived type)

B covariant return type can sometimes be exploited in order to avoid need
for type casts

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Covariant Return Type Example: Cloning

class Base {

public:

virtual Base* clone() const {
return new Base (*this);

//
i

class Derived : public Base {
public:
// use covariant return type
Derived* clone() const override {
return new Derived(*this);

/7

[NI G I N I

o> o h WOWN = O ©

i

int main() {
Derived* d = new Derived;
20 Derived* d2 = d->clone();
21 // OK: return type 1s Derivedx
22 // without covariant return type, would need cast:
23 // Derivedx* d2 = static_cast<Derived*>(d->clone());

© ® N

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Pure Virtual Functions

B sometimes desirable to require derived class to override virtual function

: virtual function that must be overridden in every
derived class

B to declare virtual function as pure, add “= 0” at end of declaration

B example:
class Widget {
public:
virtual void doStuff() = 0; // pure virtual
VIR

i

B pure virtual function can still be defined, although likely only useful in case
of virtual destructor

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Abstract Classes

B class with one or more pure virtual functions called

B cannot directly instantiate objects of abstract class (can only use them as
base class objects)

B class that derives from abstract class need not override all of its pure
virtual methods

B class that does not override all pure virtual methods of abstract base class
will also be abstract

B most commonly, abstract classes have no state (i.e., data members) and
used to provide interfaces, which can be inherited by other classes

B if class has no pure virtual functions and abstract class is desired, can
make destructor pure virtual (but must provide definition of destructor
since invoked by derived classes)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Abstract Class Example

©O N O oA W NS

- o

12

#include <cmath>

class Shape {

public:
virtual bool isPolygon() const = 0;
virtual float area() const = 0;
virtual ~Shape() {};

}i

class Rectangle : public Shape {
public:
Rectangle (float w, float h) : w_(w), h_(h) {}
bool isPolygon() const override {return true;}
float area() const override {return w_ * h_;}
private:
float w_; // width of rectangle
float h_; // height of rectangle
}i

class Circle : public Shape {
public:
Circle(float r) : r_(r) {}
float area() const override {return M_PI * r_ * r_;}
bool isPolygon() const override {return false;}
private:
float r_; // radius of circle
}i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Pure Virtual Destructor Example

class Abstract {

public:
virtual ~Abstract() = 0; // pure virtual destructor
// ... (no other virtual functions)

}i

inline Abstract::~Abstract ()
{ /* possibly empty */ }

©® N ou AW N =

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The dynamic_cast Operator

B often need to upcast and downcast (as well as cast sideways) in
inheritance hierarchy

B dynamic_cast can be used to safely perform type conversions on
pointers and references to classes

B syntax: dynamic_cast<T> (expr)

B types involved must be polymorphic (i.e., have at least one virtual
function)

B inspects run-time information about types to determine whether cast can
be safely performed

B if conversion is valid (i.e., expr can validly be cast to T), casts expr to type
T and returns result

B if conversion is not valid, cast fails
B if expr is of pointer type, nullptr is returned upon failure

B if expr is of reference type, std: :bad_cast exception is thrown upon
failure (where exceptions are discussed later)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

dynamic_cast Example

#include <cassert>

1

2

3 class Base {

4+ public:

5 virtual void doStuff() { /* ... %/ };

6 //

7}

8

9 class Derivedl : public Base { /+ ... */ };
1o class Derived2 : public Base { /* ... */ };

12 bool isDerivedl (Base& b) {
13 return dynamic_cast<Derivedl*> (&b) != nullptr;
14}

16 int main() {

17 Base b;

18 Derivedl di;

19 Derived2 d2;

20 assert (isDerivedl (b) == false);
21 assert (isDerivedl (dl1) == true);
22 assert (isDerivedl (d2) == false);
23}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Cost of Run-Time Polymorphism

B typically, run-time polymorphism does not come without run-time cost in
terms of both time and memory

B in some contexts, cost can be significant
B typically, virtual functions implemented using virtual function table

B each polymorphic class has virtual function table containing pointers to all
virtual functions for class

B each polymorphic class object has pointer to virtual function table

B memory cost to store virtual function table and pointer to table in each
polymorphic object

B in most cases, impossible for compiler to inline virtual function calls since
function to be called cannot be known until run time

B each virtual function call is made through pointer, which adds overhead

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Curiously-Recurring Template Pattern (CRTP)

B when derived type known at compile time, may want behavior similar to
virtual functions but without run-time cost (by performing binding at
compile time instead of run time)

B can be achieved with technique known as

B class Derived derives from class template instantiation using Derived
itself as template argument

B example:

template <class Derived>
class Base {

VA
i

class Derived : public Base<Derived> {

/..
i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

CRTP Example: Static Polymorphism

#include <iostream>

1
2

3 template <class Derived>

4 class Base {

5 public:

6 void interface() {

7 std::cout << "Base::interface called\n";

8 static_cast<Derived*>(this)->implementation();
9 }

10 //

ol

12

13 class Derived : public Base<Derived> {

14 public:

15 void implementation() {

16 std::cout << "Derived::implementation called\n";
17 }

18 //

19 };

20

21 int main() {

22 Derived d;

23 d.interface();

24 // calls Base::interface which, in turn, calls
25 // Derived::implementation

26 // no virtual function call, however

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

CRTP Example: Static Polymorphis

class TreeNode {

public:
enum Kind {RED, BLACK}; // kinds of nodes
TreeNode *left(); // get left child node
TreeNode *right(); // get right child node
Kind kind(); // get kind of node
/).

ti

template <class Derived>
class GenericVisitor {
public:
void visit_preorder (TreeNode* node) {
if (node) {
process_node (node) ;
visit_preorder (node->left());
visit_preorder (node->right ());
}
}
void visit_inorder (TreeNode* node) { /* ... */}
void visit_postorder (TreeNode* node) { /* ... */}
void process_red_node (TreeNode* node) { /* ... %/ };
void process_black_node (TreeNode* node) { /#* ... #/ };
private:
Derived& derived() {return *static_cast<Derived*>(this);}
void process_node (TreeNode* node) {
if (node->kind() == TreeNode::RED) {
derived() .process_red_node (node) ;
} else {
derived() .process_black_node (node) ;
}

}
bi

class SpecialVisitor : public GenericVisitor<SpecialVisitor> {

public:

void process_red_node (TreeNode* node) { /# ... #/}
b
int main() {SpecialVisitor v;}

ichael D. Adams

CRTP Example: Comparisons

#include <cassert>

template<class Derived>
struct Comparisons {
friend bool operator==(const Comparisons<Derived>& x,
const Comparisons<Derived>& y) {
const Derived& xr = static_cast<const Derivedé&> (x);
const Derived&¢ yr = static_cast<const Derived&> (y);
return ! (xr < yr) && !(yr < xr);

® N OO R W NS

o ©

}

// operator!= and others

o =

}i

class Widget : public Comparisons<Widget> {
public:
Widget (bool b, int i) : b_(b), 1i_(i) {}
friend bool operator<(const Widget& x, const Widgeté& y)
{return x.i_ < y.i_;}
private:
bool Db_;
int i_;

DN N = = o
N2 00N O~

i

24 int main() |

N
w

25 Widget wl(true, 1);
26 Widget w2 (false, 1);
27 assert (wl == w2);

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

CRTP Example: Object Counting

©®NO s WN =

#include <iostream>
#include <cstdlib>

template <class T>
class Counter {
public:
Counter () {++count_;}
Counter (const Counter&) {++count_;}
~Counter () {--count_;}
static std::size_t howMany() {return count_;}
private:
static std::size_t count_;
}i

template <class T>
std::size_t Counter<T>::count_ = 0;

// inherit from Counter to count objects
class Widget: private Counter<wWidget> {
public:

uiing Counter<Widget>::howMany;

i

int main() {
Widget wl; int cl = Widget::howMany();
Widget w2, w3; int c2 = Widget::howMany();
std::cout << ¢l << ' 7 << ¢2 << '\n’;

Section 2.7.3

Multiple Inheritance and Virtual Inheritance

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Multiple Inheritance

language allows derived class to inherit from more than one base class
: deriving from more than one base class

B although multiple inheritance not best solution for most problems, does
have some compelling use cases

B one compelling use case is for inheriting interfaces by deriving from
abstract base classes with no data members

B when misused, multiple inheritance can lead to very convoluted code
B in multiple inheritance contexts, ambiguities in naming can arise

B for example, if class Derived inherits from classes Basel and Base?2,
each of which have member called x, name x can be ambiguous in some
contexts

B scope resolution operator can be used to resolve ambiguous names

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Ambiguity Resolution Example

class Basel {
public:
void func();
//
i

class Base2 {
void func();

/7

© © N O O A N =

0 };

12 class Derived : public Basel, public BaseZ {
13 public:
14 /7.

15}

17 int main() {

18 Derived d;

19 d.func(); // ERROR: ambiguous function call
20 d.Basel::func(); // OK: invokes Basel::func
21 d.Base2::func(); // OK: invokes Basel2::func
2 }

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Multiple Inheritance Example

class Input_stream {

1

2 public:

3 virtual ~Input_stream() {}

4 virtual int read_char() = 0;

5 virtual int read(char* buffer, int size) = 0;
6 virtual bool is_input_ready() const = 0;

7 // ...(all pure virtual, no data)

8}

9

10 class Output_stream {

11 public:

12 virtual ~Output_stream() {}

13 virtual int write_char(char c) = 0;

14 virtual int write(char* buffer, int size) = 0;
15 virtual int flush_output() = 0;

16 // ... (all pure virtual, no data)

17}

19 class Input_output_stream : public Input_stream,
20 public Output_stream {
VYR

2 };

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Dreaded Diamond Inheritance Pattern

B use of multiple inheritance can lead to so called dreaded diamond
scenario

u inheritance pattern has following form:

A

/\
\/

D

B class D will have two subobjects of class A, since class D (indirectly)
inherits twice from class A

B situation like one above probably undesirable and often sign of poor
design

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Dreaded Diamond Example

class Base {

1

2 public:

3 /S ..

4+ protected:

5 int data_;

6 1}

7

8 class D1 : public Base { /* ... */ };
10 class D2 : public Base { /* ... */ };
12 class Join : public D1, public D2 {

13 public:

14 void method() {

15 data_ = 1; // ERROR: ambiguous
16 Dl::data_ = 1; // OK: unambiguous

18 };

20 int main

{

()
21 Join* j new Join();
22 Base* b;
23 b = j; // ERROR: ambiguous
24 b = static_cast<D1*>(j); // OK: unambiguous

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Virtual Inheritance

B when using multiple inheritance, may want to ensure that only one
instance of base-class object can appear in derived-class object

n : base class that is only ever included once in derived
class, even if derived from multiple times

L : when derived class inherits from base class that is
virtual

B virtual inheritance can be used to avoid situations like dreaded diamond
pattern

B order of construction: virtual base classes constructed first in depth-first
left-to-right traversal of graph of base classes, where left-to-right refers to
order of appearance of base class names in class definition

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Avoiding Dreaded Diamond With Virtual Inheritance

class Base {

1

2 public:

3 J/ ...

4+ protected:

5 int data_;

6 };

7

s class Dl : public virtual Base { /* ... */ };
9

10 class D2 : public virtual Base { /* ... #*/ };

12 class Join : public D1, public D2 {

13 public:
14 void method() {
15 data_ = 1; // OK: unambiguous

16 }
17 };

19 int main() {

20 Join* j new Join();
21 Base* b j; // OK: unambiguous
2 |}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.7.4

References

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

References |

N. Meyers. The empty base C++ optimization. Dr. Dobb’s Journal, Aug.
1997. Available online at http://www.cantrip.org/emptyopt.html.

]

J. O. Coplien. Curiously recurring template patterns. C++ Report, pages
24-27, Feb. 1995.

S. Meyers. Counting objects in C++. C++ User’s Journal, Apr. 1998.
Available online at http:
/ /www.drdobbs.com/cpp/counting-objects-in-c/184403484.

a

A A. Nasonov. Better encapsulation for the curiously recurring template
pattern. Overload, 70:11-13, Dec. 2005.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.cantrip.org/emptyopt.html
http://www.drdobbs.com/cpp/counting-objects-in-c/184403484
http://www.drdobbs.com/cpp/counting-objects-in-c/184403484

Section 2.8

C++ Standard Library

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

C++ Standard Library

B C++ standard library provides huge amount of functionality (orders of
magnitude more than C standard library)

B uses std namespace (to avoid naming conflicts)

B well worth effort to familiarize yourself with all functionality in library in
order to avoid writing code unnecessarily

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

C++ Standard Library (Continued)

B functionality can be grouped into following sublibraries:

language support library (e.g., exceptions, memory management)
diagnostics library (e.g., assertions, exceptions, error codes)

general utilities library (e.g., functors, date/time)

strings library (e.g., C++ and C-style strings)

localization library (e.g., date/time formatting and parsing, character
classification)

containers library (e.g., sequence containers and associative containers)
iterators library (e.g., stream iterators)

algorithms library (e.g., searching, sorting, merging, set operations, heap
operations, minimum/maximum)

numerics library (e.g., complex numbers, math functions)

input/output (I/O) library (e.g., streams)

regular expressions library (e.g., regular expression matching)

atomic operations library (e.g., atomic types, fences)

thread support library (e.g., threads, mutexes, condition variables, futures)

BNE EmEmE

BEEBEEHA

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Commonly-Used Header Files

Language-Support Library

| Header File | Description |

cstdlib run-time support, similar to stdlib.h from C
(e.g., exit)

limits properties of fundamental types (e.g.,
numeric_limits)

exception exception handling support (e.g.,
set_terminate, current_exception)

initializer_list | initializer_list classtemplate

Diagnostics Library
Header File | Description

cassert assertions (e.g., assert)
stdexcept | predefined exception types (e.g., invalid_argument,
domain_error, out_of_range)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Commonly-Used Header Files (Continued 1)

General-Utilities Library

| Header File | Description \

utility basic function and class templates (e.g., swap, move,
pair)

memory memory management (e.g., unique_ptr, shared_ptr,
addressof)

functional functors (e.g., less, greater)

type_traits | type traits (e.g., is_integral, is_reference)

chrono clocks (e.9-, system_clock, steady_clock,
high_resolution_clock)

Strings Library
Header File | Description \

string C++ string classes (e.g., string)

cstring C-style strings, similar to string.h from C (e.g., strlen)

cctype character classification, similar to ctype.h from C (e.g.,
isdigit, isalpha)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Commonly-Used Header Files (Continued 2)

Containers, lterators, and Algorithms Libraries

| Header File | Description \
array array class
vector vector class
deque deque class
list list class
set set classes (i.e., set, multiset)
map map classes (i.e., map, multimap)

unordered_set | unordered set classes (i.e., unordered_set,
unordered_multiset)
unordered_map | unordered map classes (i.e., unordered_map,
unordered_multimap)

iterator iterators (e.g., reverse_iterator,
back_inserter)
algorithm algorithms (e.g., min, max, sort)

forward_list forward_list class

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Commonly-Used Header Files (Continued 3)

Numerics Library
Header File | Description ‘

cmath C math library, similar to math.h from C (e.g., sin, cos)

complex complex numbers (e.g., complex)

numeric generalized numeric operations (e.g., gcd, lcm,
inner_product)

random random number generation (e.g.,

uniform_int_distribution,
uniform_real_distribution,
normal_distribution)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Commonly-Used Header Files (Continued 4)

