
SENG475 & ECE596C:
Advanced Programming Techniques for Robust Efficient Computing (With C++)

Michael Adams

Department of Electrical and Computer Engineering
University of Victoria
Victoria, BC, Canada

https://www.ece.uvic.ca/~mdadams

Summer 2024

youtube.com/iamcanadian1867 github.com/mdadams @mdadams16

Course Outline:
https://www.ece.uvic.ca/~mdadams/courses/cpp/#outline

https://www.ece.uvic.ca/~mdadams
https://youtube.com/iamcanadian1867
https://github.com/mdadams
https://twitter.com/mdadams16
https://www.ece.uvic.ca/~mdadams/courses/cpp/#outline

Agenda

1 preamble
2 video conferencing

2 course overview
2 prerequisite background, course topics, learning outcomes
2 general teaching strategy
2 course website and Brightspace site
2 video lectures
2 lecture sessions, office hours, tutorial sessions
2 required textbook and lecture slides
2 computer and software requirements
2 handouts
2 plagiarism and other forms of academic misconduct
2 advice for succeeding in course

3 questions

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 2

Section 1.1

Preamble

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 3

Joining Zoom Meetings With Single Sign-On (SSO)

� users are required to join Zoom meetings using Zoom Single Sign-On
(SSO) with their UVic Netlink credentials (i.e., Netlink username and
password)

� use of SSO allows identity of person to be verified using their UVic Netlink
credentials

� allowing person to enter meeting anonymously would pose significant
security risk (e.g., Zoom-bombing attacks)

� if you are placed in waiting room instead of being directly admitted into
meeting, you did not use SSO correctly

� users placed in waiting room will not be admitted to meeting

� therefore, anyone who does not use SSO will be blocked from joining
meeting

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 4

Video Conferencing Etiquette

� always use real (first and last) name for your screen name (or you may
be removed from meeting)

� always use headset in order to minimize feedback when microphone is not
muted

� always mute microphone when not speaking

� in larger meetings, always disable video camera when it is not strictly
needed to avoid network bandwidth problems

� unless instructed otherwise, if you have question for meeting host, raise
your virtual hand (accessible via “Participants” on Zoom), rather than
interrupting host

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 5

Section 1.2

Course Overview

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 6

Course Overview

� interdisciplinary in nature (e.g., engineering and computer science)

� explores variety of advanced programming topics
� considers several application areas, such as:

2 geometry processing and computational geometry
2 numerical analysis
2 signal processing

� uses C++ programming language (C++17/C++20)

� employs Linux-based software development environment with GCC and
Clang compiler toolchains

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 7

Prerequisite Background

� should possess good programming skills
� must know rudimentary C++ (e.g., classes, templates, and standard

library)

� first programming assignment (excluding software tools exercise) (i.e.,
Assignment 1) intended solely as review of basic C++

� students can use Assignment 1 to help judge if they possess sufficient
knowledge of C++ for course

� students should complete Assignment 1 as soon as possible

� any student having significant difficulty with Assignment 1 should drop
course immediately

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 8

Course Topics

� nominally, major topics to be covered (in approximate order) are:
1 Algorithms
2 Data Structures
3 A Few Remarks About Basic C++, Const, Constexpr
4 Constexpr, Literal Types, and Compile-Time Computation
5 Value Categories, Moving and Copying, Temporary Objects, and Copy

Elision
6 Error Handling, Exceptions, and Exception Safety
7 Computer Arithmetic, Interval Arithmetic, and Exact Arithmetic
8 Memory Management and Container Classes
9 Cache-Efficient Algorithms
10 Concurrency
11 Smart Pointers
12 Vectorization

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 9

Learning Outcomes

� upon completion of course, student should be able to:
1 identify numerous factors that can impact performance and robustness of

code
2 select data structures and algorithms appropriate for solving given problem

and justify choices made
3 develop software to meet detailed set of specifications
4 recognize importance of thoroughly testing code
5 demonstrate intermediate-level competency in C++ programming

language
6 demonstrate basic competency with C++ standard library as well as

several other libraries (e.g., Boost and CGAL)
7 make effective use of tools available in typical C++ software development

environment

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 10

General Teaching Strategy

� teaching strategy employed based on student feedback collected in last
several offerings of SENG 475 (and ECE 596C)

� course employs flipped classroom approach to teaching

� students introduced to course materials through prerecorded video
lectures prepared by instructor (which are required viewing)

