Error Control Coding

Hamming Codes and
What is Possible
Single Error Correcting Codes

(3, 1, 3) code rate 1/3 \(n - k = 2 \)

\[
G = \begin{bmatrix}
1 & 1 & 1
\end{bmatrix}
\]

(5, 2, 3) code rate 2/5 \(n - k = 3 \)

\[
G = \begin{bmatrix}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{bmatrix}
\]

(6, 3, 3) code rate 1/2 \(n - k = 3 \)

\[
G = \begin{bmatrix}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{bmatrix}
\]
Hamming Codes

• One form of the (7,4,3) Hamming code is generated by

\[
G = [P'|I] = \begin{bmatrix}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

• This is equivalent to the code in with generator matrix

\[
G = [I|P] = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}
\]
Equivalent Codes

• Two linear codes are said to be equivalent if one generator matrix can be obtained from the other by:
 – Permuting columns
 – Permuting rows
 – Taking a scalar multiple of a row
 – Combining rows
 – Taking a scalar multiple of a column
Hamming Codes

- (7,4,3) Hamming code
 \[G = [I|P] = \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix} \]

- (7,3,4) dual code
 \[H = [-P^T|I] = \begin{bmatrix}
 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
 1 & 1 & 0 & 1 & 0 & 0 & 1
\end{bmatrix} \]
Comments about H

• **Theorem 4-9** The minimum distance of the code is equal to the minimum number of columns of H which sum to zero

• For any codeword c

$$cH^T = [c_0, c_1, ..., c_{n-1}] \begin{bmatrix} h_0 \\ h_1 \\ . \\ h_{n-1} \end{bmatrix} = c_0 h_0 + c_1 h_1 + ... + c_{n-1} h_{n-1} = 0$$

where h_0, h_1, ..., h_{n-1} are the column vectors of H

• cH^T is a linear combination of the columns of H
Comments about H

• For a codeword of weight w (w ones), cH^T is a linear combination of w columns of H.

• Thus we have a one-to-one mapping between weight w codewords and linear combinations of w columns of H that sum to 0.

• The minimum value of w which results in $cH^T=0$, i.e., codeword c with weight w, determines that $d_{min} = w$
Example

• For the (7,4,3) code, a codeword with weight $d_{min} = 3$ is given by the first row of G, i.e., $c = 1000011$

• The linear combination of the first and last 2 columns in H gives

$$ (011)^T + (010)^T + (001)^T = (000)^T $$

• Thus a minimum of 3 columns ($= d_{min}$) are required to get a zero value for cH^T
Parity Check Matrix of the (7,4,3) Code

\[
H = [-P^T | I] = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{bmatrix}
\]
Hamming Codes

Definition Let \(m \) be an integer and \(H \) be an \(m \times (2^m-1) \) matrix with columns which are the non-zero distinct words from \(V_m \). The code having \(H \) as its parity-check matrix is a binary Hamming code of length \(2^m-1 \).

\[
H = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \Rightarrow G = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}
\]

\[
H = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} \Rightarrow G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}
\]

The Hamming codes are \((2^m-1, 2^m-1 \ m, 3)\) codes, \(m = n-k \)
Hamming Code Parameters

\[C : \ n = 2^m - 1 \]

\[k = 2^m - 1 - m \]

\[d = 3 \]

\[C^\perp : \ n = 2^m - 1 \]

\[k = m \]

\[d = 2^{m-1} \]
Coset Leaders for the Hamming Codes

• There are $2^{n-k} = 2^m$ coset leaders or correctable error patterns
• The number of single error patterns is $n = 2^m - 1$
• Thus the coset leaders are precisely the words of weight ≤ 1
• The syndrome of the word $0...010...0$ with 1 in the j-th position and 0 otherwise is the transpose of the j-th column of H
Decoding Hamming Codes

For the case that the columns of H are arranged in order of increasing binary numbers that represent the column numbers 1 to $2^m - 1$

- **Step 1** Given r compute the syndrome $S(r) = rH^T$
- **Step 2** If $S(r) = 0$, then r is assumed to be the codeword sent
- **Step 3** If $S(r) \neq 0$, then assuming a single error, $S(r)$ gives the binary position of the error
Example

For the Hamming code given by the parity-check matrix

\[
H = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{bmatrix}
\]

the received word

\[r = 1101011 \]

has syndrome

\[S(r) = 110 \]

and therefore the error is in the sixth position.