I/O Library
| Header File | Description |

iostream iostream objects (e.g., cin, cout, cerr)

istream input streams (e.g., istream)

ostream output streams (e.g., ostream)

ios base classes and other declarations for streams
(e.9., ios_base, hex, fixed)

fstream file streams (e.g., £stream)

sstream string streams (e.g., stringstream)

iomanip manipulators (e.g., setw, setprecision)

Regular-Expressions Library
| Header File | Description |

| regexp | regular expressions (e.g., basic_regex) \

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Commonly-Used Header Files (Continued 5)

Atomic-Operations and Thread-Support Libraries

Header File Description

atomic atomics (e.g., atomic)

thread threads (e.g., thread)

mutex mutexes (e.g., mutex, recursive_mutex,

timed_mutex)
condition_variable | condition variables (e.g., condition_variable)
future futures (e.g., future, shared_future, promise)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.8.1

Containers, Iterators, and Algorithms

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Standard Template Library (STL)

B |arge part of C++ standard library is collection of class/function templates
known as standard template library (STL)
B STL comprised of three basic building blocks:

H containers
iterators
algorithms

B containers store elements for processing (e.g., vector)

B iterators allow access to elements for processing (which are often, but not
necessarily, in containers)

B algorithms perform actual processing (e.g., search, sort)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Containers

: class that represents collection/sequence of elements

B usually container classes are template classes

: collection in which every element has certain
position that depends on time and place of insertion

B examples of sequence containers include:

o array (fixed-size array)
o vector (dynamic-size array)
o list (doubly-linked list)

n : collection in which position of
element in depends on its value or associated key and some predefined
sorting/hashing criterion

B examples of associative containers include:

o set (collection of unique keys, sorted by key)
o map (collection of key-value pairs, sorted by key, keys are unique)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Sequence Containers and Container Adapters

Sequence Containers

Name | Description
array fixed-size array
vector dynamic-size array
deque double-ended queue
forward_list | singly-linked list
list doubly-linked list
Container Adapters
Name Description
stack stack
queue FIFO queue
priority_queue | priority queue

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Associative Containers

Ordered Associative Containers

| Name | Description \
set collection of unique keys, sorted by key
map collection of key-value pairs, sorted by key, keys are unique

multiset | collection of keys, sorted by key, duplicate keys allowed
multimap | collection of key-value pairs, sorted by key, duplicate keys al-

lowed
Unordered Associative Containers
Name | Description
unordered_set collection of unique keys, hashed by key
unordered_map collection of key-value pairs, hashed by key, keys are
unique
unordered_multiset | collection of keys, hashed by key, duplicate keys al-
lowed)
unordered_multimap | collection of key-value pairs, hashed by key, duplicate
keys allowed

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Typical Sequence Container Member Functions

B some member functions typically provided by sequence container classes

listed below (where T denotes name of container class)

| Function | Description
T() create empty container (default constructor)
T (const T&) | copy container (copy constructor)
T(T&&) move container (move constructor)
~T destroy container (including its elements)
empty test if container empty
size get number of elements in container
push_back insert element at end of container
clear remove all elements from container
operator= assign all elements of one container to other
operator[] | access elementin container

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

Container Example

#include <iostream>

1

2 #include <vector>

3

4 int main() {

5 std::vector<int> values;

6

7 // append elements with values 0 to 9
8 for (int i = 0; 1 < 10; ++1i) {

9 values.push_back(1i);

10 }

M

12 // print each element followed by space
13 for (int i = 0; 1 < values.size(); ++i) {
14 std::cout << values[i] << ' ';

15 }

16 std::cout << '\n’;

17}

19 /+ This program produces the following output:
20 01234567389
21 */

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Motivation for lterators

B different containers organize elements (of container) differently in memory

B want uniform manner in which to access elements in any arbitrary
container

B organization of elements in array/vector container:

v[0] | v[1] | v[2] | v[3]

T T

begin end

B organization of elements in doubly-linked list container:

| [e N e [sy
| vI[0] < v[1l] || vi2] |_ | vI3]
begin end

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Motivation for lterators (Continued)

B consider array/vector container with int elements:

v[0] | v[1] | v[2] | v[3]

T T

begin end

B suppose we want to set all elements in container to zero

B we could use code like:
// int+* begin; int* end;
for (int* iter = begin; iter != end; ++iter)
*iter = 0;
B could we make similar-looking code work for more complicated
organization like doubly-linked list?
B yes, create user-defined type that provides all pointer operations used
above (e.g., dereference, increment, comparison, assignment)

B this leads to notion of iterator

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

lterators

u : object that allows iteration over collection of elements, where
elements are often (but not necessarily) in container
B jterators support many of same operations as pointers
B in some cases, iterator may actually be pointer; more frequently, iterator is
user-defined type
B five different categories of iterators: 1) input, 2) output, 3) forward,
4) bidirectional, and 5) random access
B iterator has particular level of functionality, depending on category
B one of three possibilities of access order:
E forward (i.e., one direction only)
forward and backward
any order (i.e., random access)
B one of three possibilities in terms of read/write access:
H can only read referenced element (once or multiple times)
can only write referenced element (once or multiple times)
can read and write referenced element (once or multiple times)
B const and mutable (i.e., non-const) variants (i.e., read-only or read/write
access, respectively)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Abilities of Iterator Categories

| Category | Ability | Providers \
Input Reads (once only) istream
forward (istream_iterator)
Output Writes (once only) ostream
forward (ostream_iterator),
inserter_iterator
Forward Reads and writes forward_list,
forward unordered_set,
unordered_multiset,
unordered_map,
unordered_multimap
Bidirectional Reads and writes list, set, multiset,
forward and backward | map, multimap
Random access | Reads and writes (built-in) array, array,
with random access vector, deque, string

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

Input lterators

Expression Effect

T(a) copies iterator (copy constructor)

*a dereference as rvalue (i.e., read only); cannot
a->m dereference at old position

++a steps forward (returns new position)

at+ steps forward

a==>b test for equality

al=b test for inequality

B not assignable (i.e., no assignment operator)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Output lterators

Expression Effect

T (a) copies iterator (copy constructor)

*a dereference as Ivalue (i.e., write only); can only

a->m be dereferenced once; cannot dereference at old
position

++a steps forward (returns new position)

at+ steps forward (returns old position)

B not assignable (i.e., no assignment operator)

B no comparison operators (i.e., operator==, operator!=)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Forward lterators

Expression \ Effect \

T() default constructor

T(a) copy constructor

a=b>b assignment

*a dereference

a—>m

++a steps forward (returns new position)
at+ steps forward (returns old position)
a == test for equality

al=b test for inequality

B must ensure that valid to dereference iterator before doing so

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Bidirectional lterators

B bidirectional iterators are forward iterators that provide additional
functionality of being able to iterate backward over elements

B bidirectional iterators have all functionality of forward iterators as well as
those listed in table below

Expression Effect

--a steps backward (returns new position)

a-- steps backward (returns old position)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Random-Access lterators

B random access iterators provide all functionality of bidirectional iterators
as well as providing random access to elements

B random access iterators provide all functionality of bidirectional iterators
as well as those listed in table below

Expression | Effect \

aln] dereference element at index n (where n can be nega-
tive)

a +=n steps n elements forward (where n can be negative)

a-=n steps n elements backward (where n can be negative)

a+n iterator for nth next element

n+ a iterator for nth next element

a-n iterator for nth previous element

a-b distance fromato b

a<hb test if a before b

a>b testif a afterb

a<=b test if a not after b

a>b test if a not before b

B pointers (built into language) are examples of random-access iterators

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

lterator Example

#include <iostream>

1

2 #include <vector>

3

4 int main() {

5 std::vector<int> values(10);

6

7 std::cout << "number of elements: " <<

8 (values.end() - values.begin()) << ’'\n’;

9

10 // 1initialize elements of vector to 0, 1, 2,
11 for (std::vector<int>::iterator i = values.begin();
12 i !'= values.end(); ++1i) {

13 *1 = 1 - values.begin();

14 }

15

16 // print elements of vector

17 for (std::vector<int>::const_iterator i =

18 values.cbegin(); 1 != values.cend(); ++i) {
19 std::cout << ' ' << *i;

20

21 std::cout << "\n’;

2 |}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

lterator Gotchas

B do not dereference iterator unless it is known to validly reference some
object

B some operations on container can invalidate some or all iterators
referencing elements in container

B critically important to know which operations invalidate iterators in order
to avoid using iterator that has been invalidated

B incrementing iterator past end of container or decrementing iterator before
beginning of container results in undefined behavior

B input and output iterators can only be dereferenced ornce at each position

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Algorithms

: sequence of computations applied to some generic type

algorithms use iterators to access elements involved in computation

often pair of iterators used to specify range of elements on which to
perform some computation

what follows only provides brief summary of algorithms
for more details on algorithms, see:

o http://www.cplusplus.com/reference/algorithm
o http://en.cppreference.com/w/cpp/algorithm

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.cplusplus.com/reference/algorithm
http://en.cppreference.com/w/cpp/algorithm

Functions

Non-Modifying Sequence Operations

| Name | Description |
all_of test if condition true for all elements in range
any_of test if condition true for any element in range
none_of test if condition true for no elements in range
for_each apply function to range

for_each_n

apply function to first n elements in sequence

find

find values in range

find_if find element in range
find_if_not find element in range (negated)
find_end find last subsequence in range

find_first_of

find element from set in range

adjacent_find

find equal adjacent elements in range

count

count appearances of value in range

count_if count number of elements in range satisfying condition
mismatch get first position where two ranges differ

equal test whether elements in two ranges differ

search find subsequence in range

search_n find succession of equal values in range

Copyright © 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

Functions (Continued 1)

Modifying Sequence Operations

| Name | Description
copy copy range of elements
copy_if copy certain elements of range
copy_n copy n elements
b copy range of elements backwards

copy_backward

move range of elements

move_backward

move range of elements backwards

swap exchange values of two objects (in utility header)
swap_ranges exchange values of two ranges

iter_swap exchange values of objects referenced by two iterators
transform apply function to range

replace replace value in range

replace_if

replace values in range

replace_copy

copy range replacing value

replace_copy_if

copy range replacing value

sample

selects n random elements from sequence

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

Functions (Continued 2)

Modifying Sequence Operations (Continued)

| Name | Description
fill fill range with value
fill_n fill sequence with value
generate generate values for range with function

generate_n

generate values for sequence with function

remove

remove value from range (by shifting elements)

remove_if

remove elements from range (by shifting elements)

remove_copy

copy range removing value

remove_copy_if

copy range removing values

unique remove consecutive duplicates in range
unique_copy copy range removing duplicates
reverse reverse range

reverse_copy

copy range reversed

rotate rotate elements in range
rotate_copy copies and rotates elements in range
shuffle randomly permute elements in range

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

Functions (Continued 3)

Partition Operations

| Name | Description \
is_partitioned test if range is partitioned by predicate
partition partition range in two
partition_copy copies range partition in two
stable_partition | partition range in two (stable ordering)
partition_point get partition point

Sorting
Name | Description
is_sorted test if range is sorted
is_sorted_until find first unsorted element in range
sort sort elements in range
stable_sort sort elements in range, preserving order of
equivalents
partial_sort partially sort elements in range
partial_sort_copy | copy and partially sort range
nth_element sort element in range

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Functions (Continued 4)

Binary Search (operating on sorted ranges)

| Name | Description \
lower_bound get iterator to lower bound
upper_bound get iterator to upper bound
equal_range get subrange of equal elements
binary_search | testif value exists in sorted range

Set Operations (on sorted ranges)

Name

|

Description

merge

merge sorted ranges

inplace_merge

merge consecutive sorted ranges

includes test whether sorted range includes another
sorted range
set_union union of two sorted ranges

set_intersection

intersection of two sorted ranges

set_difference

difference of two sorted ranges

set_symmetric_difference

symmetric difference of two sorted ranges

Copyright (© 2015-2020 Michael D. Adams

C++

Version: 2020-02-29

Functions (Continued 5)

Heap Operations

Name Description

is_heap test if range is heap
is_heap_until | first first element not in heap order
push_heap push element into heap range
pop_heap pop element from heap range
make_heap make heap from range
sort_heap sort elements of heap

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

Functions (Continued 6)

Minimum/Maximum

Name Description

min get minimum of given values

max get maximum of given values

minmax get minimum and maximum of given values

min_element

get smallest element in range

max_element

get largest element in range

minmax_element

get smallest and largest elements in range

clamp

clamp value between pair of boundary values

lexicographic_compare

lexicographic less-than comparison

is_permutation

test if range permutation of another

next_permutation

transform range to next permutation

prev_permutation

transform range to previous permutation

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

Functions (Continued 7)

Numeric Operations

[Name | Description
iota fill range with successive values
accumulate accumulate values in range

adjacent_difference

compute adjacent difference of range

inner_product

compute inner product of range

partial_sum

compute partial sums of range

reduce

similar to accumulate except out of order

exclusive_scan

similar to partial_sum, excludes ith input el-
ement from ith sum

inclusive_scan

similar to partial_sum, includes ith input el-
ement in ith sum

transform_reduce

applies functor, then reduces out of order

transform_exclusive_scan

applies functor then, calculates exclusive
scan

transform_inclusive_scan

applies functor, then calculates inclusive scan

Copyright (© 2015-2020 Michael D. Adams

C++

Version: 2020-02-29

Functions (Continued 8)

Other Numeric Algorithms

| Name | Description

gcd

compute greatest common divisor of two integers

lcm

compute least common multiple of two integers

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Algorithms Example

#include <iostream>

1
2 #include <vector>

3 #include <algorithm>

4 #include <random>

5

6 int main() {

7 std::vector<int> values;

8

9 int x;

10 while (std::cin >> x) {values.push_back(x);}

11

12 std::cout << "zero count: " << std::count (

13 values.begin(), values.end(), 0) << '\n’;

14

15 std::default_random_engine engine;

16 std::shuffle(values.begin(), values.end(), engine);
17 std::cout << "random order:";

18 for (auto i : values) {std::cout << ' ' << i;}
19 std::cout << "\n’;

20

21 std::sort (values.begin(), values.end());

22 std::cout << "sorted order:";

23 for (auto i : values) {std::cout << ' ' << i;}
24 std::cout << '\n’;

25 }

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Prelude to Functor Example

B consider std: :transform function template:

template <class Inputlterator, class Outputlterator,
class UnaryOperator>
OutputIterator transform(InputlIterator first,
InputIterator last, OutputIterator result,
UnaryOperator op);

B gpplies op to each element in range [first,last) and stores each
returned value in range beginning at result (where ranges can overlap)

B std::transform might be written as:

template <class Inputlterator, class Outputlterator,
class UnaryOperator>
OutputIterator transform(InputlIterator first,
InputIterator last, OutputlIterator result,
UnaryOperator op) {
while (first != last) {
*result = op(*first);
++first;
++result;
}
return result;

}
B op is entity that can be used with function call syntax (i.e., function or
functor)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Functor Example

® N o oA W N =

#include <iostream>
#include <vector>
#include <algorithm>

struct MultiplyBy { // Functor class
MultiplyBy (double factor) : factor_(factor) {}
double operator () (double x) const
{return factor_ * x;}
private:
double factor_; // multiplicative factor
bi

int main() {
MultiplyBy mb(2.0);
std::vector v{1.0, 2.0, 3.0};
// v contains 1 2 3
std::transform(v.begin(), v.end(), v.begin(), mb);
// v contains 2 4 6
for (auto i : v) {std::cout << 1 << '\n’;}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.8.2