� then, students given opportunity to engage with course materials in
interactive lecture sessions held by instructor during lecture time slots

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 11

Course Website and Brightspace Site

� course employs both course website and Brightspace site
� course website:

2 https://www.ece.uvic.ca/~mdadams/courses/cpp

� primary information source for course is course website, which has all
handouts and links to other important information/resources for course

� students should read all information on course website (as failing to do so
may cause important course-related information to be missed)

� some areas of course website are password protected
� Brightspace site:

2 https://bright.uvic.ca/d2l/home/350695

� Brightspace site only intended to be used for:
2 posting username and password required to access password-protected

areas of course website
2 providing students with means to review their course grades

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 12

https://www.ece.uvic.ca/~mdadams/courses/cpp
https://bright.uvic.ca/d2l/home/350695

Video Lectures

� all core instructional content available as prerecorded videos via
instructor’s YouTube channel:

2 https://www.youtube.com/iamcanadian1867

� students responsible for all material covered in video lectures

� schedule for viewing video lectures provided[PDF]

� critically important to follow this viewing schedule
� for more information on video lectures, refer to “Video Lectures” section of

course website

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 13

https://www.youtube.com/iamcanadian1867
https://www.ece.uvic.ca/~mdadams/courses/cpp/documents/video_lecture_schedule.pdf
https://www.ece.uvic.ca/~mdadams/courses/cpp/#video_lectures

2019-05 SENG 475 Video Lectures

� recordings of lectures from SENG 475 in 2019-05 term will be used for
delivery of core course content

� ignore any parts of 2019-05 lectures (mainly in Lectures 1 and 37) that
deal with course administrative issues such as: student
evaluation/assessment, schedules/deadlines, assignments, projects, and
exams

� course video-lecture information package available that includes:
2 2019-09-01-SENG475 edition of lecture slides, which should match slides

used in videos reasonably closely[PDF]
2 fully-cataloged list of slides covered in lectures, where each slide in list has

link to corresponding time offset in YouTube video where slide is covered

..[PDF][HTML]
2 numerous supplemental documents referenced by slide deck

� above video lectures also listed in Section D.2 (titled “2019-05 SENG 475
Video Lectures”) of textbook

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 14

https://www.ece.uvic.ca/~mdadams/courses/cpp/video_lectures/lecture_slides_for_programming_in_cpp-2019-09-01-seng475/lecture_slides_for_programming_in_cpp-2019-09-01-seng475.pdf
https://www.ece.uvic.ca/~mdadams/courses/cpp/video_lectures/2019_05_seng475_video_lectures.pdf
https://www.ece.uvic.ca/~mdadams/courses/cpp/video_lectures/2019_05_seng475_video_lectures.html

Supplemental Video Lectures

� video lectures covering additional supplemental content will also be used

� may add new supplemental content as course progresses
� new supplemental content might include:

2 comments that address common sources of problems for students
2 answers to frequently-asked questions
2 software demonstrations

� supplemental video-lecture content available from:
2 Appendix D (titled “Video Lectures”) of textbook, including:

2 Section D.3 (titled “Rudimentary C++”)
2 Section D.4 (titled “Miscellaneous Video Presentations”)

2 “Video Lectures” section of course website

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 15

https://www.ece.uvic.ca/~mdadams/courses/cpp/#video_lectures

Lecture Sessions 1

� lecture time slots will be used by instructor to hold interactive lecture
sessions to assist students in learning course materials more effectively

� sessions held face-to-face with provision for online attendance
(assuming instructor has computer setup necessary to accommodate
online attendance)

� some potential uses of lecture sessions include (but are not limited to):
2 discussing more difficult aspects of course materials and addressing

common misunderstandings
2 answering student questions about course materials
2 presenting some extra material that is not officially part of course but may

help students in job interviews

� students not required to attend lecture sessions, unless explicitly
indicated by instructor

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 16

Lecture Sessions 2

� students strongly encouraged to participate in at least some of lecture
sessions, as this will likely lead to improved understanding of course
materials

� normally, lecture sessions will not be recorded by instructor
� some reasons for not recording lecture sessions include:

2 main objective of lecture sessions is to provide opportunity interactive
engagement, and recording lecture sessions would run completely contrary
to this objective

2 recording any interactions with students raises many privacy concerns,
which are best avoided whenever possible

