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License I

Creative Commons Legal Code

Attribution-NonCommercial-NoDerivs 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be
recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a
Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered an
Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or
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License II

broadcasts, or other works or subject matter other than works listed
in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this
License.

c. "Distribute" means to make available to the public the original and
copies of the Work through sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

e. "Original Author" means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the Work
or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim,
play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer
being the person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms
of this License including without limitation any production in the
literary, scientific and artistic domain, whatever may be the mode or
form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work
of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are
assimilated works expressed by a process analogous to cinematography;
a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied
art; an illustration, map, plan, sketch or three-dimensional work
relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the
extent it is protected as a copyrightable work; or a work performed by
a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.
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License III

g. "You" means an individual or entity exercising rights under this
License who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous
violation.

h. "Publicly Perform" means to perform public recitations of the Work and
to communicate to the public those public recitations, by any means or
process, including by wire or wireless means or public digital
performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a
place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs,
sounds or images.

i. "Reproduce" means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of
fixation and reproducing fixations of the Work, including storage of a
protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce,
limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated
in Collections.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights in
other media and formats, but otherwise you have no rights to make
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License IV

Adaptations. Subject to 8(f), all rights not expressly granted by Licensor
are hereby reserved, including but not limited to the rights set forth in
Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms
of this License. You must include a copy of, or the Uniform Resource
Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of
the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the
Work. You must keep intact all notices that refer to this License and
to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological
measures on the Work that restrict the ability of a recipient of the
Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection
apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You
must, to the extent practicable, remove from the Collection any credit
as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3
above in any manner that is primarily intended for or directed toward
commercial advantage or private monetary compensation. The exchange of
the Work for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation, provided
there is no payment of any monetary compensation in connection with
the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You
must, unless a request has been made pursuant to Section 4(a), keep
intact all copyright notices for the Work and provide, reasonable to
the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or if the
Original Author and/or Licensor designate another party or parties
(e.g., a sponsor institute, publishing entity, journal) for

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 vi



License V

attribution ("Attribution Parties") in Licensor’s copyright notice,
terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not
refer to the copyright notice or licensing information for the Work.
The credit required by this Section 4(c) may be implemented in any
reasonable manner; provided, however, that in the case of a
Collection, at a minimum such credit will appear, if a credit for all
contributing authors of Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only
use the credit required by this Section for the purpose of attribution
in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author,
Licensor and/or Attribution Parties, as appropriate, of You or Your
use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution
Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor reserves
the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License if Your exercise of
such rights is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b) and otherwise waives
the right to collect royalties through any statutory or compulsory
licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to
collect royalties, whether individually or, in the event that the
Licensor is a member of a collecting society that administers
voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License that is for a
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License VI

purpose or use which is otherwise than noncommercial as permitted
under Section 4(b).

e. Except as otherwise agreed in writing by the Licensor or as may be
otherwise permitted by applicable law, if You Reproduce, Distribute or
Publicly Perform the Work either by itself or as part of any
Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial
to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION
OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR
ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Collections from You under
this License, however, will not have their licenses terminated
provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to
withdraw this License (or any other license that has been, or is

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 viii



License VII

required to be, granted under the terms of this License), and this
License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection,
the Licensor offers to the recipient a license to the Work on the same
terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and
enforceable.

c. No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with
respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this
License were drafted utilizing the terminology of the Berne Convention
for the Protection of Literary and Artistic Works (as amended on
September 28, 1979), the Rome Convention of 1961, the WIPO Copyright
Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996
and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced
according to the corresponding provisions of the implementation of
those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law
includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this
License is not intended to restrict the license of any rights under
applicable law.
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License VIII

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.
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Part 1

Overview
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Course Overview

course is about two-thirds traditional digital signal processing and

one-third digital geometry processing (which can be viewed as extension

of traditional digital signal processing to handle geometric objects)

digital geometry processing has close ties to computer graphics and

computational geometry

three main topics covered by course:
1 multirate systems (e.g., filter banks and transmultiplexers)
2 wavelet systems
3 subdivision surfaces and subdivision wavelets

supplemental topics covered by course, relating to applications:

C++ programming language

computer graphics (e.g., OpenGL)

computational geometry (e.g., CGAL, polygon meshes)

some additional mathematical background introduced to allow deeper

understanding of course material (e.g., topics from functional analysis,

Fourier analysis, geometry, topology)

covers theory, practical issues, and applications
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Why Software?

software is pervasive

expertise in software becoming essential for successful career in

engineering

software not just for computer science majors anymore

strong background in software greatly improves chances of finding

employment

applies to both research and non-research jobs

applies to both jobs in industry (e.g., software designer) and academia

(e.g., professor)
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Why C++?

general purpose

international standard, vendor neutral

efficient

supported on many platforms

many jobs require knowledge of C++

superset of C (two languages for price of one)

likely to continue to be dominant language into future (built on top of C

which is still going strong after 40 years)

many other languages inspired by C++

easier to migrate from C++ to C, Java, and many other languages than

other way around
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Multirate Systems

unirate system employs single sampling rate

multirate system uses multiple sampling rates

sometimes multirate system can perform task more easily or efficiently

than possible with unirate system

task may fundamentally involve signals sampled at different rates, making

use of multirate system unavoidable
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Basic Multirate Building Blocks

multirate systems have all of same building blocks as unirate systems plus

two new ones:

1 downsampler
2 upsampler

M-fold downsampler: decreases sampling rate by integer factor M

↓M
x[n] y[n]

M-fold upsampler: increases sampling rate by integer factor M

↑M
x[n] y[n]
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Sampling Rate Converters

M-fold decimator: decrease rate by integer factor M without aliasing

H(z) ↓M
x[n] y[n]

︸ ︷︷ ︸
Antialiasing Filter

M-fold interpolator: increase rate by integer factor M without imaging

↑M H(z)
x[n] y[n]

︸ ︷︷ ︸
Antiimaging Filter

rational sampling rate converter (cascade of L-fold interpolator and M-fold

decimator): change rate by factor L/M without aliasing/imaging

↑ L H(z) ↓M
x[n] y[n]

︸ ︷︷ ︸
Antiimaging/Antialiasing Filter
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Use of Sampling Rate Converters

sampling rate converters (i.e., decimators, interpolators) used pervasively

in multirate systems

in many applications, need to convert between different sampling rates

streaming video/audio at different rates

many different sampling rates commonly used for audio/music/voice data:

studio recording: 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 192 kHz

MPEG-1 Audio Layer 3 (MP3): 44.1 kHz (typical), 32 kHz, 48 kHz

Digital Audio Tape (DAT): 48 kHz (typical), 44.1 kHz, 32 kHz

Compact Disc (CD): 44.1 kHz

DVD Audio: 44.1 kHz, 192 kHz

GSM-FR: 8 kHz
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Filter Banks

M-channel uniformly maximally decimated (UMD) filter bank

H0(z)

H1(z)

↓M

HM−1(z)

G0(z) +

+

GM−1(z)↓M ↑M

G1(z)↓M ↑M

↑M
x[n]

...
...

...

y0[n]

...
...

...

x̂[n]

y1[n]

yM−1[n]

︸ ︷︷ ︸
Analysis Bank

︸ ︷︷ ︸
Downsamplers

︸ ︷︷ ︸
Upsamplers

︸ ︷︷ ︸
Synthesis Bank

︸ ︷︷ ︸
Analysis Side

︸ ︷︷ ︸
Synthesis Side

very useful in many applications
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Applications of Filter Banks

signal denoising, restoration, and enhancement

data compression (e.g., speech, audio, image, video, ECG, and so on)

adaptive filtering (e.g., inverse filtering, room acoustics modelling, echo

cancellation, equalization)

data encryption

error control coding
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Transmultiplexers

M-channel transmultiplexer

+

+

...
...

...

y[n]

xM−1[n]

...
...

...

HM−1(z) ↓M

↓M

↓MH0(z)

H1(z)

GM−1(z)↑M

↑M G1(z)

G0(z)↑M
x̂0[n]

x̂1[n]

x̂M−1[n]

x1[n]

x0[n]

dual structure to filter bank

very useful in many applications
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Applications of Transmultiplexers

used pervasively in communication systems

frequency-division multiple access (FDMA) systems, including orthogonal

frequency-division multiplexing (OFDM) systems (e.g., 802.11 a/g/n)

time-division multiple access (TDMA) systems (e.g., GSM)

code-division multiple access (CDMA) systems (e.g., CDMA2000)

multicarrier modulation, such as in asynchronous digital subscriber line

(ADSL) systems
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Wavelet Systems

basis representation for signals/functions just like Fourier series

function x represented in terms of basis {ϕn} as x(t) = ∑n anϕn(t) (e.g.,

Fourier series uses ϕn(t) = e jnω0t )

just one Fourier basis, but many wavelet bases

basis associated with wavelet system has particular mathematical

structure

many variants of wavelet systems (e.g., univariate/multivariate,

dyadic/M-adic, bounded/unbounded domains, subdivision surfaces, and

so on)

represent function in terms of information at different resolutions or scales

(e.g., coarse approximation with large-scale features but little detail, or

fine approximation with considerable detail)

wavelet systems closely related to filter banks
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Approximations Using Haar Wavelet System
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Approximations Using Haar Wavelet System: 2-D Example

Original Coarse Approximation

Medium Approximation Fine Approximation
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Applications of Wavelet Systems

signal compression (e.g., image, video, audio, ECG, volumetric data, light

fields)

signal denoising, restoration, and enhancement

numerical analysis (e.g., solution of ordinary/partial differential equations)

nonstationary signal analysis, singularity detection

pattern recognition, feature extraction, texture classification, fault detection

data encryption

error control coding

quantum mechanical modelling
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Digital Geometry Processing

digital geometry processing deals with representation and manipulation of

geometric objects such as surfaces and polygon meshes

Surface Polygon Mesh
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Subdivision Surfaces

Control Mesh
Refined Mesh

After One Iteration

Refined Mesh

After Two Iterations

Refined Mesh

After Three Iterations

Refined Mesh

After Four Iterations
Limit Surface
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Subdivision Wavelets

subdivision wavelets are implicitly associated with subdivision surfaces

subdivision wavelets provide multiresolution representations of polygon

meshes
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Applications of Subdivision Surfaces/Wavelets

computer graphics, rendering

animation

volume morphing

gaming

biomedical computing

computer-aided design and manufacturing

geometric modelling

scientific visualization

finite element analysis, computational fluid dynamics
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Geri’s Game: Subdivision Surfaces

1998 Academy Award Winner, Short Film (Animated)

from Pixar Animation Studios

goal to take human and cloth animation to new heights

one of first animated films to make use of subdivision surfaces

subdivision surfaces used to model skin of Geri’s head, his hands, and his

clothing, including his jacket, pants, shirt, tie, and shoes
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Part 2

Mathematical Preliminaries
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Objective

The goal is to introduce mathematical background (e.g., definitions,

terminology, and concepts) that are helpful in better understanding

wavelets and multirate signal processing.

In particular, we primarily seek to:

1 gain a better understanding of the mathematical structure underlying Hilbert

spaces;
2 consider how some topics from Fourier analysis relate to Hilbert spaces.

The coursepack covers all of the topics from this presentation in

considerable depth.

To reduce the risk of math-induced comas in the student populace, we will

not cover these topics in as much detail as in the coursepack.
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From Sets to Spaces

Metric Space Vector Space

(Topological Structure) (Algebraic Structure)

Set

Normed Space (e.g., Banach Space)

Inner Product Space (e.g., Hilbert Space)

(Algebraic, Topological, and Geometric Structure)

(Algebraic and Topological Structure)

Inner Product (Angle)

Norm (Length)

Metric (Distance) Algebra (+, ·)
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Section 2.1

Sets
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Sets

A set is an unordered collection of (distinct) objects called elements.

To denote that an object x is an element of the set A, we write x ∈ A.

Example. 1 ∈ {1,2,3}.

The set containing no elements is called the empty set and denoted /0.

Two sets are equal if they contain exactly the same elements.

Example. {1,2,3} = {3,1,2} = {2,1,3} = {3,2,1}.

A set B is said to be a subset of a set A, denoted B⊂ A, if every element

of B is an element of A.

Example. {1,2} ⊂ {1,2,3} and {1,2,3} ⊂ {1,2,3}.

If B⊂ A and B 6= A, then B is said to be a proper subset of A. A subset

that is not proper is called improper.

Example. {1,3} is a proper subset of {1,3,5}, while {1,2} is an

improper subset of {1,2}.

Two sets A and B are said to be disjoint if they have no common

elements.

Example. {0,2,4} and {1,3,5} are disjoint.
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Commonly-Used Sets

Some commonly-used sets include:

the natural numbers N = {1,2,3, . . .} (i.e., positive integers);

the nonnegative integers Z∗ = {0,1,2, . . .};

the integers Z = {. . . ,−2,−1,0,1,2, . . .};

the rational numbers Q = {x : x = p/q, where p,q ∈ Z,q 6= 0};

the real numbers R; and

the complex numbers C = {z : z = x+ jy for x,y ∈ R and j2 = −1}.

The sets N, Z∗, Z, Q, R, C do not include infinity. So, for example, while

there are infinitely many integers in Z, every one of these integers is (by

definition) finite.

Since sets consisting of intervals on R are often used, we have the

following notation for concisely specifying such sets. For a,b ∈ R:

[a,b] = {x ∈ R : a≤ x and x≤ b}, (a,b) = {x ∈ R : a < x and x < b},

[a,b) = {x ∈ R : a≤ x and x < b}, (a,b] = {x ∈ R : a < x and x≤ b},

[a,∞) = {x ∈ R : x≥ a}, (−∞,b] = {x ∈ R : x≤ b},

(a,∞) = {x ∈ R : x > a}, and (−∞,b) = {x ∈ R : x < b}.
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Sequences

A sequence is a collection of elements from a (nonempty) set X indexed

by a (nonempty) set I, and is denoted as (xn)n∈I or simply (xn), where

xn ∈ X and n ∈ I. The set I is referred to as an index set.

A sequence comprised of n elements, where n is finite, is called an

ordered n-tuple.

Example. The sequence (xn)n∈Z of real numbers given by xn = n+ 1
2

is

(. . . ,− 3
2
,− 1

2
, 1

2
, 3

2
, 5

2
, . . .) which corresponds to the following mapping:

Index . . . -2 -1 0 1 2 . . .

Element . . . − 3
2

− 1
2

1
2

3
2

5
2

. . .

In (one-dimensional) digital signal processing, we usually work with

sequences where the index set is a subset of Z.

Often, instead of writing (xn)n∈I , we write x[n], n ∈ I.

A sequence can be easily converted to a set and vice versa.
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Basic Set Operations

The union of two sets A and B, denoted A∪B, is the set obtained by

combining the elements of A and B.

Example. {1,2,3}∪{3,4,5} = {1,2,3,4,5}.

The intersection of two sets A and B, denoted A∩B, is the set of

elements common to both A and B.

Example. {1,2,3}∩{3,4,5} = {3}.

The difference of two sets A and B, denoted A\B (or A−B), is the set

consisting of all elements in A that are not in B.

Example. {1,2,3}\{3,4,5} = {1,2}.

The complement of the set A in B is defined as B\A.

The Cartesian product of the sets X1 ×X2 × . . .×Xn, denoted

X1 ×X2 × . . .×Xn, is the set of all ordered n-tuples (x1,x2, . . . ,xn), where

x1 ∈ X1,x2 ∈ X2, . . . ,xn ∈ Xn.

Example. {1,2}×{3,4} = {(1,3),(1,4),(2,3),(2,4)}.

The n-fold Cartesian product of the set S is denoted Sn.

Example. {0,1}2 = {0,1}×{0,1} = {(0,0),(0,1),(1,0),(1,1)}.
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Number of Elements in a Set

The number of elements in a set S is said to be the cardinality of the set,

and is denoted cardS.

Example. card{1,3,5} = 3 and cardZ is infinite.

A set that has a one-to-one correspondence with {1,2, . . . ,n}, where n is

finite, is said to be finite. A set that is not finite is said to be infinite.

Example. {1,3,5} is finite and Z is infinite.

A set that has a one-to-one correspondence with the natural numbers (or

equivalently the integers) is said to be countably infinite.

Example. N and Z are countably infinite.

Theorem. Q is countably infinite.

A set that is either finite or countably infinite is said to be countable.

Example. {1,2,3}, N, Z, and Q are countable.

A set that is not countable is said to be uncountable.

Example. R and C are uncountable.
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Indicator Function

The indicator function of a subset B of a set A, denoted χB, is defined as

χB(t) =

{
1 if t ∈ B

0 if t ∈ A\B.

Example.

The unit-step function (defined on R) is χ[0,∞).

The unit-rectangular pulse (defined on R) is χ[−1/2,1/2].

The unit-step sequence (defined on Z) is χZ∗ .

The unit-impulse sequence (defined on Z) is χ{0}.
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Lebesgue Measure of a Set

The Lebesgue measure assigns a size (akin to length/hypervolume) to a

subset of a Euclidean space (such as R).

The Lebesgue measure of the set S is denoted µ(S).

Nonnegativity. For any set S, µ(S) ≥ 0.

Empty set. µ( /0) = 0.

Countable additivity. For any countable collection {Sk}k∈I of pairwise

disjoint sets, µ(∪k∈ISk) = ∑k∈I µ(Sk).
A set S for which µ(S) = 0 is called a null set.

Countable subsets of R. Any countable subset S of R has µ(S) = 0.

Open/closed intervals on R. For a,b ∈ R,

µ([a,b]) = µ((a,b)) = µ([a,b)) = µ((a,b]) = b−a.

Example. µ({1,2,3}) = 0, µ(N) = 0, µ(Z) = 0, and µ(Q) = 0.

µ([0,1]∪ [5,6)∪ (7,8)) = µ([0,1])+µ([5,6))+µ((7,8)) = 3.

The term “almost everywhere” (often abbreviated “a.e.”) means

“everywhere except possibly for a null set”.

Example. χZ is zero almost everywhere; sin is zero almost nowhere.
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Bounds on Subsets of R

A set X ⊂ R is said to be bounded from above if there exists an upper

bound u ∈ R such that x≤ u for all x ∈ X .

Example. [0,1] is bounded from above and has upper bounds including

1, π, and 101000.

A set X ⊂ R is said to be bounded from below if there exists a lower

bound l ∈ R such that x≥ l for all x ∈ X .

Example. [0,1] is bounded from below and has lower bounds including

−101000, −π, and 0.

A set that is both bounded from above and below is said to be bounded.

Example. [0,1] and (0,1) are bounded.

The maximum of X ⊂ R, denoted maxX , is the element of X that is also

an upper bound of X .

Example. max[0,1] = 1 and max(0,1) is not defined.

The minimum of X ⊂ R, denoted minX , is the element of X that is also

a lower bound of X .

Example. min[0,1] = 0 and min(0,1) is not defined.
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Bounds on Subsets of R (Continued)

A bounded set need not have a maximum or minimum.

The supremum of X ⊂ R, denoted supX , is the least upper bound of X .

If X is not bounded from above, we define supX = ∞.

If X = /0, we define supX = −∞.

Example. sup[0,1] = sup(0,1) = 1 and supR = ∞.

The infimum of X ⊂ R, denoted infX , is the greatest lower bound of X .

If X is not bounded from below, we define infX = −∞.

If X = /0, we define infX = ∞.

Example. inf[0,1] = inf(0,1) = 0 and infR = −∞.
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Notation: Functions Versus Function Values

Strictly speaking, an expression like “ f (t)” means the value of the

function/sequence f at the point t.

Unfortunately, engineers often use an expression like “ f (t)” to refer to the

function f (rather than the value of f at t), and this sloppy notation can

lead to problems (e.g., ambiguity) in many situations.

We will be more careful to distinguish between a function and its value.

Some examples of the use of a more precise notation are given below.

The symbol “·” is sometimes used as a placeholder.

Expression Meaning

f +g sum of the functions f and g

|·| absolute value function

f (·−d) function f translated by d

f (·−d)(t0) value at t0 of the function f translated by d

f (a·) function f dilated by a

f (a·)(t0) value at t0 of the function f dilated by a

[ f (·− t)]∗ [g(·− t)] convolution of: f translated by t; and g translated by t

( f ∗g)(·− t) f convolved with g, followed by translation by t
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Commonly-Used Sets of Functions and Sequences

LLLppp(((III))). For p ∈ [1,∞)∪{∞}, the set Lp(I) is comprised of all

(measurable) complex (or real) functions x defined on I for which
{

R

I |x(t)|
p
dt < ∞ for p ∈ [1,∞)

esssupt∈I |x(t)| < ∞ for p = ∞.

Example. The set L2(R) consists of all square-integrable (i.e.,

finite-energy) complex functions defined on R.

lllp
pp(((III))). For p ∈ [1,∞)∪{∞}, the set lp(I) is comprised of all complex (or

real) sequences {xk}k∈I defined on I for which
{

∑k∈I |xk|p < ∞ for p ∈ [1,∞)

supk∈I |xk| < ∞ for p = ∞.

Example. The set l2(Z) consists of all square-summable (i.e.,

finite-energy) complex sequences defined on Z.
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Section 2.2

Integration
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Integration

The simplest definition of integration is Riemann integration, as introduced

in any first-year undergraduate calculus course.

Problem: The Riemann integral does not exist for many reasonably

well-behaved functions, and this can lead to many difficulties.

Example. The Dirichlet function χQ is bounded and zero almost

everywhere; yet,
R b
a χQ(t)dt does not exist (where a,b ∈ R).

Solution: We define a new type of integration called Lebesgue

integration.

The Lebesgue integral is defined for many functions for which the

Riemann integral fails to exist.

Unless otherwise noted, all integrals should be interpreted in the

Lebesgue sense.
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Domain Partitioning Versus Range Partitioning

Domain

Range

(a)

Domain

Range

(b)

Two different approaches to integration. Partitioning of the (a) domain and

(b) range of a function for integration.

Riemann integration partitions the domain of a function.

Lebesgue integration partitions the range of a function.
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Riemann Versus Lebesgue Integration

1 2 3 4

1

2

3

0
t

f (t)

Domain Partitioning

1 2 3 4

1

2

3

0
t

f (t)

Riemann Integral

1 2 3 4

1

2

3

0

f (t)

t

Range Partitioning

1 2 3 4

1

2

3

0

f (t)

t

Lebesgue Integral

Riemann integration:

R 4
0 f (t)dt
= (1−0)(1)+(2−1)(3)+

(3−2)(1)+(4−3)2
= 1+3+1+2
= 7

Lebesgue integration:

R 4
0 f (t)dt
= µ({t : f (t) = 1})(1)+µ({t : f (t) = 2})(2)+

µ({t : f (t) = 3})(3)
= (2)(1)+(1)(2)+(1)(3)
= 2+2+3
= 7
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Lebesgue Integration

A formal definition of the Lebesgue integral is beyond the scope of this

course.

The properties of the Lebesgue integral are very similar to the properties

of the Riemann integral. E.g.,
R

a f (t)dt = a
R

f (t)dt;
R

[ f (t)+g(t)]dt =
R

f (t)dt+
R

g(t)dt;
|R f (t)dt| ≤ R | f (t)|dt; and

if f > 0, then
R

f (t)dt ≥ 0.

If a function is Riemann integrable, it is also Lebesgue integrable and both

integrals are equal.

If f is zero almost everywhere, then the Lebesgue integral of f is zero.

Example.
R b
a χQ(t)dt = 0, where a,b ∈ R.
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Section 2.3

Metric Spaces
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Metric Spaces

A metric d on a set X is a real function defined on X×X that satisfies the

following conditions:

1 d(x,y) ≥ 0 for all x,y ∈ X (nonnegativity);
2 d(x,y) = 0 if and only if x = y (strict positivity);
3 d(x,y) = d(y,x) for all x,y ∈ X (symmetry); and
4 d(x,y) ≤ d(x,z)+d(z,y) for all x,y,z ∈ X (triangle inequality).

A metric is a measure of distance.

Example. For R, the usual metric is d(x,y) = |x− y|.
A metric space is a set X with a metric d, and is denoted (X ,d) or simply

X when d is clear from the context.

Example. In each of the following cases, (X ,d) is a metric space:

X = R and d(x,y) = |x− y|;
X = R2 and d[(x1,x2),(y1,y2)] =

√
(x1 − y1)2 +(x2 − y2)2; and

X = L2(R) and d(x,y) = [
R

R |x(t)− y(t)|2 dt]1/2.

X = l2(Z) and d(x,y) = [∑k∈Z |xk− yk|2]1/2.

A metric space has topological structure.
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Basic Topological Concepts

In the metric space (X ,d), an open ball with center x0 and radius r

(where r ∈ R,r > 0) is the set {x ∈ X : d(x,x0) < r}.

Example.

In R, an open ball with center 0 and radius 1 is (−1,1).
In R2, an open ball with center (0,0) and radius 1 is

{(x1,x2) ∈ R2 :

√
x2

1 + x2
2 < 1}.

An open ball with center x0 is said to be a neighbourhood of x0.

Example. In R, (− 1
2
, 1

2
) and (−1,1) are neighbourhoods of 0.

Given a subset S of a metric space X , a point x ∈ X is said to be a

boundary point of S if every neighbourhood of x contains both elements

in S and elements not in S.

Example. A boundary point of [0,1) is 0. R has no boundary points.

The boundary of a set S, denoted bdyS, is the set of all boundary points

of S.

Example. bdy[0,1) = {0,1}. bdyR = /0.
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Open and Closed Sets

A subset S of a metric space X is said to be open if S does not contain

any of its boundary points.

Example. (0,1) is open; [0,1) is not open; and /0 is open.

A subset S of a metric space X is said to be closed if S includes all of its

boundary points.

Example. [0,1] is closed; [0,1) is not closed; and /0 is closed.

The open and closed properties are not mutually exclusive.

Example. /0 and R are both open and closed.

The closure of S (in X ), denoted closS, is defined as closS = S∪bdyS.

Example. clos(0,1) = [0,1]. closR = R.

A subset S of a metric space X is said to be dense in X if closS = X .

Example. Q is dense in R; and L1(R)∩L2(R) is dense in L2(R).

If S is dense in X , then every x ∈ X can be approximated arbitrarily closely

(in terms of the metric) by elements from S.
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Cauchy and Convergent Sequences

A sequence (xn)n∈N in a metric space (X ,d) is said to be Cauchy if for

each real number ε > 0 there exists N ∈ N such that d(xm,xn) < ε for any

choice of m,n > N. (A Cauchy sequence can be thought of as a

sequence that is “trying to converge”.)

x1 x2 · · · xN xN+1 xN+2 xN+3 · · ·︸ ︷︷ ︸
any two elements are such that

their distance is less than ε

A sequence (xn)n∈N in a metric space (X ,d) is said to be convergent if

there is a point x in (X ,d) with the property that for each real number

ε > 0 there exists N ∈ N such that d(xn,x) < ε whenever n > N. The

point x is called the limit of the sequence (xn)n∈N, which we denote as

limn→∞ xn = x. A sequence that is not convergent is said to be divergent.

x1 x2 · · · xN xN+1 xN+2 xN+3 · · ·︸ ︷︷ ︸
every element is such that

its distance to x is less than ε
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Convergent and Cauchy Sequences (Continued)

Example. The real sequence (1, 1
2
, 1

4
, . . . , 1

2n
, . . .), in the metric space R,

is Cauchy and also convergent (in R) with limit 0.

Theorem. Every convergent sequence is Cauchy.

A Cauchy sequence need not be convergent.

Example. The sequence (3,3.1,3.14,3.141,3.1415, . . .) which provides

progressively better rational-number approximations of π is Cauchy. The

sequence is not convergent in Q (since π 6∈ Q), but it is convergent in R.

A metric space X is said to be complete if every Cauchy sequence in X is

a convergent sequence in X .

Example. The metric spaces Z, R, C, and [a,b] (where a,b ∈ R) are

complete, while Q and (a,b) are not complete.

In a complete metric space, the Cauchy and convergent properties are

equivalent.

In practice, complete metric spaces are almost always used, since

incomplete spaces can exhibit very nasty behavior.
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Section 2.4

Vector Spaces
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Vector Spaces

A vector space over a scalar field F (such as R or C) is a nonempty set

V , together with two algebraic operations,
1 a mapping (x,y) 7→ x+ y from V ×V into V called vector addition and
2 a mapping (a,x) 7→ ax from F×V into V called scalar multiplication,

which satisfy the axioms of a vector space. Such a vector space is

denoted (V,F,+, ·) or simply V when the other parameters are clear from

the context.

A vector space has algebraic structure.

A vector space over the field R is called a real vector space.

A vector space over the field C is called a complex vector space.

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 49



Axioms of a Vector Space

1 for all x,y ∈V , x+ y ∈V (closure under vector addition);

2 for all x ∈V and all a ∈ F , ax ∈V (closure under scalar multiplication);

3 for all x,y ∈V , x+ y = y+ x (commutativity of vector addition);

4 for all x,y,z ∈V , (x+ y)+ z = x+(y+ z) (associativity of vector

addition);

5 for all x ∈V and all a,b ∈ F , (ab)x = a(bx) (associativity of scalar

multiplication);

6 for all x ∈V and all a,b ∈ F , (a+b)x = ax+bx (distributivity of scalar

sums);

7 for all x,y ∈V and all a ∈ F , a(x+ y) = ax+ay (distributivity of vector

sums);

8 there exists 0 ∈V such that x+0 = x for all x ∈V (additive identity);

9 for all x ∈V , there exists a (−x) ∈V such that x+(−x) = 0 (additive

inverse); and

10 for all x ∈V , 1x = x, where 1 denotes the multiplicative identity of the field

F (scalar multiplication identity).
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Vector Spaces

Example. Rn.

Choose the underlying set as V = Rn and the field as F = R.

Define vector addition as:

(x1,x2, . . . ,xn)+(y1,y2, . . . ,yn) = (x1 + y1,x2 + y2, . . . ,xn + yn).
Define scalar multiplication as: ax = (ax1,ax2, . . . ,axn).

Example. L2(R).
Choose the underlying set as V = L2(R) and the field as F = C.

Define vector addition as: (x+ y)(t) = x(t)+ y(t).
Define scalar multiplication as: (ax)(t) = ax(t).

Example. l2(Z).
Choose the underlying set as V = l2(Z) and the field as F = C.

Define vector addition as: (. . . ,x−1,x0,x1, . . .)+(. . . ,y−1,y0,y1, . . .) =
(. . . ,x−1 + y−1,x0 + y0,x1 + y1, . . .).
Define scalar multiplication as:

a(. . . ,x−1,x0,x1, . . .) = (. . . ,ax−1,ax0,ax1, . . .).
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Vector Subspaces

A subset of a vector space V that is itself a vector space is called a vector

subspace of V .

Example. The xy-plane is a vector subspace of R3.

A subspace S of the vector space V is said to be proper if S 6=V and

improper if S =V .

Theorem. A nonempty subset S of a vector space V over F is a vector

subspace if the following conditions hold:

1 x+ y ∈ S for all x,y ∈ S (closure under vector addition); and
2 ax ∈ S for all x ∈ S and all a ∈ F (closure under scalar multiplication).

Two vector subspaces V and W of the same dimensionality are said to be

disjoint if V ∩W = {0} (i.e., the only common vector between V and W is

the zero vector).

Example. Let We and Wo denote the subspaces of L2(R) consisting of all

even and all odd functions, respectively. Then, We and Wo are disjoint

(since only the zero function is both even and odd).
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Linear Transformations

A transformation T of a vector space V into a vector space W , where V
and W have the same scalar field F , is said to be a linear
transformation if

1 for all x ∈V and all a ∈ F , T (ax) = aT (x) (homogeneity); and
2 for all x,y ∈V , T (x+ y) = T (x)+T (y) (additivity).

Example. Some linear transformations include: scaling, rotation, shear,

and reflection in Rn, and the Fourier transform in L2(R) and l2(Z).

The null space of a linear transformation T :V →W , denoted N(T ), is

the subset of V given by N(T ) = {x ∈V : Tx = 0} (i.e., the set of all

vectors mapped to the zero vector under the transformation T ).

The range space of a linear transformation T :V →W , denoted R(T ), is

defined as R(T ) = {y = Tx : x ∈V} (i.e., the set of vectors produced by

applying T to each of the elements of V ).

A linear transformation P of a vector space V into itself is said to be a

projection if P2 = P (i.e., P is idempotent).

Example. In R2, the transformation that maps (x1,x2) to (x1,0) is a

projection (i.e., a projection onto the x axis).
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Linear Combinations

A linear combination of the vectors v1,v2, . . . ,vn, where n is finite, is an

expression of the form a1x1 +a2x2 + . . .+anxn, where a1,a2, . . . ,an are

scalars.

Example. In R2, y = (1,2) is a linear combination of x1 = (1,0) and

x2 = (0,1), namely, y = 1x1 +2x2.

In a vector space, the sum of an infinite number of elements is not

defined, since such a sum implicitly requires the notion of a limit, which is

lacking in a vector space.

For any nonempty subset A of a vector space V , the set of all (finite) linear

combinations of vectors in A is called the span of A, denoted spanA.

Example.

In R3, span{(1,0,0),(0,1,0)} is the xy plane.

In the vector space of polynomials of order 3 or less, span{1, t} is the set

of all constant and linear functions.
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Linear Independence

If x and y are nonzero vectors and x = ay for some scalar a, then x and y

are said to be collinear.

Example. In R2, (1,1) and (2,2) are collinear.

A (nonempty) finite sequence (xn)n∈I of vectors in a vector space V is

said to be linearly independent if the only sequence (an)n∈I of scalars

satisfying ∑n∈I anxn = 0 is the trivial solution with an = 0 for all n ∈ I. An

infinite sequence A of vectors in V is said to be linearly independent if

every (nonempty) finite subsequence of A is linearly independent. A

sequence that is not linearly independent is called linearly dependent.

Example.

In R3, {(1,0,0),(0,1,0)} is linearly independent.

In l2(Z), (δ[·−n])n∈Z is linearly independent.

In R2, {(1,2),(2,4)} is linearly dependent.
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Hamel Bases and Dimensionality

A sequence A of vectors in a vector space V is said to be a Hamel basis

of V if A is linearly independent and spanA =V .

Example. {(1,0,0),(0,1,0),(0,0,1)} is a Hamel basis for R3.

The cardinality of any Hamel basis of a vector space V is said to be the

dimension of V , denoted dimV .

Example.

A Hamel basis for V = R2 is {(1,0),(0,1)}; hence, dimV = 2.

Any Hamel basis for V = L2(R) (i.e., finite-energy functions defined on R)

is uncountable; hence, dimV is infinite.

If the dimension of V is finite, we say that V is finite dimensional.

Otherwise, we say that V is infinite dimensional.

Often, in signal processing, we must deal with infinite-dimensional spaces

(e.g., function and sequence spaces).
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Inner Sums and Algebraic Complements

If V and W are subspaces of the vector space U , then the inner sum of V

and W , denoted V +W , is the space consisting of all points x = v+w

where v ∈V and w ∈W . [Note: V +W is not the same as 6=V ∪W .]

Example. Let U and V be subspaces of R2, where U = span{(1,0)} and

V = span{(0,1)}. Then, U +V = R2.

Let V and W be subspaces of the vector space U . If U =V +W and V

and W are disjoint, W is the called the algebraic complement of V in U .

(Similarly, V is the algebraic complement of W in U .)

Example. Let We and Wo be the subspaces of V = L2(R) consisting of

even and odd functions, respectively. Since any function can be expressed

as the sum of an even and odd function, we have We +Wo = L2(R). Since

We and Wo are disjoint, We and Wo are algebraic complements.

Theorem. The algebraic complement always exists.

Theorem. Let V and W be subspaces of a vector space U . Then for each

x ∈V +W , there is a unique v ∈V and a unique w ∈W such that

x = v+w if and only if V and W are disjoint (i.e., a vector has a unique

decomposition in terms of algebraic complements).
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Direct Sums

Let V and W be subspaces of the vector space U . If U and V are disjoint,

the (isomorphic form of the) direct sum of U and V , denoted U⊕W , is

U +W .

Example. Let We and Wo be the subspaces of L2(R) consisting of all even

and all odd functions, respectively. Since any function can be expressed

as the sum of an even and odd function, we have We +Wo = L2(R). Since

We and Wo are disjoint, we may also write We⊕Wo = L2(R).
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Section 2.5

Normed Spaces
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Norms

A norm on a vector space V over the field F is a mapping ‖·‖ of V into R
with the following properties:

1 for all x ∈V , ‖x‖ ≥ 0 (nonnegativity);
2 ‖x‖ = 0 if and only if x = 0 (strict positivity);
3 for all x ∈V and all a ∈ F , ‖ax‖ = |a|‖x‖ (homogeneity); and
4 for all x,y ∈V , ‖x+ y‖ ≤ ‖x‖+‖y‖ (triangle inequality).

A norm is a measure of length.

A norm is continuous (which means that the order of limits and norms can be interchanged).

Example.

For R, the function ‖x‖ = |x| is a norm.

For L2(R), the function ‖x‖ = [
R

R |x(t)|2 dt]1/2 is a norm.

For l2(Z), the function ‖(. . . ,x−1,x0,x1, . . .)‖ = [∑n∈Z |xn|2]1/2 is a norm.

A norm induces a metric.

Given a norm ‖·‖, the function d(x,y) = ‖x− y‖ is a metric.

Example. For R, the function ‖x‖ = |x| is a norm, which induces the

metric d(x,y) = ‖x− y‖ = |x− y|.
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Normed Spaces

A vector space V with a norm ‖·‖ defined on V is called a normed space,

and is denoted (V,‖·‖) or simply V when the norm is implied from the

context.

A normed space has a metric induced by the norm. Thus, a normed

space is also a metric space.

A normed space has algebraic and topological structure.

Example. C. The set C with the norm ‖x‖ = |x|.
Example. L2(R). The set L2(R) with the norm ‖x‖ = [

R

R |x(t)|2 dt]1/2.

Example. l2(Z). The set l2(Z) with the norm

‖(. . . ,x−1,x0,x1, . . .)‖ = [∑n∈Z |xn|2]1/2.
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Infinite Series

Since normed spaces have topological structure, we can define an infinite

series.

An infinite series is defined in terms of a limit of the sequence of partial

sums as follows:

∑k∈N xk = limn→∞ sn where sn = ∑n
k=1 xk
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ω-Independence

A (finite or infinite) sequence (xn)n∈I of vectors in a normed space is said

to be ω-independent if whenever the series ∑n∈I anxn is convergent and

equal to zero for some sequence (an)n∈I of scalars, then necessarily

an = 0 for all n ∈ I.

The concept of ω-independence is similar to that of linear independence

except that, in the former case, infinite linear combinations are also

permitted.

If I is finite, ω-independence and linear independence are essentially the

same.

Theorem. If a sequence of vectors is ω-independent, it is also linearly

independent.

The converse of the preceding statement is not true. In this sense,

ω-independence is a stronger form of independence than linear

independence.

When working with infinite-dimensional spaces, we are almost always

interested in ω-independence (and not linear independence).
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Section 2.6

Inner Product Spaces
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Inner Products

An inner product on a vector space V over a field F is a mapping 〈·, ·〉 of

V ×V into F with the following properties:
1 〈x,x〉 ≥ 0 for all x ∈V (nonnegativity);
2 for all x ∈V , 〈x,x〉 = 0 if and only if x = 0 (strict positivity);
3 〈x,y〉∗ = 〈y,x〉 for all x,y ∈V (conjugate symmetry);
4 〈ax,y〉 = a〈x,y〉 for all x,y ∈V and all a ∈ F (homogeneity); and
5 〈x+ y,z〉 = 〈x,z〉+ 〈y,z〉 for all x,y,z ∈V (additivity).

