The Discrete Time Fourier
Transform-4. Properties (cont'd)



Today

+ Applications of the Fourier Transform in
image analysis

* Properties of the Fourier Transform (cont'd)



(a) (€)

Figure 5.26: Frequency filters displayed in 3D. (a) Low-pass filter. (b) High-pass filter.
(¢) Band-pass filter.
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(c)

Figure 5.27: Low-pass frequency-domain filtering—for the original image and its spectrum see
Figure 3.7. (a) Spectrum of a low-pass filtered image, all higher frequencies filtered out. (b) Image

Copyrlght ©:. resulting from the inverse Fourier transform applied to spectrum (a). (c) Spectrum of a low-pass
filtered image, only very high frequencies filtered out. (d) Inverse Fourier transform applied to

T_h(_)r_nson Er spectrum (c).
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Figure 5.28: High-pass frequency domain filtering. (a) Spectrum of a high-pass filtered image,
Copyrlg ht ©2008. ©only very low frequencies filtered out. (b) Image resulting from the inverse Fourier transform
* applied to spectrum (a). (c) Spectrum of a high-pass filtered image, all lower frequencies filtered

Thomson Engmeer out. (d) Inverse Fourier transform applied to spectrum (c).

division of Thomsol
Learning Ltd.

-~ s



(a) (b)

Figure 5.29: Band-pass frequency domain filtering. (a) Spectrum of a band-pass-filtered image,
low and high frequencies filtered out. (b) Image resulting from the inverse Fourier transform

applied to spectrum (a).
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division of Thomson Figure 5.30: Periodic noise removal. (a) Noisy image. (b) Image spectrum used for image

Learning Ltd reconstruction—mnote that the areas of frequencies corresponding with periodic vertical lines are
earning . filtered out. (c) Filtered image.
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Figure 5.31: Gaussian and Butter-
worth low-pass filters.
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Figure 5.32: High-pass filter used in
homomorphic filtering. It is the But-
terworth filter damped by a 0.5 co-
efficients to keep also some low fre-
quencies.



(a)

Figure 5.33: Illustration of homomorphic filtration. (a) Original image. (b) Result of homomor-
phic filtration. Courtesy of Tomas Svoboda, Czech Technical University, Prague.
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Overview of DTFT properties

We have already discussed (and made use of)
- Periodicity X(el®)= X(elo+?r)
- Linearity
We can group the other properties into meaningful
categories:
- 1. properties related to signal symmetry

- 2. properties related to transformations of the independent
variable (tfime domain and frequency domain)

- 3. properties related to time and frequency differentiation
- 4. properties related to convolution
- bB. property related to the energy of the signal (Parseval)

Our focus will be on understanding the properties and
on knowing how to use them, rather than on their
mathematical proof
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Table 2.1  SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM

TABLE2.1  SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM
Sequence Fourier Transform
x[n] X (e/)
1. x*[n] X*(e™I®)
2. x*[—n] X*(e/)
3. Re{x[n]} Xe(el?) (conjugate-symmetric part of X (ej“’))
4. jImix[n]} X ,(e/?) (conjugate-antisymmetric part of X (e/@))
5. x¢[n] (conjugate-symmetric part of x[n]) X R(ej @) = Re{X (e )}
6. xo[n] (conjugate-antisymmetric part of x[n])  jX(e/?) = jTm{X (e/?))
The following properties apply only when x|[n] is real:
7. Any real x[n] X (e/”) = X*(¢=/®) (Fourier transform is conjugate symmetric)
8. Any real x[n] Xp(e?®) = Xp(e=7®) (real part is even)
9. Any real x[n] X7(e/®) = —X7(e=7®) (imaginary part is odd)
10. Any real x[n] |X (/)| = |X (e=/®)| (magnitude is even)
11. Any real x[n] LX (eI®) = /X (e=7?”) (phase is odd)
12. x.[n] (even part of x[n]) XR(ej“’)
13. x,[n] (odd part of x[n]) J X7 (e/®)




Table 2.2 FOURIER TRANSFORM THEOREMS
TABLE2.2 FOURIER TRANSFORM THEOREMS

Sequence Fourier Transform
x[n] X (1)
yin] (@)
1. ax[n] + by[n] aX (e/®) + by (e/?)
2. x[n —nyg] (ng an integer) e—Iond X (eJ@)
3. ej“’()"x[n] X ((,j(w—w()))
4. x[—n] X (=)

X*(e/®) if x[n] real.

dX (el®)

5. nx[n] j
dw
6. x[n] * y[n] X (/@)Y (el @)
L (7 o i0yy (i (@=0)
7. x[n]y[n] = X (YY" Ndo

Parseval’s theorem:

& 2 1 [ 2
8. Z |x[n]| = 1X (/) |Pdw

n=—oc =%

o0
9. Z x[n]y*[n] =

n=—0o0

1 [T - :
o f X ?)Y*(e!?)dw
o T

b ¢




Table 2.3 FOURIER TRANSFORM PAIRS
TABLE 2.3  FOURIER TRANSFORM PAIRS

Sequence Fourier Transform
1. 8[n] 1
2. 8[n —ng] e—Jong
o0

3.1 (—00 < n < 00) Z 2a8(w +2mk)

k=—00
4. a"u[n] (Ja| = 1) ;

1 —ae—i®

1

5. u[n]

1l —e—Jj@

1
(1- ae_j“’)2

00
+ Z T8 (w+ 2mk)
k

 =—00

6. (n+ Da"uln] (lal < 1)

"sinwp,(n+ 1
7. r—_wIMu[n] (Jr] = 1) 1 - —
sinw,, 1 —2rcoswpe=/® + rle—jlo
8. sin wen X (/@) = { 1, |o| < we,
n 0, we <|w| =7
0. x[n] - 1., O =n S M Sill[(U.(M =+ l)/z]e_jw‘,w/z
0, otherwise sin(w/2)
. 00
10. e/®0n Z 2n8(w — wg +2mk)
k=—00
w . .
11. cos(won + ¢) Z [zrej"bﬁ{w —wo+27k) + e 18w + wq + 2k)]

k=—00




Frequency shifting: discussion

Frequency shifting has important implications because of DTFT
periodicity

ijonaj[n] PR X<€j(w—w0))

X(e')

HF
| \
! l

-2n T LR n m ®

wo =T, y[n] = ™ x[n] = (1)

Y(eju)) =X (ei ((o-n))

HF

-2n - n n 15



Example 1 (using symmetry
properties)
* The following facts are known about a signal x[n] :
x[n] 1s real
x[n]=0forn>0
x[0]> 0

Im{X(ejw )} = sinw —sin 2w

T lxe| =
27T 2x

Determine x[n]



Example 2 (using the frequency
differentiation property)

+ Consider the DFT of x[n]=a"u[n], where 0<a<1
+ Show that

1
(1 - ae‘jw) ’

(n+1a" < > X (e’?) =

DTFT
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Example 3 (using the convolution
property)

Consider a discrete LTI system with
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