2 some students may feel uncomfortable to participate if being recorded
2 all core instructional content for course already available in video format

� additional information on lecture sessions available from
“.Lecture Sessions” section of course website

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 17

https://www.ece.uvic.ca/~mdadams/courses/cpp/#lectures

Office Hours

� office hours will be held by instructor in order to provide extra help with
course materials as well as discuss other course-related matters with
students

� office-hour sessions will be offered online only
� time slot for office hours will be determined by Brightspace survey and

posted on course website

� questions about course materials will be answered in main room so that
all students can benefit from questions asked

� private/confidential matters will be discussed one-on-one with student in
breakout room

� may attend office-hour session simply to listen to questions from other
students or comments from instructor

� office hours cancelled during reading break (and on holidays)

� more information on office hours available from “Office Hours” section of
course website

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 18

https://www.ece.uvic.ca/~mdadams/courses/cpp/#office_hours

Tutorial Sessions 1

� tutorial sessions run by instructor

� not all tutorial time slots will be used
� each tutorial will be held in one of two formats:

2 face-to-face in computer lab used by course with no provision for online
attendance

2 online only

� format to be used will depend on nature of tutorial content
� possible uses of tutorial sessions include (but are not limited to):

2 presentations by instructor to further clarify more difficult aspects of course
material

2 software demonstrations by instructor
2 student interviews regarding code submitted for programming assignments

(to guard against plagiarism)

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 19

Tutorial Sessions 2

� students required to attend tutorial sessions, unless explicitly indicated
by instructor

� normally, tutorial sessions will not be recorded (for similar reasons as in
case of lecture sessions)

� tutorials start in first week of classes (i.e., this week)

� first tutorial will introduce software development environment amongst
other things

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 20

Required Textbook and Lecture Slides

� textbook (i.e., C++ programming exercise book):
2 M. D. Adams, Exercises for Programming in C++ (Version 2021-04-01),

Apr. 2021, xxii + 136 pages, ISBN 978-0-9879197-5-5 (PDF).
� lecture slides:

2 M. D. Adams, Lecture Slides for Programming in C++ (Version 2021-04-01),
Apr. 2021, xxiii + 2901 slides, ISBN 978-0-9879197-4-8 (PDF).

� textbook website:
2 https://www.ece.uvic.ca/~mdadams/cppbook

� available under Creative Commons (i.e., open-access) license

� textbook and lecture slides can obtained in PDF format from textbook
website

� print copies not available from UVic Bookstore

� Appendix D (titled “Video Lectures”) of textbook contains catalog of (most
but not all) video lectures relevant to course

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 21

https://www.ece.uvic.ca/~mdadams/cppbook

Computer and Software Requirements

� each student required to have access to all of following software on their
own computer:

2 Zoom:
2 for participating in online meetings in course

2 Secure Shell (SSH) client with support for X11 tunnelling:
2 to allow access to lab machines by remote login

2 X11 server:
2 to facilitate remote execution of programs with GUI

� containerized software development enviroment (SDE) for course
provided in form of virtual machine (VM) disk image

� each student required to have access to (64-bit x86) computer with VM
hypervisor software that can run containerized environment provided by
VM disk image (as having access to VM setup will make working on
assignments and project much easier)

� VM disk image about 3 to 4 GiB in size (compressed) and contains SSH
client, X11 server, and SDE (as well as various other useful software)

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 22

Course Outline and Other Handouts

� some handouts available from course website include:
2 undergraduate (SENG 475) course outline[web] .[annotated PDF]
2 graduate course (ECE 596C) outline, which is essentially same as

undergraduate course outline[web]
2 online meetings handout[PDF]
2 video-lecture schedule handout[PDF]
2 video-lecture information package[Zip][HTML][PDF][video]
2 assignment-assessment handout[PDF][annotated PDF]
2 assignment general-information handout[PDF]
2 project handout[PDF] .[annotated PDF]
2 course-materials bug-bounty program (CMBBP) handout[PDF]
2 course-materials errata handout[text]
2 GitHub authentication handout[PDF]
2 consent form (for use of student source code for research purposes)[PDF]

