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Hamming Codes and the 
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Single Error Correcting Codes 
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Hamming Codes 
• One form of the (7,4,3) Hamming code is generated 

by 

 

 

 

• This is equivalent to the code in Wicker Section 1.3 
with 
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Hamming Codes 
• (7,4,3) Hamming code 

 

 

 

 

• (7,3,4) dual code 
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•  Theorem 4-9 The minimum distance of a 
code is equal to the minimum number of 
columns of H which sum to zero 

• For any codeword c 
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where d0, d1, …, dn-1 are the column vectors of H 

• cHT is a linear combination of columns of H 
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Significance of H 

• For a codeword of weight w (w ones), cHT is 
a linear combination of w columns of H. 

• Thus we have a one-to-one mapping 
between weight w codewords and linear 
combinations of w columns of H that sum 
to 0. 

• The minimum value of w which results in 
cHT=0, i.e., codeword c with weight w, 
determines that dmin = w 
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Example 

• For the (7,4,3) code, a codeword with 
weight dmin = 3 is given by the first row of G 
         c = 1000011 

•  The linear combination of the first and last 
2 columns in H gives 

   (011)T+(010)T+(001)T = (000)T 

• Thus a minimum of 3 columns (= dmin) are 
required to get a zero value for cHT 
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Hamming Codes  
 

Definition Let m be an integer and H be an m  (2m - 1) matrix 
with columns which are the non-zero distinct words from Vm. 
The code having H as its parity-check matrix is a binary 
Hamming code of length 2m - 1. 
 

The Hamming codes are (2m - 1, 2m – 1 – m, 3) codes 

m = n - k 
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Binary Hamming Code Parameters 
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Coset Leaders for the Hamming Codes 

• There are 2n-k = 2m coset leaders or correctable 
error patterns 

• The number of single error patterns is n = 2m-1 

• Thus the coset leaders are precisely the words 
of weight  1 

• The syndrome of the word 0…010…0 with 1 in 
the j th position and 0 otherwise is the 
transpose of the j th column of H 
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Decoding Hamming Codes 

For the case that the columns of H are arranged 
in order of increasing binary numbers that 
represent the column numbers 1 to 2m - 1 
 

•  Step 1 Given r compute the syndrome s = rHT 

•  Step 2 If s = 0, then r is assumed to be the 
        codeword sent 

•  Step 3 If s  0, then assuming a single error, 
       s gives the binary position of the error 
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Example 
For the Hamming code given by the parity-check matrix 
 
 
 

 
the received word 

r = 1101011 
has syndrome 

s = 110 
and therefore the error is in the sixth position. 
 

 

Hamming codes were first used to deal with errors in 
long-distance telephone calls. 
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• The (7,4,3) code is an optimal single error 
correcting code for n-k = 3 

• An (8,5,3) code does not exist 

• The (15,11,3) code is an optimal single error 
correcting code for n-k = 4 

 

• What is the limit on how many errors an (n,k) 
code can correct? 



Optimal Codes 

 dmin = 1  (n, n, 1)      entire vector space 

 

 dmin = 2  (n, n-1, 2)   single parity check codes 

 

 dmin = 3   n = 2m - 1  Hamming codes 

   

  what about other values of n? 
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Shortening 

• For   2m-1 ≤  n < 2m-1, k = n-m, use shortening 
• To get a (6,3,3) code, delete one column say        

(1 1 1)T from H 
 

            n-k is constant 

              so both n and k are changed 
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• Next delete (0 1 1)T which gives a (5,2,3) code 

 

 

• Next delete (1 0 1)T which gives a (4,1,3) code 

 

 

• The (4,1,4) repetition code has larger dmin 

 

• Does a (4,2,3) binary code exist? 
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Extending 
• The process of deleting a message coordinate from a code is 

called shortening 

 (n, k) → (n-1, k-1) 
 

• Adding an overall parity check to a code is called extending 

 (n, k) → (n+1, k) 

• Example:  
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• If d(C) is odd, d(C’) is even 

– In this case, d(C’) = d(C) + 1 

• Example (7,4,3) → (8,4,4) 

 

• The extended Hamming codes are optimal 
dmin = 4 codes 



Optimal Codes 

 dmin = 1  (n, n, 1)      entire vector space 

 

 dmin = 2  (n, n-1, 2)   single parity check codes 

 

 dmin = 3  Hamming and shortened Hamming codes 

 

  dmin = 4 extended  dmin = 3 codes  
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Binary Spheres of Radius t 

• The number of binary words (vectors) of length n and 
distance i from a word c is 

 

 

 

• Let c be a word of length n. For 0 ≤ t ≤ n, the number 
of words of length n a distance at most t from c is 
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Hamming or Sphere Packing Bound 

• Consider an (n,k,d) binary code     

• 2k codewords and spheres of radius t around 
the codewords must be disjoint 

• Volume of a sphere with radius t is the 
number of vectors in the sphere 

• Example: (7,4,3) Hamming code t=1 

• Volume of each sphere is 1+7=8=23 

 codeword 1 bit error patterns 
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• Number of spheres (codewords) is 2k =16 
• Volume of all spheres is 2k ·23= 27 = 2n 

• The spheres completely fill the n-dimensional 
space 
 

• The Hamming bound (binary) 
 
 
 

• A binary code is called perfect if it meets this 
bound with equality 
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Hamming Bound Example 

• Give an upper bound on the size of a linear 

code C of length n=6 and distance d=3 
 

 

 

 

• This gives |C|≤ 9 but the size of a linear 
code C must be a power of 2 so |C|≤ 8 and 
k ≤ 3 
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Codes that meet the Hamming Bound 

• Binary Hamming codes 

 

 

• Odd binary repetition codes (2m+1, 1, 2m+1) 

 t=m 

 Sphere volume = 

 

• (n, n, 1) codes (all vectors in Vn are codewords) 
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Marcel Golay (1902-1989) 
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Blaise Pascal (1623-1662) 

• French religious philosopher, 
physicist, and mathematician 

• Thoughts on Religion (1655) 
• Syringe, and Pascal’s Law for fluid 

dynamics (1647-1654) 
• First mechanical calculator 
 (1642-1644)  
• Modern Theory of Probability 

with Pierre de Fermat (1654) 
• Pascal’s triangle was discovered 

by Chinese mathematician 
Yanghui, 500 years before Pascal 
and in the Eleventh century by 
Persian mathematician and poet 
Omar Khayam 
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Pascal’s Triangle 
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Golay Codes 

• Marcel Golay considered the problem of 
perfect codes in 1949 

• He found three possible solutions to equality 
for the Hamming bound 

– q = 2, n = 23, t = 3 

– q = 2, n = 90, t = 2 

– q = 3, n = 11, t = 2 

• Only the first and third codes exist 
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• There exists a code of length n, distance d, 

and M codewords with 

 

 

 

• The constructive proof does not result in a 

linear code 

 

 

Gilbert Bound 
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• The Gilbert bound can be improved by considering 
linear codes 
– There exists a binary linear code of length n, dimension 

k and minimum distance d if 
 
 
 

– Proof: construct a parity check matrix based on the 
condition that any combination of up to d-1 columns of 
H is linearly independent 

– Thus a binary (n,k,d) code exists with 

 

 

Gilbert-Varshamov Bound 
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