The std::array Class Template

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The std: :array Class Template

one-dimensional array type, where size of array is fixed at compile time

array declared as:
template <class T, std::size_t N>
class array;
T: type of elements in array
N: number of elements in array
what follows only intended to provide overview of array

for additional details on array, see:

o http://en.cppreference.com/w/cpp/container/array
0 http://www.cplusplus.com/reference/stl/array

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://en.cppreference.com/w/cpp/container/array
http://www.cplusplus.com/reference/stl/array

Member Types

| Member Type | Description \

value_type T (i.e., element type)

size_type type used for measuring size (i.e., std: :size_t)

difference_type type used to measure distance (i.e,
std::ptrdiff_t)

reference value_typeé&

const_reference const value_typeé&

pointer value_type*

const_pointer const value_type*

iterator random-access iterator type

const_iterator const random-access iterator type

reverse_iterator reverse iterator type (i.e.,
reverse_iterator<iterator>)

const_reverse_iterator | const reverse iterator type (i.e.,
reverse_iterator<const_iterator>)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Member Functions

Construction, Destruction, and Assignment
[Member Name [Description \

constructor initializes array

destructor destroys each element of array

operator= overwrites every element of array with corre-
sponding element of another array

Iterators
Member Name | Description
begin return iterator to beginning
end return iterator to end
cbegin return const iterator to beginning
cend return const iterator to end
rbegin return reverse iterator to beginning
rend return reverse iterator to end
crbegin return const reverse iterator to beginning
crend return const reverse iterator to end

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Member Functions (Continued 1)

Capacity

| Member Name [Description \

empty test if array is empty
size return size
max_size return maximum size

Element Access

| Member Name | Description
operator[] | access element (no bounds checking)
at access element (with bounds checking)
front access first element
back access last element
data return pointer to start of element data

Modifiers

Member Name | Description

fill

fill container with specified value

swap

swap contents of two arrays

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

array Example

#include <array>

#include <iostream>

#include <algorithm>

#include <experimental/iterator>

int main() {
std::array<int, 3> al{3, 1, 2};
std::array<int, 3> a2;
a2.£111(42);
for (auto i : a2) {
std::cout << 1 << '\n’;

® N o s WD =

N = o ©

}
a2 = al;
std::sort (al.begin(), al.end());
std::copy(al.begin(), al.end(),
std::experimental::make_ostream_joiner(std::cout, ", "));
std::cout << "\n’;
for(auto i = a2.begin(); i != a2.end(); ++i) {
std::cout << *i;
if (i !'= a2.end() - 1) {std::cout << ", ";}

NN = = oo
= O © o N O~

}

std::cout << '\n’;

NN
w N

Copyright (© 2015-2020 Michael D. Adams Version: 2020-02-29

array Example

#include <array>

1
2 #include <iostream>

4 #include <algorithm>

5 int main() {

6 // Fixed-size array with 4 elements.

! std::array<int, 4> af{2, 4, 3, 1};

9 // Print elements of array.

10 for (auto i = a.cbegin(); 1 != a.cend(); ++i) {
11 std::cout << ' 7 << *i;

12 }

13 std::cout << '\n’;

15 // Sort elements of array.

13 std::sort (a.begin(), a.end());

18 // Print elements of array.

19 for (auto i = a.cbegin(); 1 != a.cend(); ++i) {
20 std::cout << ' 7 << *i;

21 }

22 std::cout << "\n’;

23}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.8.3

The std::vector Class Template

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The std: :vector Class Template

B dynamically-sized one-dimensional array type, where type of array
elements and storage allocator specified by template parameters
B vector declared as:
template <class T, class Allocator = allocator<I>>
class vector;
B T: type of elements in vector
B Allocator: type of object used to handle storage allocation (unless
custom storage allocator needed, use default allocator<T>)
B what follows only intended to provide overview of vector
B for additional details on vector, see:

o http://www.cplusplus.com/reference/stl/vector
o http://en.cppreference.com/w/cpp/container/vector

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.cplusplus.com/reference/stl/vector
http://en.cppreference.com/w/cpp/container/vector

Member Types

Member Type

| Description

|

value_type

T (i.e., element type)

allocator_type

Allocator (i.e., allocator)

size_type

type used for measuring size (typically unsigned in-
tegral type)

difference_type

type used to measure distance (typically signed in-
tegral type)

reference value_typeé&
const_reference const value_typeé&
pointer allocator_traits<Allocator>::pointer

const_pointer

allocator_traits<Allocator>::
const_pointer

iterator

random-access iterator type

const_iterator

const random-access iterator type

reverse_iterator reverse iterator type
(reverse_iterator<iterator>)
const_reverse_iterator | const reverse iterator type

(reverse_iterator<const_iterator>)

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

Member Functions

Construction, Destruction, and Assignment
| Member Name | Description |

constructor construct vector (overloaded)

destructor destroy vector

operator= assign vector

Iterators

Member Name | Description
begin return iterator to beginning
end return iterator to end
cbegin return const iterator to beginning
cend return const iterator to end
rbegin return reverse iterator to beginning
rend return reverse iterator to end
crbegin return const reverse iterator to beginning
crend return const reverse iterator to end

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Member Functions (Continued 1)

Capacity
| Member Name | Description \

empty test if vector is empty
size return size
max_size return maximum size
capacity return allocated storage capacity
reserve request change in capacity
shrink_to_fit | shrink to fit

Element Access
Member Name | Description |

operator[] | access element (no bounds checking)
at access element (with bounds checking)
front access first element

back access last element

data return pointer to start of element data

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Member Functions (Continued 2)

Modifiers

Member Name

|

Description

clear clear content

assign assign vector content

insert insert elements

emplace insert element, constructing in place
push_back add element at end

emplace_back

insert element at end, constructing in place

erase erase elements

pop_back delete last element

resize change size

swap swap content of two vectors

Allocator

| Member Name | Description \

| get_allocator | get allocator used by vector |

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

Invalidation of References, lterators, and Pointers

u : total number of elements that vector could hold without
requiring reallocation of memory

B any operation that causes reallocation of memory used to hold elements
of vector invalidates all iterators, references, and pointers referring to
elements in vector

B any operation that changes capacity of vector causes reallocation of
memory

B any operation that adds or deletes elements can invalidate references,
iterators, and pointers

B operations that can potentially invalidate references, iterators, and
pointers to elements in vector include:

insert, erase, push_back, pop_back, emplace, emplace_back,
resize, reserve, operator=, assign, clear, shrink_to_fit, swap
(past-the-end iterator only)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/container.requirements.general#9

lterator Invalidation Example

B start denotes pointer to first element in array holding elements of vector
1 is iterator for vector (e.g., vector<T>::const_iterator or vector<T>::iterator)

B initial vector has three elements and capacity of three

a b c
oo
start i

B push_back (d) invoked

B new larger array is allocated (say, twice size of original); elements in old array
moved/copied to new array; then new element added

? ? ? a b c d unused|unused
i start

B elements in old array destroyed and memory for old array deallocated; iterator i
is now invalid:

a b ol d unused | unused

vector Example: Constructors

std::vector<double> v0;
// empty vector

std::vector<double> v1(10);
// vector with 10 elements, each initialized to 0.0
// (effectively via value initialization)

® N ORWN =

std::vector<double> v2 (10, 5.0);
// vector with 10 elements, each initialized to 5.0

©

11 std::vector<int> v3{1, 2, 3};
12 // vector with 3 elements: 1, 2, 3
13 // std::initializer list (note brace brackets)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

vector Example: lterators

#include <iostream>

1
g #include <vector>

4 int main() {

5 std::vector v{0, 1, 2, 3};

6 for (auto& i : v) {++i;}

7 for (auto 1 : v)

8 std::cout << ' 1 << i;

9 }

10 std::cout << '\n’;

1 for (auto i = v.begin(); i != v.end(); ++i) {
12 -=(*1i);

13 }

14 for (auto i = v.cbegin(); 1 != v.cend(); ++i) {
15 std::cout << ' 7 << *i;

16 }

17 std::cout << '\n’;

18 for (auto i = v.crbegin(); i != v.crend(); ++i) {
19 std::cout << ' 7 << *i;

20 }

21 std::cout << '\n’;

2 |}

B program output:
1234
0123
3210

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

vector Example

#include <iostream>

1
g #include <vector>

4 int main() {

5 std::vector<double> values;

: //

8 // Erase all elements and then read elements from
9 // standard input.

10 values.clear();

11 double x;

12 while (std::cin >> x) {

13 values.push_back (x);

14 }

15 std::cout << "number of values read: " <<

15 values.size() << '\n’;

18 // Loop over all elements and print the number of
19 // negative elements found.

20 int count = 0;

21 for (auto i = values.cbegin(); i != values.cend(); ++i) {
22 if (*1 < 0.0) {

23 ++count;

24 }

25 }

26 std::cout << "number of negative values: " << count <<

27 "\n’;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

vector Example: Emplace

#include <iostream>

1
g #include <vector>

4 int main() {

5 std::vector<std::vector<int>> v{{1, 2, 3}, {4, 5, 6}};

6 v.emplace_back (10, 0);

7 // The above use of emplace_back is more efficient than:
8 // v.push_back (std::vector<int> (10, 0));

9 for (const autos i : v) {

10 for (const autos j : i) {

1 std::cout << 7 7 << 3j;

12

13 std::cout << '\n’;

14 }

o

B program output:

123
456
000000O00O00O

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.8.4

The std::basic_string Class Template

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The std: :basic_string Class Template

B character string type, parameterized on character type, character traits,
and storage allocator

B basic_string declared as:
template <class CharT,
class Traits = char_traits<CharT>,
class Allocator = allocator<CharT>>
class basic_string;
B CharT: type of characters in string
B Traits: class that describes certain properties of CharT (normally, use
default)
B Allocator: type of object used to handle storage allocation (unless
custom storage allocator needed, use default)
B string is simply abbreviation for basic_string<char>
B what follows is only intended to provide overview of basic_string
template class (and string class)
B for more details on basic_string, see:
0 http://www.cplusplus.com/reference/string/basic_string
o http://en.cppreference.com/w/cpp/string/basic_string

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.cplusplus.com/reference/string/basic_string
http://en.cppreference.com/w/cpp/string/basic_string

Member Types

| Member Type | Description \

traits_type Traits (i.e., character traits)

value_type Traits::char_type (i.e., character type)

allocator_type Allocator

size_type allocator_traits<Allocator>::size_type

difference_type allocator_traits<Allocator>::
difference_type

reference value_typeé&

const_reference const value_typeé&

pointer allocator_traits<Allocator>::pointer

const_pointer allocator_traits<Allocator>::
const_pointer

iterator random-access iterator type

const_iterator const random-access iterator type

reverse_iterator reverse iterator type
(reverse_iterator<iterator>)

const_reverse_iterator | const reverse iterator type
(reverse_iterator<const_iterator>)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Member Functions

Construction, Destruction, and Assignment

| Member Name | Description |

constructor construct

destructor destroy

operator= assign

Iterators

Member Name | Description
begin return iterator to beginning
end return iterator to end
cbegin return const iterator to beginning
cend return const iterator to end
rbegin return reverse iterator to reverse beginning
rend return reverse iterator to reverse end
crbegin return const reverse iterator to reverse beginning
crend return const reverse iterator to reverse end

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

Member Functions (Continued 1)

Capacity

| Member Name | Description \
empty test if string empty
size get length of string
length same as size
max_size get maximum size of string
capacity get size of allocated storage
reserve change capacity
shrink_to_fit | shrink to fit

Element Access
Member Name | Description |

operator[] | access character in string (no bounds checking)
at access character in string (with bounds checking)
front access first character in string

back access last character in string

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Member Functions (Continued 2)

Operations
| Member Name | Description
clear clear string
assign assign content to string
insert insert into string
push_back append character to string
operator+= | append to string
append append to string
erase erase characters from string
pop_back delete last character from string
replace replace part of string
resize resize string
swap swap contents with another string

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

Member Functions (Continued 3)

Operations (Continued)

Member Name

Description \

c_str get nonmodifiable C-string equivalent
data obtain pointer to first character of string
copy copy sequence of characters from string
substr generate substring
compare compare strings
Search
Member Name Description

find

find first occurrence of content in string

rfind

find last occurrence of content in string

find _first_of

find first occurrence of characters in string

find_first_not_of

find first absence of characters in string

find_last_of

find last occurrence of characters in string

find_last_not_of

find last absence of characters in string

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

Member Functions (Continued 4)

Allocator
| Member Name | Description |

| get_allocator | getallocator |

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Non-Member Functions

Numeric Conversions

Name Description

stoi convert string to int

stol convert string to 1long

stoll convert string to long long

stoul convert string to unsigned long

stoull convert string to unsigned long long
stof convert string to £loat

stod convert string to double

stold convert string to long double

to_string | convertintegral or floating-point value to string
to_wstring | convertintegral or floating-point value to wstring

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

string Example

#include <iostream>

1
2 #include <string>

4 int main() {

5 std::string s;

6 if (! (std::cin >> s)) {

7 s.clear();

8 }

9 std::cout << "string: " << s << '\n’;

10 std::cout << "length: " << s.size() << '\n’;

1 std::string b;

12 for (auto i = s.crbegin(); i != s.crend(); ++i) {
13 b.push_back (*1);

14 }

E std::cout << "backwards: " << b << '\n’;

17 std::string msg = "Hello";

18 msg += ", World!"; // append ", World!"

g std::cout << msg << '\n’;

21 const char* cstr = s.c_str();

22 std::cout << "C-style string: " << cstr << '\n’;
23}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Numeric/String Conversion Example

#include <iostream>

1
g #include <string>

4 int main() {

5 double x = 42.24;

6 // Convert double to string.
7 std::string s = std::to_string(x);
g std::cout << s << '\n’;

10 s = "3.14";

11 // Convert string to double.
12 X = std::stod(s);

13 std::cout << x << '\n’;

14

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.8.5

Other Container Classes

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The std: :pair Class Template

B collection of two heterogeneous objects
B pair declared as:
template <class T1l, class T2>
struct pair;
B T1: type of first element in pair
B T2: type of second element in pair

B first and second elements accessible via data members first and
second, respectively

B elements of pair can also be accessed with std: : get function template

B pair is effectively equivalent to std: :tuple (to be discussed shortly)
with two elements

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

pair Example

#include <tuple>

1

2 #include <cassert>

3

4 int main() {

5 std::pair p(true, 42);

6 assert (p.first && p.second == 42);
7 assert (p.first == std::get<0>(p) &&
8 p.second == std::get<1l>(p));

9 std::pair g(true, 42);

10 assert(p == q);

11 p = {false, 0};

12 assert(p != q);

13 p.swap(q);

14 auto [b, i] = p;

15 assert (b == true && 1 == 42);

16 assert (std::get<bool> (p) && std::get<0>(p));
17 assert (std::get<int>(p) == 42 &&

18 std::get<l>(p) == 42);

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The std: :tuple Class Template

fixed-size collection of heterogeneous values

tuple is generalization of std: :pair

tuple declared as:

template <class... Ts>
class tuple;

Ts: types of elements that tuple holds (which may be empty)

elements of tuple can be accessed with std: : get function template

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

tuple Example

#include <tuple>

1

2 #include <cassert>

3

4 int main() {

5 std::tuple t(true, 42, 'Z2");

6 auto u = std::tuple(true, 42, '7Z");

7 assert (t == u);

8 assert (std::get<bool>(t) && std::get<0>(t));
9 assert (std::get<char>(t) == '"Z’ && std::get<2>(t) == '2");
10 std::get<0>(t) = false;

11 assert (t != u);

