ELEC 515 Information Theory

Review

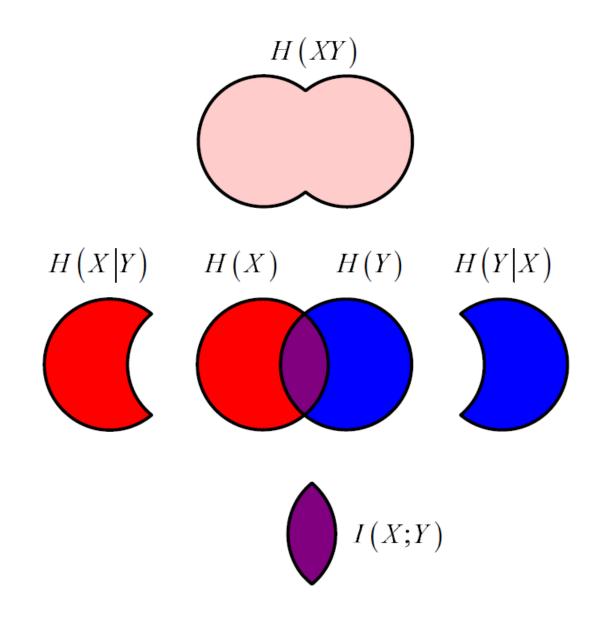
Final Exam

- Friday, December 20, 7:00 PM ECS 116
- 3 hour exam
- ALL course content is covered except
 - logistic regression
 - differential entropy
- Materials Allowed
 - calculator
 - two pages of notes on 8.5" × 11.5" paper

Entropy

$$H(X) = -\sum_{i=1}^{N} p(x_i) \log_b p(x_i)$$

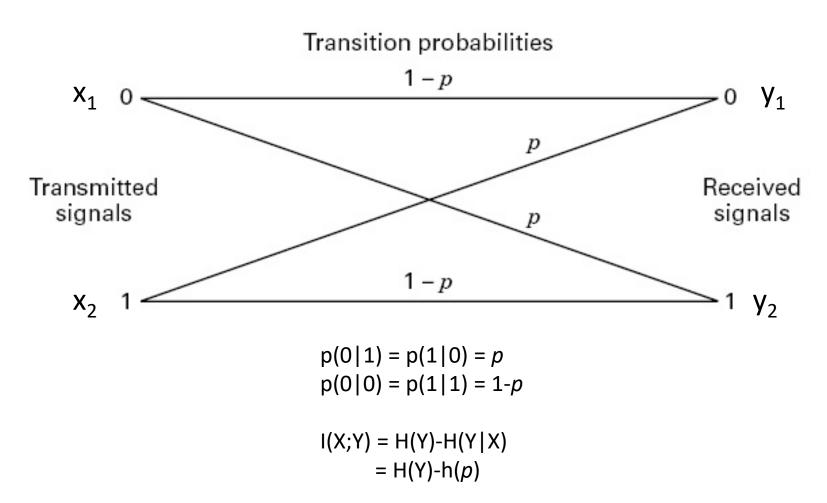
- Joint Entropy H(XY)
- Conditional Entropy H(X|Y)
- Mutual Information I(X;Y)

