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Error Control Coding and Sequences

Hamming Codes and the

Hamming Bound



Single Error Correcting Codes

(3,1, 3) code rate1/3 n—k=2

G=[11 1]

(5,2, 3) code rate2/5 n—k=23
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(6, 3, 3) code rate 1/2 n—kLk=23
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Hamming Codes

* One form of the (7,4,3) Hamming code is generated

by 110 0
011
1 11
101

G' = [P]1] =
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* This is equivalent to the code in Wicker Section 1.3
with

Gn:[l | Pn]:
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Hamming Codes

e (7,4,3) Homming code

10000 11
ofipl[® L 00t
0010110
0001111
* (7,3,4) dual code
0111100
H=-PT1]=[1 0 1 1 0 1
1101001




e Theorem 4-9 The minimum distance of a
code is equal to the minimum number of
columns of H which sum to zero

* For any codeword ¢

.
cH' =][c,,c,....C.,]

=c,d,+¢cd, +...4¢c ,d , =0

where d,, d,, ..., d. , are the column vectors of H

e cH'"is a linear combination of columns of H



Significance of H

* For a codeword of weight w (w ones), cH' is
a linear combination of w columns of H.

* Thus we have a one-to-one mapping
between weight w codewords and linear
combinations of w columns of H that sum

to 0.

e The minimum value of w which results in
cH'=0, i.e., codeword c with weight w,
determines thatd .. =w



Example

* Forthe (7,4,3) code, a codeword with
weight d_. = 3 is given by the first row of G
¢ = 1000011

* The linear combination of the first and last
2 columns in H gives
(011)™+(010)™+(001)™ = (000)T

* Thus a minimum of 3 columns (=d. ) are
required to get a zero value for cH'



Hamming Codes

Definition Let m be an integer and H be an m x (2™ - 1) matrix
with columns which are the non-zero distinct words from V...
The code having H as its parity-check matrix is a binary
Hamming code of length 2™ - 1.

110
Hz{ }:G:[l 1 1]
101

1 00 0011
0111100
0100101
H=1 0110 1 0|=G=
0010110
1101001
0001111

The Hamming codes are (2™ -1, 2™ -1 —m, 3) codes
m=n-k
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Binary Hamming Code Parameters

C:n = 2"—-1
k= 2" —1—m
d = 3

Ct:n = 2" —1
k= m

d _ 2m— 1



Coset Leaders for the Hamming Codes

There are 2"k=2m coset leaders or correctable
error patterns

The number of single error patterns is n = 2™-1

Thus the coset leaders are precisely the words
of weight <1

The syndrome of the word 0...010...0 with 1 in
the j th position and 0 otherwise is the
transpose of the j th column of H



Decoding Hamming Codes

For the case that the columns of H are arranged
in order of increasing binary numbers that
represent the column numbers 1 to 2™M-1

e Step 1 Given r compute the syndrome s = rH'

e Step2Ifs=0, thenrisassumed to be the
codeword sent

e Step 3 If s #0, then assuming a single error,
s gives the binary position of the error



Example

For the Hamming code given by the parity-check matrix

0 0 01 1 1 1]
H=/0 1 1 0 0 1 1

the received word

r=1101011
has syndrome

s=110
and therefore the error is in the sixth position.

Hamming codes were first used to deal with errors in
long-distance telephone calls.



The (7,4,3) code is an optimal single error
correcting code for n-k =3

An (8,5,3) code does not exist

The (15,11,3) code is an optimal single error
correcting code forn-k=4

What is the limit on how many errors an (n,k)
code can correct?



Optimal Codes

d..=1(n,n, 1) entirevector space
d..=2 (n, n-1,2) single parity check codes

d..=3 n=2"-1 Hamming codes

m

what about other values of n?



Shortening

* For 2M™1< n<2™-1, k= n-m, use shortening

* Togeta(6,3,3) code, delete one column say
(111)" fromH

01l 0 n-k is constant
H=1 011 1 so both n and k are changed
110100 1
1 0 0 0] (1 001 1 0
H'={1 1 0 1 0 G'=|0 1 0011
0 1 0 1] 00110 1




Next delete (0 1 1)" which gives a (5,2,3) code

(1 1 1 0 0]
H2=|1 0 0 1 0
01001

G’=

Next delete (1 0 1)" whic

(1 1 0 0]
H®={1 0 1 0

000 1

10110
01101

n gives a (4,1,3) code

G'=[1 1 1 0]

The (4,1,4) repetition code has larger d_ ..