An inner product is continuous (which means that the order of limits and inner products can be interchanged).

An inner product 〈·, ·〉 induces a norm. Given an inner product 〈·, ·〉, the

function ‖x‖ = 〈x,x〉1/2
is a norm.

The angle θx,y between two (nonzero) vectors x and y is defined as

cosθx,y = 〈x,y〉
‖x‖‖y‖ . [Note: −1 ≤ 〈x,y〉

‖x‖‖y‖ ≤ 1.]

An inner product facilitates the measure of angles. It imposes geometric

structure on a set.

Example.

For Rn, an inner product is 〈(x1,x2, . . . ,xn),(y1,y2, . . . ,yn)〉 = ∑n
k=1 xkyk.

For Cn, an inner product is 〈(x1,x2, . . . ,xn),(y1,y2, . . . ,yn)〉 = ∑n
k=1 xky

∗
k .
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Inner Product Spaces

A vector space V with an inner product defined on V is called an inner

product space, and is denoted (V,〈·, ·〉) or simply V when the inner

product is implied from the context.

An inner product space also has a norm and metric induced by the inner

product. Thus, an inner product space is also a normed space and a

metric space.

An inner product space has geometric structure in addition to algebraic

and topological structure.

Example. Rn. The vector space Rn with the inner product

〈(x1,x2, . . . ,xn),(y1,y2, . . . ,yn)〉 = ∑n
k=1 xkyk (i.e., the dot product).

Example. Cn. The vector space Cn with the inner product

〈(x1,x2, . . . ,xn),(y1,y2, . . . ,yn)〉 = ∑n
k=1 xky

∗
k (i.e., the dot product).

Example. L2(R). The vector space L2(R) with the inner product

〈x,y〉 =
R

R x(t)y∗(t)dt.
Example. l2(Z). The vector space l2(Z) with the inner product

〈(. . . ,x−1,x0,x1, . . .),(. . . ,y−1,y0,y1, . . .)〉 = ∑k∈Z xky
∗
k .
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Hilbert Spaces

A Hilbert space is a complete inner product space (complete in the

metric induced by the inner product).

Inner product spaces lacking completeness are typically very badly

behaved (e.g., an orthonormal basis may fail to exist, and so on).

The inner product spaces used in engineering are essentially always

Hilbert spaces.

Example. Rn, Cn, L2(R), and l2(Z) are Hilbert spaces.

Theorem. A closed subspace of a Hilbert space is itself a Hilbert space.
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Orthogonality

Orthogonal vectors. Two vectors x and y in an inner product space V are

said to be orthogonal, denoted x⊥ y, if 〈x,y〉 = 0.

Example. In R2, v1 = (1,0) and v2 = (0,1) are orthogonal, since

〈v1,v2〉 = 〈(1,0),(0,1)〉 = (1)(0)+(0)(1) = 0.

Vector Orthogonal to Set. For a subset A of an inner product space V

and a vector x ∈V , if x⊥ y for all y ∈ A, we say that x is orthogonal to A,

denoted x⊥ A.

Example. In R3, (0,0,1) ⊥ {(1,0,0),(0,1,0),(1,1,0)}.

Set Orthogonal to Set. For two subsets A and B of an inner product

space V , if x⊥ y for all x ∈ A and all y ∈ B, we say that A is orthogonal to

B, denoted A⊥ B.

Example. In R3, {(1,0,0),(0,1,0)} ⊥ {(0,0,1),(0,0,2)}.

Orthogonal subspaces. Two subspaces U and W of an inner product

space are said to be orthogonal if U ⊥W .
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Orthogonality (Continued)

Orthogonal and orthonormal sequences. A sequence of vectors (xn)n∈I
in an inner product space is said to be orthogonal if xn ⊥ xm for all

m,n ∈ I, m 6= n, and orthonormal if in addition to the preceding condition

〈xn,xn〉 = 1 (i.e., ‖xn‖ = 1) for all n ∈ I.

Example. Consider the sequence (v1,v2) of vectors in R2, where

v1 =
(

1√
2
, 1√

2

)
and v2 =

(
− 1√

2
, 1√

2

)
. We have:

〈v1,v2〉 =
〈(

1√
2
, 1√

2

)
,
(
− 1√

2
, 1√

2

)〉
=
(

1√
2

)(
− 1√

2

)
+
(

1√
2

)(
1√
2

)
= 0,

〈v1,v1〉 =
〈(

1√
2
, 1√

2

)
,
(

1√
2
, 1√

2

)〉
=
(

1√
2

)(
1√
2

)
+
(

1√
2

)(
1√
2

)
= 1, and

〈v2,v2〉 =
〈(

− 1√
2
, 1√

2

)
,
(
− 1√

2
, 1√

2

)〉
=
(
− 1√

2

)(
− 1√

2

)
+
(

1√
2

)(
1√
2

)
= 1

Thus, (v1,v2) is both orthogonal and orthonormal.

Theorem. An orthonormal sequence is ω-independent.

Pythagorean theorem. If two vectors x and y in an inner product space

are orthogonal, then ‖x+ y‖2 = ‖x‖2 +‖y‖2
.
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Orthogonal Complements

Let W be a nonempty subset of an inner product space V . The set of all

elements of V orthogonal to W , denoted W⊥, is called the orthogonal

complement of W (in V ) (i.e., W⊥ = {v ∈V : v⊥W}).

Example. Let S⊂ R3 where S = {(0,0,1)}. Then, S⊥ is the xy-plane.
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Orthogonal Projections

A projection P on an inner product space is said to be orthogonal if its

range and null spaces are orthogonal (i.e., R(P) ⊥ N(P)).

A projection that is not orthogonal is called oblique.

Projection theorem. If W is a closed subspace of a Hilbert space V ,

then every element x ∈V has a unique decomposition of the form

x = y+ z where y ∈W and z ∈W⊥.

Best approximation. Let W be a closed subspace of a Hilbert space V ,

and let x ∈V . Further, let P be the orthogonal projection of V onto W .

There exists a unique vector y ∈W that is closest to x as given by y = Px

(closest in the sense of minimizing ‖y− x‖).
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Orthonormal Bases

An orthonormal sequence (en)n∈I of vectors in an inner product space V

is said to be an orthonormal basis of V if, for every x ∈V , there exists a

unique scalar sequence (an)n∈I in l2(I) such that x = ∑n∈I anen.

Equivalently, an orthonormal sequence E is an orthonormal basis for the

inner product space V if spanE is dense in V (i.e., V = closspanE).

Example.

An orthonormal basis of R3 is given by ((1,0,0),(0,1,0),(0,0,1)).
An orthonormal basis of l2(Z) is given by (δ[·− k])k∈Z.

Unless the space in question is finite-dimensional, an orthonormal basis is

not a basis in the algebraic sense. That is, an orthonormal basis is only a

Hamel basis in the case of finite-dimensional spaces.

Existence of orthonormal basis. Every Hilbert space has an

orthonormal basis.
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Orthonormal Bases (Continued)

Expansion coefficients. Let (en)n∈I be an orthonormal basis of an inner

product space V . Then, each x ∈V can be expressed as x = ∑n∈I anen
where an = 〈x,en〉.
Example. Consider the orthonormal basis (e1,e2) for R2, where

e1 = ( 1√
2
, 1√

2
) and e2 = (− 1√

2
, 1√

2
). The vector x = (2,1) can be

expressed as x = a1e1 +a2e2, where

a1 = 〈x,e1〉 = (2)( 1√
2
)+(1)( 1√

2
) = 3√

2
and

a2 = 〈x,e2〉 = (2)(− 1√
2
)+(1)( 1√

2
) = − 1√

2
.

Parseval identity. Let (en)n∈I be an orthonormal basis of a Hilbert space

V . Then, for all x,y ∈V , 〈x,y〉 = ∑n∈I 〈x,en〉〈y,en〉∗, which, for x = y,

simplifies to ‖x‖2 = ∑n∈I |〈x,en〉|2 (i.e., an orthonormal basis preserves

inner products and norms).
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Orthogonal Projections (Continued)

Finding orthogonal projection. Let W be a closed subspace of an

Hilbert space V , and let (en)n∈I be an orthonormal basis for W . Further,

let P denote the orthogonal projection of V onto W . Then, P is given by

Px = ∑n∈I 〈x,en〉en, where x ∈V .

Example. Let (e1,e2) be an orthonormal basis for a subspace W of R3,

where e1 = ( 1√
2
,0, 1√

2
) and e2 = (− 1√

2
,0, 1√

2
). Find the orthogonal

projection y of x = (1,2,1) onto W . We have

y = 〈x,e1〉e1 + 〈x,e2〉e2 =
〈
(1,2,1),( 1√

2
,0, 1√

2
)
〉

( 1√
2
,0, 1√

2
)+

〈
(1,2,1),(− 1√

2
,0, 1√

2
)
〉

(− 1√
2
,0, 1√

2
) =

√
2( 1√

2
,0, 1√

2
)+0 = (1,0,1).
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Biorthogonality

Two sequences (xn)n∈I and (yn)n∈I of vectors in an inner product space

are said to be biorthogonal if xm ⊥ yn for all m,n ∈ I, m 6= n. If, in

addition, 〈xn,yn〉 = 1 for all n ∈ I, then the sequences are said to be

biorthonormal.

An orthogonal sequence is biorthogonal with itself.

An orthonormal sequence is biorthonormal with itself.

Example. Let (e1,e2) and (ẽ1, ẽ2) be sequences of vectors in R2, where

e1 = (1,1), e2 = (−1,1), ẽ1 = (1
2
, 1

2
), and ẽ2 = (− 1

2
, 1

2
). We have:

〈e1, ẽ1〉 = (1)(1
2
)+(1)(1

2
) = 1, 〈e2, ẽ2〉 = (−1)(− 1

2
)+(1)(1

2
) = 1,

〈e1, ẽ2〉 = (1)(− 1
2
)+(1)(1

2
) = 0, and 〈e2, ẽ1〉 = (−1)(1

2
)+(1)(1

2
) = 0.

Thus, (e1,e2) and (ẽ1, ẽ2) are both biorthogonal and biorthonormal.
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Riesz Bases

Although an orthonormal basis is often convenient to use, orthonormality

can place too many constraints on the choice of basis vectors.

In an infinite-dimensional space, ω-independence alone is not sufficient to

ensure a well-behaved basis. A stronger condition is required, which

leads to the notion of a Riesz basis.

A sequence (en)n∈I of vectors in a Hilbert space V is said to be a Riesz

basis of V if, for every x ∈V , there exists a unique scalar sequence

(an)n∈I in l2(I) such that x = ∑n∈I anen, and there exist real numbers

A,B > 0 (independent of x) satisfying the Riesz condition

A∑n∈I |an|2 ≤ ‖x‖2 ≤ B∑n∈I |an|2 (or equivalently,
1
B
‖x‖2 ≤ ∑n∈I |an|2 ≤ 1

A
‖x‖2

). The constants A and B are referred to as

the lower and upper Riesz bounds, respectively.

An orthonormal basis is a special case of a Riesz basis with A = B = 1.

A Riesz basis is a Hamel basis only in the finite-dimensional case.

Theorem. A Riesz basis is ω-independent.
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Dual Riesz Bases

Let (en)n∈I be a Riesz basis of a Hilbert space V with lower and upper

Riesz bounds A and B, respectively. Then, there exists another Riesz

basis (ẽn)n∈I of V with lower and upper Riesz bounds 1
B

and 1
A

,

respectively, such that for all x ∈V , x = ∑n∈I 〈x, ẽn〉en = ∑n∈I 〈x,en〉 ẽn.

We call (ẽn)n∈I the dual Riesz basis of (en)n∈I .

Theorem. Dual Riesz bases are biorthonormal.

To compute the expansion coefficients of a vector in terms of a Riesz

basis, the dual basis is used as shown above.

Example. Let (e1,e2) and (ẽ1, ẽ2) be dual Riesz bases of R2, where

e1 = (1,1), e2 = (−1,1), ẽ1 = (1
2
, 1

2
), and ẽ2 = (− 1

2
, 1

2
). Express

x = (3,1) in terms of the basis (e1,e2). We have: x = a1e1 +a2e2, where

a1 = 〈x, ẽ1〉 =
〈
(3,1),(1

2
, 1

2
)
〉

= 2 and

a2 = 〈x, ẽ2〉 =
〈
(3,1),(− 1

2
, 1

2
)
〉

= −1.
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Section 2.7

Miscellany
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Support of a Function

The support of a function f , denoted supp f , is the closure of the set

{t : f (t) 6= 0} (i.e., the smallest closed set that contains all of the points

where f is nonzero).

Example. supprect = [− 1
2
, 1

2
] and suppsinc = R.

A function f defined on R is said to have compact support if

supp f ⊂ [a,b] for a,b ∈ R. (Note: The terms “finite duration” and “time

limited” are synonymous with compact support.)

Example. The rect function has compact support, while the sinc function

does not have compact support.
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Moments

The kth moment of a sequence x defined on Z is given by

mk = ∑n∈Z n
kx[n] (i.e., mk =

〈
x,(·)k

〉
).

The kth moment of a function x defined on R is given by

mk =
R ∞
−∞ t

kx(t)dt (i.e., mk =
〈
x,(·)k

〉
).

Moments are essentially inner products with monomials. Since

monomials/polynomials play an important role in many contexts, moments

are often of interest.

A function or sequence f is said to have p vanishing moments if its first

p moments vanish (i.e., m0 = m1 = . . . = mp−1 = 0, where mk is the kth

moment of f ).
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Lp Spaces

The Lp(I) spaces are a family of complete normed (i.e., Banach) spaces,

where the parameter p ∈ [1,∞)∪{∞}.

The underlying set is comprised of all (measurable) complex (or real)

functions x(t) defined on I such that{
R

I |x(t)|
p
dt < ∞ p ∈ [1,∞)

esssupt∈I |x(t)| < ∞ p = ∞.

The cases of p = 1, p = 2, and p = ∞ correspond to the spaces of

absolutely-integrable, square-integrable, and essentially-bounded (i.e.,

almost-everywhere bounded) functions, respectively. The set I is often R
or a closed interval in R.

Vector addition and scalar multiplication are defined in the straightforward

way for functions.

The norm is given by

‖x‖p =

{
[
R

I |x(t)|
p
dt]

1/p
p ∈ [1,∞)

esssupx∈I |x(t)| p = ∞.
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Lp Spaces (Continued)

When p = 2, we obtain a Hilbert space (i.e., L2(I)), where the inner

product is given by

〈x,y〉 =
Z

I
x(t)y∗(t)dt.

In the Lp spaces, equality of functions is not defined as being pointwise.

Rather, two functions are equal if they differ only on set of measure zero.

Many complicating factors arise as a result of the manner in which

equality is defined (e.g., functions are not well defined at individual points)

Technically, the elements of Lp spaces are not functions, but rather sets of

functions (called equivalence classes) that differ only on a set of measure

zero.

The Lp spaces are not nested (e.g., L1(R) 6⊂ L2(R) and L2(R) 6⊂ L1(R)).

Theorem. If f ∈ L2(R) and f is compactly supported, then f ∈ L1(R).

Theorem. L1(R)∩L2(R) is dense in L2(R).
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Equality in Lp Spaces

Consider x1,x2 ∈ Lp(R), where x1(t) = 0 and x2(t) =

{
1 if t = 0

0 otherwise.

Clearly, x1 and x2 are not pointwise equal (i.e., they are not equal at every

point).

Since x1(t) = x2(t) except for t = 0, x1 − x2 = 0 almost everywhere.

Thus, |x1 − x2| = 0 almost everywhere.

Consider the norm of x1 − x2, which is given by

‖x1 − x2‖Lp = [
R

R |x1(t)− x2(t)|p dt]1/p
.

Since |x1 − x2| is zero almost everywhere, the preceding integral is zero.

Thus, ‖x1 − x2‖ = 0.

From the properties of a norm, ‖x1 − x2‖ = 0 implies that x1 − x2 = 0,

meaning that x1 = x2.

To avoid contradictions, x1 and x2 are defined to be equal if they differ

only on a set of measure zero (i.e., x1 = x2 almost everywhere), since

x1 = x2 ⇔ x1 − x2 = 0 ⇔‖x1 − x2‖ = 0 ⇔ |x1 − x2| =
0 almost everywhere ⇔ x1 = x2 almost everywhere.
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lp Spaces

The lp(I) spaces are a family of complete normed (i.e., Banach) spaces,

where the parameter p ∈ [1,∞)∪{∞}.

The underlying set is comprised of all complex (or real) sequences (xn)n∈I
such that {

∑n∈I |xn|p < ∞ p ∈ [1,∞)

supn∈I |xn| < ∞ p = ∞.

The cases of p = 1, p = 2, and p = ∞ correspond to the spaces of

absolutely-summable, square-summable, and bounded sequences,

respectively. The set I is often Z or a subset of Z such as Z∗.

Vector addition and scalar multiplication are defined in the straightforward

way for sequences.

The norm employed is given by

‖x‖p =

{
[∑n∈I |xn|p]1/p

p ∈ [1,∞)

supn∈I |xn| p = ∞.
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lp Spaces (Continued)

When p = 2, we obtain a Hilbert space (i.e., l2(I)), where the inner

product is given by

〈x,y〉 = ∑
n∈I

xny
∗
n.

The lp(I) spaces are nested as follows: l1(I) ⊂ l2(I) ⊂ l∞(I).
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Matrices

The transpose, conjugate transpose, and transposed inverse of a matrix AAA

are denoted, respectively, as AAAT , AAA†, and AAA−T .

The symbols IIIn and JJJn denote the n×n identity and anti-identity matrices,

respectively, where the subscript n may be omitted when clear from the

context (e.g., III3 =
[

1 0 0
0 1 0
0 0 1

]
and JJJ3 =

[
0 0 1
0 1 0
1 0 0

]
).

The (k, l)th minor of the n×n matrix AAA is the determinant of the

(n−1)× (n−1) matrix formed by removing the kth row and lth column

from AAA.

Example. The (2,2)th minor of

[
1 2 3
4 5 6
7 8 9

]
is det

[
1 3
7 9

]
.

The adjugate of the n×n matrix AAA, denoted AdjAAA, is the n×n matrix

whose (k, l)th entry is given by (−1)k+l Ml,k where Ml,k is the (l,k)th
minor of AAA.

Example. Adj
[

1 2
3 4

]
=
[

(1)(4) (−1)(3)
(−1)(2) (1)(1)

]T
=
[

4 −2
−3 1

]
.
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Matrices, Divisibility, Roots of Unity

Cramer’s rule. The inverse of a square matrix AAA is given by

AAA−1 = 1
detAAA

AdjAAA.

Example. Let AAA =
[

1 2
3 4

]
. Then,

AAA−1 = 1
detAAA

AdjAAA = − 1
2

[
4 −2
−3 1

]
=
[−2 1

3
2

− 1
2

]
.

A square matrix AAA is said to be unitary if AAA−1 =AAA†.

For a polynomial matrix AAA(z), the notation AAA∗(z) denotes the matrix

obtained by conjugating the polynomial coefficients without conjugating z.

If a square matrix AAA(z) is such that AAA(z)AAAT
∗ (z−1) = III, then AAA is said to be

paraunitary.

For a,b ∈ Z, we say that a divides b, abbreviated a | b, if there exists

k ∈ Z such that b = ka (i.e., b is an integer multiple of a).

Example. 2 | 4 and 3 | 27, while 7 ∤ 13.

The Mth root of unity given by e− j2π/M is denoted as WM .
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Toeplitz Matrices

A n×n matrix with each diagonal having entries of equal value is said to

be Toeplitz. In other words, such a matrix has the form




a0 a1 a2 · · · an−1

a−1 a0 a1 · · · an−2

a−2 a−1 a0 · · · an−3

...
...

...
. . .

...
a−(n−1) a−(n−2) a−(n−3) · · · a0




.

Toeplitz matrices have a special significance in the context of convolution.
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Section 2.8

Fourier Analysis
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Fourier Transform in L1(R)

The classical definition of the Fourier transform, as taught in most

introductory signal-processing courses, is only applicable to functions in

L1(R).

For f ∈ L1(R), the Fourier transform of f , denoted f̂ , is

f̂ (ω) =
R

R f (t)e− jωtdt.

If f , f̂ ∈ L1(R), then the inverse Fourier transform f of f̂ is given by

f (t) = 1
2π

R

R f̂ (ω)e jωtdω.

It can be shown that integral in the above definition of the Fourier

transform converges if and only if f ∈ L1(R). This is why we have the

restriction that f ∈ L1(R). A similar issue also arises with the integral for

the inverse Fourier transform.

Since some functions in L2(R) are not in L1(R) (e.g., the sinc function),

the Fourier transform as described above is not well defined for all

functions in L2(R).

Unfortunately, in engineering, we are usually more interested in using

L2(R) than L1(R).

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 90



Defining the Fourier Transform in L2(R)

The classical definition of the Fourier transform has to be modified in

order to be well defined for all functions in L2(R).

Since L1(R)∩L2(R) is dense in L2(R), any f ∈ L2(R) can be expressed

as f = limn→∞ fn, where fn ∈ L1(R)∩L2(R) and n ∈ N. For example, we

can choose fn(t) = f (t) rect( t
2n

).

Since each fn ∈ L1(R), the L1(R) Fourier transform of fn exists.

Therefore, a natural way to define the Fourier transform for L2(R) is as the

limit of ( f̂n)n∈N:

f̂ (ω) = lim
n→∞

f̂n(ω) = lim
n→∞

Z

R
fn(t)e

− jωtdt

= lim
n→∞

Z

R
f (t) rect( t

2n
)e− jωtdt

= lim
n→∞

Z n

−n
f (t)e− jωtdt
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Fourier Transform in L2(R)

Fourier transform. For f ∈ L2(R), f̂ (ω) = limn→∞

R n
−n f (t)e

− jωtdt.

Inverse Fourier transform. For f ∈ L2(R),
f (t) = limn→∞

1
2π

R n
−n f̂ (ω)e jωtdω.

The L2(R) definition of the Fourier transform shares many of the same

basic properties as the L1(R) definition, including:

[a f +bg]̂ = a f̂ +bĝ (linearity)

[ f (·− t0)]̂ (ω) = e− jωt0 f̂ (ω) (translation)

[e jω0· f (·)]̂ (ω) = f̂ (ω−ω0) (modulation)

[ f (a·)]̂ (ω) = 1
|a| f̂ (ω/a) (scaling)

[ f ∗(·)]̂ (ω) = f̂ ∗(−ω) (conjugation)

[Df ]̂ = jω f̂ , where D denotes the derivative operator (differentiation)

[ f ∗g]̂ = f̂ ĝ (convolution)

Moment property. The kth moment µk of a function f is given by

µk = jk f̂ (k)(0), where f̂ (k) denotes the kth order derivative of f̂ .
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Fourier Transform in L2(R) (Continued)

Parseval relation. If f ,g ∈ L2(R), then 〈 f ,g〉 = 1
2π

〈
f̂ , ĝ
〉

(i.e., the Fourier

transform preserves inner products up to a scale factor).

Plancherel. If f ∈ L2(R), then f̂ ∈ L2(R) and ‖ f‖2 = 1
2π

∥∥ f̂
∥∥2

(i.e., the

Fourier transform preserves norms up to a scale factor).

Since the Fourier transform preserves norms (up to scale), L2(R) is

closed under Fourier transform and inverse Fourier transform operations.

Riemann-Lebesgue lemma. If f ∈ L1(R), then f̂ is continuous on R and

lim|ω|→∞ f̂ (ω) = 0.
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Part 3

One-Dimensional Multirate Filter Banks

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 94



Multirate Signal Processing

Signal processing that deals with signals sampled at a single rate is said

to be unirate, while signal processing that deals with signals sampled at

more than one sampling rate is said to be multirate.

Systems can be classified as unirate or multirate depending on whether

they deal with signals sampled at only one or more than one rate.

Multirate systems are extremely useful in a wide variety of applications.

Sometimes, a multirate system can be used to perform a task more easily

or more efficiently than is possible with a unirate system (e.g., by

performing some computations at a lower sampling rate).

Other times, a task may inherently require the use of multiple sampling

rates (e.g., sampling rate conversion).

In addition to all of the familiar operations associated with unirate signal

processing (such as convolution and delay/advance), multirate signal

processing also defines operations for changing the sampling rate.

Changing the sampling rate is accomplished via operations known as

downsampling and upsampling.
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Section 3.1

Multirate Fundamentals
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Downsampling

In multirate signal processing, the basic operation for decreasing the

sampling rate is known as downsampling and is performed by a

downsampler.

The M-fold downsampling operation takes an input sequence x and

produces the output sequence y as given by

y[n] = (↓M)x[n] = x[Mn],

where M is an integer.

The constant M is referred to as the downsampling factor.

The M-fold downsampler, which embodies the M-fold downsampling

operation, is depicted as shown below.

↓M
x[n] y[n]

In simple terms, the downsampling operation keeps everyMth sample

and discards the others.

Downsampling is a linear (periodically) time-varying operation.
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Downsampling Example

Consider the sequence x = (xn)n∈Z. That is, x is as shown below.

n · · · −4 −3 −2 −1 0 1 2 3 4 · · ·
x[n] · · · x−4 x−3 x−2 x−1 x0 x1 x2 x3 x4 · · ·

The sequence (↓ 2)x is as shown below.

n · · · −3 −2 −1 0 1 2 3 · · ·
(↓ 2)x[n] · · · x−6 x−4 x−2 x0 x2 x4 x6 · · ·

The sequence (↓ 3)x is as shown below.

n · · · −3 −2 −1 0 1 2 3 · · ·
(↓ 3)x[n] · · · x−9 x−6 x−3 x0 x3 x6 x9 · · ·
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Downsampling in Z Domain

Theorem. Let x and y be sequences related by y = (↓M)x. Let X and Y

denote the Z transforms of x and y, respectively. Then, Y , which is

denoted as (↓M)X , is given by

Y (z) = (↓M)X(z) =
1

M

M−1

∑
k=0

X(z1/MW k
M),

where WM = e− j2π/M.

The above summation is carefully constructed so that all terms with

non-integer powers of z cancel (i.e., add to zero).

So, although at first glance, the above expression may appear to contain

non-integer powers of z, this is not the case.
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Downsampling in Fourier Domain

Theorem. Let x and y be sequences related by y = (↓M)x. Let x̂ and ŷ

denote the Fourier transforms of x and y, respectively. If the sampling

period before and after downsampling is normalized to one, the following

relationship holds:

ŷ(ω) =
1

M

M−1

∑
k=0

x̂

(
ω−2πk

M

)
.

Note that x̂
( ·−2πk

M

)
is x̂ first dilated by 1/M and then translated by 2πk.

The spectrum of the downsampled signal is merely the average of M

translated copies of the original input spectrum.

Due to our convention of normalizing the sampling period after

downsampling to one, the spectrum is also dilated.

It is important to understand, however, that this spectrum dilation effect is

only a consequence of the sampling-period renormalization and is not

caused by downsampling itself.

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 100



Downsampling and Aliasing

Downsampling can result in multiple baseband frequencies in the input

signal being mapped to a single frequency in the output signal.

This phenomenon is called aliasing.

When aliasing occurs, information in the signal being downsampled is

irretrievably lost and the effects of downsampling cannot be undone.

When a signal x is downsampled by a factor of M, aliasing cannot occur if

x is bandlimited to frequencies ω satisfying |ω| < π/M.
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Downsampling Example: No Aliasing Case

↓ 2
x[n] y[n]

2-Fold Downsampler

−2π −π π 2π

1

x̂(ω)

0

ω

Spectrum of Input Signal

−2π −π π 2π

1

0

ω

x̂
(

ω−2π
2

)

x̂(ω/2)

Translated Copies of Input Spectrum

−2π −π π 2π0

ω

ŷ(ω)

1
2

Spectrum of Downsampled Signal
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Downsampling Example: Aliasing Case

↓ 2
x[n] y[n]

2-Fold Downsampler

−2π −π π 2π

1

x̂(ω)

0

ω

Spectrum of Input Signal

−2π −π π 2π

1

0

ω

x̂
(

ω−2π
2

)
x̂(ω/2)

Translated Copies of Input Spectrum

−2π −π π 2π

ŷ(ω)

1
2

0

ω

Spectrum of Downsampled Signal
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Upsampling

In multirate signal processing, the basic operation for increasing the

sampling rate is known as upsampling and is performed by an

upsampler.

The M-fold upsampling operation takes an input sequence x and

produces the output sequence y as given by

y[n] = (↑M)x[n] =

{
x[n/M] if M | n
0 otherwise,

where M is an integer (and “M | n” means n
M
∈ Z).

The M-fold upsampler, which embodies the M-fold upsampling operation,

is depicted as shown below.

↑M
x[n] y[n]

The constant M is referred to as the upsampling factor.

In simple terms, the upsampling operation inserts M−1 zeros between

the samples of the original signal.

Upsampling is a linear (periodically) time-varying operation.
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Upsampling Example

Consider the sequence x = (xn)n∈Z. That is, x is as shown below.

n · · · −4 −3 −2 −1 0 1 2 3 4 · · ·
x[n] · · · x−4 x−3 x−2 x−1 x0 x1 x2 x3 x4 · · ·

The sequence (↑ 2)x is as shown below.

n · · · −4 −3 −2 −1 0 1 2 3 4 · · ·
(↑ 2)x[n] · · · x−2 0 x−1 0 x0 0 x1 0 x2 · · ·

The sequence (↑ 3)x is as shown below.

n · · · −3 −2 −1 0 1 2 3 · · ·
(↑ 3)x[n] · · · x−1 0 0 x0 0 0 x1 · · ·
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Upsampling in Z Domain

Theorem. Let x and y be sequences related by y = (↑M)x. Let X and Y

denote the Z transforms of x and y, respectively. Then, Y , which we

denote as (↑M)X , is given by

Y (z) = (↑M)X(z) = X(zM).
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Upsampling in Fourier Domain

Theorem. Let x and y be sequences related by y = (↑M)x. Let x̂ and ŷ

denote the Fourier transforms of x and y, respectively. Assuming that the

sampling period before and after upsampling is normalized to one, this

directly yields the relationship

ŷ(ω) = x̂(Mω).

The upsampling process simply serves to move the location of the

sampling frequency on the frequency axis.

Due to our convention of normalizing the sampling period after

upsampling to one, the spectrum is also dilated.

It is important to understand, however, that this compression effect is only

a consequence of the sampling period renormalization and is not caused

by upsampling itself.
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Upsampling and Imaging

Since the shape of the spectrum is not altered by upsampling, there is no

information loss and the original signal can always be recovered from its

upsampled version.

Upsampling, however, does result in the creation of multiple copies of the

original baseband spectrum.

This phenomenon is called imaging.

These copies of the baseband spectrum are referred to as images.
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Upsampling Example

↑ 2
x[n] y[n]

2-Fold Upsampler

−2π −π π 2π

1

x̂(ω)

0
ω

Spectrum of Input Signal

−2π −π π 2π

1

ŷ(ω)

0
ω

Spectrum of Upsampled Signal
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Decimation

Consider decreasing the sampling rate by an integer factor M.

Although this could be accomplished using only an M-fold downsampler,

such a scheme has a major shortcoming, namely that severe aliasing can

result (which is highly undesirable in most applications).

To avoid (or minimize) aliasing, we apply a lowpass filter to the signal

prior to downsampling.

This filter is chosen to ensure that the signal being downsampled is

sufficiently bandlimited so as to avoid (or minimize) aliasing.

The lowpass filter using in this context is called an antialiasing filter.

The cutoff frequency of the antialiasing filter is π/M.

The passband gain of the antialiasing filter is one.

The above approach leads to what is known as M-fold decimation and is

performed by an M-fold decimator (i.e., an antialiasing filter followed by

an M-fold downsampler).
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Decimation (Continued)

An M-fold decimator has the form shown below.

H(z) ↓M
x[n] y[n]

︸ ︷︷ ︸
Antialiasing Filter

In practice, an M-fold decimator is not implemented directly using the

computational structure shown above, since it is very computationally

inefficient.

That is, due to downsampling, most of elements of the sequence output

from the antialiasing filter are discarded.

We will later explore more efficient computational structures for

decimation.
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Interpolation

Consider increasing the sampling rate by an integer factor M.

Although this could be done using only an M-fold upsampler, such a

scheme has a major shortcoming, namely that upsampling results in

imaging (which is highly undesirable in most applications).

Consequently, we usually introduce a lowpass filtering operation after

upsampling to eliminate images of the original baseband spectrum.

The lowpass filter used in this context is called an antiimaging filter.

The cutoff frequency of the antiimaging filter is π/M.

The passband gain of the antiimaging filter is M.

The above approach leads to what is known as M-fold interpolation and

is performed by an M-fold interpolator (i.e., an M-fold upsampler

followed by an antiimaging filter).
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Interpolation (Continued)

An M-fold interpolator has the form shown below.

↑M H(z)
x[n] y[n]

︸ ︷︷ ︸
Antiimaging Filter

In practice, an M-fold interpolator is not implemented directly using the

computational structure shown above, since it is very computationally

inefficient.

That is, due to upsampling, the input sequence to the antiimaging filter is

mostly zero, resulting in many additions/multiplications involving zero

during convolution.

We will later explore more computationally efficient means for

implementing interpolation.
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Rational Sampling-Rate Conversion

In some situations, we may need to change the sampling rate by a

noninteger factor.

In particular, we sometimes want to change the sampling rate by a

rational factor L/M.

This can be accomplished by applying L-fold interpolation followed by

M-fold decimation.

This leads to the rational sampling-rate converter shown below.

↑ L H0(z) H1(z) ↓M
x[n] y[n]

︸ ︷︷ ︸
L-fold Interpolator

︸ ︷︷ ︸
M-fold Decimator
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Rational Sampling-Rate Conversion (Continued)

The antiimaging and antialiasing filtering operations associated with

interpolation and decimation can be combined into a single filtering

operation, leading to the rational sampling-rate converter shown below.

↑ L H(z) ↓M
y[n]

︸ ︷︷ ︸

Filter
Antialiasing/Antiimaging

Combined

x[n]

In practice, a rational sampling-rate converter is not implemented directly

using the computational structure shown above, since it is very

computationally inefficient.

We will later explore more computationally efficient means for

implementing rational sampling rate converters.
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Cascaded Upsampling and Downsampling Identities

Often, multiple upsampling operations or multiple downsampling

operations may be applied in succession. Thus, we would like to consider

the effect of cascading operations in this manner.

Theorem. The downsampling and upsampling operators have the

following properties:

(↓M)(↓ L) =↓ LM =↓ML and

(↑M)(↑ L) =↑ LM =↑ML.

In other words, we have the identities shown below.

x[n] y[n]
≡

x[n]
↓ LM↓M ↓ L

y[n]

x[n] y[n]
≡

x[n]
↑ LM↑M ↑ L

y[n]
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Commutativity of Upsampling and Downsampling

One might wonder if upsampling and downsampling commute.

These operations only commute under certain circumstances as given by

the result below.

Theorem. The L-fold upsampling and M-fold downsampling operators

commute (i.e., (↑ L)(↓M) = (↓M)(↑ L)) if and only if L and M are

coprime.

In other words, we have the identity shown below.

↓M ↑ L ↓M↑ L
x[n] y[n]

≡
x[n] y[n]

L,M coprime

The above relationship has both theoretical and practical utility. It can

sometimes be used to simplify expressions involving upsampling and

downsampling operations, and also may be used to obtain more

desirable implementations of multirate systems in some situations.
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Noble Identities

Often a downsampler or upsampler appears in cascade with a filter.

Although it is not always possible to interchange the order of

upsampling/downsampling and filtering without changing system

behavior, it is sometimes possible to find an equivalent system with the

order of these operations reversed, through the use of two very important

relationships called the noble identities.

In addition to their theoretical utility, the noble identities are of great

practical significance.

For performance reasons, it is usually desirable to perform filtering

operations on the side of an upsampler (or downsampler) with the lower

sampling rate.

Using the noble identities, we can move filtering operations across

upsamplers (or downsamplers) and achieve improved computational

efficiency.
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First Noble Identity

First noble identity. For any two sequences with Z transforms X and F ,

the following identity holds:

F(z) [(↓M)X(z)] = (↓M)
[
F(zM)X(z)

]
,

where F(z) is a rational polynomial.

In other words, we have the identity shown below.

F(z) F(zM) ↓M
y[n]x[n]

≡↓M
x[n] y[n]

The first noble identity allows us to replace a filtering operation on one

side of a downsampler with an equivalent filtering operation on the other

side of the downsampler.

It is important to emphasize that, in order for the above identity to hold,

F(z) must be a rational polynomial.

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 119



Second Noble Identity

Second noble identity. For any two sequences with Z transforms X and

F , the following identity holds:

(↑M) [F(z)X(z)] = F(zM) [(↑M)X(z)] .

where F(z) is a rational polynomial.

In other words, we have the identity shown below.

F(z) ↑M F(zM)↑M≡
x[n] y[n] y[n]x[n]

The second noble identity allows us to replace a filtering operation on one

side of an upsampler with an equivalent filtering operation on the other

side of the upsampler.

It is important to emphasize that, in order for the above identity to hold,

F(z) must be a rational polynomial.
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Polyphase Representations

The polyphase representation of the signal x[n], with respect to an

integer M and a set of integers {mk}M−1
k=0 , is defined as

x[n] =
M−1

∑
k=0

((↑M)xk)[n+mk],

where

xk[n] = (↓M)(x[n−mk]) = x[Mn−mk]

and the set {mk}M−1
k=0 is chosen such that

mod(mk,M) 6= mod(ml,M) whenever k 6= l.

As a matter of terminology, we refer to M as a sampling factor (or the

number of phases), the elements of the set {mk}M−1
k=0 as coset offsets,

and x0[n],x1[n], . . . ,xM−1[n] as polyphase components.

A polyphase representation partitions the samples of the original

sequence x into M subsequences {xk}M−1
k=0 .

Polyphase representations are of fundamental importance in multirate

signal processing.
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Choice of Polyphase Representation

A sequence has infinitely many polyphase representations, since

infinitely many choices exist for the sampling factor M and coset offsets

{mk}M−1
k=0 .

Even for a fixed choice of M, the polyphase representation is not uniquely

determined, since more than one choice for the {mk}M−1
k=0 is possible.

Although, for a given sampling factor M, many different choices are

possible for the {mk}M−1
k=0 , four specific choices are most frequently used

in practice, referred to as type 1, 2, 3, and 4.

In the case of these four commonly used types of polyphase

representations, the {mk}M−1
k=0 are chosen as

mk =






−k type 1

k− (M−1) type 2

k type 3

(M−1)− k type 4.
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Choice of Polyphase Representation (Continued)

For a given choice of M, one can show that different choices of {mk}M−1
k=0

serve only to time shift and permute the polyphase components.

For example, for a fixed choice of M, the type-2 polyphase components of

a sequence are simply a permutation of its type-1 polyphase components.

More specifically, the orders of the components are reversed with respect

to one another.

The particular type of polyphase representation to be used is normally

dictated by practical considerations or notational convenience.
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Polyphase Representation in Z Domain

Since we often work with Z transforms of sequences, it is convenient to

express the polyphase representation in the Z domain.

Theorem. Let X denote the Z transform of x, and let Xk denote the Z

transform of xk for k = 0,1, . . . ,M−1. Expressed in the Z domain, the

polyphase representation of x is given by

X(z) =
M−1

∑
k=0

zmkXk(z
M),

where

Xk(z) = (↓M)z−mkX(z).