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 23

https://heat.csc.uvic.ca/coview/course/2024051/SENG475?unp=t
https://www.ece.uvic.ca/~mdadams/courses/cpp/documents_annotated/course_outline_seng475.pdf
https://heat.csc.uvic.ca/coview/course/2024051/ECE596C?unp=t
https://www.ece.uvic.ca/~mdadams/courses/cpp/documents/online_meetings.pdf
https://www.ece.uvic.ca/~mdadams/courses/cpp/documents/video_lecture_schedule.pdf
https://www.ece.uvic.ca/~mdadams/courses/cpp/../../cppbook/downloads/lecture_slides_for_programming_in_cpp-2019-09-01-seng475.zip
https://www.ece.uvic.ca/~mdadams/courses/cpp/../../cppbook/video_lectures/2019_05_seng475_video_lectures.html
https://www.ece.uvic.ca/~mdadams/courses/cpp/../../cppbook/video_lectures/2019_05_seng475_video_lectures.pdf
https://youtu.be/hJE7waQvuTs
https://www.ece.uvic.ca/~mdadams/courses/cpp/documents/assignment_assessment.pdf
https://www.ece.uvic.ca/~mdadams/courses/cpp/documents_annotated/assignment_assessment.pdf
https://www.ece.uvic.ca/~mdadams/courses/cpp/documents/assignment_general_information.pdf
https://www.ece.uvic.ca/~mdadams/courses/cpp/documents/project.pdf
https://www.ece.uvic.ca/~mdadams/courses/cpp/documents_annotated/project.pdf
https://www.ece.uvic.ca/~mdadams/courses/cpp/documents/cmbbp.pdf
https://www.ece.uvic.ca/~mdadams/courses/cpp/course_materials_errata.txt
https://www.ece.uvic.ca/~mdadams/courses/cpp/documents/github_authentication.pdf
https://www.ece.uvic.ca/~mdadams/courses/cpp/documents/consent_form.pdf

Plagiarism and Other Forms of Academic Misconduct

� plagiarism taken very seriously by instructor
� some examples of plagiarism include:

2 using code from another source without clearly acknowledging source
2 helping another student to commit plagiarism (e.g., by providing code)
2 posting assignment solutions to any public forum (e.g., public Git repository)

during or after having taken course

� all plagiarism cases will be reported to Department Chair
� plagiarism offense will result in automatic zero grade for assignment or

project in question

� instructor and teaching assistants may, at any time, question student
regarding any aspect of their submitted work in order to ensure that this
work is student’s own

� instructor and teaching assistants may employ plagiarism-detection tools
in review and grading of student work

� help classmates by pointing them in direction of solution but never give
them (all or part of) your code

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 24

Randomized Code Interviews

� for each assignment, some number of students will be randomly selected
to be interviewed by TA or course instructor

� student will be asked questions about code in assignment submission in
order to make determination of whether submission is student’s own work

� mostly likely, tutorial time slot will be partially used for purpose of
conducting such interviews

� interviews will be conducted one-on-one with student

� if any assignment submissions flagged as suspicious, student will be
added to list of students to be interviewed

� since most interviews result from random selection, being selected for
interview does not necessarily indicate any suspicion of guilt

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 25

Use of Student Source Code for Research Purposes

� instructor conducts research in software-related areas
� some of this research involves analysis of source code for various

purposes, including:
2 developing better methods for teaching programming
2 studying how programming languages and libraries are used in practice
2 detecting bugs or bad programming practices

� in some of this research, extremely beneficial to be able to analyze source
code submitted by students as part of course work

� student source code is kept confidential, with only members of research
team (normally, instructor and one of his graduate students) having
access to source code

� each student required to complete consent form to indicate whether they
consent to allowing source code to be used in this way

� consent form available from “.Miscellany” section of course website[PDF]

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 26

https://www.ece.uvic.ca/~mdadams/courses/cpp/#miscellany
https://www.ece.uvic.ca/~mdadams/courses/cpp/documents/consent_form.pdf

Other Remarks

� likely to obtain much faster response to questions by using lecture
sessions and office hours than using email

� students should enable Brightspace notifications (via email) so that course
announcements received in timely fashion

� all assignments and projects submitted via GitHub Classroom (in absence
of special arrangements)

� advisable for students to work ahead whenever possible to protect against
unexpected

� most handouts versioned (i.e., include date on each page) so that newer
versions can be distinguished from older ones

� if you downloaded any handouts (including course outline) before day of
first lecture, check to ensure that those handouts have not changed since
time downloaded