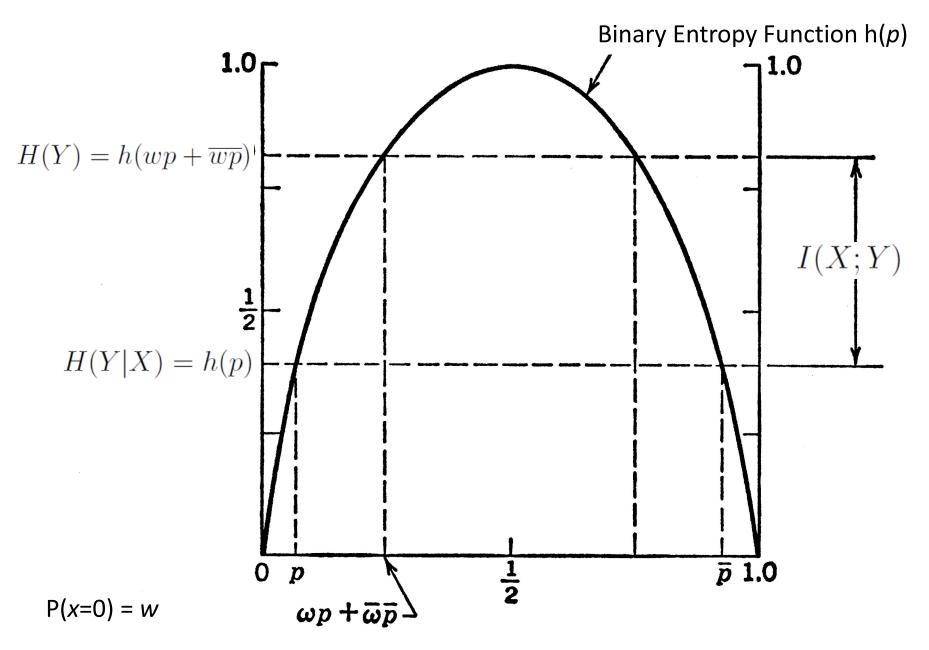


Information Channels

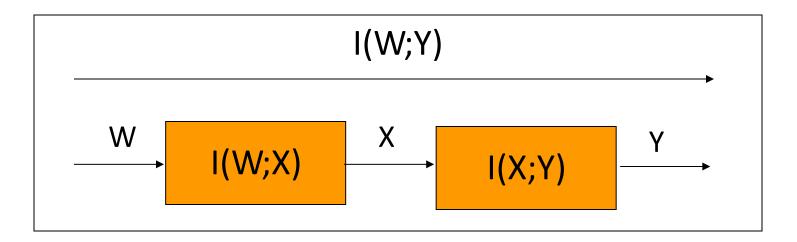
- An information channel is described by an
- Input alphabet X
- Output alphabet Y
- Set of conditional probabilities $p(y_i|x_i)$

Binary Symmetric Channel





The Data Processing Inequality Cascaded Channels



The mutual information I(W;Y) for the cascade cannot be larger than I(W;X) or I(X;Y), so that

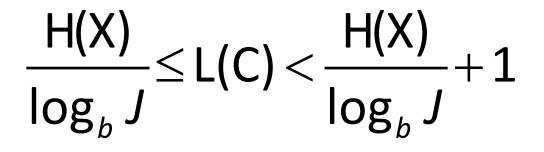
 $I(W;Y) \leq I(W;X)$ $I(W;Y) \leq I(X;Y)$

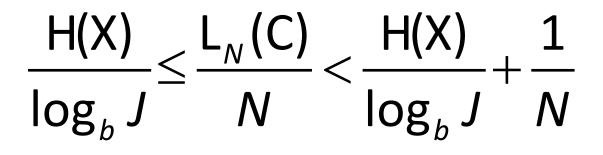
Relative Entropy and Cross Entropy

$$D[p(X)||q(X)] = \sum_{i=1}^{N} p(x_i) \log_b \left[\frac{p(x_i)}{q(x_i)}\right]$$