12 std::tuple v(false, 0, '0');

13 u = std::tuple(true, 1, '1");

14 v.swap (u);

15 assert (std::get<0>(v));

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The std: :optional Class Template

B simple container that manages optional value (i.e., value that may or may
not be present)

B declaration:
template <class T> class optional;

T is type of optional value

T cannot be reference type

at any given point in time, object either contains value or does not
object can be given value by initialization or assignment

common use case is return value of function that can fail

std::bad_optional_access exception indicates checked access to
optional object that does not contain value

B optional value is required to be stored directly in optional object itself

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/optional.general#1

optional Member Functions

Construction, Destruction, and Assignment
Name | Description \

constructor constructs optional object
destructor destroys optional object (and contained value)
operator= | assigns contents

Observers
Name | Description \
operator-> accesses contained value
operator* accesses contained value
operator bool | tests if object contains value
has_value tests if object contains value
value returns contained value
value_or returns contained value if available and spec-
ified default value otherwise

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

optional Member Functions (Continued)

Modifiers
Name | Description
swap exchange contents
reset clear any contained value
emplace | constructs contained value in place

Copyright (© 2015-2020 Michael D. Adams

C++ Version: 2020-02-29

optional Example

© © N O O A N =

#include <optional>
#include <string>
#include <exception>
#include <cassert>
#include <iostream>

int main() {

using namespace std::literals;
auto s = std::optional ("Hello!"s);
assert (s && s.has_value());

assert (s.value() == "Hello!");

auto t = std::optional ("Goodbye!"s);

s.swap (t);

assert (*s == "Goodbye!" && *t == "Hello!");
s.reset ();

assert (!s && !s.has_value());

std::cout << s.value_or ("Goodbye!") << '\n’;

try {std::cout << s.value() << '\n’;}

catch (const std::bad_optional_access&) |
std::cout << "caught exception\n";

}

s.emplace ("Salut!");
std::cout << s.value() << '\n’;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: Return Type of Function That Can Fail

#include <optional>

1
2 #include <string>

3 #include <fstream>

4 $#include <iostream>

5

6 std::optional<std::string> read_file(const char* file_name) {
7 std::ifstream in(file_name);

8 std::optional<std::string> result;

9 result.emplace (std::istreambuf_iterator<char> (in),

10 std::istreambuf_iterator<char>());

1 if (in.fail() && 'in.eof()) {

12 result.reset ();

13 }

14 return result;

15}

17 int main(int argc, char** argv) {

18 if (argc <= 1) {return 1;}

19 auto s = read_file(argv([l]);

20 if (!s) {

21 std::cerr << "unable to read file\n";
22 return 1;

23 }

24 std::cout << *s;

25 }

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The std: :variant Class Template

B simple container that corresponds to type-safe union
B can hold single value of one of set of allowable types

B declaration:
template <class... Ts> class variant;

B Ts parameter pack containing all allowable types of value that can be
stored in object
B container cannot hold references, arrays, or void

B can hold same type more than once and can hold differently cv-qualified
versions of same type

B default initialized variant holds value of first alternative, which is default
constructed

B std::monostate can be used as placeholder for empty type

B invalid accesses to value of variant object result in
std::bad_variant_access exception being thrown

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

variant Member Functions

Construction, Destruction, and Assignment
| Name | Description \

constructor constructs variant object
destructor destroys variant object (and contained value)
operator= | assigns variant

Observers
Name | Description
index returns zero-based index of alternative held
by variant
valueless_by_exception | tests if variant in invalid state

Modifiers
Name Description

emplace | constructs value in variant in place
swap swaps value with another variant

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

variant Example

® N RN =

© ® N U AWM= O ©

#include <variant>
#include <cassert>
#include <iostream>

int main() {

std::variant<int, double> x;
std::variant<int, double> y;

X = 2;

assert (std::get<int>(x) == std::get<0>(x));
assert (!x.valueless_by_exception());

y = 0.5;

assert (std::get<double> (y) == std::get<l>(y));

std::cout << std::get<int>(x) << '\n’;

std::cout << std::get<double>(y) << '\n’;

try {std::cout << std::get<double>(x) << '\n’;}

catch (const std::bad_variant_accessé&) {
std::cout << "bad variant access\n";

}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

The std: :any Class

B type-safe container for single value of any type
B container may also hold no value

B declaration:
class any;

B at any given time, object may or may not hold value

B non-member function any_cast provides type-safe access to contained
object

B std::bad_any_cast exception thrown by value-returning forms of
any_cast upon type mismatch

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

any Member Functions

Construction, Destruction, and Assignment

[Name | Description \
constructor constructs any object
destructor destroys any object
operator= | assigns any object

Observers

Name Description

has_value | tests if object holds value

type returns typeid of contained value
Modifiers

Name Description

emplace | change contained object by constructing new
value in place

reset clear any contained object

swap swaps contents of two any objects

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

any Example

1 #include <any>
2 #include <cassert>
3 #include <string>
g #include <iostream>
6 int main() {
7 std::any x{std::string("Hello")};
8 assert (x.has_value() && x.type() == typeid(std::string));
9 std::any y;
10 assert (!y.has_value());
11 x.swap(y);
]g isserp(lx.has_value() && y.has_value());
’
14 std::cout << std::any_cast<std::string>(x) << ’"\n’;
15 y.reset();
16 assert (!y.has_value());
17 try {std::any_cast<int>(x);}
18 catch (const std::bad_any_cast&) {
19 std::cout << "any_cast failed\n";
20 }
21}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.8.6

Time Measurement

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Time Measurement

B time measurement capabilities provided by part of general utilities library
(of standard library)

header file chrono
identifiers in namespace std: :chrono
: specific point in time (measured relative to epoch)
: time interval
: measures time in terms of time points
several clocks provided for measuring time

what follows only intended to provide overview of chrono part of library
for additional information on chrono part of library, see:

o http://www.cplusplus.com/reference/chrono
o http://en.cppreference.com/w/cpp/chrono

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.cplusplus.com/reference/chrono
http://en.cppreference.com/w/cpp/chrono

std::chrono Types

Time Points and Intervals
Name Description

duration time interval
time_point | pointintime

Clocks
Name | Description \
system_clock system clock (which may be adjusted)
steady_clock monotonic clock that ticks at constant rate
high_resolution_clock | clock with shortest tick period available

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

std: :chrono Example: Measuring Elapsed Time

® N O AN =

#include <iostream>
#include <chrono>
#include <cmath>

double get_result () {
double sum = 0.0;
for (long i = 0L; i < 1000000L; ++i) {
sum += std::sin(i) * std::cos(i);
}
return sum;

}

int main() {

// Get the start time.

auto start_time =
std::chrono::high_resolution_clock::now();

// Do some computation.

double result = get_result();

// Get the end time.

auto end_time = std::chrono::high_resolution_clock: :now();

// Compute elapsed time in seconds.

double elapsed_time = std::chrono::duration<double> (
end_time - start_time).count();

// Print result and elapsed time.

std::cout << "result " << result << '\n’;

std::cout << "time (in seconds) " << elapsed_time << ’\n’;

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

std: :chrono Example: Determining Clock Resolution

#include <iostream>

1
§ #include <chrono>

4 // Get the granularity of a clock in seconds.

5 template <class C>

6 double granularity() {

7 return std::chrono::duration<double> (

8 typename C::duration(l)).count ();

8!

11 int main() {

12 std::cout << "system clock:\n" << "period "

13 << granularity<std::chrono::system_clock>() << ’\n’
14 << "steady "

15 << std::chrono::system_clock::is_steady << ’\n’;

16 std::cout << "high resolution clock:\n" << "period "
17 << granularity<std::chrono::high_resolution_clock> ()
18 << '\n’ << "steady "

19 << std::chrono::high_resolution_clock::is_steady << "\n’;
20 std::cout << "steady clock:\n" << "period "

21 << granularity<std::chrono::steady_clock>() << ’\n’
22 << "steady "

23 << std::chrono::steady_clock::is_steady << ’"\n’;
24}

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 2.8.7

Miscellany

Copyright © 2015-2020 Michael D. Adams

The std::basic_string view Class Template

B std::basic_string_view class template represents constant
contiguous sequence of char-like objects (i.e., read-only view of string)
B basic_string_view declared as:
template <class CharT,
class Traits = char_traits<CharT>>
class basic_string_view;
B CharT: type of characters in string
B Traits: class that describes certain properties of CharT (normally, use
default)
B string_view is simply abbreviation for basic_string view<char>
B for more details on basic_string_view, see:

o http://en.cppreference.com/w/cpp/string/basic_string_view

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://en.cppreference.com/w/cpp/string/basic_string_view

std::basic_string_view Example

®NO OR W N =

#include
#include
#include
#include

<string_view>
<string>
<iostream>
<cassert>

void output (std::string_view s) {
std::cout << s << '\n’;

}

int main()

assert ('hello.empty (

{

std::string_view hello("hello");
))

std::string_view he
assert (he.size() ==

(
hello.substr (0, 2);

assert (he[0] == 'h’ && he[l] == "e’);
assert (hello.find("ell") == 1);
assert (hello.rfind("1") == 3);

std::string goodbye ("goodbye");
std::string_view bye (goodbye);
bye.remove_prefix(4);

std::cout << bye << ’'\n’;
std::string_view good(goodbye);
good.remove_suffix(3);

std::cout << good << '\n’;

assert (goodbye.substr (4, 3) == bye);
output (bye) ;

Section 2.9

Miscellany

Copyright (©) 2015-2020 Michael D. Adams

Name Lookup

B Since C++ name lookup rules are quite complicated, we only present a
simplified (and therefore not fully correct) description of them here.
B Qualified lookup. If the name A is preceded by the scope-resolution
operator, as in : :A or X: : A, then use qualified name lookup.
o In the first case, look in the global namespace for A. In the second case,
look up X, and then look inside it for A.
o If Xis a class and A is not a direct member, look in all of the direct bases of
X (and then each of their bases). If A is found in more than one base, fail.

B Argument-dependent lookup. Otherwise, if the name is used as a
function call, such as A (X), use argument-dependent lookup.

o Look for A in the namespace in which the type of X was declared, in the
friends of X, and if X is a template instantiation, similarly for each of the
arguments involved.

B Ungqualified lookup. Start with unqualified lookup if argument-dependent
lookup does not apply.

o Start at the current scope and work outwards until the name is found.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Argument-Dependent Lookup (ADL)

B argument-dependent lookup (ADL) applies to lookup of unqualified
function name

B during ADL, other namespaces not considered during normal lookup may
be searched

B in particular, namespace that declares each function argument type is
included in search

B ADL also commonly referred to as Koenig lookup

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

ADL Example

#include <iostream>

1
2

3 namespace N {

4 class C { /+ ... %/ };

5 void f(C x) {std::cout << "N::f\n";}

6 void g(int x) {std::cout << "N::g\n";}

7 void h(C x) {std::cout << "N::h\n";}

8 }

10 struct D {

11 struct E {};

12 static void p(E e) {std::cout << "D::p\n";};

13 };
14

15 woid h(N::C x) {std::cout << "::h\n";}
16

17 int main() {

18 N::C x;

19 f(x); // OK: calls N::f via ADL

20 N::f(x); // OK: calls N::f

21 g(42); // ERROR: g not found

22 N::g(42); // OK: calls N::g

23 h(x); // ERROR: ambiguous function call due to ADL
24 ::h(x); // OK: calls ::h

25 N::h(x); // OK: calls N::h

26 D::E ¢;

27 p(e); // ERROR: ADL only considers namespaces
28 D::p(e); // OK: calls D::p

29 |}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

ADL Example

; #include <iostream>

3 namespace N {

4 struct W {};

5 void f (W x) {std::cout << "N::f\n";}
6 }

8 struct C {

9 void f(N::W x) {std::cout << "C::f\n";}
10 void g() {

11 N::W x;

12 f(x); // calls C::f (not N::f)
13 }

14 };

15

16 int main() {

17 C c;

18 c.g();

19}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

ADL Example

#include <iostream>

1
g #include <string>

g using namespace std::string_literals;

6 namespace N {

7 struct C {};

8 void f(int) {std::cout << "N::f\n";}

9 void g(C x) {std::cout << "N::g\n";}

10 void h(const std::strings x) {std::cout << "N::h\n";}
1 namespace M {

12 void f(int x) {std::cout << "N::M::f\n";}

13 // hides N::f

14 void g(int x) {std::cout << "N::M::g\n";}

15 // hides N::g

16 void h() {std::cout << "N::M::h\n";} // hides N::h
17 void u() {

18 N::C c;

19 £(42); // calls N::M::f (ADL looks nowhere)
20 g(c); // calls N::g via ADL (ADL looks in N)
21 h("hi"s); // ERROR: lookup finds N::M::h

22 // (ADL does not look in N)

23 }

24 }

25 }

26

27 int main() {N::M::u();}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Swapping Values and ADL

B Consider two objects x and y of class type T whose values are to be
swapped.

B [f the class T provides its own swap function for reasons of efficiency, one
would normally want to use it.

B |n the absence of such a function, one would normally want to fall back on
the use of std: : swap.

B The above behavior can be achieved using code like the following:
using std::swap;
swap(x, V);
B [f the type T provides its own swap function, the name lookup on swap will
yield this function through ADL.
B Otherwise, the name lookup will find std: : swap.