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 27

Advice for Succeeding in Course

� do not fall behind

� work ahead to whatever extent possible (to reduce risk of falling behind
due to unexpected circumstances)

� consume video content at rate that either meets or exceeds minimum rate
specified on video lecture handout

� start working on assignments as soon as possible after GitHub Classroom
assignment invitation URL posted

� submit your project proposal early, have it approved early, and start
working on project early

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 28

Questions

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 29

Section 1.3

Software Development Environment and Assignments

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 30

Software Development Environment (SDE)

� course uses custom software development environment (SDE)

� course SDE includes (amongst other things) recent (often most recent)
versions of GCC and Clang

� critically important to use course SDE for all assignments

� assignments are graded using course SDE

� to access course SDE, use sde_shell or sde_make_setup command

� sde_shell: starts new subshell configured to use course SDE

� sde_make_setup: prints shell commands needed to configure shell to
use course SDE so that user may invoke them

� use of sde_shell is recommended over sde_make_setup, since easier
to use

� more information about course SDE can be found at:
2 https://www.ece.uvic.ca/~mdadams/courses/cpp/#sde
2 https://github.com/mdadams/sde

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 31

https://www.ece.uvic.ca/~mdadams/courses/cpp/#sde
https://github.com/mdadams/sde

Accessing Software Development Environment (SDE)

� two ways to access SDE for course:
1 use lab machines either by console login or remote login via SSH with X11

tunneling (for graphics)
2 use VM disk image with SDE [except for assignments package]

� each student must be able to use both methods for accessing SDE

� assignment_precheck only available on lab machines (not VM disk
image)

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 32

Secure Shell (SSH) Client Software

� MacOS, Linux, and most other Unix variants typically include SSH client
software

� PuTTY [Windows, Unix]
2 website: https://www.chiark.greenend.org.uk/~sgtatham/putty
2 open source implementation of SSH and telnet
2 for Windows and Unix platforms

� MobaXterm [Windows]
2 see slide on X11 server software

� Secure Shell [ChromeOS]
2 extension for Chrome browser
2 https://chrome.google.com/webstore/detail/secure-shell/

iodihamcpbpeioajjeobimgagajmlibd

� see also:
2 https://www.uvic.ca/engineering/ece/faculty-and-staff/

home/computing/remote-access/index.php
2 https://servicecatalog.engr.uvic.ca/services/ssh/

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 33

https://www.chiark.greenend.org.uk/~sgtatham/putty
https://chrome.google.com/webstore/detail/secure-shell/iodihamcpbpeioajjeobimgagajmlibd
https://chrome.google.com/webstore/detail/secure-shell/iodihamcpbpeioajjeobimgagajmlibd
https://www.uvic.ca/engineering/ece/faculty-and-staff/home/computing/remote-access/index.php
https://www.uvic.ca/engineering/ece/faculty-and-staff/home/computing/remote-access/index.php
https://servicecatalog.engr.uvic.ca/services/ssh/

X11 Server Software

� most Unix variants including Linux but excluding MacOS typically include
X11 server software

� MobaXterm [Windows]
2 website: https://mobaxterm.mobatek.net
2 enhanced terminal with X11 server and SSH client
2 free (Home Edition), proprietary, for Windows platform

� Xming [Windows]
2 website: http://www.straightrunning.com/XmingNotes
2 X11 server for Windows
2 open source

� XQuartz [MacOS]
2 website: https://www.xquartz.org
2 X11 server for MacOS

� for ChromeOS, use Crostini (i.e., containerized Linux)
� see also:

2 https://www.uvic.ca/engineering/ece/faculty-and-staff/
home/computing/remote-access/index.php

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 34

https://mobaxterm.mobatek.net
http://www.straightrunning.com/XmingNotes
https://www.xquartz.org
https://www.uvic.ca/engineering/ece/faculty-and-staff/home/computing/remote-access/index.php
https://www.uvic.ca/engineering/ece/faculty-and-staff/home/computing/remote-access/index.php

Hypervisor Software

� Oracle VirtualBox [Windows, MacOS, Linux/Unix]
2 website: https://www.virtualbox.org
2 open source with proprietary extensions
2 supports many operating systems (e.g., Linux, MacOS, Windows, and

many UNIX variants)
� VMWare Workstation Player [Windows, MacOS, Linux/Unix]