$$H(p,q) = -\sum_{i=1}^{N} p(x_i) \log q(x_i)$$

Shannon's Noiseless Coding Theorem



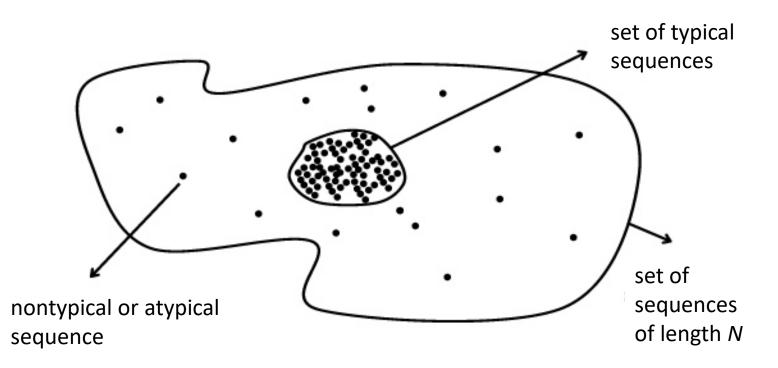


Typical Sequences

$$\mathcal{T}_X(\delta) \equiv \{\mathbf{x} \colon |-\frac{1}{N}\log_b p(\mathbf{x}) - H(X)| < \delta\}$$

$$\mathcal{T}_X^c(\delta) \equiv \{\mathbf{x} : \left| -\frac{1}{N} \log_b p(\mathbf{x}) - H(X) \right| \ge \delta \}$$

Typical Sequences



Shannon-McMillan Theorem

a) The probability that a particular sequence \mathbf{x} of blocklength N belongs to the set of atypical sequences $\mathcal{T}_X^c(\delta)$ is upperbounded as:

$$Pr[\mathbf{x} \in \mathcal{T}_X^c(\delta)] < \epsilon$$

b) If a sequence \mathbf{x} is in the set of typical sequences $\mathcal{T}_X(\delta)$ then its probability of occurrence $p(\mathbf{x})$ is approximately equal to $b^{-NH(X)}$, that is:

$$b^{-N[H(X)+\delta]} < p(\mathbf{x}) < b^{-N[H(X)-\delta]}$$

c) The number of typical, or likely, sequences $\|\mathcal{T}_X(\delta)\|$ is bounded by:

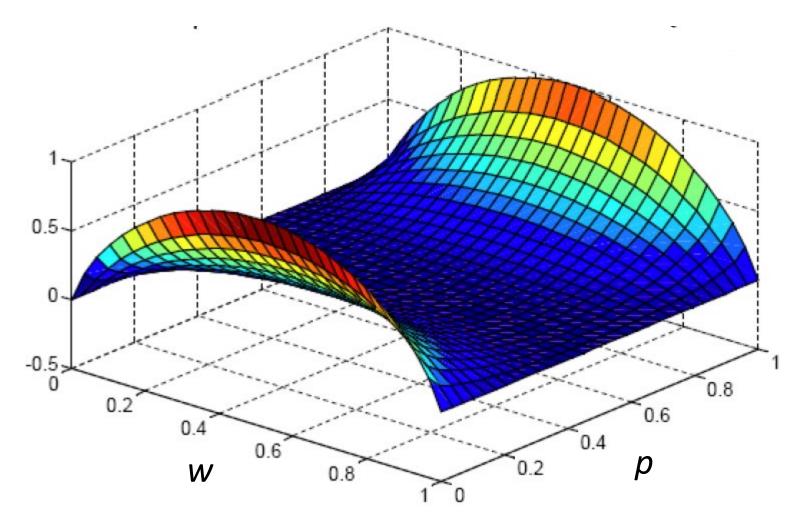
$$(1-\epsilon)b^{N[H(X)-\delta]} < \|\mathcal{T}_X(\delta)\| < b^{N[H(X)+\delta]}$$

- The essence of source coding or data compression is that as N→∞, atypical sequences almost never appear as the output of the source.
- Therefore, one can focus on representing typical sequences with codewords and ignore atypical sequences.
- Since there are only about 2^{NH(X)} typical sequences of length N, and they are approximately equiprobable, it takes about NH(X) bits to represent them.
- On average it takes H(X) bits to represent a source symbol.