Hamming codes were originally used to deal with errors in long-distance telephone calls.
• The (7,4,3) code is an optimal single error correcting code for $n-k = 3$
• An (8,5,3) code does not exist
• The (15,11,3) code is an optimal single error correcting code for $n-k = 4$

• What is the limit on how many errors a code can correct?
The Main Coding Theory Problem

A good \((n,M,d)\) code has small \(n\), large \(M\) and large \(d\).

The main coding theory problem is to optimize one of the parameters \(n, M, d\) for given values of the other two.

For linear codes, a good \((n,k,d)\) code has small \(n\), large \(k\) and large \(d\).

The main coding theory problem for linear codes is to optimize one of the parameters \(n, k, d\) for given values of the other two.
Optimal Codes

\[d_{\text{min}} = 1 \ (n, n, 1) \quad \text{entire vector space} \]

\[d_{\text{min}} = 2 \ (n, n-1, 2) \quad \text{single parity check codes} \]

\[d_{\text{min}} = 3 \quad n = 2^m - 1 \quad \text{Hamming codes} \]

what about other values of \(n \)?
Shortening

• For $2^{m-1}-1 < n \leq 2^m-1$, $k = n-m$, use shortening
• To get a (6,3,3) code, delete one column say $(1 \ 1 \ 1) \top$ from \mathbf{H}

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$n-k$ is constant
so both n and k are changed

$$\mathbf{H}_1 = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{G}_1 = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$
• Next delete $(0 \ 1 \ 1)^T$ to get a $(5,2,3)$ code

\[
H_2 = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{bmatrix} \quad G_2 = \begin{bmatrix}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{bmatrix}
\]

• Next delete $(1 \ 0 \ 1)^T$ to get a $(4,1,3)$ code

\[
H_3 = \begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \quad G_3 = \begin{bmatrix}
1 & 1 & 1 & 0
\end{bmatrix}
\]

• The $(4,1,4)$ repetition code has larger d_{min}

• Question: Does a $(4,2,3)$ binary code exist?
Self-Dual Code Example

- \(C = C^\perp \geq n-k = k \rightarrow k = n/2 \)
- \(G = [I \ P] \quad GG^T = 0 \iff I + PP^T = 0 \rightarrow PP^T = -I \)
- Self-dual code over \(\text{GF}(3) \): \(n = 4, \ k = 2, \ d = 3 \)

\[
G = \begin{bmatrix}
1011 \\
0112
\end{bmatrix}
\]

(1011) \cdot (1011) = 0
(1011) \cdot (0112) = 0
(0112) \cdot (0112) = 0

- Codewords

0000 1011 2022 0112 0221
1102 2201 1220 2110
Extending

- The process of deleting a message coordinate from a code is called **shortening**
 \((n, k) \rightarrow (n-1, k-1)\)

- Adding an overall parity check to a code is called **extending**
 \((n, k) \rightarrow (n+1, k)\)

- Example:

\[
G = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}
\]

\[
G' = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{bmatrix}
\]
• If \(d(C) \) is odd, \(d(C') \) is even
 – In this case, \(d(C') = d(C) + 1 \)

• Example \((7,4,3) \rightarrow (8,4,4)\)

• The optimal \(d_{min} = 4 \) codes are extended Hamming codes
Optimal Codes

\[d_{\text{min}} = 1 \ (n, n, 1) \quad \text{entire vector space} \]

\[d_{\text{min}} = 2 \ (n, n-1, 2) \quad \text{single parity check codes} \]

\[d_{\text{min}} = 3 \quad \text{Hamming and shortened Hamming codes} \]

\[d_{\text{min}} = 4 \quad \text{extended } d_{\text{min}} = 3 \text{ codes} \]
Binary Spheres of Radius t

- The number of binary words (vectors) of length n and distance i from a word c is
 \[
 \binom{n}{i} = \frac{n!}{i!(n-i)!}
 \]

- Let c be a word of length n. For $0 \leq t \leq n$, the number of words of length n a distance at most t from c is
 \[
 \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{t}
 \]
Hamming or Sphere Packing Bound