2 website:
https://www.vmware.com/ca/products/workstation-player.html

2 proprietary, free for personal non-commercial use
2 supports many operating systems (e.g., Linux, MacOS, Windows, and

many UNIX variants)
� GNOME Boxes [Linux/Unix]

2 website: https://wiki.gnome.org/Apps/Boxes
2 open source
2 supports many UNIX-like operating systems (e.g., Linux)

� running arbitrary VM image on ChromeOS-based system likely not
possible unless system supports Crostini with nested VMs

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 35

https://www.virtualbox.org
https://www.vmware.com/ca/products/workstation-player.html
https://wiki.gnome.org/Apps/Boxes

VM Disk Images
� use of VM disk image containing SDE has many advantages, including:

2 reduces dependence on lab machines, which may become overloaded or
have downtime

2 reduces need for network connection
2 allows use of GUI-based applications that would require too much network

bandwidth to use remote display
2 protects against potential breaking changes made by system administrators

on lab machines
� VM disk images contain build of Fedora Linux for 64-bit x86 architecture

(apologies to anyone with machines based on 32-bit x86 or ARM)
� has X11 server (which is run when graphical desktop started after login)
� has ssh client ssh -X username@ugls.ece.uvic.ca

ssh -Y username@ugls.ece.uvic.ca
� has same SDE as lab machines, except SENG475 assignment package

omitted
� assignment_precheck does not know about course assignments
� aside from running assignment_precheck, all work can be done using

VM disk image
Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 36

Assignments
� two types of assignment problems: programming and non-programming

� programming problems require development of code to meet prescribed
specifications

� non-programming problems typically require written (i.e., English) answers
which may include short code fragments

� programming problems in assignments specified in great detail and
typically include requirements related to:

2 organization of code in files and directories (e.g., file and directory names,
directory structure, file contents)

2 application programming interfaces (APIs)
2 user-interface (UI) behavior, such as command-line interface (CLI)
2 data formats for program input and output
2 program exit-status conventions

� critically important that all specifications for programming problem met
exactly

� if requirements not met exactly, code may fail to build successfully with
instructor’s test code

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 37

GitHub and GitHub Classroom

� GitHub is web-based hosting service for Git repositories (i.e., hosts Git
repositories for commercial, open-source, and other software projects)

� GitHub website: https://github.com

� GitHub website provides mechanism for creating and managing Git
repositories for programming assignments called GitHub Classroom

� course uses GitHub Classroom for assignment submission

� each student needs GitHub account

� to create GitHub account, visit: https://github.com/join

� student sent email invitation to undertake assignment

� accepting invitation will cause private Git repository to be created for
storing assignment submission

� information on authentication and credential caching for GitHub can be
obtained from “GitHub and GitHub Classroom” section of course website

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 38

https://github.com
https://github.com/join

Assignment Submission

� assignment submission performed using Git repository in conjunction with
GitHub Classroom

� files in Git repository must be organized in very specific manner

� submissions are self-identifying via IDENTIFICATION.txt file

� required to provide detailed history of code development (i.e., detailed
commit log messages)

� code must be well commented

� assignment submissions must pass validation phase of precheck
otherwise automatic grade of zero

� to perform assignment precheck, use command assignment_precheck

� late assignment submissions not accepted

� incomplete assignment submissions will be accepted, provided that they
pass validation phase of precheck

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 39

Assignment Evaluation

� code correctness is very important, as marking scheme for programming
problems weights code correctness quite heavily

� code will be built and run through many test cases

� testing uses instructor test code (not student test code)

� critical that code builds (i.e., compiles and links) successfully; otherwise
no testing can be performed

� any test that cannot be performed is assumed to fail
� code visually inspected (code itself and comments)

� commit history log messages examined

� code comments and commit log messages must be clearly
understandable to others

� as part of evaluation process, each student may be questioned about their
submitted code by instructor or teaching assistant (in order to ensure code
is student’s own work)

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 40

Assignment Solutions

� solutions for non-programming problems usually posted

� solutions for programming problems not posted
� solutions to programming problems not posted for two main reasons:

1 to avoid bias implicit in advocating one particular correct solution over all
others

2 to eliminate possibility of students in future offerings of course plagiarizing
from instructor’s solutions

� students welcome to meet with instructor in order to view his solutions to
programming problems

� students will not be permitted to make copies of these solutions, however

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 41

Advice for Success on Assignments

1 start working on each assignment as soon as possible

2 ensure that each assignment submission passes validation stage of
assignment precheck as early as possible before submission deadline