Source Coding Algorithms

- Shannon
- Fano
- Huffman
- Tunstall
- Arithmetic
- Fixed Length Source Compaction
- Lempel-Ziv

I(X;Y) for the BSC

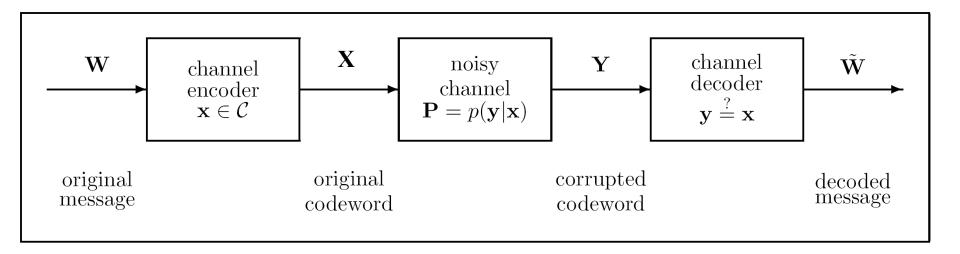


Channel Capacity

The maximum value of I(X; Y) as the input probabilities $p(x_i)$ are varied is called the Channel Capacity

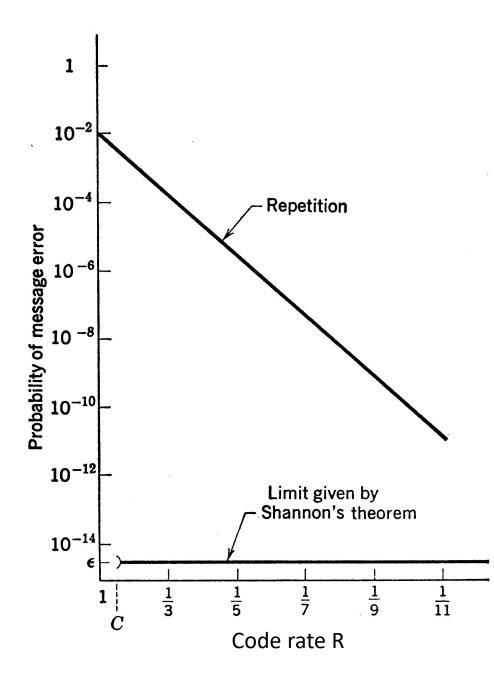
 $C = \max_{p(x_i)} I(X;Y)$

Communication over Noisy Channels



Shannon's Noisy Coding Theorem

For any $\varepsilon > 0$ and for any rate *R* less than the channel capacity *C*, there is an encoding and decoding scheme that can be used to ensure that the probability of decoding error is less than ε for a sufficiently large block length *N*.



Best Known Codes Comparison

• BSC p = 0.01 R = 2/3 $M = 2^{NR}$

N	Pe	log ₂ M
3	1.99×10 ⁻²	2
12	6.17×10 ⁻³	8
30	3.32×10 ⁻³	20
51	1.72×10 ⁻³	34
81	1.36×10 ⁻³	54
105	6.92×10 ⁻⁴	70
126	2.99×10 ⁻⁴	84

• For fixed R, P_e can be decreased by increasing N

Code Matrix

$$\mathcal{C} = \begin{bmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{m} \\ \vdots \\ \mathbf{c}_{M} \end{bmatrix} = \begin{bmatrix} c_{1,1} & \cdots & c_{1,n} & \cdots & c_{1,N} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ c_{m,1} & \cdots & c_{m,n} & \cdots & c_{m,N} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ c_{M,1} & \cdots & c_{M,n} & \cdots & c_{M,N} \end{bmatrix}$$

Binary Codes

For given values of *M* and *N*, there are 2^{MN}

possible binary codes.

- Of these, some will be bad, some will be best (optimal), and some will be good, in terms of P_e
- An average code will be good.

There are many classes of practical codes

- Hamming codes
- Convolutional codes
- Reed-Muller codes
- Cyclic codes (CRC codes)
- Reed-Solomon codes
- Product codes
- BCH codes
- LDPC codes
- Turbo codes
- Repeat-accumulate codes
- Polar codes

•

Deep Space Communications



Mars Rover 2021