Does a (4,2,3) binary code exist?



Extending

 The process of deleting a message coordinate from a code is
called shortening

(n, k) — (n-1, k-1)

 Adding an overall parity check to a code is called extending
(n, k) — (n+1, k)

 Example:
1 00001 1] 1 0000 1 1 1]
G_01001016,_01001011
10010110 00101101
0001111 00011110




e |fd(C)is odd, d(C’) is even
— In this case, d(C’) =d(C) + 1
 Example (7,4,3) — (8,4,4)

 The extended Hamming codes are optimal
d. .. =4 codes

m



Optimal Codes

d..=1(n,n 1) entirevector space
d..=2 (n, n-1,2) single parity check codes

d... =3 Hamming and shortened Hamming codes

m

d..=4 extended d, . =3 codes



Binary Spheres of Radius t

 The number of binary words (vectors) of length n and
distance i from a word c is

ny n!
(/]_ i\(n—17)!

* Let c be aword of length n. For 0 <t <n, the number
of words of length n a distance at most t from c is

HRHRHERH




Hamming or Sphere Packing Bound

e Consider an (n,k,d) binary code

« 2k codewords and spheres of radius t around
the codewords must be disjoint

* Volume of a sphere with radius tis the
number of vectors in the sphere

 Example: (7,4,3) Hamming code t=1

* \Volume of each sphere is 1+7=8=23

7\

codeword 1 bit error patterns



Number of spheres (codewords) is 2k =16
Volume of all spheres is 2k -23=27 = 2n

The spheres completely fill the n-dimensional
space

The Hamming bound (binary)

L = e

A binary code is called perfect if it meets this
bound with equality




Hamming Bound Example

* Give an upper bound on the size of a linear
code C of length n=6 and distance d=3

6
‘C‘:Zk < 2 :64

o)

* This gives |C|< 9 but the size of a linear
code C must be a power of 2 so |C|< 8 and
k<3




Codes that meet the Hamming Bound

* Binary Hamming codes

n n
+ o |=142M—1=2M=2"K
0) (1

 Odd binary repetition codes (2m+1, 1, 2m+1)
t=m o
m
Sphere volume = Z( i+ ]:22”‘ _ ok
1=0

* (n, n, 1) codes (all vectors in V are codewords)



Marcel Golay (1902-1989)
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Blaise Pascal (1623-1662)

French religious philosopher,
physicist, and mathematician

Thoughts on Religion (1655)

Syringe, and Pascal’s Law for fluid
dynamics (1647-1654)

First mechanical calculator
(1642-1644)

Modern Theory of Probability
with Pierre de Fermat (1654)

Pascal’s triangle was discovered
by Chinese mathematician
Yanghui, 500 years before Pascal
and in the Eleventh century by
Persian mathematician and poet
Omar Khayam
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105

31

540

455

Pascal’s Triangle

1
1 1
1 P 1
1 3 3 1
1 4 6 4 1
1 2 10 10 3 1
1 f 15 20 15 b 1
1 7 2l 35 35 21 7 1
1 i 28 of 70 oh 28 i

25 143 330 46 46 330 145 2%
495 792 924 792 4395 220
286 715 1287 1716 1718 1287 715 286
364 1001 2002 3003 3432 3003 2002 1001
1365 3003 5005 6435 6435 5005 3003 1385

364

1g20 4368  BO0& 11440 12870 11440 B008 4388 1820
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Notes on Digital Coding*

The consideration of message coding as a
means for approaching the theoretical capac-
ity of a communication channel, while reduc-
ing the probability of errors, has suggested
the interesting number theoretical problem
of devising lossless binary (or other) coding
schemes serving to insure the reception of a
correct, but reduced, message when an up-
per limit to the number of transmission er-
rors is postulated.