3 test code thoroughly at all stages of development

4 enable and take notice of compiler warnings

5 use code sanitizers

6 use code coverage tools

7 always double-check that all requirements for software being developed
are met

8 ensure that your Git repository contains correct contents at submission
deadline

9 be particularly careful about const correctness of code

10 commit code changes to your Git repository often and with detailed
commit log messages

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 42

Software Demonstration

� if time permits, give demonstration that covers various software tools,
such as:

1 SDE (i.e., sde_shell)
2 Aristotle (i.e., assignment_precheck)
3 YouCompleteMe (YCM)
4 Vim Language-Server-Protocol (LSP) Plugin
5 Address Sanitizer (ASan)
6 Undefined-Behavior Sanitizer (UBSan)
7 Git
8 CMake
9 Lcov

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 43

Section 1.4

Course Project

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 44

Warning

The information about the course project presented on
these slides is not intended as a replacement for the
project handout. These slides are only intended to sup-
plement the information on the project handout. Some very
important details about the project are only presented on the
project handout (and not on these slides). So, it is extremely
important to read the project handout carefully (in addition
to looking at these slides).

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 45

Project

� develop some significant software project using C++ programming
language

� SENG475 students can work either individual or in teams
� size of team considered in grading of project
� ECE596C students must work individually
� stages of project work (in order):

1 preliminary project discussion
2 formal written proposal
3 project software, including brief video presentation

� some video presentations for past projects available via links on course
website

� past projects only for illustrative purposes, not for simply copying ideas
� since project software due very late in term, penalty for late project

software submissions quite severe (grows exponentially with time)
� some students use project as way to market themselves to prospective

employers
Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 46

Skillsets Developed by Project

� designing (as opposed to implementing) software
� designing software interfaces; for example:

2 command-line interface (CLI)
2 text-based user interface (TUI)
2 graphical user interface (GUI)
2 application programming interface (API)

� writing formal specifications of software interfaces

� software project planning

� effective testing

� written communication skills

� oral presentation skills

� further develop proficiency in C++

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 47

Preliminary Project Discussion

� each student required to meet with instructor to introduce idea for project

� instructor will assess whether idea has potential to lead to viable project

� student should only to proceed to prepare written proposal if instructor
has indicated that project idea seems viable

� preliminary discussion intended to prevent student from spending time
preparing proposal for project that is very unlikely or guaranteed not to be
approved

� project idea could be rejected for numerous reasons, such as:
2 another student already doing similar project in current offering of course
2 too many similar projects done in past offerings of course
2 idea would lead to project with too much or too little work
2 project could not be meaningfully evaluated by instructor (e.g., not testable)
2 idea not of sufficient relevance to course

� meetings normally take place during office hours or free time during
lab/tutorial time slots

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 48

Project Proposal 1

� student required to prepare formal written proposal describing project
software to be developed

� proposal must provide clear, concise, and complete description of project
to be undertaken

� should be as short as possible subject to constraint that all required
information must be included

� project handout provides very detailed information about what information
must be included in proposal

� student forbidden from starting work on project software until proposal
approved by instructor (in order to prevent work being done on project that
would not be appropriate for course)

� students strongly encouraged to submit proposal as early as possible (i.e.,
very far in advance of deadline)

� proposals received after submission deadline will receive grade of zero

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 49

Project Proposal 2

� grade for proposal assigned based on first version submitted, regardless
of whether proposal approved

� if proposal not approved, need to resubmit revised version

� if revised version must be submitted, must use highlighting or change
bars (or something similar) to clearly indicate directly on the document
itself what text has been changed so instructor only needs to re-read parts
that have changed

� instructor will not review revised proposal unless all changes to document
are clearly indicated

� if number of revisions of proposal becomes excessive, instructor reserves
right to deduct further marks from proposal

� grading approach for proposal intended to encourage good job on first
version submitted, eliminating need for revision

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 50

Project Software

� project software submitted via GitHub Classroom

� particular Git repository layout must be used

� software must build and run on lab machines using SDE for course

� only libraries installed on system (as part of base OS install or SDE) can
be used (i.e., students cannot include other libraries as part of their project
software)

� project software submission required to include URL for video
presentation

� submission deadline for project software during final exam period (with
specific date posted on course website)

� if early submission deadline met, entire grade for project software scaled
by multiplicative factor (see course website for specific value)

� must notify instructor by email when project software considered
submitted for grading

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 51

Video Presentation

� student required to prepare brief video presentation for project

� presentation must not exceed 5 minutes

� generally introduce project using some slides

� give brief demonstration of software developed

� be sure to include student name and project title on title slide

� video must be hosted by YouTube

� use either unlisted or public visibility (do not use private visibility)

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 52

Common Problems With Project Proposal I

1 extremely vague project specification
2 how many software components being delivered and of what type (e.g.,

application program, library, etc.)?
2 what do each of software components do and how are they used?