In passing, we note that if X is rational (but not a Laurent polynomial), the

polyphase components need not be rational.
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Polyphase Representations of Filters

We can express the transfer function F of a filter in terms of a polyphase

representation as

F(z) =
M−1

∑
k=0

zmkFk(z
M).

This representation suggests an implementation strategy for a filter known

as the polyphase realization, as shown below.

zm0

zm1 F1(zM )

F0(zM ) +

+

z
mM−1 FM−1(zM)

y[n]x[n]

...
...

...
...

First Variant

+

+

F0(zM ) zm0

zm1F1(zM )

z
mM−1FM−1(zM)

y[n]x[n]

...
...

...
...

Second Variant

The original filter is implemented using M filters, each having a transfer

function that is a rational polynomial in zM.
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Polyphase Representations of Filters (Continued)

The polyphase representation is often a mathematically convenient form

in which to express filtering operations in multirate systems, simplifying

many theoretical results.

Perhaps, more importantly, the polyphase representation leads to an

efficient means for implementing filtering operations in a multirate

framework.

For type 1, 2, 3, and 4 polyphase representations, the coset offsets

{mk}M−1
k=0 are chosen to be consecutive integers.

Type mk Values

1 0,−1, . . . ,−(M−1)
2 −(M−1),−(M−2), . . . ,0
3 0,1, . . . ,M−1

4 M−1,M−2, . . . ,0

This allows all of the delays/advances to be implemented with a chain of

M unit-delays/unit-advances.
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Type-1 Polyphase Representation and Advance/Delay

Chains

z0

z−1 F1(z
M)

F0(z
M) +

+

z−(M−1) FM−1(z
M)

y[n]x[n]

...
...

...
...

Type-1 Polyphase

Representation

x[n]

...

xM−1[n]

...

x1[n]

z0

z−1

z−(M−1)

...

x0[n]

Conceptual

z−1

z−1

z−1

...

x[n] x0[n]

x1[n]

xM−1[n]

Practical

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 127



Type-1 Polyphase Representation and Advance/Delay

Chains

+

+

F0(z
M) z0

z−1F1(z
M)

z−(M−1)FM−1(z
M)

y[n]x[n]

...
...

...
...

Type-1 Polyphase

Representation

+

+

x[n]

...

x1[n]

x0[n]

...

z0

z−1

z−(M−1)

...

xM−1[n]

Conceptual

+

z−1

+

z−1

x0[n] x[n]

xM−1[n]

x1[n]

...

Practical
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Efficient Decimation

Earlier, the M-fold decimator was introduced, as shown below.

H(z) ↓M
x[n] y[n]

︸ ︷︷ ︸
Antialiasing Filter

In practice, however, a decimator would never be implemented directly

using the above structure, since this structure is extremely

computationally inefficient.

Most of the samples computed by the convolution operation are discarded

by the subsequent downsampling operation.

For example, if M = 2, half of the results computed by convolution (i.e.,

filtering operation) are discarded, which is very inefficient. If M > 2, the

inefficiency is even worse.

By representing the antialiasing filter in M-phase polyphase form and

using the noble identities, however, the above inefficiency can be

eliminated.
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Efficient Decimation (Continued)

F(z) ↓M
x[n] y[n]

1) Original

zm0

zm1 F1(z
M)

F0(z
M) +

+

↓M

zmM−1 FM−1(z
M)

x[n] y[n]

...
...

...
...

2) After Implementing Filter in Polyphase

Form

zm0

zm1 F1(zM)

F0(zM) ↓M

↓M

+

+

z
mM−1 FM−1(zM ) ↓M

x[n] y[n]

...
...

...
...

...

3) After Interchanging Downsamplers

and Adders

zm0

zm1

↓M

↓M F1(z)

F0(z) +

+

z
mM−1 ↓M FM−1(z)

x[n] y[n]

...
...

...
...

...

4) After Interchanging Downsamplers

and Filters

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 130



Efficient Interpolation

Earlier, the M-fold interpolator was introduced, as shown below.

↑M H(z)
x[n] y[n]

︸ ︷︷ ︸
Antiimaging Filter

In practice, however, an interpolator would never be implemented directly

using the above structure, since this structure is extremely

computationally inefficient.

Due to the insertion of zeros by the upsampling operation, the subsequent

convolution operation involves many multiplications by zero, resulting in

most of the terms in the convolutional sum being zero.

Repeated multiplication by zero and addition of zero is grossly inefficient.

By representing the antiimaging filter in M-phase polyphase form and

using the noble identities, however, this inefficiency can be eliminated.
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Efficient Interpolation (Continued)

↑M F(z)
x[n] y[n]

1) Original

+

+

F0(z
M) zm0

zm1F1(z
M)

↑M

zmM−1FM−1(z
M)

y[n]x[n]

...
...

...
...

2) After Implementing Filter in Polyphase

Form

+

+

F0(zM) zm0

zm1F1(zM)

↑M

↑M

z
mM−1FM−1(zM )↑M

y[n]x[n]

...
...

...
...

...

3) After Moving/Replicating Upsamplers

F0(z)

F1(z)

↑M

↑M

+

+

zm0

zm1

FM−1(z) ↑M z
mM−1

y[n]x[n]

...
...

...
...

...

4) After Interchanging Upsamplers and

Filters
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Efficient Rational Sampling Rate Conversion

Earlier, we consider rational sampling-rate converter as shown below.

↑ L H(z) ↓M
y[n]

︸ ︷︷ ︸

Filter
Antialiasing/Antiimaging

Combined

x[n]

In practice, a rational sampling-rate converter would never be

implemented directly using the computational structure shown above, as

this structure is grossly inefficient.

By using polyphase techniques, a much more computationally efficient

structure for a rational sampling rate converter can be obtained.
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First Attempt: Upsampler Plus Efficient Decimator

↑ L H(z) ↓M
y[n]

︸ ︷︷ ︸

Filter

Antialiasing/Antiimaging

Combined

x[n]

1) Original

zm0

zm1 H1(zM)

H0(zM) +

+

z
mM−1 HM−1(zM )

↑ L ↓M
y[n]

...
...

...
...

x[n]

2) After Implementing Filter in Polyphase Form

zm0

zm1

↓M

↓M H1(z)

H0(z) +

+

z
mM−1 ↓M HM−1(z)

↑ L
y[n]

...
...

...
...

...

x[n]

3) After Moving Filtering Across Downsamplers
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Second Attempt: Efficient Interpolator Plus Downsampler

↑ L H(z) ↓M
y[n]

︸ ︷︷ ︸

Filter

Antialiasing/Antiimaging

Combined

x[n]

1) Original

+

+

H0(zL) zl0

zl1H1(zL)

↑ L

z
lL−1HL−1(zL)

↓M
x[n]

...
...

...
...

y[n]

2) After Implementing Filter in Polyphase Form

H0(z)

H1(z)

↑ L

↑ L

+

+

zl0

zl1

HL−1(z) ↑ L z
lL−1

↓M
x[n]

...
...

...
...

...

y[n]

3) After Moving Filtering Across Upsamplers
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Efficient Conversion

We can still do better in terms of efficiency.

We start with the system obtained by moving the filtering operation across

upsampling (as shown on previous slide).

Without loss of generality, assume that L and M are coprime.

By Bezout’s identity, since L and M are coprime, for each lk, there exist

l′k,m
′
k ∈ Z such that lk = Ll′k +Mm′

k.

Each delay/advance can be split into two.

Further manipulation, allows a much more computationally efficient

structure to be obtained.

In the final system, all filtering is performed at the lowest possible

sampling rate (i.e., after downsampling and before upsampling).
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Efficient Conversion (Continued)

H0(z)

H1(z)

↑ L

↑ L

+

+

zl0

zl1

HL−1(z) ↑ L z
lL−1

↓M
x[n]

...
...

...
...

...

y[n]

1) Efficient Interpolator Plus

Downsampler

2) After Splitting Delays (zlk = zLl
′
kzMm′

k )

3) After Delays Moved Across

Downsamplers/Upsamplers

4) After Downsamplers/Upsamplers

Interchanged (L and M coprime)
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Efficient Conversion (Continued 2)

5) After Polyphase Filtering and Downsampling Interchanged
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Polyphase Identity

We sometimes encounter an M-fold upsampling operation followed by an

M-fold downsampling operation with filtering in between.

One useful identity in relation to such situations is given by the result

below.

Polyphase identity. Let F and X denote Z transforms. Then, we have

(↓M)(F(z) [(↑M)X(z)]) = F0(z)X(z),

where F0(z) = (↓M)F(z).

The above relationship has the interpretation shown below.

↑M ↓M (↓M)F(z)
x[n] y[n]

≡
x[n] y[n]

F(z)
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Section 3.2

Multirate Filter Banks
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Filter Banks

A collection of filters having either a common input or common output is

called a filter bank.

When the filters share a common input, they form an analysis bank. The

filters of an analysis bank are called analysis filters.

When the filters share a common output, they form a synthesis bank. The

filters of a synthesis bank are called synthesis filters.

The outputs of an analysis bank and inputs of a synthesis bank are

referred to as subband signals.

The frequency responses of the filters may be non-overlapping, marginally

overlapping, or greatly overlapping, depending on the application.

H0(z)

H1(z)

HM−1(z)

x[n]

...

y0[n]

yM−1 [n]

y1[n]

...
...

Analysis Bank

G1(z)

G0(z) +

+

GM−1(z)

...

y0[n] x[n]

y1[n]

yM−1[n]

...
...

Synthesis Bank
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Uniformly Maximally Decimated (UMD) Filter Banks

Although many filter bank configurations exist, an extremely useful one is

the M-channel uniformly maximally decimated (UMD) filter bank,

which has the general structure shown below.

H0(z)

H1(z)

↓M

HM−1(z)

G0(z) +

+

GM−1(z)↓M ↑M

G1(z)↓M ↑M

↑M
x[n]

...
...

...

y0[n]

...
...

...

x̂[n]

y1[n]

yM−1[n]

︸ ︷︷ ︸
Analysis Bank

︸ ︷︷ ︸
Downsamplers

︸ ︷︷ ︸
Upsamplers

︸ ︷︷ ︸
Synthesis Bank

︸ ︷︷ ︸
Analysis Side

︸ ︷︷ ︸
Synthesis Side
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Alias-Free and Perfect-Reconstruction Properties

Let us consider an M-channel UMD filter bank as a system with the input

x and output x̂.

In the most general case, the system is linear and periodically time

varying (with period M).

Due to aliasing (and imaging), the system may not be time invariant. In

practice, at least some limited amount of aliasing and imaging always

occurs, due to the use of nonideal filters.

Often, it is possible to choose the analysis/synthesis filters such that

aliasing is completely cancelled.

If all of the aliasing components completely cancel, the system is time

invariant and is said to be alias free.

If, for all sequences x and some integer n0, the system is such that

x̂[n] = x[n−n0] for all n ∈ Z,
the system is said to have the perfect reconstruction (PR) property.

In the special case that n0 = 0, the system is said to have the shift-free

PR property.

UMD filter banks with the shift-free PR property play an important role in

the context of wavelet systems.
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Utility of UMD Filter Banks

M-channel filter bank can be used to partition signal into M frequency bands

(which are determined by analysis filters {Hk}M−1
k=0 ) as shown below

therefore, filter bank potentially useful when desirable to process signal in terms

of its different frequency bands

in practice, often have processing block inserted between analysis and synthesis

sides of filter bank like shown below

G0(z) +

+

GM−1(z)↑M

G1(z)↑M

↑MH0(z)

H1(z)

↓M

HM−1(z) ↓M

↓M

...
...

...

x̂[n]

y1[n]

yM−1[n]

y0[n] y′0[n]

y′1[n]

y′M−1[n]

x[n]

...
...

...

︸ ︷︷ ︸
Subband Processing

Processing
Subband

︸ ︷︷ ︸
Analysis Side

︸ ︷︷ ︸
Synthesis Side
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Utility of UMD Filter Banks (Continued)

often PR system desired so that any difference between x and x̂ is due to

subband processing and not distortion caused by filter bank itself

also basic building block in computational structure for discrete wavelet

transform (DWT)

examine several applications later
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Time-Domain Characterization of UMD Filter Banks

In the time-domain, the analysis side of the filter bank is characterized by

the equation

yk[n] = ∑
l∈Z

x[l]hk[Mn− l].

Similarly, the synthesis side of the filter bank is characterized by the

equation

x̂[n] =
M−1

∑
k=0

∑
l∈Z

yk[l]gk[n−Ml].

The analysis and synthesis sides together can be characterized by

combining the above equations.
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Z-Domain Characterization of UMD Filter Banks

In the Z-domain, the analysis and synthesis sides of the filter bank are

characterized, respectively, by the equations

Yk(z) = 1
M

M−1

∑
l=0

Hk(z
1/MW l)X(z1/MW l) and X̂(z) =

M−1

∑
k=0

Gk(z)Yk(z
M).

The analysis and synthesis sides of the filter bank together are

characterized by the equation

X̂(z) =
M−1

∑
l=0

Al(z)X(zW l) where Al(z) = 1
M

M−1

∑
k=0

Gk(z)Hk(zW
l).

We have: X̂(z) = A0(z)X(z)+A1(z)X(zW )+ . . .+AM−1(z)X(zWM−1)︸ ︷︷ ︸
aliasing terms

.

The system is alias free with transfer function A0(z) if and only if

Al(z) ≡ 0 for l ∈ {1,2, . . . ,M−1}.

The system has the PR property if and only if it is alias free and A0(z) is

of the form A0(z) = z−n0 where n0 ∈ Z.
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Modulation Matrices

The analysis modulation matrixHHHm(z) of the filter bank is defined as

HHHm(z) =





H0(z) H0(zW ) · · · H0(zW
M−1)

H1(z) H1(zW ) · · · H1(zW
M−1)

...
...

. . .
...

HM−1(z) HM−1(zW ) · · · HM−1(zW
M−1)




.

The synthesis modulation matrixGGGm(z) is defined as

GGGm(z) =





G0(z) G1(z) · · · GM−1(z)
G0(zW ) G1(zW ) · · · GM−1(zW )

...
...

. . .
...

G0(zW
M−1) G1(zW

M−1) · · · GM−1(zW
M−1)




.

Note: In the case of HHHm(z), Hk(z) and its aliased versions appear in the

kth row of HHHm(z), whereas in the case of GGGm(z), Gk(z) and its aliased

versions appear in the kth column of GGGm(z).
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Modulation-Domain Representation of UMD Filter Banks

The earlier equation characterizing the filter bank in the Z-domain can be

written in matrix form as

X̂(z) =
[
X(z) X(zW ) · · · X(zWM−1)

]
AAA(z),

where W =WM = e− j2π/M,

AAA(z) =





A0(z)
A1(z)

...
AM−1(z)




= 1

M
HHHT

m(z)ggg(z), and ggg(z) =





G0(z)
G1(z)

...
GM−1(z)




.

Suppose that, given a set of analysis filters, we want to find the set of

synthesis filters that results in a particular alias free or PR system.

We can solve for ggg(z) in terms of HHHm(z) and AAA(z) to obtain

ggg(z) = MHHH−T
m (z)AAA(z).

FIR analysis filters but IIR synthesis filters? stability of IIR filters?

synthesis filters of much higher order than analysis filters?
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Transfer Matrices for LTI MIMO Systems

Any M-input M-output LTI system can be completely characterized by an

M×M matrix of transfer functions, called a transfer matrix.

Consider the case of M = 2 below.

+

+

H0,0(z)

H0,1(z)

H1,1(z)

H1,0(z)
Y1(z)

Y0(z)

HHH(z)

X0(z)

X1(z)

Y0(z)

Y1(z)

HHH(z)

X0(z)

X1(z)

We have:[
Y0(z)
Y1(z)

]
=

[
H0,0(z) H0,1(z)
H1,0(z) H1,1(z)

]

︸ ︷︷ ︸
HHH(z)

[
X0(z)
X1(z)

]
=

[
H0,0(z)X0(z)+H0,1(z)X1(z)
H1,0(z)X0(z)+H1,1(z)X1(z)

]
.

Thus, the system is completely characterized by the transfer matrix HHH(z).
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Polyphase Representation of UMD Filter Bank

We can apply polyphase methods to UMD filter banks, in order to obtain

the so called polyphase representation of a filter bank.

Basically, we represent the filters of analysis and synthesis banks in

polyphase form.

The polyphase representation of filter banks is of great importance.

It greatly simplifies the study of filter banks.

It suggests an efficient means for implementing filter banks.
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Polyphase Representation of Analysis Side

We can express the transfer functions {Hk}M−1
k=0 of the analysis filters in

polyphase form as

Hk(z) =
M−1

∑
p=0

zmpHk,p(z
M).

Note that the same type of polyphase representation is used for each

analysis filter (i.e., {mk}M−1
k=0 is fixed for all analysis filters).

The resulting set of equations can be rewritten in matrix form as



H0(z)
H1(z)

...
HM−1(z)





︸ ︷︷ ︸
hhh(z)

=





H0,0(z
M) H0,1(z

M) ··· H0,M−1(z
M)

H1,0(z
M) H1,1(z

M) ··· H1,M−1(z
M)

...
...

. . .
...

HM−1,0(z
M) HM−1,1(z

M) ··· HM−1,M−1(z
M)





︸ ︷︷ ︸
HHHp(z

M)

[
zm0

zm1

...
zmM−1

]

︸ ︷︷ ︸
vvv(z)

or more compactly as

hhh(z) =HHHp(z
M)vvv(z).

The preceding equation completely characterizes the analysis side.

The quantity HHHp(z) is referred to as the analysis polyphase matrix.
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Polyphase Representation of Synthesis Side

We can express the transfer functions {Gk}M−1
k=0 of the synthesis filters in

polyphase form as

Gk(z) =
M−1

∑
p=0

zlpGp,k(z
M).

Note that the same type of polyphase representation is used for each

synthesis filter (i.e., {lk}M−1
k=0 is fixed for all synthesis filters).

The above equation expressed in matrix form becomes

[G0(z) G1(z) ··· GM−1(z) ]︸ ︷︷ ︸
gggT (z)

= [ zl0 zl1 ··· zlM−1 ]︸ ︷︷ ︸
uuuT (z)





G0,0(z
M) G0,1(z

M) ··· G0,M−1(z
M)

G1,0(z
M) G1,1(z

M) ··· G1,M−1(z
M)

...
...

. . .
...

GM−1,0(z
M) GM−1,1(z

M) ··· GM−1,M−1(z
M)





︸ ︷︷ ︸
GGGp(z

M)
which can be written more concisely as

gggT (z) = uuuT (z)GGGp(z
M).

The preceding equation completely characterizes the synthesis side.

The quantity GGGp(z) is referred to as the synthesis polyphase matrix.
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Polyphase Representation of UMD Filter Bank

zm0

zm1

↓M

↓Mz
mM−1

+

+

zl0

zl1

↑M

↑M

z
lM−1↑M

↓M
HHHp(zM ) GGGp(zM )

x[n]

...
...

...

x̂[n]

...
...

...

y0[n]

y1[n]

yM−1 [n]

Before simplification with the noble identities

zm0

zm1

↓M

↓M

z
mM−1 ↓M

↑M

↑M

+

+

zl0

zl1

↑M z
lM−1

HHHp(z) GGGp(z)

x[n]

...
...

...

y0[n] x̂[n]

...
...

...

y1[n]

yM−1 [n]

...

Polyphase representation
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Polyphase Representation of UMD Filter Bank (Continued)

With the polyphase representation of a UMD filter bank, the input x is split

into its polyphase components (i.e., polyphase decomposition).

Then, the M polyphase components undergo analysis and synthesis

filtering via M-input M-output LTI networks.

Lastly, the M polyphase components of the result are recombined to form

the output x̂ (i.e., polyphase recomposition).

zm0

zm1

↓M

↓M

z
mM−1 ↓M

↑M

↑M

+

+

zl0

zl1

↑M

HHHp(z) GGGp(z)

z
lM−1

x[n]

...
...

...

y0[n] x̂[n]

...
...

...

y1[n]

yM−1[n]

...

Filtering

SynthesisAnalysis

Filtering

Polyphase

Recomposition

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Polyphase

Decomposition

︸ ︷︷ ︸

The polyphase representation transforms a filter bank from a SISO linear

periodically-time-varying system to a MIMO LTI system operating on

polyphase components of signals.
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Practical Utility of the Polyphase Representation

zm0

zm1

↓M

↓M

z
mM−1 ↓M

↑M

↑M

+

+

zl0

zl1

↑M

HHHp(z) GGGp(z)

z
lM−1

x[n]

...
...

...

y0[n] x̂[n]

...
...

...

y1[n]

yM−1 [n]

...

Filtering

SynthesisAnalysis

Filtering

Polyphase

Recomposition

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Polyphase

Decomposition

︸ ︷︷ ︸

With the polyphase representation of a filter bank, all analysis/synthesis

filtering is performed on the side of the downsamplers/upsamplers with

the lower sampling density.

Consequently, the polyphase representation provides a particularly

efficient implementation strategy for filter banks.
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Types of Polyphase Representations

Considerable freedom exists in the choice of the parameters {mk}M−1
k=0

and {lk}M−1
k=0 used to form polyphase representations of the analysis and

synthesis banks.

For this reason, many variations on the polyphase representation of a

UMD filter bank are possible.

A polyphase representation that employs type-a and type-b polyphase

representations for the analysis and synthesis sides of the filter bank,

respectively, is denoted as type-(a,b).

In practice, the two most commonly used types of representation are

type-(1,2) and type-(3,1).

The type-(1,2) representation only employs unit delays for polyphase

decomposition/recomposition, while the type-(3,1) representation uses

unit advances as well as delays. Thus, the latter representation may not

be suitable for use in some applications, due to causality constraints.

The type-(3,1) representation has nicer mathematical properties, since

polyphase decomposition and recomposition are mathematical inverses.

The type-(3,1) representation is more directly relevant to wavelet systems.
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Type (1,2) Representation of UMD Filter Bank

z−1

↓M

↓M

z−(M−2) ↓M

↑M

↑M

+

+z−(M−2)

↑M z−1

z−(M−1)

z−(M−1) ↓M ↑M

+

HHHp(z) GGGp(z)

x[n]

...
...

...

y0[n] x̂[n]

...
...

...

y1[n]

yM−2[n]

...

yM−1[n]

(1,2)-type polyphase representation

In practice, the delays in the polyphase decomposition are implemented

by a tapped delay line.

Similarly, the polyphase recomposition is implemented by a delay/adder

chain.
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Type (3,1) Representation of UMD Filter Bank

z

↓M

↓M

zM−2 ↓M

↑M

↑M

+

+z−1

↑M z−(M−2)

zM−1 ↓M ↑M z−(M−1)

+

HHHp(z) GGGp(z)

x[n]

...
...

...

y0[n] x̂[n]

...
...

...

y1[n]

yM−2[n]

...

yM−1[n]

(3,1)-type polyphase representation

In practice, the advances in the polyphase decomposition are

implemented by a tapped advance line.

Similarly, the polyphase recomposition is implemented by a delay/adder

chain.
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Pseudocirculant Matrices

A matrix PPP(z) that is formed by taking a circulant matrix and multiplying

each element below its main diagonal by z is said to be an A-type

pseudocirculant matrix.

A matrix PPP(z) that is formed by taking a circulant matrix and multiplying

each element below its main diagonal by z−1 is said to be a B-type

pseudocirculant matrix.

For example, the following two matrices are, respectively, A- and B-type

pseudocirculant:


P0(z) P1(z) P2(z)
zP2(z) P0(z) P1(z)
zP1(z) zP2(z) P0(z)



 and




P0(z) P1(z) P2(z)

z−1P2(z) P0(z) P1(z)
z−1P1(z) z−1P2(z) P0(z)



 .

Each successive row in a pseudocirculant matrix is the (right) circular

shift of the preceding row with the circulated element multiplied by z or

z−1 for an A- or B-type pseudocirculant, respectively.

Each successive column in a pseudocirculant matrix is the downward

circular shift of the preceding column with the circulated element

multiplied by z−1 or z for an A- or B-type pseudocirculant, respectively.
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Characterizing Pseudocirculant Matrices

A pseudocirculant matrix is completely characterized by the elements of

its top row.

In particular, an M×M pseudocirculant matrix PPP(z) can be expressed as

PPP(z) =






M−1

∑
k=0

Pk(z)

[
000 IIIM−1

z 000

]k
for A type

M−1

∑
k=0

Pk(z)

[
000 IIIM−1

z−1 000

]k
for B type,

where Pk(z) denotes the kth element in the top row of PPP(z).
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Polyphase-Domain Condition for Alias-Free Systems

Necessary and sufficient conditions for alias cancellation. An

M-channel UMD filter bank in either (1,2) or (3,1) polyphase form with

analysis polyphase matrix HHHp(z) and synthesis polyphase matrix GGGp(z) is

alias free if and only if the product PPP(z) ,GGGp(z)HHHp(z) is such that

PPP(z) is

{
B-type pseudocirculant for (1,2) type

A-type pseudocirculant for (3,1) type.

If the system is alias free, it has the transfer function

T (z) =

{
z−(M−1) ∑

M−1
k=0 z−kPk(z

M) for (1,2) type

∑M−1
k=0 zkPk(z

M) for (3,1) type

where P0(z),P1(z), . . . ,PM−1(z) are the elements of the top row of PPP(z).

The top row of PPP(z) contains the polyphase components of T (z).
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Polyphase-Domain Condition for PR Systems

Necessary and sufficient conditions for PR. An M-channel UMD filter

bank in either (1,2) or (3,1) polyphase form with analysis polyphase

matrix HHHp(z) and synthesis polyphase matrix GGGp(z) has the PR property

if and only if the product PPP(z) ,GGGp(z)HHHp(z) has the form

PPP(z) =






[
000 IIIM−1

z−1 000

]K
for (1,2) type

[
000 z−1

IIIM−1 000

]K
for (3,1) type

for some K ∈ Z. If this condition is satisfied, the relationship between the

input signal x and the reconstructed signal x̂ is given by

x̂[n] = x[n−n0] where n0 =

{
K+M−1 for (1,2) type

K for (3,1) type.

Thus, the shift-free PR property holds if and only if

PPP(z) =

{[
000 zIIIM−1

1 000

]
for (1,2) type

III for (3,1) type.
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Comment on Design of PR Systems

In the condition characterizing the PR property (on the previous slide), if

K = 0,

PPP(z) ,GGGp(z)HHHp(z) = III.

Since the identity matrix is sometimes an attractive matrix with which to

work, one might wonder what degree of freedom is lost by constraining K

to be zero.

As it turns out, not much is sacrificed, as changing K only serves to

introduce additional delay into the analysis/synthesis filters.

Consequently, we often only consider the case of PPP(z) = III when

designing PR filter banks.

Delay/advance can always be added to the analysis and synthesis filters,

after the fact, if required.

With PPP(z) = III, the problem of designing PR filter banks, in some sense,

reduces to a problem of factorizing the identity matrix.

Many design methods for PR filter banks have been developed and are

often based on optimization techniques.
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Polyphase-Domain Condition for PR Systems Revisited

Theorem. Any M-channel PR UMD filter bank in either (1,2) or (3,1)
polyphase form with analysis polyphase matrix HHHp(z) and synthesis

polyphase matrix GGGp(z) must be such that the product PPP(z) ,GGGp(z)HHHp(z)
has a determinant of the form

detPPP(z) = (−1)K(M−1)z−K ,

where K is an integer. Moreover, if the analysis and synthesis filters of the

UMD filter bank are of the FIR type, this condition implies that the

polyphase matrices must have determinants of the form

detHHHp(z) = α0z
−L0 and detGGGp(z) = α1z

−L1 ,

where the αi are nonzero constants and the Li are integers. That is, the

determinants of the polyphase matrices must be monomials.

The above result regarding FIR filters is particularly useful, as it provides a

means to test if, for a given set of FIR analysis filters, there exists a set of

FIR synthesis filters that yield PR.
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UMD Filter Banks and Linear Transformations

An M-channel UMD filter bank can be viewed as a pair of linear

transformations.

The analysis side is associated with a linear transformation H that maps

the input x to the subband signals {yk}M−1
k=0 .

The synthesis side is associated with a linear transformation G that

maps the subband signals {yk}M−1
k=0 to the output x̂.

A shift-free PR filter bank is a filter bank satisfying GH = I, where I

denotes the identity (i.e., G is the inverse of H). Such a filter bank is

called biorthonormal (or biorthogonal).

If a filter bank not only satisfies GH = I but G and H are also orthogonal

transformations (i.e., G−1 = GT and H−1 = HT ), the filter bank is called

orthonormal.

The orthonormal property is often desirable, as it ensures that the total

energy in the subband signals {yk}M−1
k=0 equals the energy in the input x

(i.e., energy is preserved).

In practical terms, this energy-preservation property leads to systems that

are inherently more numerically robust.
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Filter Banks and Basis Representations

For a sequence x, we often employ an expansion of the form

x[n] = ∑
k

akϕk[n],

where {ak} are expansion coefficients and {ϕk} are basis vectors.

For example, an N-periodic sequence x can be represented by a

discrete-time Fourier series (DTFS), which chooses

ϕk[n] = e jk2πn/N ,

leading to the representation

x[n] =
N−1

∑
k=0

ake
jk2πn/N where ak = 1

N

N−1

∑
n=0

x[n]e− jk2πn/N .

Let x denote the input to a shift-free PR filter bank with subband

sequences {yk}M−1
k=0 .

The filter bank is associated with a basis representation of x.

The elements of the sequences {yk}M−1
k=0 correspond to the {ak}.

The synthesis side of the filter bank produces x from {ak}, with {ϕk}
being determined by the synthesis-filter impulse responses.
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Orthonormal UMD Filter Banks

Orthonormality conditions. Suppose that we have an M-channel UMD

filter bank with analysis filters {Hk(z)}, synthesis filters {Gk(z)}, analysis

polyphase matrix HHHp(z), and synthesis polyphase matrix GGGp(z). Let hk[n]
and gk[n] denote the inverse Z transforms of Hk(z) and Gk(z),
respectively. Then, the above system is orthonormal if and only if the

system has the shift-free PR property and

hk[n] = g∗k [−n].

Furthermore, this condition is equivalent to each of the following:

GGGm(z)GGGT
m∗(z

−1) = MIII, HHHm(z) =GGGT
m∗(z

−1); and

GGGp(z)GGG
T
p∗(z

−1) =






[
000 zIIIM−1

1 000

]
for (1,2) type

III for (3,1) type,

HHHp(z) =GGGT
p∗(z

−1).

The condition on GGGp in the (3,1) case is equivalent to GGGp being

paraunitary.

For this reason, an orthonormal filter bank is often called paraunitary.
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Nonuniformly-Decimated Filter Banks

If we modify a UMD filter bank so that the various channels do not all use

the same downsampling/upsampling factor, we obtain what is called a

nonuniformly-decimated filter bank, as shown below.

G0(z) +

+

GM−1(z)

G1(z)

H0(z)

H1(z)

HM−1(z)

...
...

x̂[n]

↑ DM−1

yM−1[n]

y0[n]

y1[n]

...
...

↓ DM−1

↓ D1

↓ D0 ↑ D0

↑ D1

x[n]

...
...

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 169



Tree-Structured Filter Banks

The analysis side of an M-channel UMD filter bank decomposes the input

signal x into M subband signals {yk}M−1
k=0 , and the synthesis side then

recombines these subband signals to obtain the output x̂.

There is nothing, however, to prevent us from using additional UMD filter

banks to further decompose some or all of the subband signals. In other

words, the process of splitting a signal into subbands can be applied

recursively.

This recursive splitting process leads to a filter bank with a tree structure

called a tree-structured filter bank.

An example of a tree-structured filter bank obtained by recursively

decomposing the lowpass subband signal of a two-channel UMD filter

bank is shown below.

↓ 2H0(z)↓ 2H0(z)↓ 2H0(z)

H1(z) ↓ 2

↓ 2H1(z)

↓ 2H1(z)

↑ 2

↑ 2

G0(z)

G1(z)

+ ↑ 2 G0(z) + ↑ 2 G0(z) +

↑ 2 G1(z)

↑ 2 G1(z)

y0 [n]

y1 [n]

y2 [n]

y3 [n]

x̂[n]x[n]
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Tree-Structured Filter Banks and Discrete Wavelet

Transforms

Discrete wavelet transforms (DWTs) are computed by tree-structured filter

banks.

In particular, if a tree-structured filter bank is such that the following

conditions are satisfied, then the tree-structured filter bank can be shown

to compute a DWT:

1 only the lowpass subband signal is decomposed at each level in the tree;
2 the same basic UMD filter bank building block is used for decomposition at

all levels; and
3 the basic block has shift-free PR and satisfies certain regularity

conditions.

The analysis and synthesis sides of the tree-structured filter bank

computes the forward and inverse DWTs, respectively.

Since UMD filter banks are the basic building block of DWTs, UMD filter

banks play a crucial role in the context of wavelet systems.
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Section 3.3

Implementation of UMD Filter Banks
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Implementation of UMD Filter Banks

In practice, for reasons of efficiency, filter banks are always implemented

in polyphase form.

For a filter bank in polyphase form, each of the analysis and synthesis

filtering is represented by an M-input M-output LTI network, which is

comprised of M2 filters.

Although each network could be implemented directly in terms of these

M2 filters, this not usually desirable.

Such a direct implementation would have relatively high-order filters and a

very complicated irregular structure, which is difficult to implement

efficiently.

If M = 2, we have 4 filters with the somewhat complicated interconnection

pattern shown, and the problem quickly worsens as M grows:

zm0 ↓ 2

zm1 ↓ 2

+

+

H0,0(z)

H0,1(z)

H1,1(z)

H1,0(z)

x[n]

y1 [n]

y0 [n]

HHHp(z)

G0,0(z)

G1,0(z)

G0,1(z)

G1,1(z)

+

+

↑ 2

↑ 2 zl1

zl0 +

y1 [n]

y0 [n] x̂[n]

GGGp(z)
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Block Cascade Realization

To avoid unnecessarily complicated implementations, it is beneficial to

break the polyphase filtering into a number of simpler cascaded stages.

Instead of implementing HHHp(z) directly, we further decompose HHHp(z) as

follows
HHHp(z) =EEEn−1(z) · · ·EEE1(z)EEE0(z).

Each of the {EEE i(z)} can then be taken to represent a single filtering stage

in the final implementation as shown below.

Similarly, GGGp(z) can be decomposed to produce

GGGp(z) =RRRm−1(z) · · ·RRR1(z)RRR0(z).

This corresponds to the cascade realization of the synthesis polyphase

matrix shown below.

...

EEE0(z) EEE1(z)
...

...

· · ·

EEEn−1(z)
...

· · ·

· · ·

...· · ·
· · ·

Block cascade realization of analysis

polyphase filtering

...
...

...

· · ·

...

· · ·

· · ·

...· · ·
· · ·

RRR0(z) RRR1(z) RRRm−1(z)

Block cascade realization of synthesis

polyphase filtering
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Block Cascade Realization (Continued)

Different factorizations of the analysis and synthesis polyphase matrices

correspond to distinct block-cascade realizations of the analysis and

synthesis polyphase filtering.

To obtain regular structures, we choose the factors such that they follow

some pattern.

For example, we might choose the {EEEk(z)}n−1
k=0 and {RRRk(z)}m−1

k=0 such that

they are all triangular or diagonal matrices.
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Type-S Elementary Matrices

Type-S matrix: This type of M×M matrix has all of the elements on the

main diagonal equal to one, except the (k,k) entry which is α and all

off-main-diagonal elements equal to zero.

Such a matrix is completely characterized by the pair (k,α) and is

denoted SM(k,α). In cases where the size of the matrix is clear from the

context, the subscript M is omitted.

Note that S−1(k,α) = S(k,α−1). That is, the inverse of a type S matrix is

another type S matrix.

For example, we have:

S3(1,α) =




α 0 0

0 1 0

0 0 1



 and S−1
3 (1,α) =




α−1 0 0

0 1 0

0 0 1



 .
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Type-A Elementary Matrices

Type-A matrix: This type of M×M matrix has all ones on the main

diagonal, α at position (k, l), and all other entries zero.

Such a matrix is completely characterized by the triple (k, l,α) and is

denoted AM(k, l,α). The subscript M may be omitted in cases where the

size of the matrix is clear from the context.

Note that A−1(k, l,α) = A(k, l,−α). That is, the inverse of a type A

matrix is another type A matrix.

For example, we have:

A3(1,2,1+ z) =




1 1+ z 0

0 1 0

0 0 1



 and A−1
3 (1,2,1+ z) =




1 −1− z 0

0 1 0

0 0 1



 .
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Lifting Realization

In a lifting realization, a UMD filter bank is implemented in its polyphase

form, using a block cascade realization of the polyphase filtering

networks.

The distinguishing characteristic of this realization is the type of network

used to implement the polyphase filtering.

A lifting factorization of the polyphase matrices is used.

The lifting factorization decomposes a matrix into zero or more constant

type S factors that either premultiply or postmultiply zero or more type A

factors.
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Lifting Realization (Continued)

The analysis polyphase matrix HHHp(z) is decomposed using a lifting

factorization as

HHHp(z) = SSSσ−1 · · ·SSS1SSS0AAAλ−1(z) · · ·AAA1(z)AAA0(z)

where the SSSk are type S matrices with all constant entries and the AAAk(z)
are type A elementary matrices (which can depend on z).

The decomposition of the synthesis polyphase matrix GGGp(z) is completely

determined by the decomposition used for the analysis polyphase matrix

HHHp(z) and is given by

GGGp(z) =AAA−1
0 (z)AAA−1

1 (z) · · ·AAA−1
λ−1

(z)SSS−1
0 SSS−1

1 · · ·SSS−1
σ−1

Furthermore, this choice of decomposition for GGGp(z) implies that

GGGp(z) =HHH−1
p (z).

The AAA−1
k (z) are type A matrices and the SSS−1

k are type S matrices. Hence,

the decomposition given for GGGp(z) is, in fact, a lifting factorization of the

matrix.
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Existence of Lifting Realization

From the definition of the lifting realization, it follows that such a realization

exists if and only if a lifting factorization of HHHp(z) exists and

GGGp(z) =HHH−1
p (z).

Any UMD filter bank can be made to satisfy these conditions through an

appropriate normalization of its analysis and synthesis filters.
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Lifting Step

Each of the type A factors corresponds to a block that adds a filtered

version of a signal in one channel to a signal in another channel.

Such a block is called a lifting step and is shown below.

To simplify the diagram only the kth and lth inputs and outputs are shown.

All other inputs pass directly through to their corresponding outputs

unchanged.

The inverse of a lifting step is another lifting step.

A(z)

+
uk[n] vk[n]

vl [n]ul [n]

Lifting Step

A(z)

+
−

vl [n]

vk[n] uk[n]

ul [n]

Inverse Lifting Step
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Scaling Step

Each of the type S factors corresponds to a block that scales the signal in

a single channel.

Such a block is called a scaling step and is shown below.

Only the kth input and output are shown as all other inputs pass directly

through to their corresponding outputs without modification.

The inverse of a scaling step is another scaling step.

α
uk[n] vk[n]

Scaling Step

α−1
vk[n] uk[n]

Inverse Scaling Step
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Lifting Realization: Two-Channel Case

Notice the high degree of symmetry between the analysis and synthesis

sides.