An example of lossless binary coding is
treated by Shannon! who considers the case
of blocks of seven symbols, one or none of
which can be in error. The solution of this
case can beextended to blocksof 2*—1-binary
symbols, and, more generally, when coding
schemes based on the prime number p are
employed, to blocks of p*—1/p—1 symbols
which are transmitted, and received with
complete equivocation of one or no symbol,
each block comprising # redundant symbols
designed to remove the equivocation. When
encoding the message, the # redundant sym-
bols x,, are determined in terms of the mes-
sage symbols ¥ from the congruent rela-
tions

ke (p"—1)] p=1)—n

Bu=Xun+ Gws ¥ = 0 (mod p).

In the decoding process, the E's are recalcu-
lated with the received symbols, and their
ensemble forms a number on the base p
which determines univocally the mistrans-
mitted symbol and its correction.

In passing from n to n#+1, the matrix
with n rows and p*—1/p —1 columns formed

‘meedbythelnatitm February 23, 1949.
1 C. E. Shannon, “A mathematical th of com-
munication,” Bell Sys. Tech. Jowr., vol. 27, p. 418;
July, 1948,

with the coefficients of the X'sand ¥’sin the
expression above is repeated p times hori-
zontally, while an (n+1) st row added, con-
sisting of p*—1/p—1 zeroes, followed by as
many one's etc, up to p—1; an added column
of n zeroes with a one for the lowest term
completes the new matrix for n+1.

If we except the trivial case of blocks of
2541 binary symbols, of which any group
comprising up to S symbols can be received
in error which equal probability, it does not
appear that a search for lossless coding
schemes, in which the number of errors is
limited but larger than one, can be sys-
tematized so as to yield a family of solutions.
A necessary but not sufficient condition for
the existence of such a lossless coding scheme
in the binary system is the existence of three
or more first numbers of a line of Pascal's tri-
angle which add up to an exact power of 2. A
limited search has revealed two such cases;
namely, that of the first three numbers of the
90th line, which add up to 2'* and that of the
first four numbers of the 23rd line, which add
up to 24, The first case does not correspond
to a lossless coding scheme, for, were such a
scheme to exist, we could designate by r the
number of E, ensembles corresponding to
one error and having an odd number of 1's
and by 90 —r the remaining {even) ensem-
bles. The odd ensembles corresponding to

two transmission errors could be formed by
re-entering term by term all the conbina-
tions of one even and one odd ensemble cor-
responding each to one error, and would
number r(90—r). We should have r+
r(90 —r) =2", which is impossible for inte-
gral values of r.

On the other side, the second case can be
coded so as to vield 12 sure symbols, and the
@me matrix of this case is given in Table 1.
A second matrix is also given, which is that
of the only other lossless coding scheme en-
countered (in addition to the general class
mentioned above) in which blocks of eleven
ternary symbols are transmitted with no
more than 2 errors, and out of which six sure
symbols can be obtained.

It must be mentioned that the use of the
ternary coding scheme just mentioned will
always result in a power loss, whereas the
coding scheme for 23 binary symbols and a
maximum of three transmission errors yields
a power saving of 1§ db for vanishing prob-
abilities of errors. The saving realized with
the coding scheme for blocks of 2*~—1 binary
symbols approaches 3 db for increasing n's
and decreasing probabilities of error, but a
loss is always encountered when n =3.

MARCEL J. E. GoLay
Signal Corps Engineering Laboratories
Fort Monmouth, N. J

TABLE 1
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SO G s G D s LS TR T Sl AT Gt T
) TR S (NG S [ GRS R IR S N
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a0 1 1 1 1 1 1 1 1 1 1
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Golay Codes

* Marcel Golay considered the problem of
perfect codes in 1949

 He found three possible solutions to equality
for the Hamming bound
—qgq=2,n=23,t=3
—qg=2,n=90,t=2
—qg=3,n=11,t=2
* Only the first and third codes exist



Gilbert Bound

* There exists a code of length n, distance d,
and M codewords with

y
> )

* The constructive proof does not result in a
linear code

M =




Gilbert-Varshamov Bound

 The Gilbert bound can be improved by considering
linear codes

— There exists a binary linear code of length n, dimension
k and minimum distance d if

("(;1)+(”1'1)+...+(Z‘_§)<2”"<

— Proof: construct a parity check matrix based on the
condition that any combination of up to d-1 columns of
H is linearly independent

— Thus a binary (n,k,d) code exists with

k> n—LZZ(”jﬁl)J—l