2 what part of software to be developed by student not specified or
ambiguous

2 almost all code relies on libraries to some extent
2 extremely important what part of functionality in project software provided

by code written by student versus code in libraries
2 has massive impact on feasibility of project and whether project is even

appropriate in first place

3 completely missing or incomplete/ambiguous specification of user
interfaces

2 instructor will build, run, and test software
2 instructor cannot run software unless user interface (e.g., CLI, TUI, GUI)

completely and unambiguously specified

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 53

Common Problems With Project Proposal II

2 instructor cannot assess suitability of proposed project unless interfaces
clearly understood since interfaces can very significantly impact amount of
work involved

4 CLI not fully and clearly specified
2 all command-line arguments and options must be fully documented
2 instructor cannot test software if cannot understand clearly how to run

programs that are part of project

5 custom file formats used by software not fully and clearly specified
2 instructor cannot generate datasets for testing software if formats not

clearly and unambiguously specified

6 if software has GUI, need some rough sketches to give general idea of
how interface will work

7 no evidence that student has ensured that project is feasible; for example,
failure to identify

2 what parts of what libraries will be used
2 what methods will be used

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 54

Common Problems With Project Proposal III

8 failure to check that library to be employed provides functionality required
by project

9 failure to check that library to be employed (including header files)
installed on lab machines and version of library is sufficiently new to
provide all required features

10 project is not testable
2 software must be defined in manner that make easy testing possible
2 problematic if software computes solution to problem for which there is no

practical way to check if results appear reasonable
2 software that consists only of library is not feasible to test (since instructor

would have to learn library and write application programs to test library)
11 poor quality writing

2 writing is unclear/ambiguous, poorly organized, overly verbose, etc.
12 poor choices made in design of user interface

2 using interface that constraints users in arbitrary ways for no justifiable
reason

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 55

Common Problems With Project Proposal IV

2 using many cryptic single-letter CLI options (instead of using long option
names) Boost Program Options

13 not using standard input, standard output, and standard error
appropriately

2 if program has single data stream as input and produces single data stream
as output, unreasonable to read input from file and write output to file

2 use standard input and standard output

14 failure to consider instructor time constraints
2 reviewing project proposals takes significant time
2 avoid situations that would lead to many students wanting to meet with

instructor in short time window of several days

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 56

Good Strategy for Quality Proposal

� swap proposals with another student

� other student must have no knowledge of project
� ask them to read proposal and then explain exactly how they would:

2 generate input datasets
2 specify command line options
2 navigate through GUI if software has GUI
2 examine output for correctness

� if other student cannot do these things, this is indication of deficiencies in
proposal

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 57

Sorting Software Example

� given collection of numbers, sorts numbers, and outputs sorting result

� appropriate for project?

� feasible for project?

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 58

Sorting Software Example: Proposal Considerations

� what exactly is meant by “numbers”?

� what is interface with user? GUI? TUI? CLI (e.g., command-line
arguments and their meaning, exit-status conventions, etc.)?

� what is sorting criterion?

� is more than one sorting algorithm supported?

� what sorting algorithm is used?

� where does input originate?

� how exactly is input data formatted?

� where is output sent?

� how exactly is output formatted?

� what aspects of program behavior can be controlled?

� are sorting methods implemented by directly by project software or
library?

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 59

Sorting Software Example: CLI Specification

� project software consists of single application program called sort

� specification for CLI might include information similar to output of “man
sort”

� for example, see:
https://man7.org/linux/man-pages/man1/sort.1.html

Copyright © 2024 Michael D. Adams SENG475 & ECE596C 2024-05-15 60

https://man7.org/linux/man-pages/man1/sort.1.html

	Preamble
	Course Overview
	Software Development Environment and Assignments
	Course Project