A1(z)A0(z) A2λ−1(z)

+ +

+ + s0

s1

A2λ−2(z)

· · ·

· · ·

· · ·FPT
x[n]

y0[n]

y1[n]

Analysis Side

A0(z)A1(z)A2λ−2(z)A2λ−1(z) IPT

+

+ +

+s−1
1

s−1
0

· · ·

· · ·

· · ·

x̂[n]

y0[n]

y1[n] − −

−−

Synthesis Side
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Lifting Realization: M-Channel Case

FPT AAA0(z) AAA1(z) AAAλ−1(z) SSS0 SSS1 SSSσ−1

· · ·

yM−1[n]

· · ·

y1[n]
· · ·

· · ·

...
...

...
...

...
...

...
...

...

x[n]

y0[n]

· · ·

· · ·

Analysis Side

SSS−1
σ−1 SSS−1

0 AAA−1
λ−1

(z) AAA−1
1 (z) AAA−1

0 (z) IPTSSS−1
1

x̂[n]
y1[n]

y0[n]

yM−1[n]

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...
...

...
...

...

Synthesis Side
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Advantages of Lifting Realization

The transform can be calculated in place without the need for auxiliary

memory.

Even in the presence of coefficient quantization error, the PR property is

retained.

The PR property can be maintained even in the presence of the roundoff

error introduced by finite precision arithmetic (if scaling steps use nonzero

integer factors).

The lifting realization can be used to easily construct reversible

transforms.

The inverse transform has the same computational complexity as the

forward transform.

Asymptotically, for long filters, the lifting realization yields a more

computationally efficient structure than the standard realization.

The PR property is structurally imposed, regardless of the choice of

lifting filters.
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Section 3.4

UMD Filter Banks: Practical Issues
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Filter Banks and Multidimensional Signals

The UMD filter banks that we have considered so far are fundamentally

one-dimensional in nature.

Many types of signals, however, are multidimensional in nature (e.g.,

images, video, volumetric medical data, and so on).

As it turns out, the easiest way in which to construct a multidimensional

filter bank is from one-dimensional building blocks.

In other words, we construct a multidimensional filter bank as a

composition of one-dimensional filter banks.

Or put another way, we view a multidimensional signal as being comprised

of one-dimensional slices, which are then processed with

one-dimensional filter banks.
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Processing of Two-Dimensional Signals

Consider a two-dimensional signal x.

The kth (one-dimensional) horizontal slice of x is given by xh,k[n] = x[n,k]
and the kth (one-dimensional) vertical slice of x is given by

xv,k[n] = x[k,n].

To begin, we apply a (one-dimensional) filter bank to each horizontal slice

of x.

For each horizontal slice that is processed, M one-dimensional subband

signals are produced.

Then, for each channel, we vertically stack the one-dimensional subband

signals to produce M two-dimensional signals.

Next, for each of the M two-dimensional subband signals, we apply the

(one-dimensional) filter bank to each vertical slice.

This yields M new subband signals for each of the M original subband

signals, for a total of M2 subbands.
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Processing Two-Dimensional Signals (Continued)

1 process horizontal slices of signal:

2 process vertical slices of intermediate subband signals:
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Separable Two-Dimensional UMD Filter Banks

In effect, we have constructed the M2-channel two-dimensional filter bank,

shown below, where J(M) = M2.

The filters {Hk}M
2−1

k=0 and {Gk}M
2−1

k=0 employ two-dimensional filtering operations

that are composed from one-dimensional operations, and the two-dimensional

downsamplers/upsamplers are composed from one-dimensional

downsamplers/upsamplers.

Since the multidimensional operations can be decomposed into one-dimensional

operations, the filter bank is called separable.

Although we have only considered the two-dimensional case here for simplicity,

this idea trivially extends to any arbitrary number of dimensions.
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Advantages/Disadvantages of Separable Approach

The separable approach to constructing multidimensional filter banks has

a number of advantages:
1 It is conceptually simple and easy to analyze, requiring only

one-dimensional signal-processing theory.
2 The approach is also computationally efficient, as all operations are

fundamentally one-dimensional in nature.

Although the separable approach is adequate for many applications, it

also has some significant disadvantages:
1 Since the multidimensional filter bank is composed from one-dimensional

operations, it cannot exploit the true multidimensional nature of the signal

being processed.
2 The flexibility in the partitioning of the frequency-domain into subbands is

quite limited.
3 The number of channels possessed by the multidimensional filter bank is

constrained to be MD, which can often be overly restrictive. For example,

the number of channels can become quite large, depending on D and M.
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Subband Structure for 2-D Wavelet Transforms

Input

−→
HH

1
LH

1

LL
1

HL
1

One Level

−→

2
HHLH

2

HL
2

HL
1

HH
1

LH
1

LL
2

Two Levels

−→

LL

2
HHLH

2

HL
2

HL
1

HH
1

LH
1

...

..
. ...

L

L Levels
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2-D Wavelet Transform Example

FIGURE OMITTED FOR COPYRIGHT REASONS
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Section 3.5

Transmultiplexers
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Transmultiplexers

transmultiplexer is transpose of UMD filter bank (i.e., with analysis and

synthesis sides swapped)

general structure of M-channel transmultiplexer shown below

+

+

...
...

...

y[n]

xM−1[n]

...
...

...

HM−1(z) ↓M

↓M

↓MH0(z)

H1(z)

GM−1(z)↑M

↑M G1(z)

G0(z)↑M
x̂0[n]

x̂1[n]

x̂M−1[n]

x1[n]

x0[n]

transmultiplexer said to have PR property if, for each

k ∈ {0,1, . . . ,M−1}, x̂k[n] = xk[n−dk] for some dk ∈ Z and all n ∈ Z

transmultiplexer has PR property if corresponding UMD filter bank has PR

property
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Section 3.6

Applications of Multirate Systems
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Sampling Rate Conversion

sampling rate conversion by integer factor M (i.e., M-fold decimators and

M-fold interpolators)

sampling rate conversion by rational factor L/M (based on polyphase

techniques)

in many applications, need to convert between different sampling rates

streaming video/audio at different rates

many different sampling rates commonly used for audio/music/voice data:

studio recording: 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 192 kHz

MPEG-1 Audio Layer 3 (MP3): 44.1 kHz (typical), 32 kHz, 48 kHz

Digital Audio Tape (DAT): 48 kHz (typical), 44.1 kHz, 32 kHz

Compact Disc (CD): 44.1 kHz

DVD Audio: 44.1 kHz, 192 kHz

GSM-FR: 8 kHz
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Part 4

Univariate Wavelet Systems
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Section 4.1

Mathematical Preliminaries
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Commonly-Used Sets of Functions and Sequences

LLL222(((III))). The set L2(I) is comprised of all (measurable) complex (or real)

functions x defined on I for which
Z

I
|x(t)|2 dt < ∞.

Example. The set L2(R) consists of all square-integrable (i.e.,

finite-energy) complex functions defined on R.

lll2
22(((III))). The set l2(I) is comprised of all complex (or real) sequences

{xn}n∈I defined on I for which

∑
n∈I

|xn|2 < ∞.

Example. The set l2(Z) consists of all square-summable (i.e.,

finite-energy) complex sequences defined on Z.
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Vector Spaces

A vector space over a scalar field F (such as R or C) is a nonempty set

V , together with two algebraic operations,
1 a mapping (x,y) 7→ x+ y from V ×V into V called vector addition and
2 a mapping (a,x) 7→ ax from F×V into V called scalar multiplication,

which satisfy the axioms of a vector space. Such a vector space is

denoted (V,F,+, ·) or simply V when the other parameters are clear from

the context.

A vector space has what is called algebraic structure.

A vector space over the field R is called a real vector space.

A vector space over the field C is called a complex vector space.
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Axioms of a Vector Space

1 for all x,y ∈V , x+ y ∈V (closure under vector addition);

2 for all x ∈V and all a ∈ F , ax ∈V (closure under scalar multiplication);

3 for all x,y ∈V , x+ y = y+ x (commutativity of vector addition);

4 for all x,y,z ∈V , (x+ y)+ z = x+(y+ z) (associativity of vector

addition);

5 for all x ∈V and all a,b ∈ F , (ab)x = a(bx) (associativity of scalar

multiplication);

6 for all x ∈V and all a,b ∈ F , (a+b)x = ax+bx (distributivity of scalar

sums);

7 for all x,y ∈V and all a ∈ F , a(x+ y) = ax+ay (distributivity of vector

sums);

8 there exists 0 ∈V such that x+0 = x for all x ∈V (additive identity);

9 for all x ∈V , there exists a (−x) ∈V such that x+(−x) = 0 (additive

inverse); and

10 for all x ∈V , 1x = x, where 1 denotes the multiplicative identity of the field

F (scalar multiplication identity).
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Vector Spaces

Example. Rn.

Choose the underlying set as V = Rn and the field as F = R.

Define vector addition as:

(x1,x2, . . . ,xn)+(y1,y2, . . . ,yn) = (x1 + y1,x2 + y2, . . . ,xn + yn).
Define scalar multiplication as: ax = (ax1,ax2, . . . ,axn).

Example. l2(Z).
Choose the underlying set as V = l2(Z) and the field as F = C.

Define vector addition as: (x+ y)[n] = x[n]+ y[n].
Define scalar multiplication as: (ax)[n] = ax[n].

Example. L2(R).
Choose the underlying set as V = L2(R) and the field as F = C.

Define vector addition as: (x+ y)(t) = x(t)+ y(t).
Define scalar multiplication as: (ax)(t) = ax(t).
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Vector Subspaces

A subset of a vector space V that is itself a vector space is called a vector

subspace of V .

Example. The xy-plane is a vector subspace of R3.

A subspace S of the vector space V is said to be proper if S 6=V and

improper if S =V .

Two vector subspaces V and W of the same dimensionality are said to be

disjoint if V ∩W = {0} (i.e., the only common vector between V and W is

the zero vector).

Example. Let We and Wo denote the subspaces of L2(R) consisting of all

even and all odd functions, respectively. Then, We and Wo are disjoint

(since only the zero function is both even and odd).
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Linear Transformations

A transformation T of a vector space V into a vector space W , where V
and W have the same scalar field F , is said to be a linear
transformation if

1 for all x,y ∈V , T (x+ y) = T (x)+T (y) (additivity); and
2 for all x ∈V and all a ∈ F , T (ax) = aT (x) (homogeneity).

Example. Some linear transformations include: scaling, rotation, shear,

and reflection in Rn, and the Fourier transform in L2(R) and l2(Z).

The null space of a linear transformation T :V →W , denoted N(T ), is

the subset of V given by N(T ) = {x ∈V : Tx = 0} (i.e., the set of all

vectors mapped to the zero vector under the transformation T ).

The range space of a linear transformation T :V →W , denoted R(T ), is

defined as R(T ) = {y = Tx : x ∈V} (i.e., the set of vectors produced by

applying T to each of the elements of V ).

A linear transformation P of a vector space V into itself is said to be a

projection if P2 = P (i.e., P is idempotent).

Example. In R2, the transformation that maps (x1,x2) to (x1,0) is a

projection (i.e., a projection onto the x axis).
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Inner Sums and Algebraic Complements

If V and W are subspaces of the vector space U , then the inner sum of V

and W , denoted V +W , is the space consisting of all points x = v+w

where v ∈V and w ∈W . [Note: V +W is not the same as 6=V ∪W .]

Example. Let U and V be subspaces of R2, where U = span{(1,0)} and

V = span{(0,1)}. Then, U +V = R2.

Let V and W be subspaces of the vector space U . If U =V +W and V

and W are disjoint, W is the called the algebraic complement of V in U .

(Similarly, V is the algebraic complement of W in U .)

Example. Let We and Wo be the subspaces of V = L2(R) consisting of

even and odd functions, respectively. Since any function can be expressed

as the sum of an even and odd function, we have We +Wo = L2(R). Since

We and Wo are disjoint, We and Wo are algebraic complements.

Theorem. The algebraic complement always exists.

Theorem. Let V and W be subspaces of a vector space U . Then for each

x ∈V +W , there is a unique v ∈V and a unique w ∈W such that

x = v+w if and only if V and W are disjoint (i.e., a vector has a unique

decomposition in terms of algebraic complements).
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Direct Sums

Let V and W be subspaces of the vector space U . If U and V are disjoint,

the (isomorphic form of the) direct sum of U and V , denoted U⊕W , is

U +W .

Example. Let We and Wo be the subspaces of L2(R) consisting of all even

and all odd functions, respectively. Since any function can be expressed

as the sum of an even and odd function, we have We +Wo = L2(R). Since

We and Wo are disjoint, we may also write We⊕Wo = L2(R).
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Metrics

A metric d on a set X is a real function defined on X×X that satisfies the

following conditions:

1 d(x,y) ≥ 0 for all x,y ∈ X (nonnegativity);
2 d(x,y) = 0 if and only if x = y (strict positivity);
3 d(x,y) = d(y,x) for all x,y ∈ X (symmetry); and
4 d(x,y) ≤ d(x,z)+d(z,y) for all x,y,z ∈ X (triangle inequality).

A metric is a measure of distance.

Example.

For R2, d((x1,x2),(y1,y2)) =
(
(x1 − y1)

2 +(x2 − y2)
2
)1/2

is a metric.

For l2(Z), d(x,y) =
(

∑n∈Z |x[n]− y[n]|2
)1/2

is a metric.

For L2(R), d(x,y) =
(

R

R | f (t)−g(t)|2 dt
)1/2

is a metric.
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Norms

A norm on a vector space V over the field F is a mapping ‖·‖ of V into R
with the following properties:

1 for all x ∈V , ‖x‖ ≥ 0 (nonnegativity);
2 ‖x‖ = 0 if and only if x = 0 (strict positivity);
3 for all x ∈V and all a ∈ F , ‖ax‖ = |a|‖x‖ (homogeneity); and
4 for all x,y ∈V , ‖x+ y‖ ≤ ‖x‖+‖y‖ (triangle inequality).

A norm is a measure of length.

Example.

For R2, ‖(x1,x2)‖ =
(
x2

1 + x2
2

)1/2
is a norm.

For l2(Z), ‖x‖ =
(

∑n∈Z |x[n]|2
)1/2

is a norm.

For L2(R), ‖x‖ =
(

R

R |x(t)|2 dt
)1/2

is a norm.

A norm induces a metric.

Given a norm ‖·‖, the function d(x,y) = ‖x− y‖ is a metric.

Example. For R2, the function ‖(x1,x2)‖ =
(
x2

1 + x2
2

)1/2
is a norm, which

induces the metric

d((x1,x2),(y1,y2)) = ‖(x1,x2)− (y1,y2)‖ =
(
(x1 − y1)

2 +(x2 − y2)
2
)1/2

.
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Inner Products

An inner product on a vector space V over a field F is a mapping 〈·, ·〉 of

V ×V into F with the following properties:
1 〈x,x〉 ≥ 0 for all x ∈V (nonnegativity);
2 for all x ∈V , 〈x,x〉 = 0 if and only if x = 0 (strict positivity);
3 〈x,y〉∗ = 〈y,x〉 for all x,y ∈V (conjugate symmetry);
4 〈ax,y〉 = a〈x,y〉 for all x,y ∈V and all a ∈ F (homogeneity); and
5 〈x+ y,z〉 = 〈x,z〉+ 〈y,z〉 for all x,y,z ∈V (additivity).

An inner product 〈·, ·〉 induces a norm. Given an inner product 〈·, ·〉, the

function ‖x‖ = 〈x,x〉1/2
is a norm.

The angle θx,y between two (nonzero) vectors x and y is defined as

cosθx,y = 〈x,y〉
‖x‖‖y‖ . [Note: −1 ≤ 〈x,y〉

‖x‖‖y‖ ≤ 1.]

An inner product facilitates the measure of angles. It imposes geometric

structure on a set.

Example.

For Rn, an inner product is 〈(x1,x2, . . . ,xn),(y1,y2, . . . ,yn)〉 = ∑n
k=1 xkyk.

For l2(Z), an inner product is 〈x,y〉 = ∑n∈Z x[n]y
∗[n].

For L2(R), an inner product is 〈x,y〉 =
R

R x(t)y∗(t)dt.
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Inner Product Spaces and Hilbert Spaces

A vector space V with an inner product defined on V is called an inner

product space, and is denoted (V,〈·, ·〉) or simply V when the inner

product is implied from the context.

An inner product space has geometric structure in addition to algebraic

and topological structure.

A Hilbert space is an inner product space that satisfies a technical

condition known as completeness.

The inner product spaces used in engineering are essentially always

Hilbert spaces.

Since the inner product induces a norm, which in turn induces a metric, an

inner product space has not only an inner product, but also a norm and

metric.
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Hilbert Space R2

two-dimensional Euclidean space (from high-school geometry)

set:

ordered pairs of real numbers (i.e., (v1,v2) where v1,v2 ∈ R)

vector addition:

(v1,v2)+(w1,w2) = (v1 +w1,v2 +w2)

scalar multiplication:

a(v1,v2) = (av1,av2)

scalar field: R

inner product:

〈(v1,v2),(w1,w2)〉 = (v1,v2) · (w1,w2) = v1w1 + v2w2 (i.e., dot product)

norm:

‖(v1,v2)‖ = 〈(v1,v2),(v1,v2)〉 =
(
v2

1 + v2
2

)1/2
(i.e., Euclidean norm)

metric:

d((v1,v2),(w1,w2)) = ‖(v1,v2)− (w1,w2)‖=
(
(v1 −w1)

2 +(v2 −w2)
2
)1/2

(i.e., Euclidean distance)
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Hilbert Space l2(Z)

finite-energy (i.e., square summable) sequences defined on Z

This space is normally what is used in digital signal processing.

set:

sequences f such that ∑
n∈Z

| f [n]|2 < ∞

vector addition

( f +g)[n] = f [n]+g[n]

scalar multiplication

(a f )[n] = a f [n]

inner product:

〈 f ,g〉 = ∑
n∈Z

f [n]g∗[n]

norm:

‖ f‖ = (〈 f , f 〉)1/2 =

(

∑
n∈Z

| f [n]|2
)1/2

metric:

d( f ,g) = ‖ f −g‖ =

(

∑
n∈Z

( f [n]−g[n])2

)1/2
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Hilbert Space L2(R)

finite-energy (i.e., square integrable) functions defined on R

This space is normally what is used in analog signal processing.

set:

functions f such that

Z

R
| f (t)|2 dt < ∞

vector addition:

(f + g)(t) = f(t) + g(t)

scalar multiplication:

(a f)(t) = a f(t)

inner product:

〈 f ,g〉 =
Z

R
f (t)g∗(t)dt

norm:

‖ f‖ = (〈 f , f 〉)1/2 =

(
Z

R
| f (t)|2 dt

)1/2

metric:

d( f ,g) = ‖ f −g‖ =

(
Z

R
| f (t)−g(t)|2 dt

)1/2
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Orthogonality

Orthogonal vectors. Two vectors x and y in an inner product space V are

said to be orthogonal, denoted x⊥ y, if 〈x,y〉 = 0.

Example. In R2, v1 = (1,0) and v2 = (0,1) are orthogonal, since

〈v1,v2〉 = 〈(1,0),(0,1)〉 = (1)(0)+(0)(1) = 0.

Vector Orthogonal to Set. For a subset A of an inner product space V

and a vector x ∈V , if x⊥ y for all y ∈ A, we say that x is orthogonal to A,

denoted x⊥ A.

Example. In R3, (0,0,1) ⊥ {(1,0,0),(0,1,0),(1,1,0)}.

Set Orthogonal to Set. For two subsets A and B of an inner product

space V , if x⊥ y for all x ∈ A and all y ∈ B, we say that A is orthogonal to

B, denoted A⊥ B.

Example. In R3, {(1,0,0),(0,1,0)} ⊥ {(0,0,1),(0,0,2)}.

Orthogonal subspaces. Two subspaces U and W of an inner product

space are said to be orthogonal if U ⊥W .
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Orthogonality (Continued)

Orthogonal and orthonormal sequences. A sequence of vectors

{xn}n∈I in an inner product space is said to be orthogonal if

xn ⊥ xm for all m,n ∈ I, m 6= n,

and orthonormal if in addition to the preceding condition

〈xn,xn〉 = 1 for all n ∈ I (i.e., ‖xn‖ = 1).

Example. Consider the sequence {vn}2
n=1 of vectors in R2, where

v1 =
(

1√
2
, 1√

2

)
and v2 =

(
− 1√

2
, 1√

2

)
. We have:

〈v1,v2〉 =
〈(

1√
2
, 1√

2

)
,
(
− 1√

2
, 1√

2

)〉
=
(

1√
2

)(
− 1√

2

)
+
(

1√
2

)(
1√
2

)
= 0,

〈v1,v1〉 =
〈(

1√
2
, 1√

2

)
,
(

1√
2
, 1√

2

)〉
=
(

1√
2

)(
1√
2

)
+
(

1√
2

)(
1√
2

)
= 1, and

〈v2,v2〉 =
〈(

− 1√
2
, 1√

2

)
,
(
− 1√

2
, 1√

2

)〉
=
(
− 1√

2

)(
− 1√

2

)
+
(

1√
2

)(
1√
2

)
= 1

Thus, {vn}2
n=1 is both orthogonal and orthonormal.
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Orthogonal Projections

A projection P on an inner product space is said to be orthogonal if its

range and null spaces are orthogonal (i.e., R(P) ⊥ N(P)).

A projection that is not orthogonal is called oblique.

Projection theorem. If W is a closed subspace of a Hilbert space V ,

then every element x ∈V has a unique decomposition of the form

x = y+ z where y ∈W and z ∈W⊥.

Best approximation. Let W be a closed subspace of a Hilbert space V ,

and let x ∈V . Further, let P be the orthogonal projection of V onto W .

There exists a unique vector y ∈W that is closest to x as given by y = Px

(closest in the sense of minimizing ‖y− x‖).
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Orthonormal Bases

An orthonormal sequence {ϕn)n∈I of vectors in an inner product space V

is said to be an orthonormal basis of V if, for every x ∈V , there exists a

unique scalar sequence {an}n∈I in l2(I) such that

x = ∑
n∈I

anϕn.

Example.

An orthonormal basis of R3 is given by ((1,0,0),(0,1,0),(0,0,1)).
An orthonormal basis of l2(Z) is given by (δ[·− k])k∈Z.

Existence of orthonormal basis. Every Hilbert space has an

orthonormal basis.
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Orthonormal Bases (Continued)

Expansion coefficients. Let {ϕn}n∈I be an orthonormal basis of an

inner product space V . Then, each x ∈V can be expressed as

x = ∑n∈I anϕn where

an = 〈x,ϕn〉 .

Example. Consider the orthonormal basis (ϕ1,ϕ2) for R2, where

ϕ1 = ( 1√
2
, 1√

2
) and ϕ2 = (− 1√

2
, 1√

2
). The vector x = (2,1) can be

expressed as

x = a1ϕ1 +a2ϕ2,

where

a1 = 〈x,ϕ1〉 =
〈
(2,1),( 1√

2
, 1√

2
)
〉

= (2)( 1√
2
)+(1)( 1√

2
) = 3√

2
and

a2 = 〈x,ϕ2〉 =
〈
(2,1),− 1√

2
, 1√

2
)
〉

= (2)(− 1√
2
)+(1)( 1√

2
) = − 1√

2
.
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Parseval Identity

Parseval identity. Let {ϕn}n∈I be an orthonormal basis of a Hilbert

space V . Then, for all x,y ∈V ,

〈x,y〉 = ∑
n∈I

〈x,ϕn〉〈y,ϕn〉∗ ,

which, for x = y, simplifies to

‖x‖2 = ∑
n∈I

|〈x,ϕn〉|2

(i.e., an orthonormal basis preserves inner products and norms).

[Note that x = ∑n∈I 〈x,ϕn〉ϕn and y = ∑n∈I 〈y,ϕn〉ϕn.]

Example. Let V be the subspace of L2(R) with the orthonormal basis

{ϕn}n∈Z where ϕn(t) = sinc(t−πn) and let x ∈V be given by

x = ∑n∈Z a[n]ϕn = 3ϕ0 +4ϕ1. Determine ‖x‖.

We have that ‖x‖ = ‖a‖ =
(

∑n∈Z |a[n]|2
)1/2

=
(
32 +42

)1/2
= 5.
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Orthogonal Projections (Continued)

Finding orthogonal projection. Let W be a closed subspace of an

Hilbert space V , and let (en)n∈I be an orthonormal basis for W . Further,

let P denote the orthogonal projection of V onto W . Then, P is given by

Px = ∑n∈I 〈x,en〉en, where x ∈V .

Example. Let (e1,e2) be an orthonormal basis for a subspace W of R3,

where e1 = ( 1√
2
,0, 1√

2
) and e2 = (− 1√

2
,0, 1√

2
). Find the orthogonal

projection y of x = (1,2,1) onto W . We have

y = 〈x,e1〉e1 + 〈x,e2〉e2 =
〈
(1,2,1),( 1√

2
,0, 1√

2
)
〉

( 1√
2
,0, 1√

2
)+

〈
(1,2,1),(− 1√

2
,0, 1√

2
)
〉

(− 1√
2
,0, 1√

2
) =

√
2( 1√

2
,0, 1√

2
)+0 = (1,0,1).
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Biorthogonality

Two sequences {xn}n∈I and {yn}n∈I of vectors in an inner product space

are said to be biorthogonal if xm ⊥ yn for all m,n ∈ I, m 6= n. If, in

addition, 〈xn,yn〉 = 1 for all n ∈ I, then the sequences are said to be

biorthonormal.

An orthogonal sequence is biorthogonal with itself.

An orthonormal sequence is biorthonormal with itself.

Example. Let (ϕ1,ϕ2) and (ϕ̃1, ϕ̃2) be sequences of vectors in R2, where

ϕ1 = (1,1), ϕ2 = (−1,1), ϕ̃1 = (1
2
, 1

2
), and ϕ̃2 = (− 1

2
, 1

2
). We have:

〈ϕ1, ϕ̃1〉 = (1)(1
2
)+(1)(1

2
) = 1,

〈ϕ2, ϕ̃2〉 = (−1)(− 1
2
)+(1)(1

2
) = 1,

〈ϕ1, ϕ̃2〉 = (1)(− 1
2
)+(1)(1

2
) = 0, and

〈ϕ2, ϕ̃1〉 = (−1)(1
2
)+(1)(1

2
) = 0.

Thus, (ϕ1,ϕ2) and (ϕ̃1, ϕ̃2) are both biorthogonal and biorthonormal.
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Riesz Bases

Although an orthonormal basis is often convenient to use, orthonormality

can place too many constraints on the choice of basis vectors.

If we drop the orthonormality constraint, we need to impose some

condition to ensure that the basis is well behaved.

A sequence {ϕn}n∈I of vectors in a Hilbert space V is said to be a Riesz

basis of V if, for every x ∈V , there exists a unique scalar sequence

{an}n∈I in l2(I) such that

x = ∑
n∈I

anϕn,

and there exist real numbers A,B > 0 (independent of x) satisfying the

Riesz condition

A‖a‖2 ≤ ‖x‖2 ≤ B‖a‖2

(or equivalently, 1
B
‖x‖2 ≤ ‖a‖2 ≤ 1

A
‖x‖2

). The constants A and B are

referred to as the lower and upper Riesz bounds, respectively.

An orthonormal basis is a special case of a Riesz basis with A = B = 1.
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Dual Riesz Bases

Let {ϕn}n∈I be a Riesz basis of a Hilbert space V with lower and upper

Riesz bounds A and B, respectively. Then, there exists another Riesz

basis {ϕ̃n}n∈I of V with lower and upper Riesz bounds 1
B

and 1
A

,

respectively, such that for all x ∈V ,

x = ∑
n∈I

〈x, ϕ̃n〉ϕn = ∑
n∈I

〈x,ϕn〉 ϕ̃n.

We call {ϕ̃n}n∈I the dual Riesz basis of {ϕn}n∈I .
Theorem. Dual Riesz bases are biorthonormal.

To compute the expansion coefficients of a vector in terms of a Riesz

basis, the dual basis is used as shown above.

Example. Let {ϕn}2
n=1 and {ϕ̃n}2

n=1 be dual Riesz bases of R2, where

ϕ1 = (1,1), ϕ2 = (−1,1), ϕ̃1 = (1
2
, 1

2
), and ϕ̃2 = (− 1

2
, 1

2
). Express

x = (3,1) in terms of the basis {ϕn}2
n=1. We have: x = a1ϕ1 +a2ϕ2,

where

a1 = 〈x, ϕ̃1〉 =
〈
(3,1),(1

2
, 1

2
)
〉

= 3
2
+ 1

2
= 2 and

a2 = 〈x, ϕ̃2〉 =
〈
(3,1),(− 1

2
, 1

2
)
〉

= − 3
2
+ 1

2
= −1.
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Support of a Function

The support of a function f , denoted supp f , is the closure of the set

{t : f (t) 6= 0} (i.e., the smallest closed set that contains all of the points

where f is nonzero).

Example. supprect = [− 1
2
, 1

2
] and suppsinc = R.

A function f defined on R is said to have compact support if

supp f ⊂ [a,b] for a,b ∈ R. (Note: The terms “finite duration” and “time

limited” are synonymous with compact support.)

Example. The rect function has compact support, while the sinc function

does not have compact support.
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Moments

The kth moment of a sequence x defined on Z is given by

mk = ∑n∈Z n
kx[n] (i.e., mk =

〈
x,(·)k

〉
).

The kth moment of a function x defined on R is given by

mk =
R ∞
−∞ t

kx(t)dt (i.e., mk =
〈
x,(·)k

〉
).

Moments are essentially inner products with monomials. Since

monomials/polynomials play an important role in many contexts, moments

are often of interest.

A function or sequence f is said to have p vanishing moments if its first

p moments vanish (i.e., m0 = m1 = . . . = mp−1 = 0, where mk is the kth

moment of f ).
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Section 4.2

Best Basis for Signal Representation
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Bases of Function Spaces

for function x, often employ expansion of form

x(t) = ∑
n

anϕn(t)

expansion coefficients an, basis functions ϕn

in practice, always use structured bases

basis functions related to each other (e.g., by dilation, translation,

modulation)

if not structured: cumbersome to employ, computationally intractable

algorithms

may want basis functions to be localized in time and/or frequency,

continuous, differentiable, smooth, have certain moment properties

often desired properties can be in conflict with one another and

compromises must be made
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Fourier Basis for Space of Periodic Functions

Consider the space V of all periodic functions f with fundamental period

T and fundamental frequency ω0 = 2π
T

such that
R T/2

−T/2
| f (t)|2 dt < ∞.

Any function x ∈V can be written as

x(t) = ∑
n

ane
jnω0t where an = 1

T

Z T/2

−T/2
x(t)e− jnω0tdt.

The above is a basis representation of x in terms of the basis functions

{ϕn}n∈Z, where

ϕn(t) = e jnω0t .

All of the basis functions {ϕn}n∈Z are generated from a single prototype

function ϕ(t) = e jω0t by dilation. That is, ϕn(t) = ϕ(nt).

The above basis representation of x(t) is known as a Fourier series.

The Fourier series has the disadvantage of slow convergence in the

vicinity of discontinuities (i.e., Gibbs phenomenon).
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Sinc Basis for Space of Bandlimited Functions

Consider the space V comprised of all functions in L2(R) (i.e.,

finite-energy functions defined on R) that are bandlimited to frequencies

in the range (−ωb,ωb).

From the sampling theorem, any function x ∈V can be represented as

x(t) = ∑
n∈Z

a[n]sinc(ωbt−πn) where a[n] = x
(

π
ωb
n
)

.

(Note that the sequence a is formed by periodic sampling of x.)

The above is a basis representation of the function x in terms of the basis

functions {ϕn}n∈Z, where

ϕn(t) = sinc(ωbt−πn).

The basis functions ϕn are all generated from a single prototype function

ϕ(t) = sinc(ωbt) by translation. That is,

ϕn(t) = ϕ
(
t− π

ωb
n
)

.
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Time-Frequency Tradeoff

ideally, would like to choose basis functions to be both bandlimited and

time limited

function cannot be both bandlimited and time limited

cannot construct representation that simultaneously provides exact

frequency and time resolution

best we can do is choose basis functions so that most energy

concentrated in finite interval in time and frequency

can think of basis functions as creating tiling of time-frequency plane

different choice of basis functions leads to different tilings
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Time-Frequency Perspective on Signal Representations

each basis function has particular energy distribution with respect to time

and frequency

with each basis function can associate a region (i.e., tile) in

time-frequency plane where energy of function is mostly concentrated

ω

t

Standard Basis

ω

t

Fourier Basis
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Appropriate Choice of Basis

no single “best” basis

which basis most appropriate depends on application at hand

may require basis functions with good time and frequency resolution

locating transient events such as signal singularities in time domain

signal with many discontinuities might be better represented by basis

functions with discontinuities

self-similar signals might be better represented by basis functions having

similar shape

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 233



Section 4.3

Multiresolution Representations
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Multiresolution Representations

Often, it is beneficial to be able to approximate a function at different

resolutions (or scales).

In the case of a low resolution (i.e., coarse scale) approximation of a

function, many details are lost, but the general trends in function behavior

are still apparent.

In the case of a high resolution (i.e., fine scale) approximation of a

function, more details of the original function are present.

Typically, the use of higher resolution representations requires more

computation and memory but yields more precise results.

So, in practice, there is usually a fundamental tradeoff between

computation/memory and precision of results.

Multiresolution representations allow for the level of detail used in

computations to be more easily adjusted to suit the needs of the

application at hand.
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Multiresolution Approximation of Function
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Multiresolution Approximation of 2-D Function

Original Coarse Approximation

Medium Approximation Fine Approximation
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Dyadic Wavelet Systems

Wavelet systems are a form of multiresolution representation where each

successive resolution differs in scale by some integer factor.

In the case that this factor is two, we have what is called a dyadic wavelet

system.

Dyadic wavelet systems are arguably the most commonly-used type of

wavelet system.

Herein, we focus our attention on dyadic wavelet systems.
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Section 4.4

Approximation and Wavelet Spaces
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Approximation and Wavelet Spaces

Wavelet systems are associated with a collection of function spaces

having a particular structure.

In what follows, the structure of these function spaces will be introduced.
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Multiresolution Approximations (MRAs)

A sequence {Vp}p∈Z of closed subspaces of L2(R) is said to be a

multiresolution approximation (MRA) if the following properties hold:

1 for all p ∈ Z, Vp ⊂Vp−1 (nesting);

2 lim
p→∞

Vp =
\

p∈Z

Vp = {0} (separation);

3 lim
p→−∞

Vp = clos

(
[

p∈Z

Vp

)
= L2(R) (density);

4 for all p ∈ Z, f (t) ∈Vp ⇔ f (2t) ∈Vp−1 (scale invariance);
5 for all k ∈ Z, f (t) ∈V0 ⇔ f (t− k) ∈V0 (shift invariance); and
6 there exists φ such that {φ(·−n)}n∈Z is a Riesz basis of V0

(shift-invariant Riesz basis).

The spaces Vp in the above definition are referred to as approximation

spaces (or scaling spaces).

A (Riesz) basis of V0 is generated from the integer translates of a single

prototype function φ.

This prototype function is referred to as a scaling function.
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MRAs (Continued)

Some of the properties of a MRA given in the definition of MRA are

redundant (i.e., some properties can be inferred from the others).

The shift-invariance and scale-invariance properties together can be

shown to imply that

for all p,k ∈ Z, f (t) ∈Vp ⇔ f (t−2pk) ∈Vp.

The scale invariance property is fundamentally important, as it states that

the functions in any two approximation spaces are identical, except for the

horizontal scale.

Ultimately, the scale-invariance property leads to the inherent

multiresolution nature of wavelet systems.

As the index p increases, the scale of the approximation space Vp

becomes coarser (i.e., the functions in Vp become increasingly stretched

horizontally so as to change more slowly and therefore contain less

high-frequency detail).
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Piecewise Constant Approximations

The simplest MRA is associated with piecewise constant approximations.

The space Vp is comprised of all functions f ∈ L2(R) such that f is

constant on intervals of the form [n2p,(n+1)2p), where n ∈ Z.

For example, V0 is comprised of all functions f ∈ L2(R) such that f is

constant on intervals of the form [n,n+1), where n ∈ Z.

One can show that an orthonormal basis of V0 is given by {φ(·− k)}k∈Z,

where

φ(t) = χ[0,1)(t).

A plot of φ is given below.
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Piecewise constant approximations are not continuous, which can be

undesirable in some applications (e.g., when smooth approximations of

smooth functions are needed).
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Piecewise Constant Approximations
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Continuous Piecewise-Linear Approximations

Consider a MRA associated with continuous piecewise-linear

approximations.

The space Vp is the set of all continuous functions f ∈ L2(R) such that f

is linear on intervals of the form [n2p,(n+1)2p).

For example, the space V0 is the set of all continuous functions f ∈ L2(R)
such that f is linear on intervals of the form [n,n+1), where n ∈ Z.

One can show that a (Riesz) basis of V0 is given by {φ(·− k)}k∈Z, where

φ(t) =

{
1−|t| for t ∈ [−1,1]

0 otherwise.

(The above basis is not orthonormal, however.)

A plot of φ is given below.
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Continuous Piecewise Linear Approximations
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Shannon Approximations

The Shannon approximation utilizes bandlimited functions in order to

form its approximation spaces.

The space Vp is comprised of the set of all f ∈ L2(R) such that

supp f̂ ⊂ [−2−pπ,2−pπ] (i.e., f is bandlimited to frequencies in the range

−2−pπ to 2−pπ).

For example, the space V0 is the set of all f ∈ L2(R) such that

supp f̂ ⊂ [−π,π] (i.e., f is bandlimited to frequencies in the range

[−π,π]).

One can show that an orthonormal basis of V0 is given by {φ(·− k)}k∈Z,

where

φ(t) = sincπt.

A plot of φ is shown below.
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Wavelet Spaces

As it turns out, the approximation spaces of a MRA are not the only

spaces of interest in the context of wavelet systems.

Consider a MRA associated with the approximation space sequence

{Vp}p∈Z.

For each p ∈ Z, since Vp is a proper subspace of Vp−1 (i.e., Vp ⊂Vp−1

and Vp 6=Vp−1), there must exist some space Wp such that Wp is the

algebraic complement of Vp in Vp−1.

That is, there must exist a space Wp such that

Vp−1 =Vp⊕Wp.

The space Wp is referred to as a wavelet space.

Thus, we can associate a sequence {Wp}p∈Z of wavelet spaces with a

MRA.

From the structure of a MRA and the definition of the wavelet spaces, it

can be shown that

Vk∩Vl =Vl for k < l,
Wk∩Wl = {0} for k 6= l, and

Vk∩Wl = {0} for k ≥ l.
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Decomposition of L2(R) Using Wavelet Spaces

Using the fact that Vp−1 =Vp⊕Wp, one can show that

clos

(
M

p∈Z

Wp

)
= L2(R).

In other words, the space L2(R) can be decomposed into a sequence of

mutually disjoint subspaces by using the wavelet spaces {Wp}p∈Z.

By combining the bases for the wavelet spaces {Wp}p∈Z, we can obtain a

Riesz basis for L2(R).

This particular structure leads to biorthogonal wavelet systems.

Diagrammatically, we have decomposed L2(R) using the structure

illustrated below.

L2(R)−→ ·· · V−2 −→V−1 −→V0 −→V1 −→V2 · · · −→{0}
ց ց ց ց

W−1 W0 W1 W2
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Decomposition of L2(R) Using Wavelet Spaces (Continued)

Suppose now that, in addition to Vp−1 =Vp⊕Wp, we have that Vp ⊥Wp.