• Consider an \((n,k,t)\) binary code
• \(2^k\) codewords, spheres of radius \(t\) around the codewords must be disjoint
• Volume of a sphere with radius \(t\) is the number of vectors in the sphere
• Example: \((7,4,3)\) Hamming code \(t=1\)
• Volume of each sphere is \(1+7=8=2^3\)

\[\text{codeword} \quad \text{1 bit error patterns}\]
• Number of spheres (codewords) is $2^k = 16$
• Volume of all spheres is $2^k \cdot 2^3 = 2^7 = 2^n$
• The spheres completely fill the n-dimensional space

• The Hamming bound (binary)

$$2^k \left[1 + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{t} \right] \leq 2^n \quad \text{or} \quad \sum_{i=0}^{t} \binom{n}{i} \leq 2^{n-k}$$

• A code is called **perfect** if it meets this bound with equality
Hamming Bound Example

• Give an upper bound on the size of a linear code C of length $n=6$ and distance $d=3$

$$|C| \leq \frac{2^6}{\binom{6}{0} + \binom{6}{1}} = \frac{64}{7}$$

• This gives $|C| \leq 9$ but the size of a linear code C must be a power of 2 so $|C| \leq 8$
Codes that meet the Hamming Bound

• Binary Hamming codes

\[
\binom{n}{0} + \binom{n}{1} = 1 + 2^m - 1 = 2^m = 2^{n-k}
\]

• Odd binary repetition codes \((2m+1, 1, 2m+1)\)

\(t = m\)

Sphere volume = \(\sum_{i=0}^{m} \binom{2m+1}{i} = 2^{2m} = 2^{n-k}\)

• \((n, n, 1)\) codes (all vectors in \(V_n\) are codewords)
Hamming Bound for Nonbinary Codes

• For GF(q)
 \[
 \sum_{i=0}^{t} \binom{n}{i} (q-1)^i \leq q^{n-k}
 \]
 – Size of the vector space is \(q^n \)
 – The number of codewords is \(q^k \)
 – Each error location has \(q-1 \) possible error values

• Two of the three classes of perfect binary linear codes also exist for nonbinary alphabets
• Vector space codes
 \[\sum_{i=0}^{0} \binom{n}{i} (q-1)^i = q^0 = q^{n-k} \]

• Nonbinary Hamming codes
 – \(H \) has \(m \) rows
 – There are \(q^m-1 \) possible nonzero \(q \)-ary \(m \)-tuples
 – For each \(q \)-ary \(m \)-tuple, there are \(q-1 \) distinct nonzero \(m \)-tuples that are a multiple of that \(m \)-tuple
• **H** has dimension \(m \times \frac{q^m - 1}{q - 1} \)

\[
n = \frac{q^m - 1}{q - 1} \quad k = n - m \quad d_{\text{min}} = 3
\]

• Example: \(m = 3, q = 3 \), 26 possible nonzero \(m \)-tuples

only \(\frac{1}{2} \) are usable

\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 2 & 2 & 0 & 2 & 1 & 2 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 2 & 1 & 2 & 2 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}
\]

\[
\frac{1}{m} \sum_{i=0}^{m} \binom{n}{i} (q-1)^i = 1 + n(q-1) = q^m = q^{n-k}
\]
Golay Codes

• Marcel Golay (1902-1989) considered the problem of perfect codes in 1949
• He found three possible solutions to equality for the Hamming bound
 – q = 2, n = 23, t = 3
 – q = 2, n = 90, t = 2
 – q = 3, n = 11, t = 2
• Only the first and third codes exist [Van Lint and Tietäväinen, 1973]
Gilbert Bound

There exists a code of length n, distance d, and M codewords with

$$M = \left\lfloor \frac{2^n}{\sum_{j=0}^{d-1} \binom{n}{j}} \right\rfloor$$

The bound also holds for linear codes

Let k be the largest integer such that

$$2^k < \frac{2^n}{\sum_{j=0}^{d-1} \binom{n}{j}}$$

then an (n,k,d) code exists
Gilbert-Varshamov Bound

• For linear codes, the Gilbert bound can be improved
 • There exists a linear code of length \(n \), dimension \(k \) and minimum distance \(d \) if
 \[
 \binom{n-1}{0} + \binom{n-1}{1} + \ldots + \binom{n-1}{d-2} < 2^{n-k}
 \]
 • Proof: construct a parity check matrix based on this condition
 • Thus if \(k \) is the largest integer such that
 \[
 2^k < \frac{2^n}{\sum_{j=0}^{d-2} \binom{n-1}{j}}
 \]
 then an \((n,k,d)\) code exists
Examples