B Thus, code like the above will result in a more efficient swap function
being used if available, with the std: : swap function used as a fallback.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Part 3

More C++

2015-2020 Michael D. Adams C++

Section 3.1

Initialization

Typical Memory Organization for Program

memory organized into several regions: code segment, initialized data
segment, uninitialized data segment, heap, and stack
(also known as text segment) contains machine code of
compiled program; may be marked read only
contains variables that are initialized to
particular program-specified values upon program loading (i.e., prior to
execution)

(also known as BSS segment) contains
variables that are not initialized to particular program-specified values
upon program loading; typically cleared to zero when program loaded

is where dynamic memory allocation takes place
consists of stack frames used for local variables, function
arguments, function return values, and caller return addresses

stack and heap grow towards each other, with stack usually being at
higher address in memory than heap

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Typical Memory Organization for Program: Diagram

Low Address

Code
Segment

Initialized Data
Segment

Uninitialized Data
Segment

Environment and

High Address

Copyright © 2015-2020 Michael D. Adams

Program Arguments

C++

loaded from
program image

cleared to zero before
program execution

Version: 2020-02-29

Storage Duration

L] : how long memory for object exists
B four types of storage duration:
H automatic
static
dynamic
thread
L : storage allocated at start of enclosing code

block and deallocated at end

B all local objects have automatic storage duration, except those declared
with static, extern, or thread_local qualifiers

B objects with automatic storage duration stored on stack

L : storage is allocated at start of program and
deallocated when program ends

B all objects declared at namespace scope (including global namespace)
have static storage duration as well as those declared with static or
extern qualifiers (e.g., static data members and static function-local
variables)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Storage Duration (Continued)

B objects with static storage duration stored in initialized and uninitialized
data segments

L] : storage is allocated and deallocated upon
request using dynamic memory allocation functions (e.g.,
operator new and operator delete)

B objects with dynamic storage duration stored in heap

: storage allocated when thread starts and

deallocated when thread ends

B all objects declared as thread_1local have thread storage duration

B how objects with thread storage duration handled is very platform
dependent (e.g., may involve additional segments such as .tbss and .tdata
sections in ELF)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Initialization

B jnitialization provides initial value to object at time of construction
B jnitialization in C++ somewhat complicated

u : specifies initial value for object and appears in initializer
section of declarator or new expression
B initializer may be one of following:

E braced initializer list (i.e., possibly-empty comma-separated list of
expressions and other braced initializer lists); for example:
std::vector<int> v{l, 2, 3};
// initializer is {1, 2, 3}
comma-separated list of expressions and braced initializer lists in
parentheses; for example:
std::vector<int> v (10, 42);
// initializer is (10, 42)
equals sign followed by expression; for example:
std::string s = "hello";
// initializer is "=" plus literal "hello"

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Types of Initialization

constant initialization (used to initialize objects of static storage duration
from constant expressions)

zero initialization (for initializing to zero)

B default initialization; for when no initializer is provided, such as:

int x; // where x is local object

value initialization; for when initializer is empty, such as:
Widget::Widget () : x() {} // where x is data member
direct initialization; for when initializer is explicit set of constructor
arguments, such as:
int x(1); // where x is local object

copy initialization; for when initializing object from another object, such as:
int x = 1; // where x is local object

list initialization; for when initializer is braced initializer list, such as:
int x{1}; // where x is local object
aggregate initialization; for initializing aggregate type from braced

initializer list (as part of list initialization), such as:
int a[] = {1, 2, 3}; // where a is local object

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Initialization-Type Use Relationships

Character Array = /\A t
Initialization |- it I'IS . < | _?9:?9?9
From String Literal nitalization nitialization
\ 4 \ 4
Value Direct - Copy
Initialization Initialization | Initialization
Zero Default
Initialization Initialization

B constant initialization can use all other types of initialization (i.e., zero, default,
value, direct, copy, list, and aggregate)

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Initialization Phases

B jnitialization performed in two phases:
H static initialization
dynamic initialization
u : initialization that is conceptually performed when
program loaded (i.e., before program begins execution)
> initialization that takes place at run time
B 3l static initialization happens before any dynamic initialization
B for static initialization, only constant and zero initialization used directly
(but constant initialization can result in other types of initialization being
invoked indirectly)

B for dynamic initialization, all types of initialization other than constant
initialization can be used

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.start.static#2

How May | Initialize Thee? Let Me Count the Wa

OO N ORWN =

#include <complex>

#include <string>

#include <array>

using Complex = std::complex<float>;

Complex gz{0, 1}; // gz is constant initialized (statically)
int gi; // gi is zero initialized (statically)
char buf[1024]; // buf is zero initialized (statically)

int main() {

int i; // i is default initialized (to indeterminate value)

Complex z1; // z1 is default initialized

Complex z2(); // function declaration

Complex z3{}; /# z3 is value initialized as part of
direct—-1list initialization #*/

Complex z4{1, -1}; /+» z4 is direct initialized as part of
direct-list initialization */

Complex z5(1, -1); // z5 is direct initialized

Complex z6 = {1, -1}; /* z6 is copy initialized as part of
copy-list initialization =/

Complex z7 = Complex(l, -1); // z7 is copy initialized

static Complex u = Complex(); // u is constant initialized (statically)

z1 = {1, -1}; /* temporary object is direct initialized as part of
direct-1list initialization #*/
z1 = {}; /* temporary object is value initialized as part of

direct—-list initialization =/

std::array<int, 3> a{l, 2, 3}; /* a is aggregate initialized as part
of direct-list initialization #*/

std::string sl{'h’, "i"}; // sl is direct-list initialized

Initialization Order and Namespace-Scope Static-Storage-Duration Objects

must be careful about dynamic initialization order of namespace-scope
objects with static storage duration (e.g., global variables)

language makes no guarantees about order of initialization of such
objects across translation units

that is, if x and y are namespace-scope objects with static storage
duration defined in different translation units, order in which x and y
initialized is arbitrary

in practice, initialization order will typically be determined by order in
which linker processes corresponding object files

language only guarantees order of initialization within translation unit,
namely, initialization takes place in order of appearance of definitions
that is, if x and y are namespace-scope objects with static storage
duration defined in same translation unit, x and vy initialized in order of
appearance of their definitions

initialization of namespace-scope object with static storage duration
behaves as if performed prior to main function being called

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Initialization Order and Block-Scope Static-Storage-Duration Objects

B dynamic initialization of block-scope (i.e., local) object with static storage
duration performed (in thread-safe manner) first time control passes
through declaration of object

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/stmt.dcl#4

Example: Initialization Order Fiasco

util_1.cpp
#include <vector>

1
2
3 std::vector<int> v{1l, 2, 3, 4};

4 // invoked constructor is not constexpr; cannot use
5 // constant initialization; constructor invoked as
6 // part of dynamic initialization

util_2.cpp

#include <vector>
extern std::vector<int> v;

1
2
3
4 std::vector<int> w{vI[0], vI[1]};

5 // arguments for invoked constructor not constant

6 // expressions; cannot use constant initialization;

7 // constructor invoked as part of dynamic initialization;
8 // construction of w can invoke undefined behavior

9 // since v might not yet have been constructed

main.cpp

1 int main() {
2
}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Constant Initialization

B constant initialization is type of initialization that relates to (possibly
non-const) object with static or thread storage duration being initialized
with constant expression

B approximately speaking, constant initialization is performed:

o if object/reference with static or thread storage duration is initialized by
constant expression

B effect of constant initialization is same as effect of corresponding
initialization except must be performed before any dynamic initialization
(i.e., as part of static initialization)

B this usually means, in practice, constant initialization performed at compile
time and computed object stored as part of program image

B constant initialization provides means to initialize objects with static and

thread storage duration that eliminates some potential problems due to
data races and dependencies on initialization order

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.start.static#2

Constant Initialization Example: Smart Pointers

N O O W =

N = O ©

s w

N o o

© o

NN NN
2 W N =2 o

#include <memory>
#include <string>

std::unique_ptr<std::string> pl; /# std::unique_ptr<std::string>
not of literal type, but...
constructor being invoked is constexpr; pl is constant
initialized */

std::unique_ptr<std::string> p2(nullptr); /*
std::unique_ptr<std::string> not of literal type, but...
constructor being invoked is constexpr and argument to
constructor 1s constant expression; p2 1is constant
initialized =/

std::unique_ptr<std::string> gql; /* std::shared ptr<std::string>
not of literal type, but...
constructor being invoked is constexpr; gl is constant
initialized =/

std::shared_ptr<std::string> g2 (nullptr); /*
std::shared _ptr<std::string> not of literal type, but...
constructor being invoked is constexpr and argument to
constructor is constant expression; g2 1s constant
initialized =/

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Constant Initialization Example: Fiasco-Free Initialization

constant_initialization_2_util.hpp

1 #include <complex>
2 extern std::complex<double> z0;
3 extern std::complex<double> zl;

util_1.cpp

1 #include "constant_initialization_2_util.hpp"
2 constexpr double x{1};

3 constexpr double y{2};

4 std::complex<double> z0{x, y};

5 // invoked constructor is constexpr; all arguments to

6 // constructor are constant expressions; as part of static
7 // initialization, z0 is constant initialized to (1, 2)

util_2.cpp

1 #include "constant_initialization_2_util.hpp"

2 std::complex<double> zl1 = z0 - std::complex<double>{0, 2};

3 // as part of dynamic initialization, zl 1is copy

4 // initialized to (1, 2) - (0, 2) = (1, 0); static

5 // initialization of z(0 guaranteed to have been already
6 // performed

main.cpp

1 dint main() {/* ... =/}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Zero Initialization

u > initial value of object, including any padding, set to
zero

B zero initialization is performed:

H for every named variable with static or thread storage duration that is not
subject to constant initialization (i.e., initialized by constant expression)

when character array initialized with string literal that is too short to fill entire
array, unfilled part of array is zero initialized

as part of value initialization in certain situations (see
later slides on value initialization for details)
B every object of static storage duration is either constant or zero initialized
at program startup before any other initialization takes place

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.start.static#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.string#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#10

Zero Initialization (Continued)

B zero initialization of object of type T has following behavior:

]

(]

a

if T is scalar type, object is initialized to value obtained by converting integer
literal 0to T
if T is class type, each of following is zero initialized and any padding
initialized to zero bits:

o each non-static data member

0 each non-virtual base class subobject

o if object is not base class subobiject (i.e., T is most-derived class), each virtual

base class subobject anywhere in inheritance hierarchy

if T is union type, object’s first non-static named data member is zero
initialized and any padding is initialized to zero bits
if T is array type, each element is zero initialized
if T is reference type, nothing is done

B note that zero initialization not same as setting all bits of storage to zero,
since some types may have zero value that is not represented as all zero
bits (such as null pointer to member in case of some C++ language
implementations)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#6

Zero Initialization Example

® N U RO

#include <string>
struct Point {int x; int y;};

static int ga(2]; /# ga is statically zero initialized
(to {0, 0}) m =/
static int gb[2] = {1}; /* gb[l] is statically zero initialized
(to 0) as part of constant initializing gb to {1, 0} */
char *gp; /% gp is statically zero initialized (to null
pointer) m */
std::string gs; /# gs 1is statically zero initialized
(to indeterminate value) and (later) dynamically
default initialized to empty string B */
int gi; // gi is statically zero initialized (to 0)

int main() {
char buf[4] = "hi"; /# buf[3] is zero initialized (to 0) as
part of initializing buf to {’h’, 7i’, ’“\0’, 0} */
static float f; /# f is statically zero initialized
(to 0.0f) */
int i{}; /% i is zero initialized (to 0) as part of
list initialization */
const Point& p = Point(); /# referenced object 1is
zero initialized (to {0, 0}) as part of
value initialization */

}

Note: m indicates case n from earlier slide

Copyright (© 2015-2020 Michael D. Adams

Default Initialization

u : object constructed with no initializer; for example:
int x; // where x is local object

B default initialization performed when:

H variable with automatic, static, or thread storage duration declared with no
initializer
object created by new expression with no initializer

non-static data member or base class not mentioned in constructor
initializer list of invoked constructor

B default initialization of object of type T has following behavior:

o if T is class type, default constructor invoked through overload resolution
against empty argument list and called constructor provides initial value for
new object

o if T is array type, each element of array is default initialized

o otherwise, nothing is done (which results in indeterminate value in case of
object with automatic storage duration)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#12
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.new#18
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.base.init#9.3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#7

Default Initialization Example

XN D AW =

#include <string>

struct Widget ({

Widget () {} /* w is default initialized to indeterminate
value */
int w;

}i

static std::string gs; /#* gs 1s (statically) zero initialized
and then (dynamically) default initialized to
empty string @ */

int main() {

std::string s; /* s is default initialized to
empty string B #*/

std::string* sp = new std::string; /# heap-allocated object 1is
default initialized to empty string */

int i1; /% 1 is default initialized to indeterminate
value B */

int* ip = new int; /% heap-allocated object is
default initialized to indeterminate value */

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Value Initialization

L : object constructed with empty initializer; for example:

Widget::Widget () : x() {}
// where x 1s data member of Widget class

B value initialization performed when:
EH (unnamed) temporary created with initializer consisting of empty pair of
parentheses or braces
object created by new expression with initializer consisting of empty pair of
parentheses or braces
non-static data member or base class initialized using member initializer list
with empty pair of parentheses or braces

named object declared with initializer consisting of empty pair of braces

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#11
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#11

Value Initialization (Continued)

B value initialization of object of type T has following behavior:

o if T is class type with no default constructor or with user-provided or deleted
default constructor, object is default initialized

o if T is class type with default constructor that is neither user-provided nor
deleted (i.e., class where default constructor is implicitly-defined or
defaulted), object is zero initialized and then, if T has non-trivial default
constructor, default initialized

o if T is array type, each element of array is value initialized

o otherwise, object is zero initialized

B if T is aggregate type and initializer is empty pair of braces, aggregate
initialization is performed (as part of list initialization) instead of value
initialization

B if T is class type with no default constructor but with constructor taking
std::initializer_ list, listinitialization is performed

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#8

Value Initialization Example

©®N OO A W N

#include <string>

struct Point {int x; int y;};
struct Widget {
Widget () : x() {} // x is value initialized to 0 ®H
int x; int y{}; // y is value initialized to 0 B
i

int main() {
Point p; // p is default initialized to indeterminate value
Point q{}; /* g is aggregate initialized to {0, 0} as part of
list initialization #*/

Point* pl = new Point(); /# heap-allocated object 1is
value initialized to {0, 0} B */
Point* p2 = new Point{}; /# heap-allocated object is aggregate

initialized to {0, 0} as part of list initialization #*/
std::string s{}; /* s 1is value initialized to empty string as part
of list initialization B =/
const Point& pr = Point(); /# referenced object is value initialized
to {0, 0} m */
const Pointé& pr2 = Point{}; /# referenced object is aggregate
initialized to {0, 0} as part of 1list initialization #*/
const std::string& sr = std::string{}; /+ referenced object is
value initialized to empty string as part of
list initialization B */
Widget w{}; /# w is value initialized to {0, 0} as part of
list initialization B =*/
int i{}; /# i is value initialized to 0 as part of
list initialization B */

Direct Initialization

L] : object initialized from explicit set of constructor

arguments; for example:
int x(1); // where x is local object

B direct initialization performed when:

H initializing with nonempty list of expressions in parentheses or braces

]

initializing object by new expression with nonempty initializer

a

initializing temporary by static_cast expression

[~ |

initializing temporary by functional-notation conversions

a

initializing non-static member or base object with constructor initializer list

initializing closure member from object captured by value in lambda
expression

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#16
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#16
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.new#18.2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.static.cast#4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.type.conv#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.base.init#7
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.lambda.capture#15

Direct Initialization (Continued)

B direct initialization of object of type T has following behavior:
o if T is class type:
o if initializer is prvalue expression whose type is same as T ignoring
cv-qualification, initializer expression used to directly initialize object without
materializing temporary (i.e., mandatory copy elision takes place)

o constructors of T examined, and best match obtained by overload resolution
invoked to initialize object

o if T is non-class type but source type is class type, conversion functions of
source type and its base classes, if any, examined and best match selected
by overload resolution used to convert initializer expression into object
being initialized

o if T is bool and source type is std: :nullptr_t, value of initialized object is
false

o otherwise (neither T nor source type is class type), standard conversions
used, if needed, to convert source value to same type as T and this
(possibly converted) value used to set initial value of object

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.6.1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.6.2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.7
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.6.3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/conv.bool#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.8

Direct Initialization Example

® N O N =

#include <string>
#include <vector>

struct Widget {
Widget () : s("hi") {} // s is direct initialized to "hi"
explicit Widget (const std::string& s_) : s(s_) {}
std::string s;
std::string t{"bye"}; /* t is direct initialized to "bye" via
direct-list initialization */
i

int main() {

std::vector<int> u(2, 42); // u is direct initialized to {42, 42} m

std::vector<int> v(3); // v is direct initialized to {0, 0, 0} m

std::string s("bye"); // s is direct initialized to "bye" n

int i(1); // 1 is direct initialized to 1 m

int j{1}; /+ j is direct initialized to 1 as part of
direct-list initialization #*/

double d = static_cast<double>(i); /* temporary object is
direct initialized to 1.0 */

std::string* sp = new std::string("hi"); /x heap-allocated object is
direct initialized to "hi" B */

[s](){return s.size();}(); /* s data member in closure 1is
direct initialized to value of s in main */

Widget w = Widget ("hi"); /* temporary object is direct initialized
to {"hi", "bye"} */

Copyright © 2015-2020 Michael D. Adams

Copy Initialization

L] > initialize object from another object; for example:
int x = 1; // where x is local object