Then, one can show

clos

( ⊥
M

p∈Z
Wp

)
= L2(R).

In other words, the space L2(R) can be decomposed into a sequence of

mutually orthogonal subspaces using the wavelet spaces {Wp}p∈Z.

By combining orthonormal/Riesz bases for the wavelet spaces {Wp}p∈Z,

we can obtain an orthonormal/Riesz basis for L2(R).

This particular structure leads to semiorthogonal and orthonormal wavelet

systems.
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Properties of Wavelet Spaces

First, as noted earlier, the wavelet spaces {Wp}p∈Z are mutually disjoint.

Theorem. Let {Wp}p∈Z denote the sequence of wavelet spaces

associated with a MRA. The wavelet spaces are such that

1 clos

(
M

p∈Z

Wp

)
= L2(R) (density);

2 for all p ∈ Z, f (t) ∈Wp ⇔ f (2t) ∈Wp−1 (scale invariance);
3 for all k ∈ Z, f (t) ∈W0 ⇔ f (t− k) ∈W0 (shift invariance); and
4 there exists ψ such that {ψ(·− k)}k∈Z is a Riesz basis of W0

(shift-invariant Riesz basis).

From the above theorem, we see that a Riesz basis of the wavelet space

W0 is generated by the integer translates of a single prototype function ψ.

This prototype function ψ is called a wavelet function.

Essentially, the wavelet function plays the same role for wavelet spaces as

the scaling function does for approximation spaces.
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Practical Comment on Approximation and Wavelet Spaces

In practice, we often have a function f represented in some approximation

space, say Vρ, and we want to find a representation of f in terms of the

approximation space Vρ′ , where ρ′ > ρ, and wavelet spaces Wp for

ρ < p≤ ρ′.
That is, we want to express the function f as the sum of its lower

resolution representation in Vρ′ and the additional details in {Wp}ρ′

p=ρ+1

necessary to obtain the original function f .

In such a situation, we employ a decomposition of the form

Vρ =Vρ+1 ⊕Wρ+1

=Vρ+2 ⊕Wρ+2 ⊕Wρ+1

=Vρ′ ⊕
ρ′

M

k=ρ+1

Wk.

That is, we can express f ∈Vρ as f = fVρ′ + fWρ+1
+ fWρ+2

+ . . .+ fWρ′ ,

where fX denotes a function in the space X .

Notice that we are only using a finite number of approximation and

wavelet spaces.

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 252



Bases of Approximation Spaces

Theorem. Suppose that we have a MRA {Vp}p∈Z and {φ(·−n)}n∈Z is a

Riesz basis of V0 with the dual basis {φ̃(·−n)}n∈Z. Then, for each p ∈ Z,

{φp,k}k∈Z given by

φp,k(t) = 2−p/2φ(2−pt− k)

is a Riesz basis of Vp with the dual basis {φ̃p,k}k∈Z given by

φ̃p,k(t) = 2−p/2φ̃(2−pt− k).

In other words, the basis functions {φp,k}k∈Z for each approximation

space Vp are translated, dilated, and scaled versions of the scaling

function φ.
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Bases of Wavelet Spaces

Theorem. Suppose that we have a MRA {Vp}p∈Z with corresponding

wavelet spaces {Wp}p∈Z (i.e., Vp−1 =Vp⊕Wp) and {ψ(·−n)}n∈Z is a

Riesz basis of W0 with the dual basis {ψ̃(·−n)}n∈Z. Then, for each

p ∈ Z, {ψp,k}k∈Z given by

ψp,k(t) = 2−p/2ψ(2−pt− k)

is a Riesz basis of Wp with the dual basis {ψ̃p,k}k∈Z given by

ψ̃p,k(t) = 2−p/2ψ̃(2−pt− k).

In other words, the basis functions {ψp,k}k∈Z for each wavelet space Wp

are translated, dilated, and scaled versions of the wavelet function ψ.
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Section 4.5

Scaling and Wavelet Equations
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Refinement Equations

An equation of the form

φ(t) = ∑
n∈Z

a[n]φ(2t−n)

is called a refinement equation (or dilation equation).

The sequence a is referred to as a refinement mask.

A solution φ of the above refinement equations is called a refinable

function.

Clearly, any dilation equation admits a trivial solution of φ(t) ≡ 0.

If a nontrivial solution does exist, the solution is not unique.

If φ(t) is a solution, then αφ(t) is also a solution, where α is a constant.

Although some refinable functions can be expressed in closed form, most

cannot be expressed in this way.
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Haar Scaling Function

Consider the function

φ(t) = χ[0,1)(t).

One can confirm that φ satisfies the refinement equation

φ(t) = φ(2t)+φ(2t−1).

This refinement relationship is illustrated below.

10

1

t

φ(t)

1
2

10

1

t

φ(2t)

1
2

10

1

t

φ(2t−1)
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Linear B-Spline Scaling Function

Consider the function

φ(t) =

{
1−|t| for t ∈ [−1,1]

0 otherwise.

One can confirm that φ satisfies the refinement equation

φ(t) = 1
2
φ(2t+1)+φ(2t)+ 1

2
φ(2t−1).

This refinement relationship is illustrated below.

1
2

10− 1
2

−1

1
2

1

t

φ(t)

1
2

10− 1
2

−1

1
2

1

t

1
2

φ(2t+1)

1
2

10− 1
2

−1

1
2
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2

10− 1
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−1

1
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Scaling Equation

As it turns out, the scaling function φ of a MRA satisfies a refinement

equation (i.e., φ is refinable).

Theorem. Suppose that we have a MRA {Vp}p∈Z and V0 has the Riesz

basis {φ(·−n)}n∈Z. Then, φ satisfies a refinement equation of the form

φ(t) =
√

2 ∑
n∈Z

c[n]φ(2t−n),

where

c[n] =
〈

φ(·),
√

2φ̃(2 ·−n)
〉

.

The above refinement equation is referred to as a scaling equation.

Due to the above relationship, refinement equations play an important role

in the study of wavelet systems.

By convention, the scaling equation is written so as to contain an explicit√
2 factor. Hence, the refinement mask is actually

√
2c (and not c).
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Fourier Transform of Scaling Equation

Theorem. Let φ be a scaling function with scaling equation coefficient

sequence c (i.e., φ(t) =
√

2∑n∈Z c[n]φ(2t−n)). Then, φ̂ is given by

φ̂(ω) = 1√
2
ĉ(ω

2
)φ̂(ω

2
),

which can be equivalently expressed in terms of an infinite product as

φ̂(ω) = φ̂(0)
∞

∏
p=1

ĉ(2−pω)√
2

.
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Wavelet Equation

Although the wavelet function does not satisfy a refinement equation (i.e.,

is not refinable), it can be expressed in terms of dilated and translated

versions of the scaling function.

Theorem. Suppose that we have a MRA {Vp}p∈Z with wavelet subspaces

{Wp}p∈Z, where V0 has the Riesz basis {φ(·−n)}n∈Z and W0 has the

Riesz basis {ψ(·−n)}n∈Z. Then, ψ(t) can be expressed in terms of an

equation of the form

ψ(t) =
√

2 ∑
n∈Z

d[n]φ(2t−n)

where

d[n] =
〈

ψ(·),
√

2φ̃(2 ·−n)
〉

.

The above equation for ψ is referred to as a wavelet equation.

Note that the wavelet equation is not a refinement equation.
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Fourier Transform of Wavelet Equation

Theorem. Let φ and ψ be the scaling and wavelet functions of a MRA.

Suppose that φ has scaling equation coefficient sequence c and ψ has the

wavelet equation coefficient sequence d. Then, ψ̂ is given by

ψ̂(ω) = 1√
2
d̂(ω

2
)φ̂(ω

2
),

which can be equivalently expressed in terms of an infinite product as

ψ̂(ω) = 1√
2
φ̂(0)d̂(ω

2
)

∞

∏
p=1

1√
2
ĉ(2−p−1ω).
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Generating MRAs from Scaling Functions

Rather than defining an MRA in terms of its approximation spaces, we can

use the scaling function as the starting point for defining a MRA.

To begin, we make an appropriate choice of scaling function φ.

Then, from this scaling function, we can generate each of the

approximation spaces of the MRA.

This process is formalized by the theorem below.

Theorem. Suppose that φ ∈ L2(R) satisfies a refinement relation of the

form

φ(t) = ∑
k∈Z

c[k]φ(2t− k),

where ∑k∈Z |c[k]|2 < ∞. Further, suppose that {φ(·− k)}k∈Z is a Riesz

basis for the space that it generates. Define

φp,k(t) = 2−p/2φ(2−pt− k)

and let Vp be the space generated by {φp,k}k∈Z. Then, the sequence

{Vp}p∈Z of spaces constitutes a MRA.
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Dual MRAs

One might wonder what structure (if any) is associated with the functions

φ̃ and ψ̃.

Theorem. Let {Vp}p∈Z be a MRA with scaling function φ, wavelet space

sequence {Wp}p∈Z, and corresponding wavelet function ψ. Suppose that

the dual Riesz bases of {φ(·− k)}k∈Z and {ψ(·− k)}k∈Z are given by

{φ̃(·− k)}k∈Z and {ψ̃(·− k)}k∈Z, respectively. Then, φ̃ is also the scaling

function of a MRA {Ṽp}p∈Z with wavelet space sequence {W̃p}p∈Z and

the corresponding wavelet function ψ̃.

The above theorem is significant because it shows that MRAs occur in

pairs.

The MRA {Ṽp}p∈Z is said to be the dual MRA of {Vp}p∈Z.

Furthermore, it follows that if {Ṽp}p∈Z is the dual of {Vp}p∈Z then

{Vp}p∈Z is also trivially the dual of {Ṽp}p∈Z. In other words, this duality

property is symmetric.

The functions φ̃ and ψ̃ are referred to as the dual scaling function and

dual wavelet function, respectively.

The qualifier ‘primal” is used to mean “non-dual”.
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Dual MRAs

Theorem. Suppose that {Vp}p∈Z and {Ṽp}p∈Z are dual MRAs with

corresponding wavelet space sequences {Wp}p∈Z and {W̃p}p∈Z,

respectively. Then, we have

for all p ∈ Z, Vp ⊥ W̃p and Wp ⊥ Ṽp.

In light of the above result, we observe that if the corresponding

approximation and wavelet spaces associated with a MRA are orthogonal

(i.e., for all p ∈ Z, Vp ⊥Wp), then the MRA is self dual.
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Section 4.6

Wavelet Systems
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Wavelet Systems

A wavelet system is simply a basis of L2(R) that is derived from a MRA.

When constructing wavelet systems, we have a number of degrees of

freedom available to us.

In particular, we have some flexibility in the structure of approximation and

wavelet spaces and the bases employed for these spaces.

By exploiting this flexibility, we can obtain wavelet systems with differing

types of structure.

This leads to three different types of wavelet systems:

1 orthonormal,
2 semiorthogonal, and
3 biorthonormal.

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 267



Orthonormal Wavelet Systems

The most constrained type of wavelet system is an orthonormal wavelet

system.

With this type of system, the basis of each of the approximation and

wavelet spaces is chosen to be orthonormal, and each wavelet space is

chosen to be orthogonal to its corresponding approximation space.

That is, we have

{φ(·− k)}k∈Z is orthonormal, {ψ(·− k)}k∈Z is orthonormal, and

for each p ∈ Z, Vp ⊥Wp.

From this, it follows that

φ̃ = φ, ψ̃ = ψ, {φ(·− k)}k∈Z ⊥ {ψ(·− k)}k∈Z,
Ṽp =Vp, W̃p =Wp, {Wp}p∈Z is mutually orthogonal.

The MRA {Vp}p∈Z is self dual. That is, there is only one (distinct) MRA

associated with an orthonormal wavelet system.
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Semiorthogonal Wavelet Systems

Sometimes, it can be overly restrictive to require the use of an

orthonormal basis for each of the approximation and wavelet spaces.

Dropping this constraint leads to what is called a semiorthogonal wavelet

system.

With this type of system, we choose to use a Riesz basis for each of the

approximation and wavelet spaces, and each wavelet space is chosen to

be orthogonal to its corresponding approximation space.

That is, we have

{φ(·− k)}k∈Z is a Riesz basis, {ψ(·− k)}k∈Z is a Riesz basis, and

for each p ∈ Z, Vp ⊥Wp.

From this, it follows that

{φ(·− k)}k∈Z and {φ̃(·− k)}k∈Z are dual Riesz bases,
{ψ(·− k)}k∈Z and {ψ̃(·− k)}k∈Z are dual Riesz bases,

{φ(·− k)}k∈Z ⊥ {ψ(·− k)}k∈Z, {φ̃(·− k)}k∈Z ⊥ {ψ̃(·− k)}k∈Z,
Ṽp =Vp, W̃p =Wp, and {Wp}p∈Z is mutually orthogonal.

The MRA {Vp}p∈Z is self dual. Thus, there is only one (distinct) MRA

associated with a semiorthogonal system.
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Biorthogonal Wavelet Systems

Sometimes, even the requirement that the corresponding approximation

and wavelet spaces be orthogonal is too restrictive.

By dropping this constraint, we obtain what is called a biorthonormal

wavelet system.

That is, we have

{φ(·− k)}k∈Z is a Riesz basis, {ψ(·− k)}k∈Z is a Riesz basis, and

for each p ∈ Z, Vp ⊥ W̃p and Wp ⊥ Ṽp.
From this, it follows that

{φ(·− k)}k∈Z and {φ̃(·− k)}k∈Z are dual Riesz bases,
{ψ(·− k)}k∈Z and {ψ̃(·− k)}k∈Z are dual Riesz bases,

{φ(·− k)}k∈Z ⊥ {ψ̃(·− k)}k∈Z, {ψ(·− k)}k∈Z ⊥ {φ̃(·− k)}k∈Z,
{Wp}p∈Z is mutually disjoint, and {W̃p}p∈Z is mutually disjoint.

With a biorthonormal system, it is not necessarily true that Vp ⊥Wp.

So, {φ(·− k)}k∈Z and {ψ(·− k)}k∈Z are not necessarily orthogonal.

Moreover, the spaces in {Wp}p∈Z are not necessarily mutually

orthogonal. (These spaces are only guaranteed to be mutually disjoint.)

The MRA {Vp}p∈Z is no longer necessarily self dual. (Thus, there are

potentially two distinct MRAs associated with a biorthonormal wavelet system.)
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Haar Wavelet System

One of the simplest examples of an orthonormal wavelet system is the

Haar wavelet system.

This system is associated with the MRA based on piecewise constant

approximations (introduced earlier).

The scaling function φ satisfies the refinement relationship

φ(t) =
√

2
(

1√
2
φ(2t)+ 1√

2
φ(2t−1)

)
.

The wavelet function ψ can be expressed in terms of the scaling function

as

ψ(t) =
√

2
(

1√
2
φ(2t)− 1√

2
φ(2t−1)

)
.

Fortunately, φ and ψ can be expressed in closed form as

φ(t) = χ[0,1)(t) and

ψ(t) = χ[0,1/2)(t)−χ[1/2,1)(t) =






1 for t ∈ [0, 1
2
)

−1 for t ∈ [ 1
2
,1)

0 otherwise.
[These two functions are plotted on the next slide.]

Since the system is orthonormal, φ̃ = φ and ψ̃ = ψ.

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 271



Haar Scaling and Wavelet Functions

−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1 1.5

Scaling Function

−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1 1.5

Wavelet Function

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 272



Shannon Wavelet System

This orthonormal wavelet system is associated with the Shannon MRA

(introduced earlier) which is based on spaces of bandlimited functions.

The scaling function φ satisfies the refinement equation

φ(t) =
√

2 ∑
k∈Z

ckφ(2t− k) where ck =






1√
2

k = 0
√

2(−1)(k−1)/2

kπ odd k

0 even k, k 6= 0.

The wavelet function ψ can be expressed in terms of φ as

ψ(t) =
√

2 ∑
k∈Z

dkφ(2t− k) where dk = (−1)kck.

Fortunately, φ and ψ can be expressed in closed form as

φ(t) = sincπt and ψ(t) =
(
cos 3π

2
t
)

sinc π
2
t.

[These two functions are plotted in on the next slide.]

Since this system is orthonormal, φ̃ = φ and ψ̃ = ψ.

In passing, we note that

φ̂(ω) = χ[−π,π](ω) and ψ̂(ω) = χ[−2π,−π)(ω)+χ(π,2π](ω).
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Shannon Scaling and Wavelet Functions
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Daubechies 2 Wavelet System

One classic example of an orthonormal wavelet system is the

Daubechies 2 wavelet system.

The scaling function φ satisfies the refinement equation

φ(t) =
√

2
2

∑
k=−1

ckφ(2t− k)

where

c−1 = 1+
√

3

4
√

2
, c0 = 3+

√
3

4
√

2
, c1 = 3−

√
3

4
√

2
, and c2 = 1−

√
3

4
√

2
.

The wavelet function ψ is given by

ψ(t) =
√

2
2

∑
k=−1

dkφ(2t− k), where dk = (−1)1−kc1−k.

Since the system is orthonormal, φ̃ = φ and ψ̃ = ψ.

The scaling and wavelet functions are plotted on the next slide.
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Daubechies 2 Scaling and Wavelet Functions
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Le Gall 5/3 Wavelet System

This biorthonormal wavelet system has proven to be extremely useful in

signal-coding applications (e.g., image compression).

This wavelet system is, in part, associated with the linear B-spline MRA.

This is the primal MRA.

The primal scaling function φ satisfies the refinement equation

φ(t) =
√

2
1

∑
k=−1

ckφ(2t− k)

where

c−1 = c1 = 1

2
√

2
and c0 = 1√

2
.

The primal wavelet function ψ can be expressed in terms of the scaling

function as

ψ(t) =
√

2
3

∑
k=−1

dkφ(2t− k)

where

d−1 = d3 = − 1

4
√

2
, d0 = d2 = − 2

4
√

2
, and d1 = 6

4
√

2
.
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Le Gall 5/3 Wavelet System (Continued)

The functions φ and ψ can be expressed in closed form as

φ(t) =

{
1−|t| t ∈ [−1,1]

0 otherwise
and

ψ(t) =






3
2
−4
∣∣t− 1

2

∣∣ t ∈ (0,1)

− 3
4
+ 1

2

∣∣t− 1
2

∣∣ t ∈ (−1,0]∪ [1,2)

0 otherwise.

The dual scaling function φ̃ satisfies the refinement equation

φ̃(t) =
√

2
2

∑
k=−2

c̃kφ̃(2t− k) where c̃k = (−1)kd1−k.

The dual wavelet function ψ̃ can be expressed as

ψ̃(t) =
√

2
2

∑
k=0

d̃kφ̃(2t− k) where d̃k = (−1)k+1c1−k.

Unfortunately, there is no closed form expression for φ̃ and ψ̃.

Plots of φ, ψ, φ̃, and ψ̃ are shown on the next slide. The plots of the dual functions are

somewhat misleading, as one can show that φ̃ is infinite at every dyadic point.
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Le Gall 5/3 Scaling and Wavelet Functions
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Cohen-Daubechies-Feaveau (CDF) 9/7 Wavelet System

This biorthonormal wavelet system has found wide application in

signal-coding applications (e.g., JPEG 2000, FBI fingerprint compression

standard).

Define x1 and x2 as

x1 = A+B− 1
6

and x2 = − 1
2
(A+B)− 1

6
+ j

√
3

2
(A−B), where

A = 3

√
63−14

√
15

1080
√

15
and B = − 3

√
63+14

√
15

1080
√

15
.

The primal scaling function φ satisfies the refinement equation

φ(t) =
√

2
3

∑
k=−3

ckφ(2t− k)

where

c−3 = c3 = 1

32
√

2 x1
, c−2 = c2 = 2x1+1

16
√

2 x1
,

c−1 = c1 = 16x1−1

32
√

2 x1
, and c0 = 6x1−1

8
√

2 x1
.
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CDF 9/7 Wavelet System (Continued)

The primal wavelet function ψ is given by

ψ(t) =
√

2
5

∑
k=−3

dkφ(2t− k)

where

d−3 = d5 = − 5

32
√

2
x1, d−2 = d4 = 5

4
√

2
x1 Rex2,

d−1 = d3 = − 5

8
√

2
x1(4 |x2|2 +4Rex2 −1),

d0 = d2 = 5

4
√

2
x1(8 |x2|2 −Rex2), and

d1 = − 5

16
√

2
x1(48 |x2|2 −16Rex2 +3).

The dual scaling function φ̃ satisfies the refinement equation

φ̃(t) =
√

2
4

∑
k=−4

c̃kφ̃(2t− k) where c̃k = (−1)kd1−k.

The dual wavelet function ψ̃ is given by

ψ̃(t) =
√

2
4

∑
k=−2

d̃kφ̃(2t− k) where d̃k = (−1)k+1c1−k.

The functions φ, ψ, φ̃, and ψ̃ are plotted on the next slide.
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CDF 9/7 Scaling and Wavelet Functions
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Section 4.7

Wavelets Systems and Filter Banks
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A Tale of Two Representations

Suppose that we have a function f ∈Vp.

Since f ∈Vp, f has an expansion in terms of the basis of Vp given by

f (t) = ∑
n∈Z

ap[n]φp,n(t).

Furthermore, as Vp =Vp+1 ⊕Wp+1, we can also expand f in terms of the

bases of Vp+1 andWp+1 to obtain

f (t) = ∑
n∈Z

ap+1[n]φp+1,n(t)+ ∑
n∈Z

bp+1[n]ψp+1,n(t).

Thus, we have two different representations of f .

One might wonder if there exists a simple technique for converting

between these representations.

In other words, we would like to be able to:
1 determine ap+1 and bp+1, given ap; or
2 determine ap, given ap+1 and bp+1.

Fortunately, there is a very elegant technique for accomplishing exactly

this. This technique is known as the Mallat algorithm.
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Mallat Algorithm

Theorem. Consider a wavelet system with approximation space sequence {Vp}p∈Z,

scaling function φ, wavelet space sequence {Wp}p∈Z, wavelet function ψ, dual scaling

function φ̃, and dual wavelet function ψ̃. Let the scaling equation coefficient sequences of

φ and φ̃, and wavelet equation coefficient sequences of ψ and ψ̃ be denoted as c, c̃, d,

and d̃, respectively. Let {φp,n}n∈Z and {ψp,n}n∈Z denote the bases of Vp and Wp,

respectively, where φp,n(t) = 2−p/2φ(2−pt−n) and ψp,n(t) = 2−p/2ψ(2−pt−n).
Any f ∈Vp can be represented in each of the following forms:

f = ∑
n∈Z

ap[n]φp,n and f = ∑
n∈Z

ap+1[n]φp+1,n + ∑
n∈Z

bp+1[n]ψp+1,n.

Given ap, we can compute the corresponding ap+1 and bp+1 as

ap+1 = (↓ 2)
(
ap ∗h0

)
and bp+1 = (↓ 2)

(
ap ∗h1

)
, where

h0[n] = c̃∗[−n] and h1[n] = d̃∗[−n].

Given ap+1 and bp+1, we can compute the corresponding ap as

ap =
[
(↑ 2)ap+1

]
∗g0 +

[
(↑ 2)bp+1

]
∗g1, where

g0[n] = c[n] and g1[n] = d[n].
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Computational Structures for Mallat Algorithm

The Mallat algorithm is associated with a two-channel UMD filter bank.

The Mallat algorithm is of great importance as it establishes a link

between wavelet systems and filter banks.

H0(z)

H1(z)

↓ 2

↓ 2

ap[n]

bp+1[n]

ap+1[n]

Compute ap+1 and bp+1 from ap

G0(z) +

G1(z)↑ 2

↑ 2
ap+1[n] ap[n]

bp+1[n]

Compute ap from ap+1 and bp+1
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Characterization of Biorthonormal Wavelet Systems

Let {φp,k}p∈Z, {φ̃p,k}p∈Z, {ψp,k}p∈Z, and {ψ̃p,k}p∈Z denote the Riesz

bases of Vp, Ṽp, Wp, W̃p, respectively, where φp,k, φ̃p,k, ψp,k, ψ̃p,k are as

defined earlier.

A biorthonormal system is such that
〈
φp,k, φ̃p,l

〉
= δ[k− l], 〈ψp,k, ψ̃p,l〉 = δ[k− l],

〈φp,k, ψ̃p,l〉 = 0, and
〈
ψp,k, φ̃p,l

〉
= 0.

One can show that biorthonormality is equivalent to the following condition

expressed in terms of c, d, c̃, and d̃:

〈c[·], c̃[·−2n]〉 = δ[n],
〈
c[·], d̃[·−2n]

〉
= 0,〈

d[·], d̃[·−2n]
〉

= δ[n], and 〈d[·], c̃[·−2n]〉 = 0.
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Characterization of Biorthonormal Wavelet Systems (Continued)

Since g0[n] = c[n], g1[n] = d[n], h0[n] = c̃∗[−n], and d̃∗[−n], we can

rewrite the conditions from the previous slide as:

〈g0[·],h∗0[2n−·]〉 = δ[n], 〈g0[·],h∗1[2n−·]〉 = 0,
〈g1[·],h∗1[2n−·]〉 = δ[n], and 〈g1[·],h∗0[2n−·]〉 = 0,

or equivalently,

〈gk[·],h∗l [2n−·]〉 = δ[k− l]δ[n].

As it turns out, the above condition is a restatement of the shift-free PR

condition for a UMD filter bank.

Therefore, a biorthogonal wavelet system is associated with a shift-free

PR filter bank (via the Mallat algorithm).
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Characterization of Orthonormal Wavelet Systems

If the wavelet system is orthonormal, then c̃ = c and d̃ = d.

Thus, orthonormality is equivalent to the following conditions on c and d:

〈c[·],c[·−2n]〉 = δ[n], 〈c[·],d[·−2n]〉 = 0,
〈d[·],d[·−2n]〉 = δ[n], c = c̃, and d = d̃.

Expressed in terms of impulse responses, the above condition becomes:

〈gk[·],gl[·−2n]〉 = δ[k− l]δ[n], hk[n] = g∗k [−n].

As it turns out, the above condition is a restatement of the orthonormal

shift-free PR condition for a UMD filter bank.

Therefore, an orthonormal wavelet system is associated with an

orthonormal shift-free PR filter bank (via the Mallat algorithm).
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Importance of Basis Interpretation

Suppose that we have a function f represented in terms of the basis

functions {ϕn}n∈Z as

f (t) = ∑
n∈Z

anϕn(t)

In practice, we can only compute a finite sum, so we must drop terms in

the above summation, effectively changing some of the {an}n∈Z from a

nonzero value to zero.

Also, in practice, we often do not represent the {an}n∈Z exactly.

When we change a coefficient an, what error does this introduce?

If we change ak to a′k, the kth term changes from akϕk to a′kϕk (i.e., the

error is (a′k−ak)ϕk).

The error has the same shape as the basis function.
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Section 4.8

Properties of Scaling and Wavelet Functions
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Properties of Scaling Function

Theorem. Suppose that φ is a compactly supported function with zeroth

moment µ0 6= 0 and {φ(·− k)}k∈Z is a Riesz basis, and φ satisfies a

refinement equation with mask
√

2c[n]. Then, we have

1
µ0 ∑

k∈Z

φ(t− k) = 1 (partition of unity),

φ̂(2πk) = 0 for all k ∈ Z\{0},
ĉ(0) =

√
2, and

ĉ(π) = 0.

The partition of unity property is quite remarkable.

Regardless of the complexity of the appearance of a scaling function φ,

the integer translates of φ always sum to a constant (namely, µ0).

Consequently, integer translates of the scaling function can be used to

(locally) reproduce constant functions.
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Zeroth Moment of Primal and Dual Scaling Functions

Theorem. If φ, φ̃ ∈ L1(R)∩L2(R) are biorthogonal scaling functions, then

µ0 = 1/(µ̃∗0),

where µ0 and µ̃0 are the zeroth moments of φ and φ̃, respectively.

Since a scalar multiple of a solution to a refinement equation is also a

solution, there is some freedom in how we choose to normalize the scaling

function of a MRA (i.e., how we select the zeroth moment of the function).

The above theorem is significant because it shows what normalization of

a dual scaling function is associated with a particular normalization of a

primal scaling function.
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Zeroth Moment of Wavelet Function

Theorem. Let ψ be a wavelet function with the wavelet equation

coefficient sequence d. Then,
Z

R
ψ(t)dt = 0

(i.e., the zeroth moment of ψ is zero) and

d̂(0) = 0.
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Relationship Between Continuous and Discrete Moments

Theorem. Let φ be a scaling function with scaling equation coefficient

sequence c. Let ψ be a corresponding wavelet function with wavelet

equation coefficient sequence d. Denote the kth moments of φ and ψ as

µk and νk, respectively. Denote the kth moments of c and d as mk and nk,

respectively. Then, we have

µk =
1

21/2(2k−1)

k−1

∑
q=0

(
k

q

)
mk−qµq for k ≥ 1 and

νk = 2−k−1/2
k

∑
q=0

(
k

q

)
nk−qµq for k ≥ 0.

The above result is quite significant from a practical perspective.

Usually, φ and ψ cannot be expressed in closed form. In spite of this,

however, we would often like to know the moments of these functions.

The above theorem provides a means to calculate the moments of φ and

ψ from their corresponding coefficient sequences c and d, without ever

needing to explicitly compute φ or ψ.
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Equivalence of Vanishing Continuous and Discrete Moments

Often, we are interested in the specific case when certain moments of the

wavelet and/or scaling function are zero. The below theorem is useful in

this regard.

Theorem. Let φ be a scaling function with scaling equation coefficient

sequence c. Let ψ be the corresponding wavelet function with wavelet

equation coefficient sequence d. Denote the kth moments of φ and ψ as

µk and νk, respectively. Denote the kth moments of c and d as mk and nk,

respectively. Then, we have that

mk = 0 for k = 1,2, . . . ,η−1 ⇔ µk = 0 for k = 1,2, . . . ,η−1; and

nk = 0 for k = 0,1, . . . ,η−1 ⇔ νk = 0 for k = 0,1, . . . ,η−1

(i.e., the first η moments of φ vanishing excluding the zeroth moment is

equivalent to the first η moments of c vanishing excluding the zeroth

moment; and the first η moments of ψ vanishing is equivalent to the first η

moments of d vanishing).

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 296



Support of Scaling and Wavelet Functions

As it turns out, a relationship exists between the support of a

scaling/wavelet function and the support of its corresponding

scaling/wavelet equation coefficient sequence.

Theorem. Let φ be a scaling function with scaling equation coefficient

sequence c. Let ψ be the corresponding wavelet function with wavelet

equation coefficient sequence d. If c[n] = 0 whenever n < N1 or n > N2,

then

suppφ ⊂ [N1,N2].

If, in addition, d[n] = 0 for n < M1 and n > M2, then

suppψ ⊂
[
N1 +M1

2
,
N2 +M2

2

]
.

Theorem. Let φ be a scaling function with scaling equation coefficient

sequence c, where c[n] = 0 whenever c < N1 or c > N2. If c[N1] 6= 1√
2
,

then φ(N1) = 0. If c[N2] 6= 1√
2
, then φ(N2) = 0.

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 297



Wavelets Systems and Sparse Representations

Polynomials are a useful tool for the approximation of many classes of functions.

Since polynomials are often a useful tool for approximation, one might be interested in

knowing how well polynomials can be approximated by the bases associated with a

wavelet system.

As we have already seen, the integer translates of a scaling function can reproduce

constant functions.

In some cases, however, it so happens that scaling functions can exactly represent

polynomials of higher orders.

Suppose, for a moment, that the integer translates of a scaling function φ could reproduce

polynomials of order η.

Consider the representation of a function f that is well approximated by a polynomial of

order η, such as a piecewise smooth function.

Since φ can exactly reproduce polynomials of order η, the wavelet coefficients will

essentially be zero over all regions where f is well approximated by a polynomial of order

η.

In this way, very sparse representations can be obtained for piecewise smooth functions

(i.e., representations with relatively few nonzero expansion coefficients).

This has major advantages in a broad spectrum of applications.
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Order of Approximation

The polynomial approximation properties of a scaling function are

characterized by the theorem below.

Theorem. Let φ be a scaling function with the scaling equation coefficient

sequence c. Let ψ̃ denote the corresponding dual wavelet function with

the wavelet equation coefficient sequence d̃. Suppose that φ̂ and ˆ̃ψ are

η−1 times differentiable. Then, the following statements are equivalent:

1 φ has approximation order η (i.e., {φ(·−n)}n∈Z can represent kth degree

polynomials exactly for k < η);
2 for any 0 ≤ k < η, qk(t) = ∑

n∈Z

nkφ(t−n) is a kth degree polynomial;

3 ĉ(ω) has a ηth order zero at ω = π;
4 ψ̃ has η vanishing moments (i.e., ψ̃ has all of its moments of order less

than η vanish);

5 ˆ̃d(ω) has a ηth order zero at ω = 0.
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Order of Approximation (Continued)

We can derive an expression for t p in terms of φ for p < η.

For example, one can show that

t p = ∑
n∈Z

ap[n]φ(t−n),

where

ap[n] =






1
µ0

for p = 0

1
µ0
n+ µ1

µ2
0

for p = 1

1
µ0
n2 + 2µ1

µ2
0

n+
−µ2µ0+2µ2

1

µ3
0

for p = 2.

The above formula is only valid if φ has approximation order η and p < η.
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Sum Rule

Since we are clearly interested in the number of zeros that ĉ(ω) has at

ω = π, it is convenient to have a method to quickly determine this quantity.

To this end, we will often find the result below to be helpful.

Theorem. Let c be a sequence. Then, ĉ(ω) has a ηth order zero at ω = π

if and only if

∑
n∈Z

(−1)nnkc[n] = 0 for k = 0,1, . . . ,η−1.

This is often referred to as the sum rule of order η.
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Section 4.9

Determination of Scaling and Wavelet Functions
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Determination of Scaling and Wavelet Functions

Often, it is not possible to find a closed-form expression for scaling and

wavelet functions.

In such cases, we must resort to numerical techniques in order to find

these functions (or approximations thereof).

Since the wavelet function can be expressed in terms of the scaling

function, finding the wavelet function degenerates into a problem of finding

the scaling function.

To find a scaling function, we need to solve a refinement equation.

Thus, we need techniques for solving refinement equations.

In what follows, we consider methods for numerically determining

solutions to refinement equations.
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Spectral Method

Conceptually, one of the simplest methods for computing the scaling

function is to use the infinite product formula for the Fourier transform of

the scaling function.

Recall that we can write

φ̂(ω) = φ̂(0)
∞

∏
p=1

1√
2
ĉ(ω/2p).

So, in principle, we can approximate the above infinite product by its first k

factors.

Then, we can take the inverse Fourier transform of the result in order to

find an approximation to φ(t).

While this approach works, it is neither very exact nor particularly fast.

This leads us to consider other methods for determining the scaling

function.
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Cascade Algorithm

Another approach to determining the scaling function involves repeated

application of a filter bank and is known as the cascade algorithm.

This algorithm is fast and, although not exact, often yields a good

approximation.

This approach is formalized by the theorem below.

Theorem. Suppose that we have a refinement equation

φ(t) =
√

2 ∑
n∈Z

c[n]φ(2t−n).

Define the iterative process

φ(k+1)(t) =
√

2 ∑
n∈Z

c[n]φ(k)(2t−n)

where we choose φ(0)(t) such that
Z ∞

−∞
φ(0)(t)dt = µ0 6= 0.

If this iterative process converges to a fixed point, this fixed point is a

solution to the above refinement equation normalized such that
R ∞
−∞ φ(t)dt = µ0.
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Cascade Algorithm (Continued)

In practice, we usually choose φ(0) = χ[0,1).

With such a choice, we then have that φ(k) is of the form

φ(k)(t) = ∑
n∈Z

a(k)[n]χ[n2−k,(n+1)2−k)(t).

That is, φ(k) is piecewise constant on intervals of the form

[n2−k,(n+1)2−k), where n ∈ Z.

Furthermore, one can show that the sequence a(k) is given by

a(k)[n] =

{([
(↑ 2)a(k−1)

]
∗ (

√
2c)
)

[n] for k ≥ 1

δ[n] for k = 0.

The above algorithm can be implemented very conveniently in software.

We need only compute the sequence a(κ) for some sufficiently large κ.

From the resulting sequence, we can then trivially deduce φ(κ).
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Eigenmethod

Another technique for solving refinement equations determines the

solution at dyadic points.

First, we solve an eigenproblem to find the solution at integers.

Then, we employ the scaling equation to compute the solution at half

integers, quarter integers, and so on.

This approach is both exact and fast. It can be used to evaluate the

solution at any dyadic point.
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Part 5

Geometry Processing Preliminaries
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Digital Geometry Processing

As digital computing devices have become more powerful, the complexity

of the datasets processed with these devices has also increased.

First came digital audio, then digital imagery, and then digital video.

More recently, we have seen the rise of digital geometry, that is, digital

representations of geometric objects such as polyhedra and surfaces.

Digital geometry processing deals with the representation and

manipulation of geometric objects in digital form.

Digital geometry processing has a wide range of application areas,
including:

multimedia, animation, gaming

biomedical computing

scientific visualization

geometric modelling

computer-aided design and manufacturing

finite element analysis

computational fluid dynamics
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Geometry Processing Versus Traditional Signal Processing

In the case of traditional signal processing, signals are essentially

functions defined on a Euclidean domain Rn.

For example, an audio signal is a function defined on R, where the

domain of the function corresponds to time.

An image signal is a function defined on R2, where the domain of the

function corresponds to horizontal and vertical position.

A video signal can be viewed as a function defined on R3, where the

domain of the function corresponds to horizontal position, vertical position,

and time.

In the case of geometry processing, the mathematical objects of interest

are not functions. Rather, these objects are typically what are known as

manifolds (with or without boundaries).
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Examples of Geometric Objects
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Section 5.1

Linear Algebra, Affine Geometry, and Projective Geometry
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Cross Product

The cross product of two vectors v = (v1,v2,v3) and w = (w1,w2,w3) in

R3, denoted v×w, is defined as

det
[

i j k
v1 v2 v3
w1 w2 w3

]
,

where i, j, and k denote unit vectors in the x, y, and z directions,

respectively.

Example. Let v = (1,2,3) and w = (1,−2,1). Then,

v×w = (1,2,3)× (1,−2,1) = det




i j k

1 2 3

1 −2 1



=

i(2+6)− j(1−3)+ k(−2−2) = 8i+2 j−4k = (8,2,−4).

For all v,w ∈ R3, v×w⊥ v and v×w⊥ w.

The cross product provides a means to find a vector perpendicular to two

other vectors.

If v and w are noncollinear vectors parallel to a plane P, a normal (vector)

n to P is given by n = v×w.
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Affine Combinations and Affine Hull

An affine combination of vectors v1,v2, . . . ,vn in a vector space V over

the field F is an expression of the form

n

∑
k=1

akvk where
n

∑
k=1

ak = 1,

and a1,a2, . . . ,an ∈ F (i.e., an affine combination is a linear combination

for which the sum of the coefficients is one).

The affine hull of X ⊂ Rn, denoted affX , is the intersection of all

hyperplanes in Rn that contain X .

Equivalently, the affine hull of X ⊂ Rn is the set of all affine combinations

of elements in X .

Example. The affine hull of a set of two distinct points is the line through

them.

Example. The affine hull of a set of three non-collinear points is the plane

through them.

Example. The affine hull of a set of four non-coplanar points is R3.
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Convex Set

A set S of points (in R2) is convex if, for any two points p,q ∈ S, the line

segment with endpoints p and q is contained in S.

