Instructor: Dr. H.L. Kwok
Office Hours: Days: T and F
Phone: 250-7212350
E-mail: hlkwok@ece.uvic.ca
Time: 14:30-15:30
Location: EOW425

Lectures:
- Section(s): A01 / CRN 21106
 Days: TWF
 Time: 1330-14-20
 Location: ECS 130

Labs:
- Section(s):
 Days:
 Time:
 Location: ELW

Required Text:
- Title: Electronic materials
- Author: H.L. Kwok
- Publisher: Trans tech Publ.
- Year: 2010

Optional Text:
- Title: Physics of Semiconductor Devices
- Author: M. Shur
- Publisher: Prentice-Hall
- Year: 1990

References:
- Title: Semiconductor devices, Physics and Technology
- Author: S.M. Sze
- Publisher: J.Wiley
- Year: 1985

Assessment:
Assignments: 10%
Labs: %
Mid-term: 2 x 25%
Final: 40%
Date: Feb.5 (Wed.) and March 12 (Wed.)

Note: Failure to complete all laboratory requirements will result in a grade of N being awarded for the course.

Due dates for assignments: To be decided (normally 2 weeks after the assignment are handed out).
The final grade obtained from the above marking scheme will be based on the following percentage-to-grade point conversion:

<table>
<thead>
<tr>
<th>Passing Grades</th>
<th>Grade Point Value</th>
<th>Percentage for Instructor Use Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>9</td>
<td>90 – 100</td>
</tr>
<tr>
<td>A</td>
<td>8</td>
<td>85 – 89</td>
</tr>
<tr>
<td>A-</td>
<td>7</td>
<td>80 – 84</td>
</tr>
<tr>
<td>B+</td>
<td>6</td>
<td>77 – 79</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>73 – 76</td>
</tr>
<tr>
<td>B-</td>
<td>4</td>
<td>70 – 72</td>
</tr>
<tr>
<td>C+</td>
<td>3</td>
<td>65 – 69</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>60 – 64</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>50 – 59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Failing Grades</th>
<th>Grade Point Value</th>
<th>Percentage for Instructor Use Only</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>0</td>
<td>35 - 49</td>
<td>Fail, conditional supplemental exam. (For undergraduate courses only)</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0 – 49</td>
<td>Fail, no supplemental.</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>0 – 49</td>
<td>Did not write examination, Lab or otherwise complete course requirements by the end of term or session; no supplemental exam.</td>
</tr>
</tbody>
</table>

The rules for supplemental examinations are found on page 80 of the current 2013/14 Undergraduate Calendar.

<table>
<thead>
<tr>
<th>Term in which E Grade Was Obtained</th>
<th>Application Deadline for Supplemental Exam</th>
<th>Supplemental Exam Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>First term of Winter Session (Sept – Dec)</td>
<td>February 28 in the following term</td>
<td>First week of following May</td>
</tr>
<tr>
<td>Second term of Winter Session (Jan – Apr)</td>
<td>June 30 in the following term</td>
<td>First week of following September</td>
</tr>
<tr>
<td>Summer Session (May – Aug)</td>
<td>October 31 in the following term</td>
<td>First week of following January</td>
</tr>
</tbody>
</table>

Deferred exams will normally be written at the start of the student's next academic term; i.e., approximately 4 months following the deferral of the exam.

Course Description

1. Course Objectives

This course deals with the principle of operation and design issues related to modern electronic devices. The advancement of electronics has been primarily due to the invention of new devices and it is desirable for practicing engineers to have an updated perspective and understanding on state-of-the-art electronic devices and the future trends.
2. Learning Outcomes

LO-1: Study the operation of advanced bipolar and field-effect transistors
 SLO-1.1: Examine the state-of-the-art transistors, their performance and operation in the context of
 Very-Large Scale Integration Circuits
 SLO-1.2: Analyze the physical limitations and processing issues
 SLO-1.3: Describe methodologies to improve potentially transistor operation and factors to lower
 manufacturing cost
LO-2: Study the operation of photonic and opto-electronic devices
 SLO-2.1: Examine the relationship between light properties and material properties with emphases
 on device applications
 SLO-2.2: Analyze the design and operation of the state-of-the-art opto-electronic devices
 SLO-2.3: Describe novel opto-electronic devices and methodologies to improve performance and to
 lower cost
LO-3: Study the operation of organic semiconductor devices and their future trends
 SLO-3.1: Describe the properties of organic semiconductors and their processing techniques
 SLO-3.2: Analyze the design and operation of organic semiconductor devices
 SLO-3.3: Examine the merits of organic semiconductor devices and the potential of developing
 novel devices
LO-4: Study the principles, construction and design of lasers and related applications
 SLO-4.1: Understand the basic operation of solid-state lasers
 SLO-4.2: Examine different laser applications
LO-5: Study the operation of display devices; thin-film devices; imaging devices; energy conversion
 devices; transducers; and micro-machines and interfacing
 SLO-5.1: Understand the operation of different display and imaging devices including liquid crystal
 displays; charge-coupled imaging devices and medical imagers
 SLO-5.2: Describe energy conversion devices including solar cells, thermoelectric devices
 SLO-5.3: Examine the design and operation of transducers, micro-machines and their interfacing
 SLO-5.4: Study the operation and construction of sensor arrays and the related system design

3. Syllabus

Topics:
 Study of the operation of bipolar and field-effect devices in VLSI design
 Study of photonic and optoelectronic devices
 Study of organic semiconductor devices and their upcoming trends
 Study of principles, construction and design of lasers and related light sources
 Study of display devices, thin-film devices, imaging devices, transducers and micro-machines
 Study of interfacing, sensor arrays and related system-level design

Note to Students:
Students who have issues with the conduct of the course should discuss them
with the instructor first. If these discussions do not resolve the issue, then
students should feel free to contact the ECE Chair by email or the ECE Chair's
secretary to set up an appointment.
Accommodation of Religious Observance
See http://web.uvic.ca/calendar2013/GI/GUPo.html

Policy on Inclusivity and Diversity
See http://web.uvic.ca/calendar2013/GI/GUPo.html

Standards of Professional Behaviour
You are advised to read the Faculty of Engineering document Standards for Professional Behaviour at http://www.uvic.ca/engineering/assets/docs/professional-behaviour.pdf which contains important information regarding conduct in courses, labs, and in the general use of facilities.

Cheating, plagiarism and other forms of academic fraud are taken very seriously by both the University and the Department. You should consult http://web.uvic.ca/calendar2013/FACS/UnIn/UARe/PoAcI.html for the UVic policy on academic integrity.

Plagiarism detection software may be used to aid the instructor and/or TA's in the review and grading of some or all of the work you submit.