B copy initialization performed in following situations:
E when named variable of non-reference type declared with initializer that

consist of equals sign followed by expression (including default member
initializer)

]

when passing argument to function by value

a

when returning from function that returns by value

[~ |

when throwing exception by value

a

when catching exception by value

as part of aggregate initialization, to initialize each element for which
initializer provided (see later slides on aggregate initialization for details)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#15
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#15
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/stmt.select
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.fct.default#5
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#15
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/stmt.return#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/except.throw#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/except.handle#15
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.aggr#3

Copy Initialization (Continued)

B copy initialization of object of type T has following behavior:

o if T is class type and initializer is prvalue expression whose cv-unqualified
type same as T, initializer expression itself (rather than temporary
materialized therefrom) used to initialize object (i.e., mandatory copy elision
takes place)

o if T is class type and cv-unqualified version of source type is T or class
derived from T, non-explicit constructors of T examined and best match
selected by overload resolution used to initialize object

o if T is class type and cv-unqualified version of source type is not T or
derived from T or T is non-class type but source type is class type,
user-defined conversion sequences that can convert from source type to T
(or type derived from T) examined and best match selected by overload
resolution used to direct initialize object

o otherwise (i.e., if neither T nor source type is class type), standard
conversions used, if necessary, to convert source value to cv-unqualified
version of T

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/stmt.select
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/except.throw
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/except.handle
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.aggr
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy

Copy Initialization Example

® N® O A N =

#include <string>
using namespace std::literals;

struct Widget {
std::string s = "hi"; // s is copy initialized to "hi"
}i

std::string identity(std::string p) {
return p; // return value copy initialized from p
}

int main() {
std::string a[2] = {"hi", "bye"}; /*
as part of aggregate initialization:
al[0] is copy initialized to "hi" and
al[l] is copy initialized to "bye" B */
std::string s = "hello"s; // s is copy initialized to "hello" R
std::string t = {3, 'A’}; /+ t is copy initialized to "AAA" as
part of copy-list initialization B */
s = identity(s); // function parameter 1is copy initialized from s
try {
throw t; // exception object copy initialized from t
} catch (std::string s) {
// s 1is copy initialized from exception object
}
if (auto i = s.begin(); i != s.end()) {/* ... =/}
// 1 is copy initialized from s.begin() R

Aggregates

L is array or class with:

no user-provided, explicit, or inherited constructors
no private or protected non-static data members
no virtual functions

no virtual, private, or protected base classes

B elements of aggregate are:

o for array: array elements in increasing subscript order

o for class: direct base classes in declaration order, followed by direct
non-static data members that are not members of anonymous union in
declaration order

o o o o

B example:

// aggregate type
struct Point {

int x;

int y;
}i

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.aggr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.aggr#2

Aggregate Initialization

u : initializes aggregate from braced initializer list (or string
literal)

B aggregate initialization is used:

o when aggregate is initialized by braced initializer list (or string literal in case of
initializing character array, since braces around string literal are implied)

B approximately speaking, aggregate initialization has following behavior:

o each direct public base, array element, or non-static class member in order of array
subscript or appearance in class definition copy initialized from corresponding
clause of initializer list

O if initializer clause is expression, only non-narrowing implicit conversions allowed
O if initializer clause is braced initializer list, base/element/member list initialized from
clause
o if number of initializer clauses less than number of members and bases, remaining
members and bases initialized by default initializer if provided in class definition and
otherwise by empty lists in accordance with usual list initialization rules (e.g.,
performs value initialization for non-class types and non-aggregate classes with
default constructors)
o if T is union type, only first non-static data member initialized

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.aggr#3

Aggregate Initialization Example

struct Point {int x; int y;};

1
2

3 static Point gp{l, 2}; /* aggregate initialized to {1, 2} as
4 part of constant initialization */

5

6 int main() {

7 int a[3] = {1, 2, 3}; /% aggregate initialized to {1, 2, 3}
8

as part of copy-list initialization #*/

int b[3]{1, 2, 3}; /* aggregate initialized to {1, 2, 3} as
part of direct-list initialization */

int c[4]{1, 2}; /* aggregate initialized to {1, 2, 0, 0} as
part of direct-list initialization x/

Point p{l, 2}; /# aggregate initialized to {1, 2} as
part of direct-1list initialization x/

Point q{l}; /* aggregate initialized to {1, 0} as
part of direct-list initialization x/

N o~ N2 oo

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

List Initialization

> initialize object from braced initializer list

B if initializer is braced initializer list (possibly preceded by equals sign), list
initialization always used (which may then, in turn, directly invoke other
types of initialization, such as value, direct, copy, or aggregate
initialization)

B |ist initialization can occur in both direct and copy initialization contexts

- list initialization used in direct-initialization
context; for example:
int x{1}; // where x is local object

B direct-list initialization used:

H to initialize named variable with braced initializer list
to initialize (unnamed) temporary with braced initializer list

to initialize object created by new expression that has braced initializer list
as initializer

for non-static data member initializer that does not use equals sign

in constructor initializer list where braced initializer list used for initializer

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#1

List Initialization (Continued 1)

L : list initialization used in copy-initialization context;
for example:
int x = {1}; // where x 1s local variable

B copy-list initialization used:

H to initialize named variable where initializer is braced initializer list that
follows equals sign

to initialize function parameter for function call where braced initializer list
used for corresponding function argument

to initialize returned object for return statement where return expression is
braced initializer list

to initialize parameter of overloaded subscript operator in subscript
expression where braced initializer list used

to initialize parameter of overloaded assignment operator in assignment
expression where right-hand side of assignment is braced initializer list

A to initialize parameter of constructor in functional cast expression where
corresponding constructor argument is braced initializer list

for non-static data member initializer that uses equals sign

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#1

List Initialization (Continued 2)

B list initialization does not allow narrowing conversions

B direct-list initialization is allowed to use explicit constructors, whereas
copy-list initialization is not
B approximately speaking, list initialization of object of aggregate type T has
following behavior:
o if initializer list has single element of same or derived type (possibly
cv-qualified), object initialized from element by copy initialization (for
copy-list initialization) or direct initialization (for direct-list initialization)

o otherwise, if T is character array and initializer list has single element of
appropriately-typed string literal, array initialized from string literal in usual
manner

o otherwise, object is aggregate initialized

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.3

List Initialization (Continued 3)

B approximately speaking, list initialization of object of non-aggregate type T has
following behavior:

a

if T is class type with default constructor and braced initializer list empty, object is
value initialized

if T is specialization of std::initializer_list, objectis direct initialized or copy
initialized, depending on context, from braced initializer list

if T is class type, constructors of T considered in two phases (first, using
constructors that can be called with std::initializer_list as single argument;
then using all constructors)

if T is enumeration type, if braced initializer list has only one initializer (and some
other constraints satisfied), enumeration initialized with result of converting initializer
to enumeration’s underlying type

if T is not class type and braced initializer list has exactly one element and either T is
not reference type or is reference type that is compatible with type of element, object
is direct initialized (for direct-list initialization) or copy initialized (for copy-list
initialization)

if T is reference type that is not compatible with type of element, temporary of
referenced type is list initialized and reference bound to temporary

otherwise, if braced initializer list empty, object is value initialized

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.5
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.6
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.7
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.8
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.9
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.10

Direct-List Initialization Example

® N O bW =

#include <initializer_list>
#include <vector>

struct Widget {
Widget () : w{l, 2, 3} {} // w is direct-list initialized
Widget (std::initializer_list<int> w_) : w{w_} {} /* w is
direct initialized as part of direct-list initialization */
std::vector<int> v{3, 2, 1}; // v is direct-list initialized
std::vector<int> w;
bi

int main() {

Widget wl{l, 2, 3}; // wl is direct-list initialized
const Widgets& w2 = Widget{l, 2, 3};

// temporary object is direct-list initialized
Widget* w3 = new Widget{l, 2, 3};

// heap—allocated object is direct-list initialized
for (autos&& i : {1, 2, 3}) {}

// temporary object is direct-list initialized

Copyright © 2015-2020 Michael D. Adams

Copy-List Initialization Example

#include <vector>
#include <tuple>
#include <initializer_list>

® N oW =

struct Widget {

i

Widget () : v({1, 2, 3}) {}
// constructor argument 1is copy-list initialized
Widget (std::initializer_list<int> v_) : v{v_} {}
const int& operator([] (std::pair<int, int> i) const
{return i.first ? v[i.second] : w[i.second];}

std::vector<int> v;
std::vector<int> w = {3, 2, 1}; // w is copy-list initialized

Widget func(Widget w) {

}

return {1, 2, 3}; // returned value is copy-list initialized

int main() {

Widget w = {1, 2, 3}; // w is copy—-list initialized R
w= {1, 2, 3}; // temporary object is copy-list initialized
func ({1, 2, 3} // function argument 1s copy-list initialized

)i
Widget ({1, 2, 3}); // constructor argument is copy-list initialized B
int 1 = w[{0, 1}];
// operator[] function parameter is copy-list initialized

Copyright © 2015-2020 Michael D. Adams

Initialization of Character Array From String Literal

B special rule employed for initializing character array from string literal

B array element type and character type of string literal must be compatible

B each character in string literal (including null-terminator) placed in order
into successive array elements

B if number of characters in initializer less than number of array elements,
remaining array elements are zero initialized

B number of characters in initializer must not exceed array capacity

B special initialization rule invoked either directly or via list initialization

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.string
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/over.ics.list#3

Character Array Initialization Example

1 int main() {

2 char al[] = "hi";

3 // initialized to {’h’, ’i’, ’\0’} from string literal
4 char a2[] = {"hi"}; /# initialized to {’h’, ’i’, ’\0’} as
5 part of copy-list initialization */

6 char a3[]{"hi"};

7 char a4[3]{"hi"};

8 /% each of a3 and a4 is initialized to {’h’, “i’, ’7\0’}
18 as part of direct-list initialization */

11 char bl[4] = "hi";

12 char b2[4] = {"hi"};

w

char b3[4]{"hi"};
/% each of bl, b2, and b3 is initialized to
{'h,, ’l", /\0/, /\0/} */

charl6é_t c[] = u"hi"; /#* initialized to

{u’h’, u’i’, u’\0’} from string literal =*/
char32_t d[] = U"hi"; /#* initialized to

{U’h’, U’i’, U’\0’} from string literal =*/
wchar t e[4]{L"hi"}; /+ initialized to

{L’"h’, L’i’, L’\0’, L’\0’} as part of

direct-list initialization */

N

oo

NN N 2 o o
2 WON =20 0 ®

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: Aggregates and Brace Elision

struct Gadget {
int x;
int y;

i

struct Widget ({

Gadget g;
int i;

OO ® N O b W N =

i

int main() {

int x([2][2] = {1, 2, 3, 4};

// effectively initializer is {{1, 2}, {3, 4}}
Widget v = {1, 2, 3};

// effectively initializer is {{1, 2}, 3}
Widget w = {1, 2};

// effectively initializer is {{1, 2}}

// w initialized to {{1, 2}, 0}

© ® N o O RN =

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: Auto and Initialization

#include <initializer_ list>

auto il = 42; // type of il deduced as int
auto i2(42); // type of 12 deduced as int
auto i3{42}; // type of i3 deduced as int
// auto 14{42, 42}; // ERROR: exactly one element required
auto i5 = {42};
// type of 15 deduced as std::initializer list<int>

® N O A ® N

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: Braced Initializer Lists and Constructor Selection

#include <initializer_ list>

1
2

3 struct Widget ({

4 Widget ();

5 Widget (std::initializer_list<int>);

6 Widget (int);

7}

8

9 int main() {

10 Widget w{};

1 // invokes default constructor; for empty

12 // braced initializer list, default constructor

13 // preferred over std::initializer_ list constructor
14 Widget v{42};

15 // invokes constructor taking std::initializer_ list;
16 // for non-empty braced initializer 1list, constructor
17 // taking std::initializer list preferred over those
18 // that do not

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: List Initialization

©O N OO RW N =

o

o=

® N o o brw

#include <map>
#include <vector>
#include <string>

std: :map<int, std::string> m{
{42, "forty two"},
{0, "zero"}
}; // initialized to map with two elements

std::vector<std::string> v1{"hi", "bye"};
// initialized to vector with two elements

std::vector<std::string> v2{{"hi", "bye"}};
// ERROR: will try to initialize to vector with
// one element; invokes std::string constructor that
// takes two iterators as parameters; pointers
// to "hi" and "bye" passed as begin and end
// iterators; this results in undefined behavior

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: Initialization and Narrowing Conversions

struct Widget ({

1
2 Widget (int i_) : i(i_) {}

3 int i;

4)

5

6 int main() {

7 Widget v (42.0);

8 // OK: narrowing conversion allowed in

9 // direct initialization

10 // Widget w{42.0};

11 // ERROR: narrowing conversion not allowed in
12 // list initialization

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: Initializers and Braces/Parentheses

#include <vector>
#include <string>

std::vector<int> v1(3, 42);

// initialized to vector with elements 42, 42, 42
std::vector<int> v2{3, 42};

// initialized to vector with elements 3, 42

N D oA W =

©

std::string s1(3, 'a’);

// initialized to string consisting of 3 ’a’ characters
std::string s2{3, 'a’'};

// initialized to string consisting of characters ’\3’, ’a’

N = o

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example: std::initializer_list and Lifetime

#include <iostream>
#include <initializer_ list>

auto f(int a, int b, int c¢) {
return std::initializer_list<int>{a, b, c};

// ERROR: initializer list references elements in
// temporary array whose lifetime need not extend
// beyond lifetime of initializer_list;

9 // therefore, returned initializer list

10 // likely references invalid data

1}

® N O A N =

13 int main() {

14 // nothing good likely to happen here
15 for (auto i : f(1, 2, 3)) {
16 std::cout << 1 << "\n’;

17 }

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Section 3.1.1

References

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Talks |

Nicolai Josuttis. The Nightmare of Initialization in C++. CppCon, Bellevue,
WA, USA, Sept. 24, 2018. Available online at
https://youtu.be/7DT1WPgX6zs.

Greg Falcon. Initialization, Shutdown, and constexpr. CppCon, Bellevue,
WA, USA, Sept. 27, 2018. Available online at
https://youtu.be/6Z0ygaljzjQ.