Examples of convex and nonconvex sets are shown below.

Convex Set Nonconvex Set
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Convex Combinations and Convex Hull

A convex combination of vectors v1,v2, . . . ,vn in a real vector space V is

an expression of the form

n

∑
k=1

akvk where
n

∑
k=1

ak = 1 and ak ≥ 0

(i.e., a convex combination is simply an affine combination with

nonnegative coefficients). (Note that ∑n
k=1 ak = 1 and ak ≥ 0 together

imply that ak ∈ [0,1].)

The convex hull of X ⊂ Rn, denoted convX , is defined as the intersection

of all convex sets containing X (i.e., the smallest convex set that contains

X ).

Equivalently, the convex hull of X ⊂ Rn is the set of all convex

combinations of elements in X .

Example. Consider a triangle T whose vertices v1,v2,v3 lie in the plane P

in R3. The convex hull of T is the interior of the triangle plus its boundary,

while the affine hull of T is the entire plane P.
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Convex Hull (Continued)

The boundary of H is a convex polygon with vertices in P.

The boundary of H can be visualized in terms of elastic band/sheet

stretched to encompass the points in P.

A point p ∈ H that does not lie on any open line segment joining two

points in P is called an extreme point (i.e., “corner”).

Convex Hull
Elastic band visualization of

convex-hull boundary
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Barycentric Coordinates

Theorem. Let v0,v1, . . . ,vm be m+1 linearly independent points in Rn

(where, clearly, m≤ n). Every point in the convex hull of v0,v1, . . . ,vm can

be expressed uniquely as a convex combination of v0,v1, . . . ,vm. That is,

every point w in the convex hull of v0,v1, . . . ,vm has a unique

representation of the form

w =
m

∑
k=0

akvk,

where ak ∈ [0,1] and ∑m
k=0 ak = 1.

The {ak}k∈{1,2,...,n} above are called the barycentric coordinates of w

with respect to the points v1,v2, . . . ,vm.
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Barycentric Coordinates Example

p0

1p0 +0p1

≡ (1,0)

1
2
p0 + 1

2
p1

≡ ( 1
2
, 1

2
)

p1

0p0 +1p1

≡ (0,1)

p0
1
2
p0 + 1

2
p1 +0p2 p1

1p0 +0p1 +0p2

≡ (1,0,0)

0p0 +1p1 +0p2

≡ (0,1,0)

1
3
p0 + 1

3
p1 + 1

3
p2

≡ ( 1
3
, 1

3
, 1

3
)

≡ ( 1
2
,0, 1

2
)

1
2
p0 +0p1 + 1

2
p2

≡ (0,0,1)

0p0 +0p1 +1p2

p2

≡ ( 1
2
, 1

2
,0)

0p0 + 1
2
p1 + 1

2
p2

≡ (0, 1
2
, 1

2
)
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Affine Transformations

A one-to-one and onto mapping T : Rn → Rn that preserves the

collinearity of points (i.e., maps lines onto lines) is called an affine

transformation.

Affine transformations include scalings, rotations, shears, translations,

and compositions thereof.

Every (invertible) linear transformation is an affine transformation.

Affine transformations preserve convex sets.

For any affine transformation T and any finite set {pi} of points,

T

(

∑
i

aipi

)
= ∑

i

aiT (pi) where ∑
i

ai = 1

(i.e., affine transformations commute with affine combinations).

Affine transformations in Rn preserve barycentric coordinates (which

trivially follows from the previous property).
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Homogeneous Coordinates

A point in R3 can be represented in many ways (e.g., Cartesian

coordinates, spherical coordinates, cylindrical coordinates).

Which representation is most convenient depends on the application at

hand.

Homogeneous coordinates provide yet another way to represent a point in

R3.

The homogeneous coordinates of a point p = (px, py, pz) in R3 is a

4-tuple (qx,qy,qz,qw) satisfying qw 6= 0, and px = qx/qw, py = qy/qw,

and pz = qz/qw.

The homogeneous coordinates of a point are not unique. If

(px, py, pz, pw) is the homogeneous coordinates of a point, then so too is

(kpx,kpy,kpz,kpw) for any real k 6= 0.

Two homogeneous coordinates represent same point if and only if one

point is a multiple of other.
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Homogeneous-Coordinate Transformations

When Cartesian coordinates are used along with 3×3 transformation

matrices, translations and perspective projections are problematic as they

have no corresponding matrix representation.

The situation is quite different with homogeneous coordinates.

As a matter of terminology, a transformation that operates on points

expressed in homogeneous coordinates is referred to as

homogeneous-coordinate transformation.

Since homogeneous coordinates are a 4-tuple, homogeneous-coordinate

transformations are associated with 4×4 matrices.

As it turns out, every affine transformation (including translations),

orthographic/perspective projection, or composition thereof, can be

represented by a homogeneous-coordinate transformation matrix.

The main benefit of the homogeneous representation is uniformity.

All transformations of interest can be characterized by a matrix and the

application/composition of transformations is achieved by matrix

multiplication.
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Translation

The homogeneous-coordinate transformation matrix T (d) that

corresponds to a translation by d = (dx,dy,dz) is given by

T (d) =





1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1



 .

Applying the above transformation to the point p, we obtain:

T (d)





px

py

pz

1



=





1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1









px

py

pz

1



=





px +dx

py +dy

pz +dz

1



 .
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Scaling

The homogeneous-coordinate transformation matrix T (s), with

s = (sx,sy,sz), that corresponds to a scaling in the x, y, and z directions by

sx, sy, and sz, respectively, is given by

S(s) =





sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1



 .

Applying the above transformation to the point p = (px, py, pz), we obtain:

S(s)





px

py

pz

1



=





sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1









px

py

pz

1



=





sxpx

sypy

szpz

1



 .
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Rotation About z Axis

The homogeneous-coordinate transformation matrix Rz(θ) that

corresponds to a rotation of θ about the z axis is given by

Rz(θ) =





cosθ −sinθ 0 0

sinθ cosθ 0 0

0 0 1 0

0 0 0 1



 .

Applying the above transformation to the point (px, py, pz), we obtain:

Rz(θ)





px

py

pz

1



=





cosθ −sinθ 0 0

sinθ cosθ 0 0

0 0 1 0

0 0 0 1









px

py

pz

1



=





px cosθ− py sinθ

px sinθ+ py cosθ

pz

1



 .
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Rotation About x Axis

The homogeneous-coordinate transformation matrix Rx(θ) that

corresponds to a rotation of θ about the x axis is given by

Rx(θ) =





1 0 0 0

0 cosθ −sinθ 0

0 sinθ cosθ 0

0 0 0 1



 .

Applying the above transformation to the point (px, py, pz), we obtain:

Rx(θ)





px

py

pz

1



=





1 0 0 0

0 cosθ −sinθ 0

0 sinθ cosθ 0

0 0 0 1









px

py

pz

1



=





px

py cosθ− pz sinθ

py sinθ+ pz cosθ

1



 .
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Rotation About y Axis

The homogeneous-coordinate transformation matrix Ry(θ) that

corresponds to a rotation of θ about the y axis is given by

Ry(θ) =





cosθ 0 sinθ 0

0 1 0 0

−sinθ 0 cosθ 0

0 0 0 1



 .

Applying the above transformation to the point (px, py, pz), we obtain:

Ry(θ)





px

py

pz

1



=





cosθ 0 sinθ 0

0 1 0 0

−sinθ 0 cosθ 0

0 0 0 1









px

py

pz

1



=





px cosθ+ pz sinθ

py

−px sinθ+ pz cosθ

1



 .
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Rotation About Arbitrary Axis

The homogeneous-coordinate transformation matrix R(a,θ) that

corresponds to a rotation of θ about the axis in the direction of the unit

vector a = (ax,ay,az) is given by

R(a,θ) =



a2
x + cθ(1−a2

x) axay(1− cθ)−azsθ axaz(1− cθ)+aysθ 0

axay(1− cθ)+azsθ a2
y + cθ(1−a2

y) ayaz(1− cθ)−axsθ 0

axaz(1− cθ)−aysθ ayaz(1− cθ)+axsθ a2
z + cθ(1−a2

z) 0

0 0 0 1





where cθ = cosθ and sθ = sinθ.

The composition of any number of rotations can always be represented as

a single rotation about an arbitrary axis.
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Orthographic Projection

y

z

x

Image
Plane

Far
Clipping
Plane

Near
Clipping
Plane

projection lines orthogonal to projection plane (i.e., image plane)

effectively, as if eye is on positive z axis infinitely far from origin, looking in

negative z direction with positive y axis corresponding to up direction

viewing volume is rectangular prism (bounded by near and far clipping planes)

line segments of equal length have projections of equal length
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Orthographic Projection (Continued)

The homogeneous-coordinate transformation matrix P that corresponds to

an orthographic projection onto the image plane z = 0 is given by

P =





1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1



 .

Applying the above transformation to the point (px, py, pz), we obtain:

P





px

py

pz

1



=





1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1









px

py

pz

1



=





px

py

0

1



 .

More complicated orthographic projections can be constructed by

combining the above transformation with scaling, rotation, and translation

to move the image plane and center of projection wherever they are

desired.
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Perspective Projection

y

z

x
Image

Near

Far

Plane
Clipping
Plane

Clipping
Plane

Eye

all projection lines converge to single point at eye

eye is located at origin looking in negative z direction with positive y axis

corresponding to up direction

viewing volume is frustum (bounded by near and far clipping planes)

given two identical objects, one closer to eye appears larger
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Perspective Projection (Continued)

The homogeneous-coordinate transformation matrix P that corresponds to

a perspective projection, with the origin as the center of the projection and

z = 1 as the image plane, is given by

P =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0



 .

Applying the above transformation to the point (px, py, pz), we obtain:

P





px

py

pz

1



=





1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0









px

py

pz

1



=





px

py

pz

pz



∼





px/pz

py/pz

1

1



 .

More complicated perspective projections can be constructed by

combining the above transformation with scaling, rotation, and translation

to move the image plane and center of projection wherever they are

desired.
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Perspective Projection as Warping Plus Orthographic

Projection

Perspective projection can always be decomposed into two separate

transformations, namely, a warping followed by orthographic projection

(each of which has a homogeneous-coordinate transformation matrix

representation).

The warping maps the viewing frustum associated with perspective

projection into a cube as shown below.
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Transformations As Change in Coordinate System

For a transformation matrix T and a point p expressed as a column

vector, consider the product T p.

The product T p can be interpreted in two distinct but equivalent ways:

1 As the transformation of a point: The product T p is the new point

produced by applying the transformation T to the point p.
2 As the transformation of a coordinate system: The product T p is the new

point obtained by applying the transformation T−1 to the coordinate-system

axes and then interpreting p relative to these new coordinate-system axes.

Although the first interpretation is, perhaps, the most straightforward, the

second interpretation is often very useful in computer graphics

applications.

Note: In the case that T above is a composite transformation

T = TnTn−1 · · ·T1, recall that T−1 = T−1
1 T−1

2 · · ·T−1
n .
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Example: Transformation

consider transformation T given by

T = Rz(90◦)S
(

1
2
, 1

2
, 1

2

)
T (1,−1,0)

=





0 −1 0 0

1 0 0 0

0 0 1 0

0 0 0 1









1
2

0 0 0

0 1
2

0 0

0 0 1
2

0

0 0 0 1









1 0 0 1

0 1 0 −1

0 0 1 0

0 0 0 1





consider point (1,1,0) with homogeneous coordinate representation

given by

p =





1

1

0

1





two different interpretations of product T p as shown on next two slides
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Example: Transforming Point

1 2
x

y

1

2

−1

−2

−1−2

(1,1,0)

T (1,−1,0)−−−−−→
[

1 0 0 1
0 1 0 −1
0 0 1 0
0 0 0 1

][
1
1
0
1

]

=

[
2
0
0
1

] 1 2
x

y

1

2

−1

−2

−1−2

(2,0,0)

S
(

1
2
,
1
2
,
1
2

)

−−−−−−→




1
2

0 0 0

0
1
2

0 0

0 0
1
2

0

0 0 0 1




[

2
0
0
1

]

=

[
1
0
0
1

]

1 2
x

y

1

2

−1

−2

−1−2

(1,0,0)

Rz(90◦)−−−−→
[

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

][
1
0
0
1

]

=

[
0
1
0
1

] 1 2
x

y

1

2

−1

−2

−1−2

(0,1,0)

The z axis is not explicitly shown and is coming out of the plane of the page.
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Example: Transforming Coordinate System

1 2
x

y

1

2

−1

−2

−1−2

(1,1,0)

translate by

(−1,1,0)
−−−−−−−→ 1 2

x

y

2

−1

−2

−1−2

y′

x′
2 3

(2,0,0)1

1 scale by

(2,2,2)
−−−−−−−→

1 2
x

y

2

−1

−2

−1−2

x′′
1

1

(1,0,0)
y′′

rotate about

z-axis by

−90◦

−−−−−−−→
1 2

y

2

−1

−2

−2

(0,1,0)
y′′′

x
−1

x′′′

1

1

1

The z axis is not explicitly shown and is coming out of the plane of the page.
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Section 5.2

Quaternions
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Quaternions

The quaternions, denoted H, can be viewed as an extension of complex

numbers, and were discovered by William Rowan Hamilton in 1843.

Quaternions are extremely useful for representing rotations in 3-D, and

have application in areas such as computer graphics and robotics.

A quaternion q has the form q = w+ xi+ y j+ zk where w,x,y,z ∈ R and

i2 = j2 = k2 = i jk = −1.

A quaternion q = w+ xi+ y j+ zk can be viewed as consisting of a scalar

part, namely w, and a vector part with components in the i, j, and k

directions, namely (x,y,z).

The quaternion q = w+ xi+ y j+ zk with the scalar part s = w and vector

part v = (x,y,z) is denoted as (s,v).

The conjugate of q = (s,v), denoted q∗, is defined as q∗ = (s,−v).

The norm of q is defined as ‖q‖ =
√
qq∗.
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Quaternions (Continued)

For quaternions, addition is defined as

(s1,v1)+(s2,v2) = (s1 + s2,v1 + v2).

For quaternions, multiplication is defined as

(s1,v1)(s2,v2) = (s1s2 − v1 · v2,s1v2 + s2v1 + v1 × v2).

The multiplicative inverse of q, denoted q−1, is given by q∗/‖q‖2
.

Addition is commutative. Multiplication is not commutative.

A rotation by the angle θ about the axis v (using a right-hand rule) can be

represented by the unit-norm quaternion (cosθ/2, 1
‖v‖vsinθ/2).

Quaternion multiplication then corresponds to rotation matrix

multiplication. Let q1 and q2 be quaternions associated with rotations R1

and R2, respectively. Then, the quaternion product q2q1 corresponds to

the rotation R2R1 (i.e., R1 followed by R2).

Let v1 and v2 denote points on the 3-D unit sphere. The quaternion

quotient (0,v2)/(0,v1) corresponds to a rotation along the great circle arc

from v1 to v2.
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Section 5.3

Manifolds
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Topological Spaces

A topology on a set X is a set T of subsets of X satisfying:

1 Both /0 and X belong to T .
2 The union of any collection of sets from T also belongs to T .
3 The intersection of any finite collection of sets from T belongs to T .

The sets in T will be called the open sets of X .

Basically, a topology on a set X specifies which points in X are close to

one another (i.e., which points are neighbours).

A topological space is a set X with a topology T (on X ), and is denoted

as (X ,T ), or simply X when T is clear from the context.

A metric space is a topological space, since a metric induces a topology

on a set.

Not all topologies can be described in terms of a metric, however. So, not

all topological spaces are metric spaces.
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Topological Spaces (Continued)

In the case of a metric space, a metric serves as the starting point for

defining a topology on a set.

In the more general topological-space setting, the topology on a set X is

specified directly by identifying all open subsets of X . Then, closed sets

and neighbourhoods are defined in terms of open sets. Other concepts

(such as closure, boundary, and interior) then follow.

A subset S of a topological space X is said to be closed if X \S is open.

A subset S of a topological space X is said to be a neighbourhood of a

point p ∈ X if there exists an open set U such that p ∈U ⊂ S (i.e., S

contains an open set that contains the point p).

A topological space X is said to be a Hausdorff space if any two distinct

points of X have disjoint neighbourhoods.

All metric spaces are Hausdorff spaces. Not every topological space is a

Hausdorff space, however.
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Homeomorphisms

A mapping T : X → Y that is one-to-one and onto, where T and T−1 are

both continuous, is called a homeomorphism.

A homeomorphism can be thought of as an elastic deformation (i.e.,

stretching/compressing, bending/twisting, but no cutting/tearing).

Two spaces X and Y are said to be homeomorphic is there exists a

homeomorphism T : X → Y .

Two topological spaces X and Y are equivalent, denoted X = Y , if they

are homeomorphic.
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Homeomorphism Example: Coffee Cup and Donut

Let C and D denote the surfaces of the coffee cup and donut, respectively

(as shown above).

Since C can be transformed into D (or vice versa) by an elastic

deformation, C and D are homeomorphic.

Thus, C = D (i.e., a coffee cup and donut are topologically equivalent).
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Manifolds

A n-dimensional manifold (called an n-manifold) is a Hausdorff space M

such that each point p ∈M has a neighbourhood homeomorphic to the

open n-dimensional unit disc Un = {(x1,x2, . . . ,xn) ∈ Rn : ∑n
k=1 x

2
k < 1}.

A n-dimensional manifold with boundary (called an n-manifold with

boundary) is a Hausdorff space M such that each point p ∈M has a

neighbourhood homeomorphic to either the open n-dimensional unit disc

Un or the open n-dimensional unit half-disc

Un
+ = {(x1,x2, . . . ,xn) : ∑n

k=1 x
2
k < 1 and x1 ≥ 0}.

A 2-manifold is called a surface.

An n-manifold (with or without boundary) locally has the same properties

as Rn. For example, an infinitesimally small bug crawling along a

2-manifold M could not distinguish M from the plane R2 if the range of the

bug’s vision were restricted to only its local neighbourhood.

Examples of 1-manifolds: a line, a circle

An example of an n-manifold is Rn.
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Examples of 2-Manifolds With/Without Boundaries

Sphere Torus Surface of Rabbit

Surface of Spacesuit
Surface of Telescope

Dish
Simple Surface
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Examples of 3-Manifolds With Boundaries

Ball

(Sphere and Its Interior)

Toroid

(Torus and Its Interior)

Tetrahedron

and Its Interior

Spacesuit

(Including Its Interior)

Rabbit

(Including Its Interior)
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Examples of Non-Manifolds

Three Quadrilaterals

Intersecting At

Common Edge

Two Cubes Intersecting

at Common Vertex Two Surfaces

Intersecting at a Point
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Orientability

A manifold is said to be orientable if one can consistently define a

clockwise direction for all loops in the manifold.

We are interested in the orientability of surfaces (i.e., 2-manifolds).

Most surfaces encountered in the physical world are orientable.

Examples of orientable surfaces: a sphere, plane, torus, and polyhedron.

Example of a non-orientable surface: a Mobius strip.

Mobius Strip (Non-Orientable)
Torus (Orientable)
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Signals in Geometry Processing

The signals dealt with in geometry processing are most commonly

manifolds.

In traditional signal processing, a signal is a function, which is a vector in

an inner-product space.

In geometry processing, however, a signal is a manifold, which is a

(topological) space.

In most practical applications, the n-manifold M (with or without boundary)

of interest is imbedded into a Euclidean space Rd , where n≤ d (i.e.,

M ⊂ Rd).

Generally speaking, 2- and 3-manifolds (with or without boundaries) tend

to be of interest most frequently.

As one might expect, in the context of subdivision surfaces, we are

interested in surfaces (i.e., 2-manifolds) with or without boundaries.
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Representations of Surfaces

To facilitate the processing of surfaces (i.e., 2-manifolds), we need a way

to define/represent them.

A surface can be defined implicitly. That is, a surface can be defined to

consist of all of the points satisfying a particular equation.

E.g., the surface of a sphere with radius ρ and center at the origin consists

of the points {(x,y,z) ∈ R3 : x2 + y2 + z2 = ρ2}.

A surface can be defined parametrically. That is, a surface can be

defined to consist of the points in the range of a vector-valued function

(i.e., p(u,v) = ( fx(u,v), fy(u,v), fz(u,v)).
E.g., the surface of a sphere with radius ρ and center at the origin consists

of the points in the range of the function

p(u,v) = (ρcos(u)cos(v),ρsin(u)cos(v),ρsin(v)), where

u ∈ [0,2π),v ∈ [0,π].
Often, implicit and parametric definitions are not the most convenient to

utilize.

Yet another approach is to define a surface (or an approximation thereof)

using a polygon mesh.

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 352



Parametric Continuity

Parametric continuity is a measure of the smoothness of a surface.

The parametric form of a surface S (imbedded in R3) is given by

p(u,v) =
[
x(u,v) y(u,v) z(u,v)

]T
.

The surface S is traced out by p as the parameters u and v varied over

their domain.

The surface S is Cn continuous if all partial derivatives of p of order n or

less exist and are continuous.

A tangent plane to S is determined by the first-order partial derivatives

∂p(u,v)
∂u =

[
∂x(u,v)

∂u
∂y(u,v)

∂u
∂z(u,v)

∂u

]T
and

∂p(u,v)
∂v =

[
∂x(u,v)

∂v
∂y(u,v)

∂v
∂z(u,v)

∂v

]T
.

The parameterization of a surface is not unique.

Different parameterizations of the same surface can have different

parametric continuity. That is, parametric continuity depends not only on

the surface being parameterized, but also on the parameterization itself.
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Geometric Continuity

Geometric continuity is a measure of the smoothness of a surface that is

independent of any surface parameterization.

A surface is G0 continuous if it does not have any jumps (i.e., is

continuous).

A surface is G1 continuous if it has a continuously varying tangent plane.

A surface is G2 continuous if it has continuously varying curvature.

A polyhedral surface is G0 continuous but (typically) not G1 continuous

(since the tangent plane does not vary continuously between faces of a

polyhedron).

Parametric continuity is a stronger form of continuity than geometric

continuity. That is, Cn continuity implies Gn continuity (but Gn continuity

does not imply Cn continuity).
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Section 5.4

Polygon Meshes
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Polygon Meshes

A polygon mesh is a collection of vertices, edges, and (polygonal) faces,

and an incidence relationship amongst them. An edge connects two

vertices, and a face is a closed sequence of edges.

A polygon mesh consists of two types of information:

1 geometric information: the positions of the vertices (in the Euclidean

space in which the mesh is imbedded); and
2 topologic information: how the vertices are connected together to form

edges and faces (i.e., the connectivity of the mesh).

In practice, the faces in a mesh are most commonly all triangles, all

quadrilaterals, or a mixture of triangles and quadrilaterals.

A polygon mesh with all triangle faces is called a triangle mesh.

A polygon mesh with all quadrilateral faces is called a quadrilateral

mesh (or quad mesh).

A polygon mesh can be manifold or non-manifold. Also, it can be

orientable or non-orientable.
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Polygon Mesh Example

f0

v3

v2v5
e11 e8

f5 f1

f2f4

f3

e0v0 v1

e5

e7e6

e10 e9
e2e4

v4 e3

v6

e1

for k ∈ {0,1,2,3,4,5}:

vk = (cos( π
3 [k−2]),sin( π

3 [k−2]),0)

v6 = (0,0, 1
2 )

A orientable manifold triangle mesh imbedded in R3

Consists of 7 vertices, 12 edges, and 6 (triangle) faces

E.g., face f0 consists of vertices v0,v1,v6 and edges e0,e7,e6
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Valence and 1-Ring

The valence of a vertex is the number of edges incident on that vertex.

The 1-ring of a vertex v is the set of all vertices in the mesh that are

directly connected by an edge to v.

v
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Topology Versus Geometry

The following is an example of two quadrilateral meshes with the same

geometry but different topology:
v7v6

v0 v1

v2 v3

v5v4

v2

v6 v7

v0 v1

v3

v4 v5

The following is an example of two quadrilateral meshes with the same

topology but different geometry:

v2

v6 v7

v0 v1

v3

v4 v5 v2 v6 v7 v3

v0 v4 v5 v1

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 359



Examples of Polygon Meshes
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Section 5.5

Data Structures and File Formats for Polygon Meshes
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Naive Data Structure

Pseudocode (Data-type definition)

Vertex vertices[numVertices]; // vertex array

Face triangles[numTriangles]; // triangle array

struct Face {

int vertexIndexes[3]; // indexes of vertices for this triangle

};

edges not explicitly represented

some adjacency information not readily accessible

to find neighboring face, must scan through face array looking for face with

two vertices in common, which takes O(n) time (where n is number of

vertices)

need data structures that allow efficient access to adjacency information
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Naive Data Structure Example

v0 v1

= (−1,1,−1)

= (1,−1,−1)= (−1,−1,1)

v2

= (1,1,1)
v3

f2

f0

f1

Vertices

Array Array

Index Element

0 (-1,-1,1)

1 (1,-1,-1)

2 (-1,1,-1)

3 (1,1,1)

Faces

Array Array

Index Element

0 0, 1, 3

1 1, 2, 3

2 0, 3, 2
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Winged-Edge Data Structure

proposed in:

B. G. Baumgart. A polyhedron representation for computer vision. In

AFIPS National Computer Conference, pages 589–596, 1975.

edge-based representation, where edges serve as glue that holds vertices

and faces together

each edge points to two incident faces and two incident vertices and four

incident edges that share same faces and vertices (i.e., four “wing” edges)

since edges have no direction, traversing edges in particular direction

(e.g., CCW/CW around face) requires one case distinction per step

8 pointers per edge
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Winged-Edge Data Structure (Continued)

Pseudocode (Data-type definition)

struct Edge {
Vertex* pvt; // first vertex
Vertex* nvt; // second vertex
Face* pface; // first face (defined to be to left of directed line

// segment from first to second vertex)
Face* nface; // second face (defined as other face incident on edge)
Edge* pccw; // neighboring edge on first face in CCW direction
Edge* pcw; // neighboring edge on first face in CW direction
Edge* nccw; // neighboring edge on second face in CCW direction
Edge* ncw; // neighboring edge on second face in CW direction

};

Example (Pictorial view of data structure)

edge

face

vertex

pface

nface
pvt

nccw

pcw pccw

nvt

ncw

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 365



Half-Edge Data Structure

described in:

K. Weiler. Edge-based data structures for solid modeling in

curved-surface environments. IEEE Computer Graphics and Applications,

5(1):21–40, Jan. 1985.

every edge represented as pair of directed edges, each called half-edge

6 pointers plus 2 bits (i.e., 2 one-bit integers) per edge

used in Computational Geometry Algorithms Library (CGAL)

representing edges in terms of directed line segments avoids some

problems associated with winged-edge data structure
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Half-Edge Data Structure (Continued)

Pseudocode (Data-type definition)

struct Edge {
HalfEdge e[2]; // pair of symmetric half -edges

};

struct HalfEdge {
int index; // index of half -edge in parent edge
HalfEdge* next; // next CCW half -edge around left face
Vertex* term; // terminal vertex
Face* left; // left face

};

Example (Pictorial view of data structure)

vertex

edge

face

e[0]

e[1]

e[0].left

e[1].left

e[1].next

e[0].next

e[1].term

e[0].term
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Quad-Edge Data Structure

proposed in:

L. Guibas and J. Stolfi. Primitives for the manipulation of general

subdivisions and the computation of Voronoi diagrams. ACM Transactions

on Graphics, 4(2):74–123, Apr. 1985.

simultaneously represents graph and its dual

each edge belongs to four circular singly-linked lists corresponding to two

vertices and two faces incident to edge

vertex/face represented by ring of quad-edges

8 pointers + 4 two-bit integers per edge

used in various research software available on Internet (e.g., Scape

terrain-simplification software, Dani Lischinski’s constrained DT software)
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Quad-Edge Data Structure (Continued)

Pseudocode (Data-type definition)

struct Edge {
QuadEdge* e[4]; // four quad -edges of edge

};

struct QuadEdge {
int index; // index of quad -edge in parent edge
QuadEdge* next; // next CCW quad -edge with same origin
void* data; // face or vertex

}

Example (Pictorial view of data structure)

e[1]

e[3]
e[2]

e[0]

e[3].next

e[0].next

e[2].next

e[0].data

e[3].data

e[1].next
e[1].data

e[2].data

edge

vertex

face
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Comments on MATLAB

MATLAB is well suited to numerical applications that require only simple

data types such as arrays (e.g., vectors and matrices).

MATLAB is not suitable for any practical computation involving polygon

meshes.

The data structures necessary for allowing efficient processing of mesh

data are significantly more complex than the simple array types provided

in MATLAB.

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 370



Object File Format (OFF)

simple scheme for encoding the geometry and topology of a polygon

mesh

also has provisions for including color and normal information
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OFF Example (Triangle Mesh)

= (−1,1,0)
v3

v4

= (0,0,1)

v0

= (−1,−1,0)
v1

= (1,−1,0)

= (1,1,0)
v2

Mesh

OFF
5 4 0
-1 -1 0
1 -1 0
1 1 0

-1 1 0
0 0 1

3 0 1 4
3 1 2 4
3 2 3 4
3 0 4 3

Corresponding

OFF File

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 372



OFF Example (Quad Mesh)

v1

= (0,−1,0)

v5

= (0,1,0)
v6

= (−1,1,−1)
v4

= (1,1,−1)

v2

= (1,−1,−1)= (−1,−1,−1)
v0

v7

= (−1,0,0)
v3

= (1,0,0)

= (0,0,1)
v8

Mesh

OFF
9 4 0
-1 -1 -1
0 -1 0
1 -1 -1
1 0 0
1 1 -1
0 1 0

-1 1 -1
-1 0 0
0 0 1

4 0 1 8 7
4 1 2 3 8
4 8 3 4 5
4 7 8 5 6

Corresponding

OFF File
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Section 5.6

Software and Datasets
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MeshLab

allows editing of polygon meshes

supports Loop and Butterfly subdivision

can do mesh simplification

can save rendered output to image file in various formats

available for Microsoft Windows and Unix/Linux platforms

some Linux distributions have package for MeshLab (e.g., Fedora

package: meshlab)

home page: http://meshlab.sourceforge.net
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Geomview

interactive 3D mesh viewing program

can produce rendered output in PostScript format

fairly flexible, but user interface is not very intuitive

supports Microsoft Windows and Unix/Linux platforms

some Linux distributions have package for Geomview (e.g., Fedora

package: geomview)

home page: http://www.geomview.org
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Blender

3D content creation suite

supports modelling, shading, animation, rendering, imaging and

compositing, real-time 3D/game creation

implements Catmull-Clark subdivision surfaces for modelling

available for Microsoft Windows and Unix/Linux platforms

extremely powerful software, but might take some time to learn well

some Linux distributions have package for Blender (e.g., Fedora package:

blender)

home page: http://www.blender.org
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3-D Models

Stanford 3-D Scanning Repository:

http://graphics.stanford.edu/data/3Dscanrep

NASA 3-D Resources:

http://www.nasa.gov/multimedia/3d_resources/models.html

CNRS Mesh Watermarking Datasets:

http://liris.cnrs.fr/meshbenchmark

Princeton Suggestive Contour Datasets:

http://www.cs.princeton.edu/gfx/proj/sugcon/models
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Part 6

Subdivision Surfaces and Subdivision Wavelets
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Section 6.1

Subdivision Surfaces
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Subdivision Surfaces

In many applications, polygon meshes are used to model surfaces.

Modelling smooth surfaces with polygon meshes is problematic.

To obtain a reasonably good approximation to a smooth surface with a

polygon mesh, a very fine mesh with an extremely large number of faces

is typically required.

Subdivision solves this problem by representing smooth surfaces in terms

of a coarse mesh.

Subdivision provides a set of well-defined rules for producing successively

refined versions of a mesh.

Typically, these rules are chosen so that repeating the refinement process

ad infinitum produces, in the limit, a smooth (or mostly smooth) surface.
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Subdivision Surface Example

Control Mesh
Mesh After One Iteration

of Subdivision

Mesh After Two Iterations

of Subdivision

Mesh After Three

Iterations of Subdivision

Mesh After Four

Iterations of Subdivision
Limit Surface
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Subdivision

Subdivision is a general method for constructing a finer mesh from a

coarser one, through the introduction of new vertices (as well as edges

and faces).

The coarser mesh that serves as the starting point for subdivision is called

a control mesh (or base mesh).

The addition of new vertices to a mesh requires modifications to both the

topology (i.e., connectivity) and geometry (i.e., vertex positions) of the

mesh.

For this reason, each subdivision scheme requires the specification of two

rules:

1 a topologic refinement rule that describes how the connectivity of the

mesh is to be modified in order to incorporate the new vertices being added

to the mesh; and
2 a geometric refinement rule that describes how the geometry of the mesh

is to be changed in order to accommodate the new vertices being added

(where these modifications may affect the position of previously-existing

vertices).
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Subdivision (Continued 1)

In practice, the refinement rules are applied repeatedly until a mesh of the

desired fineness is obtained.

Provided that a subdivision scheme is well behaved, if the refinement rules

are applied repeatedly ad infinitum, the vertices in the mesh will converge,

in the limit, to a surface. Such a surface is called a limit surface.

A subdivision scheme is said to be interpolating if it always produces

refined meshes that pass through all of the vertices of the original control

mesh. Otherwise, the scheme is said to be approximating.

The (topologic and geometric) refinement rules employed in subdivision

are chosen in order to obtain refined meshes with certain desirable

properties.
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Subdivision (Continued 2)

Perhaps, most importantly, the refinement rules are chosen to ensure that

subdivision will always converge to a limit surface. Without a guarantee of

convergence, the subdivision process would likely produce very

poorly-behaved meshes.

In many applications, smooth meshes are highly desirable. Consequently,

the refinement rules are usually chosen to ensure that the limit surface be

as smooth as possible.

For example, in some computer graphics applications, at least C2

continuity is desirable.

If the same topologic and geometric rules are used in each iteration of a

subdivision scheme, the scheme is said to be stationary.

If the same geometric rule is used to calculate the vertices within a single

iteration of a subdivision scheme, the scheme is said to be uniform.
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Topologic Refinement Rule

The topologic refinement rule specifies how the connectivity of the mesh

is to be modified in order to incorporate new vertices into the mesh.

[Note: Such a rule does not say anything about the coordinates of

vertices, as this constitutes geometric information.]

Generally, there are two types of topologic rules: primal and dual. A primal

scheme splits faces. A dual scheme splits vertices.

Since a topologic rule in subdivision introduces new vertices such that

they are connected in a regular (i.e., highly structured) fashion, new

vertices will always have particular valences.

New vertices introduced in the interior will all have the same valence.

In the case of a triangle mesh, new vertices have a valence of six in the

interior.

In the case of a quadrilateral mesh, new vertices have a valence of four in

the interior.

A vertex with one of these special valence values is said to be regular.

A vertex that is not regular is said to be extraordinary.
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Examples of Topologic Refinement Rules

Two common topologic refinement rules are shown below pictorially.

→

Primal triangle quadrisection

→

Primal quadrilateral quadrisection
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Primal Triangle Quadrisection

Each edge in the original mesh is split in two, with a new vertex being

inserted at the location of the split. Each of these newly added vertices is

referred to as an edge vertex.

Each new vertex is then connected by an edge to each of the other new

vertices that originated from the same face (before edge splitting).

The preceding process is illustrated below.

−→ −→ −→

Observe that all new vertices added in the interior have valence six, while

all new vertices added on the boundary have valence four.

Note that no mention is made as to what the coordinates of the new

vertices are. They are essentially undefined. A geometric refinement rule

is needed to specify how to assign coordinates to the new vertices.
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Geometric Refinement Rule

The geometric refinement rule specifies how the geometry of the mesh

(i.e., the position of vertices) is to be changed in order to accommodate

the new vertices being added.

Clearly, the rule must specify how to determine the position of any new

vertices introduced by the topologic refinement rule.

In addition, the rule must indicate how to handle the old (i.e., previously

existing) vertices, which may be either modified or left unchanged.

If the rule leaves the old vertex positions unchanged, this leads to an

interpolating scheme.

The geometric refinement rule can be viewed as a filtering operation for

meshes.
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Geometric Refinement Rule (Continued)

The mask coefficients normally sum to one in order to correspond to

affine combinations of points (and achieve affine invariance).

Normally, in the case of meshes with boundary, the masks used to

determine the positions of boundary vertices depend only on boundary

vertices.

The rule is specified in terms of masks, which are often expressed

pictorially.
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Examples of Geometric Refinement Rules

Some examples of masks are shown below, expressed in pictorial form.

3
8

3
8

1
8

1
8

1−nβn

βn
βn

βn

βn

βn

βn

βn

βn = 1
n

[
5
8 −

(
3
8 + 1

4 cos 2π
n

)2
]

1
2

1
2

1
8

1
8

3
4
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Classification of Subdivision Schemes

Subdivision schemes can be classified using a variety of criteria:

1 the type of mesh can be handled by the scheme (e.g., triangle,

quadrilateral, triangle/quadrilateral, hexagonal);
2 whether the scheme is approximating or interpolating;
3 whether the scheme is primal (i.e., based on face splitting) or dual (i.e.,

based on vertex splitting);
4 the smoothness of the limit surface produced by the scheme (e.g., C0, C1,

or C2 continuity).
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Subdivision Schemes

Scheme Attributes

Linear triangle; interpolating; C0

Bilinear quadrilateral; interpolating; C0

Midedge quadrilateral; approximating; dual; C1

Doo-Sabin quadrilateral; approximating; dual; C1

Catmull-Clark polygon/quadrilateral; approximating; primal; C2 ev-

erywhere except at extraordinary points where C1

Loop triangle; approximating; primal; C2 everywhere except

at extraordinary points where C1

Butterfly triangle; interpolating; primal; C1 continuous every-

where except at extraordinary points

Modified Butterfly triangle; interpolating; primal; C1 continuous every-

where

Kobbelt
√

3 triangle; approximating; primal; C2 everywhere except

at extraordinary points where C1

Stam-Loop quadrilateral/triangle; approximating; primal?
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Section 6.1.1

Specific Examples of Subdivision Schemes
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Linear Subdivision

This subdivision scheme is defined for triangle meshes. It is primal and

interpolating.

This scheme is extremely simple.

With this scheme, the limit surface is always identical to the original control

mesh. Therefore, this surface is only guaranteed to be C0 continuous.

The topologic refinement rule employed is primal triangle quadrisection.

The geometric rule places each new edge vertex at the midpoint of the

edge (in the unrefined mesh) from which the new vertex was generated.

That is, if v denotes a new edge vertex associated with an edge in the

unrefined mesh having vertices v1 and v2, we choose v = 1
2
(v1 + v2).

This scheme is not particularly interesting, since the limit surface is simply

equal to the original control mesh.
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Linear Subdivision: Example

→
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Loop Subdivision

The Loop subdivision scheme was originally proposed in:

C. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis,

Department of Mathematics, University of Utah, 1987.

This scheme is defined for triangle meshes. It is approximating and

primal.

This scheme produces limit surfaces that are C2 continuous everywhere,

except at extraordinary vertices where C1 continuity is achieved.