• Does there exist a linear code of length $n=9$, dimension $k=2$, and distance $d=5$? Yes, because

$$\begin{pmatrix} 8 \\ 0 \end{pmatrix} + \begin{pmatrix} 8 \\ 1 \end{pmatrix} + \begin{pmatrix} 8 \\ 2 \end{pmatrix} + \begin{pmatrix} 8 \\ 3 \end{pmatrix} = 93 < 128 = 2^{9-2}$$

• Give a lower and an upper bound on the dimension, k, of a linear code with $n=9$ and $d=5$

• **G-V lower bound:** $2^k < \frac{2^9}{93} = 5.55$ but $|C|$ is a power of 2 so $|C| \geq 4$
Examples (Cont.)

• Hamming upper bound:

\[|C| \leq \frac{2^9}{\binom{9}{0} + \binom{9}{1} + \binom{9}{2}} = \frac{512}{1 + 9 + 36} = 11.13 \]

but \(|C| \) is a power of 2 so \(|C| \leq 8 \)

• From the tables, the optimal codes are
 – (9,2,6)
 • the G-V bound is exceeded so it is sufficient but not necessary for a code to exist
 – (9,3,4)
 • the Hamming bound is necessary but not sufficient for a code to exist
Does a (15,7,5) linear code exist?

Check the G-V bound

\[
\left(\begin{array}{c} n-1 \\ 0 \end{array} \right) + \left(\begin{array}{c} n-1 \\ 1 \end{array} \right) + \ldots + \left(\begin{array}{c} n-1 \\ d-2 \end{array} \right) = \left(\begin{array}{c} 14 \\ 0 \end{array} \right) + \left(\begin{array}{c} 14 \\ 1 \end{array} \right) + \left(\begin{array}{c} 14 \\ 2 \end{array} \right) + \left(\begin{array}{c} 14 \\ 3 \end{array} \right)
\]

\[
= 1 + 14 + 91 + 364 = 470 > 2^{15-7} = 2^{n-k} = 256
\]

G-V bound does not hold, so it does not tell us whether or not such a code exists.

Actually such a code does exist - the (15,7,5) BCH code
• Check with the Hamming bound

• A $(15,7,5)$ BCH code has sphere volume

\[
1 + 15 + \binom{15}{2} = 121
\]

• The total volume of the spheres is

\[
121 \times 2^7 = 15488 < 2^{15}
\]
The Nordstrom-Robinson Code

• Adding an overall parity check to the (15,7,5) code gives a (16,7,6) linear code
 – This is an optimal linear code
 – The G-V bound says a (16,5,6) code exists

• A (16,256,6) nonlinear code exists
 – Twice as many codewords as the optimal linear code
Bounds for Nonbinary Codes

• For nonlinear codes, there exists a code of length n, dimension k and distance d if

$$M = \left[\frac{q^n}{\sum_{j=0}^{d-1} \binom{n}{j} (q-1)^j} \right]$$

• For linear codes, let k be the largest integer such that

$$q^k < \frac{q^n}{\sum_{j=0}^{d-2} \binom{n-1}{j} (q-1)^j}$$

is satisfied, then an (n,k,d) code exists
Singleton Bound

• **Theorem 4-10** Singleton bound (upper bound)

For any \((n,k,d)\) linear code, \(d-1\leq n-k\)

\[k \leq n-d+1 \text{ or } |C| \leq 2^{n-d+1} \]

Proof: the parity check matrix \(H\) of an \((n,k,d)\) linear code is an \(n-k\) by \(n\) matrix such that every \(d-1\) columns of \(H\) are independent

Since the columns have length \(n-k\), we can never have more than \(n-k\) independent columns. Hence \(d-1 \leq n-k\).

• For an \((n,k,d)\) linear code \(C\), the following are equivalent:

 • \(d = n-k+1\)

 • Every \(n-k\) columns of the parity check matrix are linearly independent

 • Every \(k\) columns of the generator matrix are linearly independent

 • \(C\) is Maximum Distance Separable (MDS) (definition: \(d=n-k+1\))

 • \(C^\perp\) is MDS
Example

• (255,223,33) RS code over GF(2^8)

\[
\text{# of codewords} \times \text{volume} \over \text{size of vector space} = 2.78 \times 10^{-14}
\]

• Singleton bound:

\[d_{\text{min}} \leq n-k+1\]

• (255,223,33) RS code meets the Singleton bound with equality