Timur Doumler. Initialization in Modern C++. Meeting C++, Berlin,
Germany, Nov. 17, 2018. Available online at
https://youtu.be/ZfP4VAK21zc

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

https://youtu.be/7DTlWPgX6zs
https://youtu.be/6ZOygaUjzjQ
https://youtu.be/ZfP4VAK21zc

Section 3.2

Temporary Objects

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Temporary Objects

A is an unnamed object introduced by the compiler.
B Temporary objects may be used during:

o evaluation of expressions

o argument passing

o function returns (that return by value)

o reference initialization

B |t is important to understand when temporary objects can be introduced,
since the introduction of temporaries impacts performance.
B Evaluation of expression:

std::string sl("Hello ");

std::string s2 ("World");

std::string s;

s = sl + s2; // must create temporary
// std::string _tmp (sl + s2);
// s = _tmp;

B Argument passing:

double func(const doubles x);
func(3); // must create temporary
// double _tmp = 3;
// func(_tmp);

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#2

Temporary Objects (Continued)

B Reference initialization:

int 1 = 2;

const doubles d = i; // must create temporary
// double _tmp = 1i;
// const double& d = _tmp;

B Function return:

std::string getMessage();

std::string s;

s = getMessage(); // must create temporary
// std::string _tmp (getMessage());
// s = _tmp;

B |n most (but not all) circumstances, a temporary object is destroyed as the
last step in evaluating the full expression that contains the point where the
temporary object was created.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#4

Temporary Objects Example

class Complex {

1
2 public:

3 Complex (double re = 0.0, double im = 0.0) : re_(re),
4 im_(im) {}

5 Complex (const Complex& a) = default;

6 Complex (Complex&& a) = default;

7 Complex& operator=(const Complex& a) = default;

8 Complex& operator=(Complex&& a) = default;

9 ~Complex () = default;

o

double real() const {return re_;}

double imag() const {return im_;}
private:

double re_; // The real part.

double im_; // The imaginary part.

abr 0N =

i

Complex operator+(const Complex& a, const Complex& b) {
return Complex(a.real() + b.real(), a.imag() + b.imag());

© ® N o

}

int main() {
Complex a(1.0, 2.0);
Complex b(1.0, 1.0);
Complex c;
/S

c=a+ b;

DY NNNNDN
No o s O®N =2 O

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Temporary Objects Example (Continued)

Original code:

int main() {
Complex a(1.0, 2.0);
Complex b(1.0, 1.0);
Complex c;
/).
c=a+ b;

}

Code showing temporaries:

int main() {
Complex a(1.0, 2.0);
Complex b(1.0, 1.0);
Complex c;
/S
Complex _tmp(a + b);
c = _tmp;

Copyright (© 2015-2020 Michael D. Adams Version: 2020-02-29

Prefix Versus Postfix Increment/Decrement

class Counter {

1
2 public:

3 Counter () : count_(0) {}

4 int getCount () const {return count_;}

5 Counter& operator++() { // prefix increment

6 ++count_;

7 return *this;

8 }

9 Counter operator++(int) { // postfix increment
10 Counter old(*this);

11 ++count_;

12 return old;

13 }

14 private:

15 int count_; // counter value
16}

18 int main() {

19 Counter x;

20 Counter y;

21 y = ++x;

22 // no temporaries, int Iincrement, operator=
23 y = X++;

24 // 1 temporary, 1 named, 2 constructors,

25 // 2 destructors, int increment, operator=

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Compound Assignment Versus Separate Assignment

#include <complex>

1

2 using std::complex;

3

4 int main() {

5 complex<double> a (1.0, 1.0);

6 complex<double> b (1.0, -1.0);

7 complex<double> z (0.0, 0.0);

8

9 // 2 temporary objects

10 // 2 constructors, 2 destructors

11 // 1 operator=, 1 operator+, 1 operatorx*
12 z=Db * (z + a);

13

14 // no temporary objects

15 // only 1 operator+= and 1 operator*=
16 z += a;

17 z *= b;

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Lifetime of Temporary Objects

B Normally, a temporary object is destroyed as the last step in evaluating the
full expression that contains point where temporary object was created.

B First exception: When a default constructor with one or more default
arguments is called to initialize an element of an array.

B Second exception: When a reference is bound to a temporary (or a
subobject of a temporary), the lifetime of the temporary is extended to
match the lifetime of the reference, with following exceptions:

o A temporary bound to a reference member in a constructor initializer list
persists until the constructor exits.

o A temporary bound to a reference parameter in a function call persists until
the completion of the full expression containing the call.

o A temporary bound to the return value of a function in a return statement is
not extended, and is destroyed at end of the full expression in the return
statement.

o A temporary bound to a reference in an initializer used in a new-expression
persists until the end of the full expression containing that new-expression.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#5
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#6
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#5
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#6

Lifetime of Temporary Objects Examples

B Example:

void func() {
std::string sl ("Hello");
std::string s2(" ");
std::string s3("World!\n");
const std::strings& s = sl + s2 + s3;
std::cout << 's; // OK?

B Example:

const std::string& getString() {
return std::string("Hello");
}

void func() {
std::cout << getString(); // OK?
}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Temporary Object Creation

B temporary objects are created:

]

]

[m]

when prvalue is materialized so that it can be used as xvalue
when needed to pass or return object of trivially-copyable type
when throwing exception

B materialization of temporary object is always delayed as long as possible
in order to avoid creating unnecessary temporary objects
B temporary objects are materialized:

(m]

a

]

when binding a reference to a prvalue

when performing member access on a class prvalue

when performing array-to-pointer conversion or subscripting on array
prvalue

when initializing object of type std::initializer_list from braced
initializer list

for certain unevaluated operands

when prvalue appears as discarded expression

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/conv.rval#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#10

Section 3.3

Lvalues and Rvalues

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Expressions

B An is a sequence of operators and operands that specifies a
computation.

B An expression has a type and, if the type is not void, a value.

B Example:
Expression Type Value
X int 0
int x = 0; y =X ints reference to y
int y = 0; x + 1 int 1
int* p = &x; X *x+ 2 * x| int 0
double d = 0.0; y = x *x ints reference to y
// Evaluate some x == 42 bool false
// expressions here. | *p inté reference to x
p == &x bool true
X >2 *y bool false
std::sin(d) double | 0.0

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim

Value Categories of Expressions

expression

rvalue

,,,,,,,,,,,,,,,,,,,,,,,,

B Every expression can be classified into exactly one of three

H Ivalue
xvalue (which stands for “expiring value”)
prvalue (which stands for “pure rvalue”)
B An expression that is an Ivalue or xvalue is called a (which stands
for “generalized Ivalue”).

An expression that is a prvalue or an xvalue is called an

Every expression is either an Ivalue or rvalue (but not both).

Every expression is either a glvalue or prvalue (but not both).

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.lval#1

Value Categories of Expressions (Continued)

B How an expression can be used is dictated, in part, by its value category.

B Whether or not it is safe to move (instead of copy) depends on whether an
Ivalue or rvalue is involved.

B |n the context of values categories, the notion of identity is important.

B An entity (such as an object or function) is said to have an if it
can be distinguished from other like entities with identical attributes.

B For example, any object that is stored at a well-defined location in memory
has an identity, since, given two objects with well-defined locations (and
possibly identical values), one can always determine if these objects are
the same object by comparing their locations.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Lvalues

B An is an expression that:
o denotes a function, object, or bitfield; and
o has an identity.
B Since an Ivalue establishes the identity of a function, object, or bitfield, an
Ivalue is always associated with some well-defined location in memory
(which, in some cases, can be determined by the address-of operator).

B [f an lvalue expression corresponds to an object, the resources of that
object are not guaranteed to be safe to reuse (i.e., the object is not
guaranteed to be safe to use as the source for a move operation).

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.lval#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.unary.op#3

Lvalues (Continued 1)

B A named object or named function is an Ivalue.

Example:

int get_value();
int i;
int j;
i = get_value();
// 1 and get_value are lvalues
// Note: get_value is not the same as get_value()
j=1+1; // i and j are lvalues

B The result of calling a function whose return type is an lvalue reference

type is an Ivalue. Example:
int& get_value();
++get_value(); // get_value() is an lvalue
B A string literal is an Ivalue. Example:
const char *s = "Hello"; // "Hello" is an lvalue
B A named rvalue reference is an Ivalue. Example:
intss i =1 + 3;

int j =1; // i is an lvalue

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.id.unqual#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.id.qual#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.call#11
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.literal#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#7

Lvalues (Continued 2)

B An rvalue reference to a function (both named and unnamed) is an
Ivalue. Example:

void func();

void (&&f) () = func;

f(); // £ is an lvalue

std::move (func) (); // std::move (func) is an lvalue

B The result of each of the following built-in operators is an Ivalue:
o built-in subscripting operator (except when array rvalue involved)
o built-in indirection operator
o built-in pre-increment and pre-decrement operators
o built-in assignment and compound-assignment operators

Example:
char buffer[] = "Hello";
char* s = buffer;
*s = 'a'; // #s 1is an lvalue
*(s + 1) ="'b"; // +(s + 1) is an lvalue
++s; // ++s 1is an lvalue
--s; // —-—-s 1is an lvalue

s +=2; // s += 2 is an lvalue

s = &gbuffer([1l];
// s = &buffer[1l] is an lvalue
// buffer[1l] is an lvalue

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#7
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.sub#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.unary.op#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.pre.incr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.pre.incr#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.ass#1

Moving and Lvalues

B Using a move (instead of a copy) is not guaranteed to be safe when the
source is an Ivalue (since other code can access the associated object by

name or through a pointer or reference).

B Example:

void func() {

std::vector<int> x;

std::vector<int> y(x);
/#* can we construct by moving (instead
source x 1is lvalue; not safe to move x
value of x might be used later */

y = X%
/% can we assign by moving (instead of
source x 1is lvalue; not safe to move x
value of x might be used later #*/

/7

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

of copying)?
to y since

copying) ?
to y since

Rvalues

mA (i.e., pure rvalue) is an expression whose evaluation:
o computes the value of an operand of an operator; or
o initializes an object or a bitfield.
B A prvalue never corresponds to an object (but, in some contexts, might be
used to materialize a temporary object).
B A prvalue does not have an identity.
B An (i.e., expiring value) is an expression that:
o denotes an object or bitfield (usually near the end of its lifetime);
o has an identity; and
o the resources of the object/bitfield can safely be reused (i.e., is deemed to
be safe to use as the source for a move).
B An xvalue is associated with certain kinds of expressions involving rvalue
references or the materialization of a temporary object.
B An is an expression that is either a prvalue or an xvalue.
B Unlike an Ivalue, an rvalue need not have an identity.

B Therefore, applying the (built-in) address-of operator to an rvalue
(corresponding to an object) is not allowed.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.lval#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.lval#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.unary.op#3

Prvalues

B The result of calling a function that returns by value (i.e., the return type is
not a reference type) is a prvalue. Example:

int get_value();
int 1 = get_value();
// get_value() is a prvalue
// Note: get_value() 1is not the same as get_value

B All literals other than string literals are prvalues. Example:

double pi = 3.1415; // 3.1415 is a prvalue
int i = 42; // 42 is a prvalue
i=2*1+1; // 2 and 1 are prvalues
char c = 'A’'; // 7A’ is a prvalue

B The this keyword is a prvalue.

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.call#11
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.literal#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.this#2

Prvalues (Continued)

B The result of each of the following built-in operators is a prvalue:

o built-in post-increment and post-decrement operators

o built-in arithmetic operators excluding increment and decrement operators
(e.g., unary plus, unary minus, addition, subtraction, multiplication, division,
and modulus)
built-in bitwise operators (e.g., bitwise NOT, bitwise AND, and bitwise OR)
built-in logical operators (e.g., logical NOT, logical AND, and logical OR)
built-in relational operators (e.g., equal, not equal, and less than)
built-in address-of operator

O o o o

Example:
int i;
int J;
i=-(3+05); // 3+ 5 and -(3 + 5) are prvalues
i*i; // 1 % 1 is a prvalue
(1 ==42); // 1 == 42 is a prvalue
(i&7) | 2;, // (i & 7) and (1 & 7) | 2 are prvalues
= j++; // j++ is a prvalue
int *ip = &i; // &1 is a prvalue

|kl S B G R

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.post.incr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.unary.op#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.add
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.unary.op#3

Xvalues

B The result of calling a function whose return type is an rvalue reference
type is an xvalue. Example:

std::string s("Hello");
std::string t = std::move(s); // std::move(s) is xvalue
// Note: std::move returns rvalue reference type

B An unnamed rvalue reference to an object is an xvalue. Example:

std::string s("Hello");
std::string t;
t = static_cast<std::string&&>(s);
// static_cast<std::string&&>(s) is xvalue
s = std::move(t); // std::move(t) 1s an xvalue

B A temporary object materialized from a prvalue is an xvalue.

Example:

std::vector<int> v;

v = std::vector<int> (10, 2);
// temporary object materialized from prvalue
// std::vector<int>(10, 2) 1is an xvalue

std::complex<double> u;

u = std::complex<double> (1, 2);
// temporary object materialized from prvalue
// std::complex<double> (1, 2) is an xvalue

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#7.1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#7
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/conv.rval#1

Moving and Rvalues

B When the source object whose value is to be propagated is an rvalue,
using a move (instead of a copy) is always safe (either because this must
be so or the programmer has explicitly deemed this to be so).

B Example (move from temporary object):

void func() {
std::vector<int> x;
x = std::vector<int> (42, 0);
/+ safe to move from temporary object materialized
from prvalue std::vector<int> (42, 0) since any change
to its value cannot be observed by other code #*/
/S
}

B Example (forced move):

void func() {
std::string s("hello");
std::cout << s << '\n’;
std::string t(std::move(s));
/+* safe to move from s to t since std::move(s) 1is
xvalue; programmer has, in effect, said "trust me, it
is safe to use move here"; of course, if programmer 1is
wrong, bad things will happen; programmer correct
in this case, since value of s not used again */
std::cout << t << '\n’;

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

More on Lvalues and Rvalues

B Lvalues and rvalues can be either modifiable or nonmodifiable.

Example:
int 1 = 0;
const int j = 2;
i=9+3;

// 1 is modifiable lvalue
// J is nonmodifiable lvalue
// 7 + 3 is modifiable rvalue
const std::string getString();
std::string s = getString();
// getString() is nonmodifiable rvalue

B Class rvalues can have cv-qualified types, while non-class rvalues always
have cv-unqualified types. Example:

const int getConstInt(); // const is ignored

const std::string getConstString();

int i = getConstInt();
// getConstInt () is modifiable rvalue of type int
// (not const int)

std::string s = getConstString();
// getConstString() is nonmodifiable rvalue

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#6

Moving and Lvalues/Rvalues

B With regard to propagating the value from one object to another, we can
summarize the results from the earlier slides as follows:
o If the source for a copy operation is an lvalue, the copy operation is not
guaranteed to be safely replaceable by a move operation.
o If the source for a copy operation is an rvalue, the copy operation is
guaranteed to be safely replaceable by a move operation (where the
guarantee may effectively come from the programmer in some cases).

B |t would be highly desirable if the language would provide a mechanism
that would automatically allow a move to be used in the rvalue case and a
copy to be employed otherwise.

B |n fact, this is exactly what the language does.
B The rules in the language for reference binding and overload resolution
conspire to achieve the following final overall effect:
o When the value of an object must be propagated to another object, a move
operation is used if such an operation is available and the source object is
an rvalue; otherwise, a copy operation is employed.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Moving/Copying and Lvalues/Rvalues

B Consider the following code with respect to moving/copying:

/+ Note: std::string provides copy and move constructors
and copy and move assignment operators. */

std::string get_value();
const std::string get_const_value(); // WARNING: bad idea

void func() {

std::string s(get_value());

// move elided (for reasons to be seen later)

10 std::string t(s); // copy construction
1 std::string u(std::move(t)); // move construction
12 s; // copy assignment
13 std::string("Hello"); // move assignment
14 std::move (t); // move assignment
15 get_const_value(); // copy assignment (not move!)
16}

© ® N oOU A WN =

twn ot ot
o

B One further complication exists that is yet to be discussed.

B |n some circumstances, a move/copy operation is either allowed or
required to be elided (i.e., copy elision).

B This complication will be considered in detail later.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Built-In Operators, Rvalues, and Lvalues

B Aside from the exceptions noted below, all of the built-in operators require
operands that are prvalues.
B The operand of each of the following built-in operators must be an Ivalue:
o address of
o pre- and post-increment
o pre- and post-decrement
B The left operand of the following built-in operators must be an Ivalue:

o assignment
o compound assignment

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.sub#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.ref#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.unary.op#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.post.incr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.pre.incr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.post.incr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.pre.incr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.ass#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.ass#1

Operators, Lvalues, and Rvalues

B Whether an operator for a class type requires operands that are Ivalues or
rvalues or yield Ivalues or rvalues is determined by the parameter types
and return type of the operator function.