The topologic refinement rule employed is primal triangle quadrisection.
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Loop Subdivision: Geometric Refinement

3
8

3
8

1
8

1
8

Mask for edge vertices

(nonboundary, regular)

1−nβn

βn
βn

βn

βn

βn

βn

βn

βn = 1
n

[
5
8
−
(

3
8
+ 1

4
cos 2π

n

)2
]

Mask for non-edge vertices of valence n

(nonboundary, regular, and extraordinary)

1
2

1
2

Mask for edge vertices

(boundary)

1
8

1
8

3
4

Mask for non-edge vertices

(boundary)
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Loop Subdivision: Variations on Loop Subdivision

Sometimes we may want to introduce creases in the smooth limit surface

resulting from subdivision. In this case, we treat the location of a crease

as a boundary and apply the appropriate boundary rule.

A modified version of Loop subdivision proposed by Warren and Weimer

chooses βn as

βn =

{
3
8n

n > 3
3
16

n = 3.

The resulting coefficients have “nicer” values than those in the original

Loop scheme.
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Loop Subdivision: Example

→ → →

→ →
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Butterfly Subdivision

The butterfly subdivision scheme was originally proposed in:

N. Dyn, D. Levin, and J. A. Gregory. A butterfly subdivision scheme for

surface interpolation with tension control. ACM Transactions on Graphics,

9(2):160–169, 1990.

This subdivision scheme is defined for triangle meshes. It is interpolating

and primal.

The limit surfaces produced by this scheme are C1 continuous

everywhere except at extraordinary vertices of valence k where k = 3 or

k > 7. At these points, the surface is only C0 continuous.

The topologic refinement rule employed is primal triangle quadrisection.

A tension parameter allows local control over smoothness. For example, it

can be used to form creases in the limit surface.
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Butterfly Subdivision: Geometric Refinement

The boundary cases are somewhat complicated and ignored here.

−w

−w

−w

1
2

1
2

2w

2w −w

tension parameter w nominally chosen as

w = 1
16

Mask for edge vertices

(regular)
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Butterfly Subdivision: Variants of Butterfly Subdivision

A variant of the butterfly subdivision scheme called the modified butterfly

scheme has been proposed in:

D. Zorin, P. Schroder, and W. Sweldens. Interpolating subdivision for

meshes with arbitrary topology. In SIGGRAPH 96, pages 189–192, 1996.

The limit surfaces produced are C1 continuous everywhere (including all

extraordinary points).
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Butterfly Subdivision: Example

→ → →

→ →
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Kobbelt
√

3 Subdivision

The Kobbelt
√

3 subdivision scheme was originally proposed in

L. Kobbelt.
√

3 subdivision. In Proc. of SIGGRAPH 2000, pages 103–112,

2000.

The scheme is defined for triangle meshes. It is primal and

approximating.

The limit surfaces produced by this method are C2 continuous

everywhere, except at extraordinary points where C1 continuity is

obtained.

The topologic refinement rule employed is sometimes referred to by the

name
√

3, and will be discussed in more detail shortly.

This subdivision scheme is better suited to adaptive refinement strategies

(since it easily allows for local refinement without cracks).

The number of vertices/faces increase more slowly with this subdivision

scheme than with those employing primal triangle quadrisection.
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√
3 Topologic Refinement

For triangle meshes, a more exotic topologic refinement rule is
√

3

refinement.

This topologic refinement scheme employs two slightly different rules,

where one is used in even iterations and one in odd iterations.

These two cases only differ in how they handle boundaries.

So, in the case of a mesh without a boundary, there is no difference in the

processing of even and odd iterations.

Iterations number from zero so that the first iteration is an even iteration.
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√
3 Topologic Refinement (Even Iteration)

In the interior of each face, a new vertex is added.

Then, each new vertex is connected by edges to each of its three

surrounding old vertices.

Lastly, every original edge that connects two old vertices is flipped, except

for boundary edges (which cannot be flipped).

This process is illustrated pictorially below.

→ → →

All new vertices in the interior that are not incident on a boundary face

have valence six.

New vertices in the interior that are incident on a boundary face have

valence between three and five.
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√
3 Topologic Refinement (Odd Iteration)

Odd iterations are handled in a similar way as even iterations, except for

how boundary edges are handled at the beginning of the refinement step.

Due to the manner in which even iterations are handled, in an odd

iteration, a triangle can have at most one edge on the boundary.

In odd iterations, for each triangle with an edge on the boundary, the

boundary edge is split twice inserting two new vertices along the edge.

Then, the two new vertices are connected to the old vertex on the side of

the triangle opposite the edge on which the two new vertices were

inserted.

The remainder of the refinement process is carried out identically to the

even iteration case.

This process is illustrated pictorially below.

→ → →
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√
3 Topologic Refinement

Every two iterations of the topologic refinement process result in each

original triangle being replaced by nine new triangles.

All new vertices in the interior that are not incident on a boundary face

have valence six.

Applying topologic refinement twice results in a uniform refinement with

trisection of every original edge.

Each triangle is split into nine new triangles.

A single iteration can be viewed as the “square root” of a three-fold split of

each edge, hence the name
√

3.
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Kobbelt
√

3 Subdivision: Geometric Refinement

New nonboundary vertex case: Let p be the new vertex inserted into

the face of the unrefined mesh having vertices p1, p2, p3. Then, we

choose p = 1
3
(p1 + p2 + p3) (i.e., p is inserted at the barycenter of its

associated face).

Old nonboundary vertex case: Let p be the old vertex to be updated,

and let p1, p2, . . . , pn be the (1-ring) neighbours of q in the unrefined

mesh. Then, we update p to be p′ = (1−nβn)p+βn ∑n
k=1 pk, where

βn = 1
9n

[
4−2cos

(
2π
n

)]
.

1
3

1
3

1
3

Mask for new nonboundary vertex

1−nβn

βn
βn

βn

βn

βn

βn

βn

Mask for old nonboundary vertex
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Kobbelt
√

3 Subdivision: Geometric Refinement (Continued)

In even iterations, the old boundary vertices are left unchanged.

In odd iterations, boundary vertices are handled as shown below.

4
27

19
27

4
27

Mask for old boundary vertex (odd

iteration)

1
27

16
27

10
27

Mask for new boundary vertex (odd

iteration)

10
27

16
27

1
27

Mask for new boundary vertex (odd

iteration)
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Kobbelt
√

3 Subdivision: Example

→ → →

→ →
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Catmull-Clark Subdivision

The Catmull-Clark subdivision scheme was originally proposed in:

E. Catmull and J. Clark. Recursively generated B-spline surfaces on

arbitrary topological meshes. Computer Aided Design, 10(6):350–355,

1978.

Although Catmull-Clark subdivision was historically one of the first

subdivision methods proposed, it is still used quite frequently in practice

today, especially in computer animation.

This method is a generalization of bicubic B-splines to arbitrary meshes.

That is, in the case of a regular quadrilateral mesh, Catmull-Clark

subdivision yields a bicubic B-spline surface.

This scheme can be applied to polygon meshes with any type of faces

(e.g., triangle, quadrilateral, triangle/quadrilateral, hexagonal).

The scheme is primal (i.e., face splitting) and approximating.

The limit surfaces produced have C2 continuity everywhere, except at

extraordinary points where only C1 continuity is achieved.

The subdivision process always produces quadrilateral faces, regardless

of the types of polygons in the control mesh.
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Catmull-Clark Subdivision: Topologic Refinement

A new vertex is inserted in each face. Such a vertex is called a face point.

Each edge is split in two by inserting a new vertex on the edge. Such a

vertex is called an edge point.

Then, each face point is connected by an edge to each of the edge points

associated with the same face.

This topologic refinement rule effectively splits an n-gon into n

quadrilaterals.

For this reason, subdivision always produces quadrilateral meshes.

For a quadrilateral input mesh, this topologic refinement rule is simply

equivalent to primal quadrilateral quadrisection.

The first iteration of subdivision may introduce new extraordinary

vertices. All subsequent iterations, however, introduce only regular (i.e.,

valence four) vertices in the interior of the mesh.
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Catmull-Clark Subdivision: Topologic Refinement (Continued)

→ → →

→ → →

→ → →
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Catmull-Clark Subdivision: Geometric Refinement

Face point: A face point v is chosen as the average of the vertices

defining its associated face. That is, a face point v associated with the old

face having vertices v0,v1, . . . ,vn−1 is given by v = 1
n ∑

n−1
k=0 vk.

Edge point (nonboundary case): An edge point v is chosen as the

average of the midpoint of the old edge and the average of the two new

face points of the faces sharing the edge. Suppose that an edge point v

originated from splitting an old edge that has vertices v0,v1 and is incident

on the old faces associated with face points f0, f1. Then,

v = 1
2

[
1
2
(v0 + v1)+ 1

2
( f0 + f1)

]
= 1

4
(v0 + v1 + f0 + f1).

Edge point (boundary case): An edge point is chosen as the midpoint of

its corresponding old edge. That is, for an edge point v originating from

splitting an old edge with vertices v0,v1, we choose v = 1
2
(v0 + v1).
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Catmull-Clark Subdivision: Geometric Refinement (Continued 1)

Old vertex (nonboundary case): Consider an old vertex v with valence n

in the old mesh. Let v0,v1, . . . ,vn−1 be the old vertices that are 1-ring

neighbours of v (before refinement). Let f0, f1, . . . , fn−1 be the face points

of all faces incident on v. Then, the new value v′ for the old vertex is given

by v′ = n−3
n
v+ 1

n
q+ 2

n
r, where q = 1

n ∑
n−1
k=0 fk, and r = 1

n ∑
n−1
k=0

1
2
(v+ vk)

(i.e., q is the average of the new face points of all faces adjacent to the old

vertex point, and r is the average of the midpoints of all old edges incident

on the old vertex point). [Alternatively, one can show that

v′ = n−2
n
v+ 1

n2

(
∑
n−1
k=0 vk +∑

n−1
k=0 fk

)
.]

Old vertex (boundary case): The old vertex v with the neighbouring

boundary vertices v0,v1 has its new value v′ chosen as

v′ = 3
4
v+ 1

8
(v0 + v1).
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Catmull-Clark Subdivision: Geometric Refinement (Continued 2)

Face Point

Nonboundary Edge

Point

Boundary Edge

Point

Note: These diagrams have a somewhat different form from the geometric

refinement masks presented elsewhere. (Open circles are new points

added by subdivision.)
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Catmull-Clark Subdivision: Geometric Refinement (Continued 3)

Old Nonboundary Vertex

Old Boundary

Vertex

Note: These diagrams have a somewhat different form from the geometric

refinement masks presented elsewhere. (Open circles are new points

added by subdivision.)
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Catmull-Clark Subdivision: Geometric Refinement (Continued 4)

Although all new faces introduced by subdivision are quadrilaterals, these

faces are not necessarily planar.

In some situations, non-planar faces may be undesirable. For example,

some rendering engines may not properly handle non-planar faces, which

can lead to undesirable artifacts appearing in the rendered image.

Since the control mesh can be a polygon mesh with any types of faces, it

is not practical to enumerate all possible cases of geometric masks in

pictorial form.

In the case that the mesh to be refined is a quadrilateral mesh (which is

always the case after the first iteration of subdivision), the masks have the

form shown on the next slide.
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Catmull-Clark Subdivision: Geometric Refinement Masks

1
4

1
4

1
4

1
4

Face Point

1
16

1
16

1
16

1
16

3
8

3
8

Edge Point

(Interior)

1
4n2

3
2n2

1
4n2

1
4n2

1
4n2

3
2n2

3
2n2

3
2n2

1
4n2

1
4n2

3
2n2

3
2n2

3
2n2

1− 7
4n

Old Vertex (Interior)

1
2

1
2

Edge Point (Boundary)

1
8

1
8

3
4

Old Vertex (Boundary)
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Catmull-Clark Subdivision: Example

→ → →

→ →
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Comparison of Limit Surfaces for Various Schemes

Control Polyhedron Linear Loop

Kobbelt
√

3 Butterfly Catmull-Clark
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Section 6.1.2

More on Subdivision
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Subdivision and Affine Invariance

recall, for any affine transformation T and any finite set {pi} of points,

T

(

∑
i

aipi

)
= ∑

i

aiT (pi) where ∑
i

ai = 1

(i.e., affine transformations commute with affine combinations)

let M denote polygon mesh, S denote subdivision operator, and T denote

affine transformation

subdivision having property of affine invariance means

T (S(M)) = S (T (M))
(i.e., applying affine transformation T followed by subdivision yields same

result as applying subdivision followed by affine transformation T )

affine invariance extremely desirable (in practical sense, means

subdivision result coordinate-system independent)

in order for subdivision to be affine invariant, geometric refinement rules

must employ masks that correspond to affine combinations (i.e., mask

coefficients sum to one)

not coincidence that all subdivision methods discussed have geometric

refinement masks whose coefficients sum to one
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Subdivision and Boundaries

if geometric refinement masks for boundary vertices depend only on

boundary vertices, border in refined mesh is function of only boundary

vertices in control mesh

suppose mesh M cut into two along some subset E of its edges to form

new meshes M1 and M2 and then subdivision applied independently to

each of M1 and M2 to produce refined meshes M′
1 and M′

2, respectively

if subdivision scheme such that geometric refinement of boundary vertices

depends only on boundary vertices, then M′
1 and M′

2 must fit together

perfectly (except possibly near start/end of cut) (i.e., have positional

continuity) along boundary corresponding to cut (along edge set E)

above property of positional continuity is highly desirable in many

situations

not coincidence that all subdivision schemes considered are such that

geometric refinement of boundary vertices depends only on boundary

vertices

above property of positional continuity along boundary can be exploited to

generate surfaces with creases
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Surfaces With Creases

often, want to represent surface that is mostly smooth, but has sharp

creases along some specific edges

treat crease edges as boundary edges

since masks for boundary cases normally do not depend on

non-boundary vertices positional (i.e., G0) continuity maintained

ensures positional continuity but will generally tend not to be smooth

in this way, creases in surface can be generated
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Crease Example

Control Mesh Limit Surface

subdivision with no sharp edges (i.e., classic subdivision)
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Crease Example (Continued 1)

Control Mesh Limit Surface

subdivision with all edges from two opposing faces marked as sharp
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Crease Example (Continued 2)

Control Mesh Limit Surface

subdivision with all four edges of single face marked as sharp
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Crease Example (Continued 3)

Control Mesh Limit Surface

subdivision with all edges in control mesh marked as sharp
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Position and Tangent Masks

In the case of an approximating scheme, each iteration of subdivision

results in a repositioning of old vertices.

For a particular vertex in the mesh, we might want to determine where the

vertex will be positioned in the limit (i.e., after an infinite number of

iterations of subdivision are applied).

As it turns out, the limit position of a vertex can be easily found by taking

an appropriate linear combination of nearby mesh vertices. This linear

combination can be represented pictorially as a position mask.

Similarly, we might want to determine a tangent vector to the limit surface

at the limit position of a vertex.

A tangent vector can also be computed using an appropriate linear

combination of nearby mesh vertices. This linear combination can be

represented pictorially as a tangent mask.

Using two tangent masks, we can determine two tangent vectors, which

can then be used to calculate a surface normal (via a vector cross

product).
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Loop Subdivision: Position Masks

αn
αn

αn

αn

αn

αn

αn

αn =
(

3
8βn

+n
)−1

1−nαn

Interior

1
6

1
6

2
3

Boundary
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Loop Subdivision: Tangent Masks

τn,3
τn,5

τn,2

τn,n−1

τn,0

τn,1

τn,4

τn,k = cos 2πk
n

τn,2
τn,4

τn,1

τn,n−2

τn,n−1

τn,0

τn,3

τn,k = cos 2πk
n
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Section 6.2

Subdivision Wavelets
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Primal Subdivision as Splitting and Averaging

Subdivision iteratively refines a control polyhedron M0 to produce

increasingly faceted polyhedra M1,M2, . . . that converge to the limit

surface M∞.

In each subdivision step, the vertices of Mℓ+1 are computed as affine

combinations of the vertices of Mℓ.

The refinement process that transforms Mℓ to Mℓ+1 can be viewed as

consisting of two steps: 1) splitting and 2) averaging.

In the splitting step, each face of Mℓ is split into k new faces, yielding the

intermediate mesh M̂ℓ+1. In the case of primal triangle quadrisection, a

face is split into k = 3 new faces by introducing a new vertex at the

midpoint of each edge.

In the averaging step, the vertex positions of Mℓ+1 are computed as affine

combinations of the vertices of M̂ℓ+1.

Using this splitting and averaging view of subdivision, we can show that

M∞ can be expressed parametrically using M0 as the domain of the

parameterization.
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Subdivision-Surface Parameterization: Basic Idea

We establish a correspondence between the points on Mℓ and Mℓ+1.

Then, we use this correspondence to track the movement of an arbitrary

point originating on M0 from one subdivision level to the next, as

subdivision is applied repeatedly.

As the number of iterations approaches infinity, the point converges to a

point on the limit surface.

The above process establishes a correspondence between points on M0

and points on the limit surface M∞.

The parametric representation of M∞ immediately follows from this

mapping from a point originally on M0 to a point on M∞.

· · ·

S0(x)S0(x) S1(x) S(x)

M̂1M0 M1
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Subdivision-Surface Parameterization: Point Correspondence

Sℓ(x)

Point in Mℓ Point in M̂ℓ+1 Point in Mℓ+1

averaging

v̂ℓ+1,β0
v̂ℓ+1,β1

vℓ+1,β0
vℓ+1,β1

splitting

v̂ℓ+1,β2
vℓ+1,β2

Sℓ+1(x) = ∑2
k=0 αkvℓ+1,βk

Sℓ(x) = ∑2
k=0 αk v̂ℓ+1,βk

Suppose that Sℓ(x) lies in triangle (v̂ℓ+1,β0
, v̂ℓ+1,β1

, v̂ℓ+1,β2
) of M̂ℓ+1 with

barycentric coordinates (α0,α1,α2). That is,

Sℓ(x) = ∑2
k=0 αkv̂ℓ+1,βk

.

Then, a corresponding point Sℓ+1(x) in Mℓ+1 can be chosen as

Sℓ+1(x) = ∑2
k=0 αkvℓ+1,βk

.

Note that {v̂ℓ+1,βk
}2
k=0 and {vℓ+1,βk

}2
k=0 are not generally the same except

for linear subdivision.

The above establishes a correspondence between points on Mℓ and

Mℓ+1.
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Subdivision-Surface Parameterization

We select

S0(x) = x for x ∈M0.

Then, using the relationship between Sℓ(x) and Sℓ+1(x) from the previous

slide, we can express M∞ parametrically as

S(x) = lim
ℓ→∞

Sℓ(x).

Observe that the domain of the above parameterization is M0.

As we shall see, the above subdivision-surface parameterization leads to

a wavelet representation for meshes.
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Approximation Spaces and Scaling Functions

Theorem. For any subdivision scheme, and for any ℓ ≥ 0, given the

vertices {vℓ,k} of the mesh Mℓ, there exist scalar-valued functions {φℓ,k}
defined on M0 such that

S(x) = ∑k vℓ,kφℓ,k(x).

The {φℓ,k} are called scaling functions.

Theorem. The scaling functions φℓ,k are refinable, in the sense that each

φℓ,k can be expressed in terms of {φℓ+1,k} as

φℓ,k = ∑k akφℓ+1,k,

where {ak} is a scalar sequence.

From the scaling functions, we can define a sequence {Vℓ} of spaces,

called approximation spaces, as

Vℓ = span {φℓ,k}.
Using the refinability of the scaling functions, we can show that the {Vℓ}
are nested as

V0 ⊂V1 ⊂V2 ⊂ . . . .
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Wavelets Spaces and Wavelet Functions

Since Vℓ ⊂Vℓ+1, there must exist some subspace Wℓ of Vℓ+1 such that

Vℓ+1 =Vℓ⊕Wℓ.

Thus, we can associate with {Vℓ} another sequence of spaces {Wℓ}.

The {Wℓ} are called wavelet spaces.

For each wavelet space Wℓ, we can find a basis {ψℓ,k}.

The {ψℓ,k} are called wavelet functions.
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Wavelet Analysis and Synthesis Operators

A surface s ∈Vℓ can be represented in two different ways.

Since s ∈Vℓ, s has an expansion in terms of the basis of Vℓ given by

s(x) = ∑k vℓ,kφℓ,k(x). (1)

Furthermore, as Vℓ =Vℓ−1 ⊕Wℓ−1, we can also expand s in terms of the

bases for Vℓ−1 and Wℓ−1 to obtain

s(x) = ∑k vℓ−1,kφℓ−1,k(x)+∑kwℓ−1,kψℓ−1,k(x). (2)

In (2), the first summation corresponds to a coarse approximation of s

that lies in Vℓ−1, while the second summation is associated with fine

detail (missing from the coarse approximation) that lies in Wℓ−1.

The {wℓ,k} are called wavelet coefficients.

Note that the {vℓ,k} and {wℓ,k} are vectors.

The transformation from (1) to (2) is a wavelet analysis operator.

The transformation from (2) to (1) is a wavelet synthesis operator.

Subdivision is essentially equivalent to a wavelet synthesis operator with

all wavelet coefficients set to the zero vector.
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Mallat Algorithm

Wavelet analysis operator: Given {vℓ,k}, we can compute the

corresponding {vℓ−1,k} and {wℓ−1,k} by filtering operations.

Wavelet synthesis operator: Given {vℓ−1,k} and {wℓ−1,k}, we can

compute the corresponding {vℓ,k} by a filtering operation.
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Section 6.3

Applications of Subdivision Surfaces and Wavelets
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Applications of Subdivision Surfaces

Since subdivision is essentially an interpolation process for surfaces, it

can be used in any application that needs to model surfaces.

Some applications of subdivision surfaces include:

multimedia

animation

gaming

biomedical computing

computer-aided design and manufacturing

geometric modelling

finite element analysis

computational fluid dynamics

scientific visualization
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Applications of Subdivision Wavelets

Subdivision wavelets provide a multiresolution representation for surfaces

of arbitrary topological type.

Therefore, any application that must deal with surfaces can potentially

benefit from subdivision wavelets.

Some applications of subdivision wavelets include:

polygon mesh compression

continuous level-of-detail control

compression of functions defined on surfaces

multiresolution editing of surfaces

surface optimization

numerical solution of integral and differential equations (involving functions

defined on surface of arbitrary topological type)
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Part 7

Applications in Signal Processing
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Section 7.1

Signal Coding

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 448



Signal Coding

signal coding: seek alternative representations of signals with some

specific purpose in mind

signal compression: goal to use representation of signal with less

redundancy so that fewer bits required to specify signal

coding can be either lossless or lossy

lossless: no information loss (i.e., reconstructed signal identical to original

signal)

lossy: information loss (i.e., reconstructed signal only approximation to

original)

less space for storage (e.g., on disk or in memory) and less

bandwidth/time for transmission

two general approaches to signal compression: 1) time/spatial-domain

coding and 2) transform coding

time/spatial-domain coding: samples of signal coded directly

transform coding case to be discussed shortly

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 449



Measuring Coding Efficiency

rate: measure of number of bits needed to represent signal

distortion: measure of approximation error in reconstructed (i.e.,

decoded) signal

for any given rate, want to minimize distortion

generally, distortion tends to increase as rate decreases

rate can be expressed in number of ways

compression ratio: ratio of original signal size in bits to compressed

signal size in bits

normalized bit rate: reciprocal of compression ratio

bit rate: compressed signal size (in bits/sample)

many distortion measures possible

often distortion measured by mean-squared error (MSE)

in case of lossless coding, distortion always zero

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 450



Mean-Squared Error and Peak-Signal-to-Noise Ratio

For a signal x and its reconstruction x̃ sampled at the points in Λ, the

mean-squared error (MSE) is defined as

MSE = |Λ|−1 ∑
k∈Λ

(x̃(k)− x(k))2 .

The MSE is typically expressed in terms of the peak-signal-to-noise

ratio (PSNR) as defined by

PSNR = 20log10

(
M√
MSE

)
,

where M is the theoretical maximum absolute error. (For integer data,

M = 2P−1, where P is the number of bits/sample).

An increase in the PSNR (in dB) by ∆p corresponds to a decrease in the

MSE by the (multiplicative) factor 10∆p/10. (For example, a 1 dB increase

in the PSNR corresponds to a reduction in the MSE by a factor of

101/10 ≈ 1.2589.)

Note that, as the MSE increases, the PSNR decreases.
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Transform/Subband Coding

with transform coding, transform applied to samples of signal to be coded

then, resulting transform coefficients coded

transform employed in attempt to obtain data that is easier to code

efficiently

commonly used for lossy coding

reversible integer-to-integer transforms growing in popularity for lossless

coding

for lossy coding, transform/subband coders tend to have better coding

efficiency for fixed complexity
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Transform/Subband Coding

quantization discards transform-coefficient information deemed to be

insignificant

in case of lossless coding, quantization is not performed

entropy coding is lossless

entropy coding exploits statistical model of data in order to code symbols

with higher probability using fewer bits

only potential for information loss due to quantization (assuming that

transform in encoder and decoder are exact inverses, even in

finite-precision arithmetic)
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Uniform Scalar Quantization

midtread uniform scalar quantization rounds real number to integer

multiple of some unit of precision called step size

quantization essentially represents real number x by approximation Q(x),
where

Q(x) = ∆(sgnx)

⌊ |x|
∆

+
1

2

⌋

quantization step size ∆ controls granularity (i.e., coarseness) of rounding

(e.g., if ∆ = 1, quantization rounds to nearest integer)

classification rule: maps real number x to integer quantization index k as

given by

k =
Q(x)

∆
= (sgnx)

⌊ |x|
∆

+
1

2

⌋

reconstruction rule: maps integer quantization index k to real

reconstruction value y as given by

y = Q(x) = k∆

for example: if x = 5 and ∆ = 4, then k =
⌊

5
4
+1/2

⌋
= ⌊7/4⌋ = 1 and

y = 1(4) = 4
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Uniform Scalar Quantization Transfer Characteristic

−2∆

−∆

∆
2

∆

2∆

3∆

Q(x)

−3∆

7∆
2

3∆
2

5∆
2

x
− 3∆

2
− 5∆

2
− 7∆

2
− ∆

2
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Structure of Transform/Subband Coder

Transform

Forward

Quantizer

Coefficient

Transform
Entropy

Encoder

x

Signal

Original

y

Signal

Encoded

Encoder

Coefficient

Transform

Dequantizer

Entropy

Decoder Transform

Inversey

Signal

Encoded

x̃

Reconstructed

Signal

Decoder
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Spectrum of Typical Signal

typically, most signals tend to be lowpass in nature

most information at low frequencies

amount of information decreases rapidly as frequency increases

information not uniformly distributed across all frequencies

example:

ω

|x̂(ω)|
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Subband Coding

forward and inverse transforms are analysis and synthesis sides of PR

maximally-decimated filter bank, respectively

PR system employed so that transform does not itself introduce distortion

(except possibly due to finite-precision effects)

subband transform decomposes signal into frequency bands

exploit nonuniform distribution of energy in spectrum of signal

not all subband signals have same energy content

for example, for transform derived from one-dimensional m-channel UMD

filter bank with ideal frequency-selective filters, if original signal

bandlimited to baseband frequencies in range [− π
m
, π
m
], only 0th channel

would have any energy content; thus, only 1
m

of samples need to be coded

in practice, however, most subbands have some energy content, but not

evenly distributed; typically lower frequency bands have most of energy
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Subband Coding (Continued)

subband coding used for many types of data such as speech, audio,

image, video, and ECG

for speech/audio/image/video, number of subbands, filter bandwidths, bit

allocation chosen to exploit perceptual properties of human

auditory/visual system
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Model for Subband Coder

+

+

↓M1 Q1H1(z)
v1[n]

↑M1

q′1[n]
G1(z)

...
...

H0(z) ↓M0 Q0 ↑M0 G0(z)

Hm−1(z) ↓Mm−1 Qm−1 ↑Mm−1 Gm−1(z)
vm−1[n] q′m−1[n]

v0[n] q′0[n]

w′
m−1[n]

w′
1[n]

w′
0[n]

...
...

...
...

...

x[n] y[n]

m channels

kth channel downsampled/upsampled by Mk

analysis filters {Hk}m−1
k=0

synthesis filters {Gk}m−1
k=0

{Qk}m−1
k=0 quantizers
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Subband Coding Gain

interested in energy compacting ability of filter bank, which is often

quantified by coding gain

coding gain defined as ratio between reconstruction error variance

obtained by quantizing signal directly to that obtained by quantizing

corresponding subband coefficients using optimal bit-allocation strategy

consider m-channel filter bank; let αk denote reciprocal of downsampling

factor in kth channel, {hk}m−1
k=0 denote analysis filter impulse responses,

and {gk}m−1
k=0 denote synthesis filter impulse responses

subband coding gain GSBC given by

GSBC =
m−1

∏
k=0

(
αk

AkBk

)αk

,

where

Ak = ∑
l∈Zd

∑
p∈Zd

hk[l]hk[p]ρxx[p− l], Bk = αk ∑
l∈Zd

g2
k [l],

and ρxx is autocorrelation of signal to be coded
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Image Coding

subband coding very commonly used for images

two-dimensional filter banks employed

most often, linear-phase FIR systems used

frequently, octave-band filter bank (i.e., wavelet transform)

wavelet transforms used in many coding systems, including JPEG-2000

image-compression standard (i.e., ISO/IEC 15444), FBI

fingerprint-compression standard

usually MSE used to measure distortion

MSE does not always correlate well with distortion as perceived by human

visual system
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Subband Coding Gain Revisited

The coding gain formula requires the assumption of a statistical model for

the signal to be coded.

In practice, for the case of images, we typically assume a first-order

autoregressive (AR) model.

Two variants of this model are commonly used: 1) separable and

2) isotropic.

In these cases, in the formula for the subband coding gain, ρxx is given by

ρxx[n] =

{
ρ‖n‖

l1 for separable model

ρ‖n‖
l2 for isotropic model,

where the correlation coefficient ρ satisfies |ρ| ≤ 1.

Typically, ρ is chosen to satisfy ρ ∈ [0.90,0.95].
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Choice of Wavelet System

separability preferred for reasons of computational efficiency

orthogonality beneficial as it ensures numerical stability and facilitates

selection of most important transform coefficients

linear phase critical to avoid phase distortion (which can lead to badly

distorted image edges)

if orthogonality and linear phase not both possible, usually orthogonality is

dropped

high coding gain desirable
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Characterizing Distortion

In a transform/subband coder, we are representing the signal x to be

coded as

x = ∑
k∈I

ak fk,

where the { fk}k∈I are the primal basis functions and the {ak}k∈I are the

transform coefficients.

Suppose now that we quantize the transform coefficients, by replacing the

{ak}k∈I with their quantized versions {ãk}k∈I , where ãk = ak +qk and qk
corresponds to quantization error.

In so doing, we obtain the quantized signal x̃, where

x̃ = ∑
k∈I

ãk fk = ∑
k∈I

(ak +qk) fk.

Thus, the error q introduced by quantization is given by

q = ∑
k∈I

qk fk.

In other words, the quantization error is a weighted sum of the primal

basis functions { fk}k∈I .
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Characterizing Distortion (Continued)

For a wavelet transform, the { fk}k∈I are essentially sampled versions of

approximations of the primal scaling and wavelet functions.

Thus, the basis functions have a shape resembling the primal scaling and

wavelet functions.

Consequently, the quantization error q is approximately a weighted sum of

translated and dilated versions of the primal scaling and wavelet functions.

For this reason, the shape of the primal scaling and wavelet functions

determine the nature of the artifacts introduced by compression.

This point is illustrated in the coding example provided on the slides that

follow.
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Image Coding Example (64:1 Compression)

Original Haar (26.55 dB)

Twin Dragon (24.83 dB) CDF 9/7 (27.68 dB)
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Image Coding Example (64:1 Compression) (Continued)

Original Haar

Twin Dragon CDF 9/7
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Haar Scaling and Wavelet Functions
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Twin-Dragon Scaling and Wavelet Functions

Scaling Function Wavelet Function
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CDF 9/7 Primal Scaling and Wavelet Functions
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LeGall 5/3 Primal Scaling and Wavelet Functions
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Case Study: JPEG-2000 Image Compression Standard

REFER TO SLIDE PRESENTATION ON JPEG 2000.
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Section 7.2

Signal Denoising
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Signal Denoising

noise often concentrated in particular frequency ranges (i.e., noise is often

colored, not white)

can be convenient to perform noise removal based on subband

decomposition

for example, if noise known to correspond to high frequencies, might

attenuate subband signals associated with those frequencies

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 475



Section 7.3

Transmultiplexers for Communications
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Applications of Transmultiplexers

useful in both single-user or multiple-user communication systems (e.g.,

single user utilizing multiple subchannels, multiple users each using one

channel)

used in frequency division multiple access (FDMA) systems; orthogonal

frequency division multiplexing (OFDM) particularly popular; used in code

division multiple access (CDMA) and time division multiple access

(TDMA) systems

for FDMA, analysis/synthesis filters chosen to be frequency selective

(approximating ideal lowpass/bandpass/highpass filters)

for TDMA, analysis/synthesis filters chosen to have simple one-tap

impulses responses

for CDMA, analysis/synthesis filters spread in both time and frequency
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Multichannel Communication Systems

in practice, transmultiplexer used to multiplex several signals over shared

communication channel

synthesis side (on left) multiplexes M signals {xk}M−1
k=0 onto single signal y

analysis side (on right) demultiplexes y into M signals {x̃k}M−1
k=0

+

+

...
...

...

y[n]

xM−1[n]

...
...

...

HM−1(z) ↓M

↓M

↓MH0(z)

H1(z)

GM−1(z)↑M

↑M G1(z)

G0(z)↑M
x̃0[n]

x̃1[n]

x̃M−1[n]

x1[n]

x0[n]
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Two-Channel Transmultiplexer FDMA Example

+

↑ 2

↑ 2 G0(z)

G1(z)

↓ 2

↓ 2

H0(z)

H1(z)

u0[n]

u1[n]

v0[n]

v1[n] w1[n]

w0[n]y[n]

x1[n]

x0[n] x̃0[n]

x̃1[n]

π−π

1

ω

ĝ0(ω)

− π
2

π
2

2

π−π

1

ω

ĝ1(ω)

2

− π
2

π
2 π−π

ω

ĥ0(ω)

2

− π
2

π
2

1

π−π

1

ω

ĥ1(ω)

2

− π
2

π
2
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Two-Channel Transmultiplexer FDMA Example (Continued)
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Multicarrier Modulation

with multicarrier modulation, transmitted data split into several bit

streams and used to modulate several carriers

instead of transmitting single wideband signal over one channel, transmit

set of narrowband signals

used in various wireless LAN/MAN standards such as 802.11a, 802.15.3,

802.16a (WiMAX); used for high-speed data transmission over twisted

pair channel of digital subscriber line (e.g., ADSL)

multicarrier modulation has several advantages over classical

single-carrier system

adaptation of data rates of subchannels based on channel/noise

characteristics (channel noise usually colored)

can avoid transmitting in corrupted subchannels

can transmit more important data in subchannels with high SNR

facilitates more effective coding scheme to improve robustness to

transmission errors

channel effects can be more efficiently modelled (e.g., may be able to

model transfer function of single narrowband channel as constant)
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Multicarrier Modulation (Continued 1)

Ideal Channel
Real Channel

Equalizer Per Channel Equalization

Real Channel
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Multicarrier Modulation (Continued 2)

input signal x split into M different data streams {xk}M−1
k=0

all data streams are multiplexed together in single signal y which is sent

over communication channel

received signal y undergoes demultiplexing to obtain data streams

{x̃k}M−1
k=0

data streams combined together to form output signal x̃

if system designed properly (i.e., PR property), x̃ = x

+

+

...
...

...

y[n]

xM−1[n]

...
...

...

HM−1(z)

↓M

H0(z)

H1(z)

GM−1(z)↑M

↑M G1(z)

G0(z)↑M
x̃0[n]

x̃1[n]

x̃M−1[n]

x1[n]

x0[n]

↓M

↓M

Split Combine
x[n] x̃[n]
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Section 7.4

Other Applications
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Adaptive Systems

filter banks and multirate systems used in adaptive filtering applications

(e.g., inverse filtering, room acoustics modelling, echo cancellation,

equalization)

adaptive filtering done in subbands

often shorter filters can be used

some subbands may be ignored if contain little information
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Analog Voice Privacy Systems

digital voice data to be sent over analog channel with reasonable

reproduction quality and some privacy

in transmitter:

1 split signal into M subbands (via filters and downsamplers)
2 divide each subband signal into segments in time domain
3 permute subbands and time segments and recombine to generate

scrambled signal (with synthesis filter bank)
4 D/A conversion

in receiver:

1 A/D conversion
2 split signal into subbands (via filters and downsamplers)
3 unshuffle subbands and time segments by applying inverse permutation

(from that used in transmitter)
4 recombine subband signals with synthesis side of filter bank
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Part 8

Applications in Geometry Processing
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Section 8.1

Computer Graphics
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Transformations and Graphics Pipeline

Coordinates

Object

Modelling

Transformation

Coordinates

World

Transformation

Viewing Coordinates Projection

Transformation

Coordinates

Clip

Coordinates Coordinates

Window

Transformation

Device

Normalized

Camera

Clipping and

Perspective

Division

Viewport

World coordinate system: The coordinate system for the scene in which

various geometric objects are placed.

Object coordinate system: The coordinate system for defining a particular

geometric object, which may be different from the world coordinate

system.

Camera coordinate system: The coordinate system relative to which the

scene is viewed.

Window coordinate system: The coordinates used to address pixels in the

graphics window.
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Projection in Practice

In a practical computer graphics systems, a projection is not actually

performed.

This is because the projection would discard depth information which is

needed for clipping and hidden object removal.

The projection matrix used in practice simply consists of transformation to

position and orient the viewing plane appropriately along with, in the case

of perspective projection, a warping.

The actual projection itself, which would “flatten” the 3-D viewing volume

onto the viewing plane is omitted.
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Projection in Practice: Orthographic Case

A commonly used orthographic projection maps the viewing volume

[l,r]× [b, t]× [n, f ] to the cube [−1,1]× [−1,1]× [−1,1] and is given by

the matrix

P(l,r, t,b,n, f ) =





2
r−l

0 0 r+l
l−r

0 2
t−b

0 t+b
b−t

0 0 2
n− f

f+n
n− f

0 0 0 1




.

The above matrix is the one used by the glOrtho function in OpenGL.
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Projection in Practice: Perspective Case

Suppose that the eye is at the origin looking in the negative z direction.

We can specify a perspective projection by the parameters: θ, the field of

view in the y direction; a, the aspect ratio (which determines the field of

view in the x direction); n, the z coordinate of the near clipping plane; and

f , the z coordinate of the far clipping plane.

The matrix associated with the above transform is given by

P =





c
a

0 0 0

0 c 0 0

0 0
f+n
n− f

2 f n
n− f

0 0 −1 0



 where c = cotθ/2.

The above matrix is the one used by the gluPerspective function in

OpenGL.
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Practical Use of Subdivision: Rendering

In addition to the vertices of a mesh and their connectivity, to render a

mesh, we need surface normals.

In practice, given a control mesh, we would typically render the

corresponding surface using a process like the following.

Apply several iterations of subdivision to the control mesh in order to

produce a refined mesh.

Push the vertices in refined mesh to their limit positions using position

masks.

Using tangent masks, compute two tangent vectors at each point on the

limit surface corresponding to a modified vertex position.

From the two tangent vectors, compute a corresponding surface normal

(via a vector cross product).

Equipped with the vertex positions and normals from above, we then

proceed to render the surface.

We might, for example, use a rendering engine such as OpenGL in

conjunction with a Blinn-Phong lighting model.
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Part 9

Signal Processing Library (SPL)
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Signal Processing Library (SPL)

signal processing library (SPL) developed to provide basic multirate signal

processing capabilities

uses namespace SPL

provides support for: one- and two-dimensional arrays; one- and

two-dimensional sequences; downsampling, upsampling, convolution;

polyphase decomposition/recomposition; lowpass, highpass, bandpass

filter design;

has other miscellaneous functionality (e.g., arcball, CGAL utilities)

let $SPL_TOPDIR denote top level directory of SPL installation (which

might be something like /home/frodo/public/elec486/SPL)

header files in $SPL_TOPDIR/include directory; library files in

$SPL_TOPDIR/lib directory; demo files in $SPL_TOPDIR/share/SPL/demo

directory

all header files in SPL directory; so to include SPL header file called

file.hpp must use include directive like:

#include <SPL/file.hpp>

user manual available in both HTML and PDF formats
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Header Files

Header File Description

Array1.hpp one-dimensional array class template (Array1)

Array2.hpp two-dimensional array class template (Array2)

Sequence1.hpp one-dimensional sequence class template

(Sequence1)

Sequence2.hpp two-dimensional sequence class template

(Sequence2)

filterDesign.hpp basic lowpass, highpass, and bandpass filter de-

sign

Timer.hpp timer class (Timer)

math.hpp math functions (e.g., absVal, sqr, sinc,

radToDeg, degToRad)

audioFile.hpp functions for loading/saving audio data in WAV for-

mat

pnmCodec.hpp functions for loading/saving image data in PNM

format
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Header Files (Continued)

Header File Description

bitStream.hpp bit stream I/O classes

arithCoder.hpp binary and M-ary arithmetic coder classes

mCoder.hpp M-coder (binary) arithmetic coder classes

version.hpp library version information
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Array1 Class Template

one-dimensional array of elements of arbitrary type

uses reference counting and lazy copying

Array1 declared as:

template <class T> class Array1;

T: type of elements in array

provides all of basic operations that one would expect of one-dimensional

array class
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Array1 Example

1 #include <iostream >
2 #include <SPL/Array1.hpp>
3 #include <SPL/audioFile.hpp>
4 #include <cmath >
5

6 typedef SPL::Array1 <double > Array;
7

8 int main(int argc , char** argv)
9 {

10 const int sampRate = 44100;
11 const int numSamps = 5 * sampRate;
12 const double sampPer = 1.0 / sampRate;
13 const std::string outFile("sine.wav");
14 Array samps(numSamps);
15 for (int i = 0; i < numSamps; ++i) {
16 samps(i) = 0.5 * (1.0 * sin(2.0 * M_PI * 440.0 *
17 sampPer * i));
18 }
19 if (SPL::saveAudioFile(outFile , sampRate , samps)) {
20 std::cerr << "cannot make audio file\n";
21 return 1;
22 }
23 return 0;
24 }
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Array2 Class Template

two-dimensional array of elements of arbitrary type

uses reference counting and lazy copying

Array2 declared as:

template <class T> class Array2;

T: type of elements in array

provides all of basic operations that one would expect of two-dimensional

array class
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Sequence1 Class Template

sequence defined on finite range of integers

Sequence1 declared as:

template <class T> class Sequence1;

T: type of elements in sequence

similar to one-dimensional array of size N, except that indices do not have

to number starting at zero; generally indices number from L to L+N−1

inclusive; also, many additional operations provided

some operations that involve more than one sequence may require

particular relationship between domain of sequences (e.g., domains must

be same)
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Members Types

Member Type Description

ElemType type of element in sequence

Iterator random-access iterator type

ConstIterator const random-access iterator type
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Member Functions

Construction, Destruction, and Assignment

Member Name Description

constructor construct

destructor destroy

operator= assign

Iterators
Member Name Description

begin get iterator referring to first element

end get iterator referring to one-past last element
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Member Functions

Compound Assignment

Member Name Description

operator+= add quantity to sequence

operator-= subtract quantity from sequence

operator*= multiply sequence by quantity

operator/= divide sequence by quantity

Initializers and Accessors
Member Name Description

getStartInd get index of first element

getEndInd get index of last element plus one

getSize get number of elements

operator() access element

clear delete all elements

fill set all elements to particular value
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Non-Member Functions

Operators

Name Description

operator>> stream extractor (i.e., input)

operator<< stream inserter (i.e., output)

operator+ addition

operator- subtraction

operator* multiplication

operator/ division
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Non-Member Functions

Various Operations

Name Description

subsequence extract subsequence

add add sequences (domains may differ)

translate translate (i.e., shift) sequence

upsample upsample sequence

downsample downsample sequence

convolve convolve two sequences

polyphaseSplit compute polyphase decomposition

polyphaseJoin compute polyphase recomposition

Filter Design

Name Description

lowpassFilter design lowpass filter

highpassFilter design highpass filter

bandpassFilter design bandpass filter
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Sequence1 Example

1 #include <iostream >
2 #include <SPL/Sequence1.hpp>
3

4 int main(int argc , char** argv)
5 {
6 const double data[] = { 0.5, 0.5 };
7 SPL::Sequence1 <double > h(0, 2, &data[0]);
8 SPL::Sequence1 <double > x;
9 if (!(std::cin >> x)) {

10 return 1;
11 }
12 std::cout
13 << "x * h:" << SPL::convolve(x, h,
14 SPL::ConvolveMode::full) << "\n"
15 << "2 x: " << 2.0 * x << "\n"
16 << "x[n-1]: " << SPL::translate(x, 1) << "\n"
17 << "down2 x: " << SPL::downsample(x, 2)
18 << "\n"
19 << "up2 x: " << SPL::upsample(x, 2) << "\n";
20

21 return 0;
22 }
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Sequence2 Class Template

sequence defined on finite rectangular grid

Sequence2 declared as:

template <class T> class Sequence2;

T: type of elements in sequence

similar to two-dimensional array, except that indices do not have to

number starting at zero; also, many additional operations provided

some operations that involve more than one sequence may require

particular relationship between domain of sequences (e.g., domains must

be same)
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Timer Class

provides mechanism for making timing measurements

can start and stop timers and query elapsed time measured by timer
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Member Functions

Constructors, Destructor, and Assignment

Name Description

constructor construct

destructor destroy

operator= assign

Timing Functions

Name Description

start start timer

stop stop timer

get get elapsed time
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Timer Example

1 #include <iostream >
2 #include <cmath >
3 #include <SPL/Timer.hpp>
4

5 int main(int argc , char** argv)
6 {
7 SPL::Timer timer;
8

9 timer.start(); // Start the timer.
10

11 // Perform some computation.
12 double sum = 0.0;
13 for (int i = 0; i < 100000; ++i)
14 sum += exp(i / 50000.0) *
15 cos(2.0 * M_PI / 100.0 * i);
16 std::cout << "sum: " << sum << "\n";
17

18 timer.stop(); // Stop the timer.
19

20 // Get the elapsed time.
21 double t = timer.get();
22 std::cout << "elapsed time: " << t << "\n";
23

24 return 0;
25 }
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Part 10

Computational Geometry Algorithms Library (CGAL)
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Computational Geometry Algorithms Library (CGAL)

very powerful open-source C++ library for geometric computation

used by many commercial organizations such as British Telecom, Boeing,

France Telecom, GE Health Care, The MathWorks

very well documented (extensive manual, more than 4000 pages)

provides data types for representing various geometric objects (e.g.,

triangle/quadrilateral/polygon meshes) and algorithms for manipulating

these data types

provides support for polygon meshes (e.g., triangle/quadrilateral meshes)

can read/write polygon mesh data in various common formats

built-in support for several subdivision schemes

by using CGAL, can greatly simplify amount of effort required to

implement methods using subdivision surfaces or wavelet transforms for

triangle meshes

available for Microsoft Windows and Unix/Linux platforms

some Linux distributions already have packages for CGAL (e.g., Fedora

packages: CGAL, CGAL-devel, CGAL-demos-source)

home page: http://www.cgal.org
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CGAL (Continued)

most relevant material (in CGAL 3.6.1 manual):

Chapter 25 titled “3D Polyhedral Surfaces”

Chapter 50 titled “3D Surface Subdivision Methods”

Polyhedron_3 class for representing polyhedrons (employs half-edge

data structure)

several functions for implementing subdivision schemes:

Loop_subdivision (Loop subdivision)

Sqrt3_subdivision (Kobbelt
√

3 subdivision)

PTQ (primal triangle quadrisection with user-defined geometric refinement

rule)

Sqrt3 (
√

3 topologic refinement with user-defined geometric refinement

rule)

found bugs in Loop and Kobbelt
√

3 subdivision implementations in CGAL

3.5.1:

Loop subdivision handles extraordinary vertices incorrectly

Kobbelt
√

3 subdivision updates old vertices incorrectly
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CGAL Information Resources

CGAL Project Home Page:

http://www.cgal.org

CGAL Manuals (various versions in PDF and HTML formats):

http://www.cgal.org/Manual

CGAL Manual (latest version in HTML format):

http://www.cgal.org/Manual/latest

CGAL Discussion List:

https://lists-sop.inria.fr/sympa/arc/cgal-discuss
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Handles, Iterators, and Circulators

handle: type that references elements stored in some data structure (i.e.,

type can be dereferenced to obtain access to element)

for data structure storing elements of type T, examples of handles include:

simple pointer T*, iterator with value type T

example of handles: types used to access vertices, facets, halfedges of

polygon mesh

iterators are very useful, but intended for use with linear sequences of

elements (i.e., sequences with well-defined first and last element)

often want iterator-like functionality for circular sequences of elements

circulator: type that allows iteration over elements in circular sequence of

elements

example of circulator: type to allow iteration over all 1-ring neighbours of

vertex in polygon mesh

circulators come in const and mutable (i.e., non-const) versions (mutable

circulators can be used to modify referenced element, while const

circulator cannot)
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Section 10.1

Geometry Kernels
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Real Number Types

float: single-precision floating point type

double: double-precision floating point type

Interval_nt: interval-arithmetic type

MP_Float: arbitrary-precision floating-point type
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MP_Float Class

MP_Float

arbitrary-precision floating-point type

additions, subtractions, and multiplications computed exactly

does not provide division or square root (which is not typically problematic

as division rarely needed and square root almost never used by any sane

person in geometric computation)

no roundoff error

no overflow error unless astronomically large numbers involved (arbitrary

length mantissa; integral-valued double exponent can overflow, but

extremely unlikely)

very slow, can require considerable memory (unbounded)
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Interval_nt Class

declared as: template <bool M = true> Interval_nt<M>

M indicates if safe rounding mode enabled

if safe rounding mode enabled, rounding mode always restored to round

towards zero (required by C++); must be careful if safe rounding mode not

used

when safe rounding mode not used, faster but need to worry about things

like compiler options like -frounding-math

typedef Interval_nt<false> Interval_nt_advanced; (i.e.,

Interval_nt_advanced is Interval_nt with safe rounding mode

disabled)

interval-arithmetic number type (internally uses floating-point type)

represents interval [a,b]
every arithmetic operation performed twice, once while rounding towards

−∞ to produce result a′ and once while rounding towards +∞ to produce

result b′

true answer must lie on interval [a′,b′]
approximately twice of time cost of built-in floating-point type

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 520



Geometry Kernels

represent geometric objects (e.g., point, line, line segment, ray, plane,

triangle, circle, )

points in 2 or 3 dimensions

provide operations on geometric objects (e.g., intersection, composition)

allow certain conditions to be tested involving geometric objects (e.g.,

collinear, coplanar, equality)
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Point Representation

Cartesian kernels: coordinates represented in Cartesian form

homogeneous kernels: coordinates represented in homogeneous form
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Simple_cartesian and Cartesian Classes

geometry kernel that represents coordinates in Cartesian form

declaration:

template <class F> Simple_cartesian <F>

declaration:

template <class F> Cartesian <F>

F field number type (used to represent coordinates)

F often chosen as double

Cartesian is reference counted version of Simple_cartesian, which

allows more efficient copying of objects

Cartesian probably preferred if frequent copying occurs
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Simple_homogeneous and Homogeneous Classes

geometry kernel that represents coordinates in homogeneous form

declaration:

template <class R> Simple_homogeneous <R>

declaration:

template <class R> Homogeneous <R>

R ring number type used for representing numerator and denominator of

rational coordinates

Homogeneous is reference counted version of Simple_homogeneous,

which allows more efficient copying of objects

Homogeneous probably preferred if frequent copying occurs
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Constructions

produces new geometric object from other objects

result is not one of a small number of enumerable values

result is numerical (e.g., involves real numbers)

create line segment from two points

create triangle from three points

create plane from three (non-coplanar) points

create circle from three (non-collinear) points

find intersection of line and plane

exact construction: any newly created geometric objects resulting from

construction are exactly represented (i.e., no roundoff/overflow error)

inexact construction: newly created geometric objects are not guaranteed

to be exactly represented (e.g., due to roundoff error)

extremely important to be aware of whether kernel being used provides

exact constructions; affects how you write code!!!
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Predicates

does not involve any newly computed numerical data

result is one of very small set of values, such as boolean or enumerated

type

typically used to make decisions (i.e., affect control flow)

are three points collinear (true or false)

are four points coplanar (true or false)

what is position of point relative to oriented line (left of, right of, or on)

what is position of point relative to oriented circle (inside, outside, or on)

exact predicate: result of test is guaranteed to be correct (i.e., result

determined as if by exact computation)

inexact predicate: result of test may be incorrect (e.g., due to

roundoff/overflow error)

extremely important to be aware of whether kernel being used provides

exact predicates; affects how you write code!!!
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Kernel Selection

coordinate representation

exact or inexact constructions

exact or inexact predicates

in practice, almost always require exact predicates

if code well designed, need for exact constructions can usually be avoided

for T chosen as any numeric type that has roundoff/overflow error (e.g.,

float, double, long double), the following kernels do not provide exact

constructions or exact predicates:

Simple_cartesian<T>

Cartesian<T>

Simple_homogeneous<T>

Homogeneous<T>
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Filtered_kernel Class

class to convert kernel with inexact predicates into one with exact

predicates

declared as:

template <class K> Filtered_kernel <K>

K is kernel from which to make filtered kernel

predicates of K replaced by predicates using numeric type Interval_nt

if interval arithmetic can yield reliable answer, result used

otherwise, exception thrown and caught by class and predicate using

MP_Float used

for exact predicates with Simple_cartesian<double>, use:

Filtered_kernel<Simple_cartesian<double>> or equivalently

Exact_predicates_inexact_constructions_kernel

Exact_predicates_inexact_constructions_kernel very commonly

used
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Writing Custom Exact Predicates

exact predicate cannot at any point rely on a computation that is not exact

no floating point arithmetic (since it has roundoff error)

no integer arithmetic that might overflow

no inexact constructions

no inexact predicates

Filtered_predicate may be helpful
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Filtered_predicate Class

adapter for predicate functors for producing efficient exact predicates

declared as:

template <class EP, class FP, class CE, class CF>

Filtered_predicate <EP, FP, CE, CF>

EP is exact predicate (typically uses arbitrary-precision type such as

MP_Float)

FP is filtering predicate (typically uses interval-arithmetic type like

Interval_nt)

CE and CF are function objects for converting arguments of unfiltered

predicate to types used by exact and filtering predicates

must be careful about operation used in unfiltered predicate being

plugged into Filtered_kernel

for kernel ring number type RT, can safely use addition, subtraction,

multiplication

can also safely use sign
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Execution of Filtered Predicate

execution of code for filtered predicate functor proceeds as follows:

1 invoke unfiltered (i.e., original) predicate functor for numeric type

CGAL::Interval_nt<false>

if any operation on interval arithmetic type yields uncertain result (e.g.,

CGAL::sign), exception is thrown, with thrown exception being caught by

filtered predicate functor
2 if no exception thrown (so that unfiltered functor returns normally), return

return value of unfiltered functor (and we are done); otherwise, continue
3 invoke unfiltered predicate functor for numeric type CGAL::MP_Float
4 return return value of unfiltered functor
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Filtered Predicate Example

1 #include <CGAL/Cartesian.h>
2 #include <CGAL/MP_Float.h>
3 #include <CGAL/Interval_nt.h>
4 #include <CGAL/Filtered_predicate.h>
5 #include <CGAL/Cartesian_converter.h>
6
7 template <class K>
8 struct Test_orientation_2 {
9 typedef typename K::RT RT;

10 typedef typename K::Point_2 Point_2;
11 typedef typename K::Orientation result_type;
12 result_type operator()(const Point_2& p, const Point_2& q,
13 const Point_2& r) const {
14 RT prx = p.x() - r.x();
15 RT pry = p.y() - r.y();
16 RT qrx = q.x() - r.x();
17 RT qry = q.y() - r.y();
18 return CGAL::sign(prx * qry - qrx * pry);
19 }
20 };
21
22 typedef CGAL::Cartesian <double> Kernel;
23 typedef CGAL::Cartesian <CGAL::Interval_nt <false>> Ia_kernel;
24 typedef CGAL::Cartesian <CGAL::MP_Float > Exact_kernel;
25 typedef CGAL::Filtered_predicate <
26 Test_orientation_2 <Exact_kernel >,
27 Test_orientation_2 <Ia_kernel >,
28 CGAL::Cartesian_converter <Kernel , Exact_kernel >,
29 CGAL::Cartesian_converter <Kernel , Ia_kernel >
30 > Test_orientation;
31
32 int main() {
33 double big = 1e50;
34 Kernel::Point_2 p(0.0, 0.0), q(1.0, 1.0), r(2.0 * big, 2.0 * big);
35 Test_orientation orientation;
36 std::cout << orientation(p, q, r) << "\n";
37 }
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Filtered Predicate Example (Continued)

for example on previous slide, execution of filtered predicate functor

proceeds as follows:

1 invoke

Test_orientation_2<Cartesian<CGAL::Interval_nt<false>>>

functor with points ([0,0], [0,0]), ([1,1], [1,1]),
([2 ·1050,2 ·1050], [2 ·1050,2 ·1050])

2 CGAL::sign called for [−1.55414 ·1085,1.55414 ·1085], which results in

exception being thrown
3 exception caught by filtered predicate code
4 invoke Test_orientation_2<Cartesian<CGAL::MP_Float>> functor

with points (0,0), (1,1), (2 ·1050,2 ·1050)
5 CGAL::sign called for 0, resulting in return value of 0
6 filtered predicate returns 0

critically important that RT used for all arithmetic operations and not

double (or float); otherwise, arithmetic computation done using wrong

numeric type, which will prevent predicate from being correct (i.e., exact)
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Section 10.2

Polygon Meshes
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Polyhedron_3 Class

represents a polyhedral surface (i.e., polygon mesh), which consists of

vertices, edges, and facets and incidence relationship amongst them

each edge represented by pair of halfedges

declaration for Polyhedron_3 class:

template <class Kernel ,
class PolyhedronItems = CGAL::Polyhedron_items_3 ,
template <class T, class I>

class HalfedgeDS = CGAL::HalfedgeDS_default ,
class Alloc = CGAL_ALLOCATOR(int)>

class Polyhedron_3;

Kernel is geometric kernel, which specifies such things as how points are

represented and provides basic geometric operations/predicates

(CGAL::Cartesian<double> most likely to be used in this course)

PolyhedronItems_3 specifies data types for representing vertices and

facets (in most, but not all cases, default will suffice)

other template parameters for Polyhedron_3 beyond scope of course
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Polyhedron_3 Type Members

Basic Types

Type Description

Vertex vertex type

Halfedge halfedge type

Facet facet type

Point_3 point type (for vertices)

Handles
Type Description

Vertex_const_handle const handle to vertex

Vertex_handle handle to vertex

Halfedge_const_handle const handle to halfedge

Halfedge_handle handle to halfedge

Facet_const_handle const handle to facet

Facet_handle handle to facet

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 536



Polyhedron_3 Type Members (Continued 1)

Iterators
Type Description

Vertex_const_iterator const iterator over all vertices

Vertex_iterator iterator over all vertices

Halfedge_const_iterator const iterator over all halfedges

Halfedge_iterator iterator over all halfedges

Facet_const_iterator const iterator over all facets

Facet_iterator iterator over all facets

Edge_const_iterator const iterator over all edges (ev-

ery other halfedge)

Edge_iterator iterator over all edges (every

other halfedge)
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Polyhedron_3 Type Members (Continued 2)

Circulators
Type Description

Halfedge_around_vertex_const_circulator const circulator of halfedges

around vertex (CW)

Halfedge_around_vertex_circulator circulator of halfedges

around vertex (CW)

Halfedge_around_facet_const_circulator const circulator of halfedges

around facet (CCW)

Halfedge_around_facet_circulator circulator of halfedges

around facet (CCW)

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 538



Polyhedron_3 Function Members

Size
Name Description

size_of_vertices get number of vertices

size_of_halfedges get number of halfedges

size_of_facets get number of facets

Iterators
Name Description

vertices_begin iterator over all vertices

vertices_end past-the-end iterator

halfedges_begin iterator over all halfedges

halfedges_end past-the-end iterator

facets_begin iterator over all facets

facets_end past-the-end iterator

edges_begin iterator over all edges

edges_end past-the-end iterator
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Polyhedron_3 Function Members (Continued 1)

Combinatorial Predicates
Name Description

is_closed true if no border edges (no boundary)

is_pure_triangle true if all facets are triangles

is_pure_quad true if all facets are quadrilaterals
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Polyhedron_3 Function Members (Continued 2)

Border Halfedges

Name Description

normalized_border_is_valid true if border is normalized

normalize_border sort halfedges such that non-

border edges precede border

edges (i.e., normalize border)

size_of_border_halfedges get number of border halfedges

(border must be normalized)

size_of_border_edges get number of border edges

(border must be normalized)

border_halfedges_begin halfedge iterator starting with

border edges (border must be

normalized)

border_edges_begin edge iterator starting with border

edges (border must be normal-

ized)
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Polyhedron_3::Facet

represents facet (i.e., face) in polyhedral surface

optional information: plane equation, reference to incident halfedge that

points to facet

circulator either forward or bidirectional
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Facet Function Members

Name Description

halfedge get incident halfedge that points to facet

facet_begin get circulator of halfedges around facet (CCW)

facet_degree get degree of facet (i.e., number of edges on

boundary of facet)

is_triangle true if facet is triangle

is_quad true if facet is quadrilateral
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Polyhedron_3::Vertex

represents vertex in polyhedral surface

optional information: point, reference to incident halfedge that points to

vertex

circulator is either forward or bidirectional
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Vertex Function Members

Queries
Name Description

vertex_begin circulator of halfedges around vertex (CW)

vertex_degree get valence of vertex

is_bivalent true if vertex has valence two

is_trivalent true if vertex has valence three

Queries (Optional)

Name Description

point get point associated with vertex

halfedge get incident halfedge that points to vertex
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Polyhedron_3::Halfedge

each halfedge directly associated with one vertex and one facet, referred

to as incident vertex and incident facet, respectively

incident vertex is vertex at terminal end of halfedge

incident facet is facet to left of halfedge

halfedge contains handle (i.e., pointer) for next halfedge around its left

facet in CCW direction and handle (i.e., pointer) for its opposite halfedge

this allows for efficient iteration around halfedges of facet in CCW direction

and around halfedges of vertex in CW direction

vertex

halfedge

facet

Incident Vertex

Incident Facet
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Halfedge Function Members

Adjacency Queries

Name Description

opposite get opposite halfedge

next next halfedge around facet (CCW)

prev previous halfedge around facet (CCW)

next_on_vertex next halfedge around vertex (CW)

prev_on_vertex previous halfedge around vertex (CW)

Circulators
Name Description

vertex_begin circulator of halfedges around vertex (CW)

facet_begin circulator of halfedges around facet (CCW)
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Halfedge Function Members

Queries
Name Description

is_border true if border halfedge

vertex_degree get valence of incident vertex

is_bivalent true if incident vertex has valence two

is_trivalent true if incident vertex has valence three

facet_degree get degree of incident facet

is_triangle true if incident facet is triangle

is_quad true if incident facet is quadrilateral

Incident Vertex/Facet
Name Description

vertex get handle for incident vertex of halfedge

facet get handle for incident facet of halfedge
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Adjacency Example
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Polyhedron_3 I/O

operator<< and operator>> are overloaded for I/O

read and write polygon mesh data in OFF format
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CGAL Gotchas

be careful about operations on Polyhedron_3 that invalidate handles,

iterators, or circulators

be careful about orientations (CCW versus CW)
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CGAL Example Programs

1 Mesh Generation (meshMake.cpp). Create a mesh corresponding to a

tetrahedron. Output the resulting mesh in Object File Format (OFF).

2 Mesh Information (meshInfo.cpp). Input a mesh in Object File Format

(OFF). Calculate and print some information about the mesh (e.g., triangle

or quad mesh, the number of vertices, edges, faces, halfedges, the

minimum, maximum, and average vertex valence).

3 Mesh Subdivision (meshSubdivide.cpp). Input a mesh in Object File

Format (OFF). Subdivide the mesh using the specified method and

number of levels (where the Loop and Kobbelt
√

3 methods are

supported). Output the refined mesh in Object File Format (OFF).
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Part 11

Open Graphics Library (OpenGL)

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 553



Open Graphics Library (OpenGL)

application programming interface (API) for high-performance high-quality

2-D and 3-D graphics

most widely adopted 2-D and 3-D graphics API in industry

bindings for numerous programming languages (i.e., C, Java, Fortran)

window-system and operating-system independent

available on all mainstream systems (e.g., Microsoft Windows, Linux/Unix,

Mac OS X)

vendor-neutral, controlled by independent consortium with many

organizations as members (including, not surprisingly, companies like

Intel, NVIDIA, and AMD)

official web site: http://www.opengl.org

OpenGL ES for embedded systems (e.g., mobile phones, game consoles,

personal navigation devices, personal media players, automotive systems,

settop boxes)
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OpenGL (Continued)

comprised of several hundred functions

geometric primitives consist of points, lines, polygons, images, and

bitmaps

arrange geometric primitives in 3-D space and select desired vantage

point for viewing composed scene

calculate colors of objects (e.g., by explicit assignment, lighting, texture

mapping, or combination thereof)

convert mathematical description of objects to pixels on screen (i.e.,

rasterization)

can eliminate hidden parts of objects (depth buffering), perform

antialiasing, and so on

only concerned with rendering

no mechanism provided for creating windows (which is window-system

dependent)

no mechanism for obtaining user input (e.g., via mouse or keyboard)

another library must be used in conjunction with OpenGL in order to

manage windows, user input, and so on
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Section 11.1

OpenGL Utility Toolkit (GLUT)
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OpenGL Utility Toolkit (GLUT)

simple windowing API for OpenGL

intended to be used with small to medium sized OpenGL programs

language binding for C

window-system independent

supports most mainstream operating systems (Microsoft Windows,

Linux/Unix)

provides window management functionality (e.g., creating/destroying

windows, displaying/resizing windows, and querying/setting window

attributes)

allows for user input (e.g., via keyboard, mouse)

routines for drawing common wireframe/solid 3-D objects such as sphere,

torus, and well-known teapot model

register callback functions to handle various types of events (e.g., display,

resize, keyboard, special keyboard, mouse, timer, idle) and then loop

processing events

open-source implementation of GLUT called Freeglut is available from

http://sourceforge.net/projects/freeglut
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GLUT

first, we focus on GLUT library
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Event-Driven Model

event-driven model: flow of program determined by events (e.g., mouse

clicks, key presses)

application making use of event-driven model performs some initialization

and then enters an event-processing loop for duration of execution

each iteration of event-processing loop does following:

1 wait for event
2 process event

many libraries for building graphical user interfaces (GUIs) employ

event-driven model

GLUT uses event-driven model
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Structure of GLUT Application

1 initialize GLUT library by calling glutInit

2 set display mode (via glutInitDisplay)

3 perform any additional initialization such as:

create windows (via glutCreateWindow)

register callback functions for handling various types of events (e.g., via

glutDisplayFunc, glutReshapeFunc, glutKeyboardFunc)

setup initial OpenGL state (e.g., depth buffering, shading, lighting, clear

color)

4 enter main event-processing loop by calling glutMainLoop [Note that

glutMainLoop never returns.]
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GLUT Header Files

OpenGL and GLUT header files in directory GL

to use GLUT, need to include glut.h

#include <GL/glut.h>

header file glut.h also includes all necessary OpenGL header files (e.g.,

gl.h, glu.h, glext.h)
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Event Types

Event Type Description

display window contents needs to be displayed

overlay display overlay plane contents needs to be displayed

reshape window has been resized

keyboard key has been pressed

mouse mouse button has been pressed or released

motion mouse moved within window while one or more

buttons pressed

passive motion mouse moved within window while no buttons

pressed

visibility visibility of window has changed (covered versus

uncovered)

entry mouse has left or entered window

special keyboard special key has been pressed (e.g., arrow keys,

function keys)
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Event Types (Continued)

Event Type Description

spaceball motion spaceball translation has occurred

spaceball rotate spaceball rotation has occurred

button box button box activity has occurred

dials dial activity has occurred

tablet motion tablet motion has occurred

tablet button table button has been pressed or released

menu status menu status change

idle no event activity has occurred

timer timer has expired
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Functions

Initialization
Function Description

glutInit initialize GLUT library

glutInitWindowSize set initial window size for glutCreateWindow

glutInitWindowPosition set initial window position for

glutCreateWindow

glutInitDisplayMode set initial display mode

Beginning Event Processing

Function Description

glutMainLoop enter GLUT event-processing loop
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Functions (Continued 1)

Window Management

Function Description

glutCreateWindow create top-level window

glutPostRedisplay mark current window as needing to be redisplayed

glutSwapBuffers swaps buffers of current window if double buffered

(flushes graphics output via glFlush)

Callback Registration

Function Description

glutDisplayFunc sets display callback for current window

glutReshapeFunc sets reshape callback for current window

glutKeyboardFunc sets keyboard callback for current window

glutSpecialFunc sets special keyboard callback for current window

glutTimerFunc registers timer callback to be triggered in specified

number of milliseconds
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Functions (Continued 2)

State Retrieval
Function Description

glutGet retrieves simple GLUT state (e.g., size or position

of current window)

glutGetModifiers retrieve modifier key state when certain callbacks

generated (i.e., state of shift, control, and alt keys)

Geometric Object Rendering

Function Description

glutSolidSphere render solid sphere

glutWireSphere render wireframe sphere

glutSolidCube render solid cube

glutWireCube render wireframe cube

glutSolidTorus render solid torus

glutWireTorus render wireframe torus
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Minimal GLUT Application: Source Code

1 // Create a window that is cleared to a particular color
2 // when drawn.
3

4 #include <GL/glut.h>
5

6 void display() {
7 glClearColor(0.0, 1.0, 1.0, 0.0);
8 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
9 glutSwapBuffers ();

10 }
11

12 int main(int argc , char** argv) {
13 glutInit(&argc , argv);
14 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
15 glutInitWindowSize(512, 512);
16 glutCreateWindow(argv[0]);
17 glutDisplayFunc(display);
18 glutMainLoop();
19 return 0;
20 }
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Minimal GLUT Application: Graphics Output
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Almost Minimal GLUT Application

1 // draw a light green square
2

3 #include <GL/glut.h>
4

5 void display() {
6 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
7 glBegin(GL_QUADS);
8 glColor3f(0.5, 1.0, 0.5);
9 glVertex3f(-0.5, -0.5, 0.0);

10 glVertex3f( 0.5, -0.5, 0.0);
11 glVertex3f( 0.5, 0.5, 0.0);
12 glVertex3f(-0.5, 0.5, 0.0);
13 glEnd();
14 glutSwapBuffers ();
15 }
16

17 int main(int argc , char** argv) {
18 glutInit(&argc , argv);
19 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
20 glutInitWindowSize(512, 512);
21 glutCreateWindow(argv[0]);
22 glutDisplayFunc(display);
23 glutMainLoop();
24 return 0;
25 }
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Other Useful GLUT References

course web page has copy of GLUT manual in PDF format

http://www.opengl.org/resources/libraries/glut
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Section 11.2

OpenGL
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Function Naming Conventions

all OpenGL functions begin with gl

some OpenGL commands have numerous variants that differ in number

and type of parameters

such commands are named using following pattern:

generic name N T V

where generic name is generic name of function, N is digit (i.e., 2, 3, 4)

indicating number of components, T is one or two letters indicating data

type of components, V is either nothing or letter v to indicate component

data specified as individual values or as vector (i.e., pointer to array),

respectively
Number N

2 (x,y)
3 (x,y,z)
4 (x,y,z,w)

Data Type T

b byte ub unsigned byte

s short us unsigned short

i int ui unsigned int

f float d double

glVertex3f: specific version of generic glVertex function that takes

three float parameters

glVertex3fv: specific version of generic glVertex function that takes

single pointer to array containing three float values
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Specifying Vertices

vertices are building block for all geometric primitives (e.g., lines, triangles,

quadrilaterals, polygons)

vertex specified with glVertex* command

although homogeneous coordinates employed, some functions allow

specification of point using less than 4 coordinates (e.g., glVertex2f,

glVertex3f)

when two coordinates x and y given, refer to homogeneous coordinates

(x,y,0,1) (e.g., glVertex2f)

when three coordinates x, y, and z given, refer to homogeneous

coordinates (x,y,z,1) (e.g., glVertex3f)

for example, each of following refer to point (1, 2, 0) :

glVertex2f(1.0, 2.0);
glVertex3f(1.0, 2.0, 0.0);
glVertex4f(2.0, 4.0, 0.0, 2.0);
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Specifying Geometric Primitives

all geometric primitives are specified by vertices

use glVertex* to specify vertices

use glBegin and glEnd to specify how vertices to be interpreted (e.g.,

individual points, pairs of vertices specifying line segments, triples of

vertices specifying triangles)

for example, code used to specify single point:

glBegin(GL_POINTS);
glVertex3f(1.0, 2.0, 3.0);
glEnd();

for example, code used to specify triangle:

glBegin(GL_TRIANGLES);
glVertex3f(0.0, 0.0, 0.0);
glVertex3f(1.0, 0.0, 0.0);
glVertex3f(1.0, 1.0, 0.0);
glEnd();
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Specifying Geometric Primitives (Continued)

Value Meaning

GL_POINTS individual points

GL_LINES pair of vertices interpreted as line segments

GL_LINE_STRIP series of connected line segments

GL_LINE_LOOP series of connected line segments with segment

added between last and first vertices

GL_TRIANGLES triples of vertices interpreted as triangles

GL_TRIANGLE_STRIP linked strip of triangles

GL_TRIANGLE_FAN linked fan of triangles

GL_QUADS quadruples of vertices interpreted as quadrilater-

als

GL_QUAD_STRIP linked strip of quadrilaterals

GL_POLYGON boundary of simple convex polygon
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Additional Properties for Geometric Primitives

each vertex has several properties in addition to position, including: color,

normal vector, texture coordinates, material properties

to specify color, use glColor*

to specify normal vector, use glNormal*

do not place calls to other functions other than ones specified above

inside glBegin and glEnd

for example, code used to specify triangle:

glBegin(GL_TRIANGLES);
glNormal3f(0.0, 0.0, 1.0); // set current normal (0,0,1)
glColor3f(1.0, 0.0, 0.0); // set current color to red
glVertex3f(0.0, 0.0, 0.0);
glColor3f(0.0, 1.0, 0.0); // set current color to green
glVertex3f(1.0, 0.0, 0.0);
glColor3f(0.0, 0.0, 1.0); // set current color to blue
glVertex3f(1.0, 1.0, 0.0);
glEnd();
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State Management

glEnable and glDisable used to enable and disable certain

features/functionality
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State Management

Value Meaning

GL_CULL_FACE if enabled, cull polygons based on their winding in

window coordinates (e.g., do not render backs of faces)

GL_DEPTH_TEST if enabled, do depth comparisons and update

depth buffer

GL_LIGHT_i include light i in evaluation of lighting equation

GL_LIGHTING if enabled, use current lighting parameters to com-

pute vertex color

GL_LINE_SMOOTH if enabled, draw lines with antialiasing

GL_NORMALIZE if enabled, normal vectors specified with

glNormal scaled to unit length after transfor-

mation

GL_POINT_SMOOTH if enabled, draw points with antialiasing

GL_RESCALE_NORMAL if enabled, normal vectors specified with

glNormal (assumed to be of unit length) scaled

to unit length after transformation (only works for

certain types of transformations)
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Point Size and Line Width

for point, can specify point size (in pixels) with glPointSize

for line segment, can specify line width (in pixels) with glLineWidth

for example, code like:

glPointSize (10);
glBegin(GL_POINTS);
glVertex3f(0.0, 0.0, 0.0);
glVertex3f(1.0, 0.0, 0.0);
glEnd();

for example, code like:

glLineWidth (10);
glBegin(GL_LINES);
glVertex3f(0.0, 0.0, 0.0);
glVertex3f(1.0, 0.0, 0.0);
glEnd();
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Transformations

Coordinates

Object

Coordinates Coordinates

Clip

Coordinates Coordinates

Window

Transformation

Device

Normalized

Eye

Clipping and

Perspective

Division

Viewport

pobj pclippeyeMmview

Modelview

Transformation

Projection

Transformation

Mproj

vertices specified in object coordinates

peye = Mmviewpobj

pclip = Mprojpeye

eye positioned at origin looking in direction of negative z axis (with up

direction in direction of positive y axis)

use gluLookAt to simulate different eye position and orientation
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Modelview and Projection Transformations

Function Description

glMatrixMode set current matrix

glLoadIdentity load current matrix with identity matrix

gluPerspective multiply current matrix by perspective projection

matrix

gluOrtho multiply current matrix by orthographic projection

matrix

gluOrtho2D multiply current matrix by 2-D orthographic projec-

tion matrix

gluLookAt multiply current matrix by viewing transformation

matrix

glRotatef multiply current matrix by rotation matrix

glScalef multiply current matrix by scaling matrix

glTranslatef multiply current matrix by translation matrix

glPushMatrix push current matrix on current matrix stack

glPopMatrix pop current matrix from current matrix stack
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Composition of Transformations

functions that multiply current matrix always postmultiply (i.e., multiply on

right)

let M denote modelview matrix

let pobj and peye denote point in object and eye coordinates, respectively

modelview matrix updating example:

1 glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

M = I
2 glRotatef(45.0, 0.0, 0.0, 1.0);

M = IRz(45) = Rz(45)
3 glTranslatef(1.0, 2.0, 3.0);

M = Rz(45)T (1,2,3)

so, we have peye = Rz(45)T (1,2,3)pobj

first, translate by (1,2,3); then rotate 45 degrees about z axis
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Viewport

Function Description

glViewport set viewport (i.e., drawable part of window)

Copyright c© 2015 Michael D. Adams Lecture Slides Version: 2015-02-03 583



Other Functions

Function Description

glClear clear buffer to preset values

glClearColor specify clear values for color buffers

glShadeModel select flat or smooth shading

glFrontFace define front-facing polygons (e.g., projection is

CCW or CW loop)

glLight* set light source parameters (e.g., position, color)

glLightModel* set lighting model parameters

glColorMaterial specify how material color should track current

color
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Additional OpenGL References

full documentation on each OpenGL function can be found at:

http://www.opengl.org/sdk/docs/man
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OpenGL Example Programs

Simple 2-D Graphics (simple_2d.cpp). Draws a point, line, triangle,

and quadrilateral.

Simple 3-D Graphics (simple_3d.cpp). Draws and animates several

simple polyhedra.

3-D Graphics with Lighting (cube.cpp). Draws a cube with lighting.
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OpenGL/CGAL Example Programs

1 Wireframe Mesh Viewer (wireframe.cpp). Allows a polygon mesh to

viewed as a wireframe.
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