B The member selection operator may yield an Ivalue or rvalue, depending
on the particular manner in which the operator is used. (The behavior is
fairly intuitive.)

B The value category and type of the result produced by the ternary
conditional operator depends on the particular manner in which the
operator is employed.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.ref#4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.cond#5
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.cond#6

Implicit Lvalue-to-Rvalue Conversion

B The (which would be more accurately called
the glvalue-to-prvalue conversion) is an implicit conversion from Ivalues
and xvalues to prvalues, which can be used in numerous circumstances.

B For non-class types, the above conversion also removes cv-qualifiers.

B Whenever an Ivalue/xvalue appears as an operand of an operator that
expects a prvalue operand, the Ivalue-to-rvalue conversion is applied to

convert the expression to a prvalue. Example:
int i = 1;
int j = 2;
int k =1 + J;

/+* since built-in binary addition operator requires
prvalue operands, 1 and j implicitly converted from
lvalues to prvalues #*/

B The Ivalue-to-rvalue conversion is not used for reference binding.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/conv.lval#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#9
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.ref#5

Section 3.4

Copy Elision and Implicit Moving

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Copy Elision

B normally, compiler forbidden from applying optimizations to code that
would change its observable behavior (i.e., so called “as if” rule)
B one important exception to as-if rule is copy elision
u is code transformation that omits copy/move operation by
constructing object in place to which it would later be copied/moved
B copy elision allows copy/move operations to be eliminated, thus avoiding
cost of copy/move constructors
B copy elision may also eliminate need for some temporary objects, which
avoids cost of constructing and destroying those objects
B copy elision either allowed or required in several contexts:
o initialization
o returning by value
o passing by value
throwing by value
catching by value
B in cases where copy elision is mandatory, copy/move constructors need
not be accessible or even provided at all, which provides more flexibility in
dealing with non-movable non-copyable types

[m]

a

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Copy Elision and Returning by Value

B in return statement of function with class return type, when expression is
name of non-volatile automatic object (other than function or catch-clause
parameter) with same cv-unqualified type as function return type,
automatic object can be constructed directly in function’s return value

B copy elision required if (allowed as per above and) return expression is
prvalue (i.e., placeholder for temporary object)

B example:
1 struct Widget {
2 Widget ();
3 Widget (const Widgeté&);
4 Widget (Widgeté&s) ;
5 /S
6}
7
8 Widget funcl() {return Widget();}
9 // returns prvalue (i.e., placeholder for temporary object)
10 Widget func2() {Widget w; return w;} // returns named object
11
12 int main() {
13 Widget w(funcl());
14 // required copy elision (not named object returned)
15 Widget x(func2());
16 // possible copy elision (named object returned)

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.elision#1.1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.6.1

Copy Elision and Returning by Value (Continued)

in context of returning by value, two forms of copy elision known by special
names

code transformation that eliminates copy from unnamed object associated
with prvalue return expression to returned value in caller known as

B that is, RVO is copy elision in case that return expression is prvalue

B as seen previously, RVO is mandatory

B code transformation that eliminates copy from named object specified by

return expression to returned value in caller known as

that is, NRVO is copy elision in case that return expression is named
object (i.e., not prvalue)

B as seen previously, NRVO is allowed but not required

B terms RVO and NRVO frequently used when discussing copy elision in

context of returning by value

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Return-By-Value Example 1: Summary

B consider following code (where type T is default constructible):

1 T callee() {return T();}
2 wvoid caller() {T x(callee()); /* ... =/}

goal is to construct object x in caller with value corresponding to T ()
(i.e., default constructed T)

without copy elision, this would be achieved by:

default copy/move copy/move
temporary temporary
construct A construct ; construct X
object ——p object .
. . incaller
incallee incaller

by maximally utilizing copy elision (and delaying creation of any temporary
objects as long as possible), this can be reduced to single step:

default
construct X
—_—> .
incaller

not only were two copy/move operations eliminated, need for any
temporary objects also eliminated

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Return-By-Value Example 1: Without Copy Elision

B again, consider following code (where type T is default constructible):
T callee() {return T();}
void caller() {T x(callee()); /* ... =/}
B consider what happens without copy elision (in violation of standard in this
case)
B executing body of caller proceeds as follows:
B storage for temporary object allocated in caller to hold return value of
callee
caller invokes callee
expression in return statement of callee evaluated, resulting in
construction of temporary object in callee (via default constructor) to hold
return value
before callee returns, value of temporary object in callee propagated to
temporary object in caller (via move/copy construction)
callee returns (after destroying its temporary object holding return value)
B value of temporary object in caller propagated to x (via move/copy
construction); then temporary object destroyed

B overhead: two temporary objects created (two constructor and destructor
invocations); must propagate value into and out of temporary objects

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Return-By-Value Example 1: With Copy Elision

B ggain, consider following code (where type T is default constructible):
T callee() {return T();}

void caller() {T x(callee()); /#* ... */}
B consider what happens with copy elision (which is required by standard in
this case)

B executing body of caller proceeds as follows:

H callerinvokes callee

expression in return statement of callee evaluated, resulting in return
value of callee being constructed directly in x in caller (via default
constructor)

B no overhead: no temporary objects created and therefore no need to
propagate values into or out of temporary objects

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Return-By-Value Example 2: Summary

B consider following code (where type T is default constructible and

copyable/movable):

1 T callee() {return T();}
2 wvoid caller() {T x; x = callee(); /* ... */}

B goal is to assign value correspondingto T () to x in caller

B without copy elision, this would be achieved by:

default ST copy/move o copy/move
construct porary construct porary assign X
object ——p object .
X . incaller
incallee incaller

with copy elision, this can be reduced to:

default e— copy/move
construct porary assign X
object)
. incaller
incaller

B able to eliminate one move/copy operation and one temporary object

B unlike in case of previous example, cannot eliminate temporary object in

caller since temporary object must be materialized in order to perform
assignment to x in caller

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Return-By-Value Example 2: Without Copy Elision

again, consider tollowing code (where type T Is default constructib
copyable/movable):

T callee() {return T();}
void caller() (T x; x = callee(); /+* ... =*/}
B consider what happens without copy elision (in violation of standard in this
case)

B executing body of caller proceeds as follows:
| storage for temporary object allocated in caller to hold return value of
callee
B caller invokes callee
expression in return statement of callee evaluated, resulting in
construction of temporary object in callee (via default constructor) to hold
return value
before callee returns, value of temporary object in callee propagated to
temporary object in caller (via move/copy construction)
callee returns (after destroying its temporary object holding return value)
B value of temporary object in caller propagated to x (via move/copy
assignment); then temporary object destroyed
B overhead: two temporary objects created; must propagate value from
temporary object in callee to temporary objectin caller

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Return-By-Value Example 2: With Copy Elision

B ggain, consider following code (where type T is default constructible and
copyable/movable):
T callee() {return T();}
void caller() {T x; x = callee(); /* ... =/}
B consider what happens with copy elision (which is required by standard in
this case)
B executing body of caller proceeds as follows:

E storage for temporary object allocated in caller to hold return value of

callee

caller invokes callee

expression in return statement of callee evaluated, resulting in return

value of callee being constructed directly in temporary object in caller

(via default constructor)

callee returns

value of temporary object in caller propagated to x (via move/copy
assignment); then temporary object destroyed

2]
H

B overhead: one temporary object created; but no need to propagate value
from temporary object in callee to temporary object in caller

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Example Where Copy Elision Allowed But Likely Impossible

class Widget {

public:
Widget (int) {/* ... #*/}
Widget (const Widgets&) = default;
Widget (Widget&s) = default;
/)

}i
bool get_flag();

® N o O WN =

- o ©

// eliding copy of return value 1s not possible
Widget func() {
Widget w(0);
// w must be constructed before it is known if
// w will be returned; so cannot know whether to
// construct w in returned value
Widget v (42);
// v must be constructed before it is known if
// v will be returned; so cannot know whether to
// construct v in returned value
if (get_flag()) {return w;}
else {return v;}

DD NN = = o oo
W= 0 0N oA N

}

n
=

25 int main() {
Widget w(func());

SN
N o

}

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Copy Elision and Passing by Value

B in function call, when temporary class object not bound to reference would
be copied/moved to class object with same cv-unqualified type, temporary
object can be constructed directly in target of omitted copy/move

B copy elision always required if allowed (as per above)

B example:

struct Widget {
Widget ();
Widget (const Widgeté&);
Widget (Widgeté&s) ;
/).

}i
void func(Widget w) {/* ... =/}

©® N o oW =

o ©

int main() {
func (Widget ()); // required copy elision
func (std::move (Widget ())); /* BAD IDEA:
copy elision not allowed; move performed */

PN
—

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#15
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.call#4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.6.1

Pass-By-Value Example: Summary

B consider following code (where type T is default constructible):

1 wvoid callee(T p) {/* ... */}
2 wvoid caller() {callee(T());}

B goal is to invoke callee with its function parameter p having value
corresponding to T () (i.e., default constructed T)

B without copy elision, this would be accomplished by:

default copy/move
temporary
construct obiect construct parameter p
L
.) incallee
incaller

B with copy elision, this can be reduced to:

default
construct parameter p
—_—» .
incallee

B by using copy elision, not only was one copy/move operation eliminated,
but temporary object also eliminated

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Pass-By-Value Example: Without Copy Elision

B ggain, consider following code (where type T is default constructible):
void callee(T p) {/* ... #*/}

void caller() {callee(T());}
B consider what happens without copy elision (in violation of standard in this
case)
B executing body of caller proceeds as follows:
H temporary object created in caller with value corresponding to T () (via
default constructor)
storage for callee’s function parameter p allocated (on stack)
value of temporary object in caller propagated (via move/copy
constructor) to callee’s function parameter p
caller transfers control to callee
callee returns, resulting in its function parameter being destroyed (and
deallocated)
@A temporary object in caller destroyed (and deallocated)

B overhead: one temporary object created (constructor and destructor

invocations); one move/copy required to propagate value from temporary
object elsewhere

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Pass-By-Value Example: With Copy Elision

B ggain, consider following code (where type T is default constructible):
void callee(T p) {/* ... */}

void caller() {callee(T());}
B consider what happens with copy elision (as required by standard in this
case)
B executing body of caller proceeds as follows:

H function parameter p constructed (on stack) with value corresponding to
T () (via default constructor)

caller transfers control to callee

callee returns, resulting in its function parameter being destroyed (and
deallocated)

B no overhead: no temporary objects created and therefore no need to
propagate values into or out of temporary objects

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Copy Elision and Throwing by Value

B in throw expression, when operand is name of non-volatile automatic
object (other than function or catch-clause parameter) whose scope does
not extend beyond end of innermost enclosing try block (if there is one),
copy/move operation from operand to exception object can be omitted by
constructing automatic object directly into exception object

B copy elision required if (allowed as per above and) throw expression is
prvalue

B example:
1 struct Widget {
2 Widget ();
3 Widget (const Widget &);
4 Widget (Widget&s) ;
5 V2
6 };

7

8 wvoid func_1() {

9 throw Widget(); // required copy elision (prvalue)

10}

12 wvoid func_2(){
13 Widget w; throw w; // possible copy elision (not prvalue)
14}

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.elision#1.2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.6.1

Copy Elision and Catching by Value

B when exception declaration of exception handler declares object of same
type (except for cv-qualification) as exception object, copy/move operation
can be omitted by treating exception declaration as alias for exception
object if meaning of program will be unchanged except for execution of
constructors and destructors for object declared by exception declaration

B in this context, copy elision never required

B example:
1 struct Widget {
2 Widget () ;
3 Widget (const Widget &);
4 Widget (Widgeté&&) ;
5 /S
6 };
7
8 int main() {
9 try {throw Widget();}
10 catch (Widget foo) { // possible copy elision
11 /* ... (foo not modified) =/

12 }

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.elision#1.3

Copy Elision and Initialization

B if prvalue used as initializer of object with same type (except for
cv-qualification), object must be initialized directly

B example:
1 class Widget {
2 public:
3 Widget ();
4 Widget (const Widgeté&);
5 Widget (Widgeté&s) ;
6 YV
7}
8

10

Widget func();

int main() {

Widget w = Widget (func());
// copy elision required for initialization;
// no copy/move in main function;
// returned value from func directly constructed in w;
// func may need copy/move to propagate return value
// out of func, if not elided

Widget u{Widget()};
// copy elision required for initialization;
// no copy/move; new Widget object is default
// constructed directly in u

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.6.1

Mandatory Copy Elision Example: Factory Function

class Widget {

1
2 public:

3 Widget () {/* ... =*/}

4 // not copyable

5 Widget (const Widgets&) = delete;

6 Widget& operator=(const lidget&) = delete;
7 // not movable

8 Widget (Widget&&) = delete;

9 Widget& operator=(Widget&&) = delete;

10 /S

1}

13 Widget make_widget () {
14 return Widget ();
15}

17 int main() {

18 Widget w(make_widget());

19 // OK: copy elision required
20 Widget v{Widget()};

21 // OK: copy elision required
22 Widget u(Widget());

23 // function declaration

Copyright © 2015-2020 Michael D. Adams C++ Version: 2020-02-29

Maximally Delayed Materialization of Temporary Objects

#include <cassert>

1
2

3 class Widget {

4 public:

5 Widget () : c_(0) {}

6 Widget (const Widget& other) : c_(other.c_ + 1) {}

7 Widget& operator=(const Widget& other) {c_ = other.c_ + 1; return *this;}
8

int count() const {return c_;}
9 private:

10 int c_;

11 };

13 Widget widget_1() {return Widget ();}

14 // mandatory copy elision for return value

15 Widget widget_2() {return widget_1();}

16 // mandatory copy elision for return value

17 Widget widget_3() {return widget_2();}

18 // mandatory copy elision for return value

19

20 int main() {

21 Widget w{widget_3()}; // no temporary object; no copy/move
22 assert (w.count () == 0);

23 w = widget_3();

24 // widget_1 directly constructs return value into
25 // temporary object in main

26 assert (w.count () == 1);

27 Widget v{Widget (Widget (Widget (Widget (Widget (Widget ())))))};

28 // default constructs directly into v; no copy/move
29 assert (v.count () == 0);

Return Statements and Moving/Copying

A copy operation associated with a return statement may be (elided or)
converted to a move operation if an automatic storage duration variable is
returned.

Overload resolution to select the constructor for the copy is first
performed as if the object were designated by an rvalue.

If the first overload resolution fails or was not performed, or if the type of
the first parameter of the selected constructor is not an rvalue reference to
the object’s type (possibly cv-qualified), overload resolution is performed
again, considering the object as an Ivalue.

In a future version of the C++ standard, the condition on a constructor

being selected seems likely to be relaxed to cover the cases of conversion
operators and slicing.

Copyright (© 2015-2020 Michael D. Adams C++ Version: 2020-02-29

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/stmt.return#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.elision#3.1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.elision
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.elision

Example: Return Statements and Moving/Copying

#include <string>

1

2

3 class Widget {

4 public:

5 Widget (const std::strings) {/* ... */}

6 Widget (const Widgets&) = default;

7 Widget (Widget&&) = default;

8 /).

9}

10

11 Widget get_value_1() {

12 Widget w("goodbye");

13 return w;

14 // copy elision is allowed, but not required;
15 // 1f move/copy not elided:

16 // since w is local object, w first treated as if rvalue,
17 // resulting in move constructor being selected
18 // to propagate